
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Foundations for Speculative Side Channels

Permalink
https://escholarship.org/uc/item/64n9f44x

Author
Cauligi, Sunjay R

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/64n9f44x
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Foundations for Speculative Side Channels

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Sunjay R Cauligi

Committee in charge:

Professor Deian Stefan, Chair
Professor Nadia Heninger
Professor Ranjit Jhala
Professor Farinaz Koushanfar
Professor Shachar Lovett

2021

Copyright

Sunjay R Cauligi, 2021

All rights reserved.

The dissertation of Sunjay R Cauligi is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2021

iii

DEDICATION

For Louisa.

iv

EPIGRAPH

What?
Is it not a simple task?

Why, to someone like you,
it should be by no means be a
difficult task.

Except...

The one thing is...
I'm a very busy fellow...

And I must leave this place in
three days.

How grateful I would be if you
could bring it back to me before
my time here is up...

But, yes... You'll be fine.
I see you are young and have
tremendous courage.

I'm sure you'll find it right away.

Well then, I am counting on you...

—The Happy Mask Salesman
(The Legend of Zelda: Majora’s Mask)

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . x

Acknowledgements . xi

Vita . xiii

Abstract of the Dissertation . xiv

Introduction . 1
1 Timing side-channels . 1
2 Spectre vulnerabilities . 2
3 Principled and practical foundations 3
4 Outline . 5

Chapter 1 FaCT: A DSL for Timing-Sensitive Computation 8
1.1 Background . 10
1.2 FaCT . 14

1.2.1 Core language . 15
1.2.2 Type system . 18

1.3 Front-end compiler . 24
1.3.1 Return deferral . 25
1.3.2 Branch removal . 29
1.3.3 Compiler correctness and security 32

1.4 Implementation and evaluation . 34
1.4.1 Case studies . 35
1.4.2 User study . 38

1.5 Limitations and future work . 41
1.6 Related work . 42

vi

Chapter 2 Constant-Time Foundations for the New Spectre Era 46
2.1 Motivating examples . 48
2.2 Speculative semantics and security 50

2.2.1 Speculative constant-time 53
2.2.2 Overview of the semantics 55
2.2.3 Speculative execution . 56
2.2.4 Memory operations . 59
2.2.5 Aliasing prediction . 66
2.2.6 Speculation barriers . 69
2.2.7 Indirect jumps . 70
2.2.8 Function calls . 72

2.3 Detecting violations . 77
2.3.1 Evaluation procedure . 78
2.3.2 Detected violations . 79

2.4 Related work . 81
2.5 Conclusion . 82

Chapter 3 Towards Verified Spectre-Resistant SFI Sandboxing 84
3.1 Formal model . 85

3.1.1 Syntax . 85
3.1.2 Architectural semantics . 86
3.1.3 Attackers and observations 86
3.1.4 Speculative semantics . 89

3.2 Formalizing SFI security . 90
3.2.1 Non-interference . 90
3.2.2 SFI security properties . 92
3.2.3 Establishing security . 93
3.2.4 Swivel-SFI . 94
3.2.5 Swivel-CET . 96

3.3 Conclusion . 98

Chapter 4 Practical Foundations for Spectre Defenses 99
4.1 Preliminaries . 101

4.1.1 Breaking cryptography with Spectre 101
4.1.2 Breaking software isolation with Spectre 103
4.1.3 Security properties and execution semantics 104

4.2 Choices in semantics . 106
4.2.1 Leakage models . 107
4.2.2 Non-interference and policies 113
4.2.3 Execution models . 117
4.2.4 Nondeterminism . 120
4.2.5 Higher-level abstractions 122
4.2.6 Expressivity and microarchitectural features 125

vii

4.3 Related Work . 129
4.3.1 Systematization of Spectre attacks and defenses 129
4.3.2 Hardware-based Spectre defenses 130
4.3.3 Software-hardware co-design 130
4.3.4 Other transient execution attacks 131

4.4 Conclusion . 132

Conclusion . 134

Appendix A FaCT: Deferred definitions and proofs 136
A.1 Semantics . 136
A.2 Return deferral . 139
A.3 Branch removal . 143

Appendix B Pitchfork: Full proofs . 151
B.1 Consistency . 151
B.2 Security . 154
B.3 Soundness of Pitchfork . 156

Bibliography . 161

viii

LIST OF FIGURES

Figure 1.1: FaCT grammar, top-level constructs. 15
Figure 1.2: FaCT grammar, statements, and expressions. 16
Figure 1.3: FaCT types. 17
Figure 1.4: FaCT expression typing rules (subset). 21
Figure 1.5: FaCT statement type rules (subset). 22
Figure 1.6: FaCT procedure typing rules (subset). 23
Figure 1.7: Transformation rules for return deferral. 26
Figure 1.8: Transformation rules for branch removal. 29

Figure 2.1: Example demonstrating a Spectre v1 attack. 49
Figure 2.2: Example demonstrating a hypothetical attack abusing an aliasing predictor. 52
Figure 2.3: Definition of the register resolve function. 53
Figure 2.4: Store hazard caused by late execution of store addresses. 64
Figure 2.5: Example demonstrating a store-to-load Spectre v1.1 attack. 64
Figure 2.6: Example demonstrating a v4 Spectre attack. 65
Figure 2.7: Example demonstrating fencing mitigation against Spectre v1 attacks. . . . 70
Figure 2.8: Example demonstrating a Spectre v2 attack. 71
Figure 2.9: Example demonstrating a ret2spec-style attack. 73
Figure 2.10: Example demonstrating “retpoline” mitigation against Spectre v2 attack. . 76
Figure 2.11: Vulnerable snippet from __libc__message(). 80
Figure 2.12: Vulnerable snippet from the FaCT OpenSSL MEE implementation. 80

Figure 3.1: Syntax of the ZFI language. 87
Figure 3.2: Architectural semantics for ZFI . 88
Figure 3.3: Speculative semantics for ZFI . 89

Figure 4.1: Code snippet which an attacker can exploit using Spectre. 102

Figure A.1: Big-step semantics. 137
Figure A.2: Type system `rd for return deferral. 139
Figure A.3: Values equivalence. 141
Figure A.4: Type system `ct for constant-time. 143
Figure A.5: Type interpretation. 145

ix

LIST OF TABLES

Table 1.1: FaCT case study summary. 36
Table 1.2: Overhead of FaCT ports compared to optimized C, for each benchmark. . . 37
Table 1.3: Number of correct and constant-time solutions for each task. 40

Table 2.1: Instructions and their transient instruction form. 51
Table 2.2: Correct and incorrect branch prediction. 58
Table 2.3: SCT violations found by Pitchfork. 79

Table 3.1: Leakage models. 89

Table 4.1: Comparison of various semantics and tools. 108
Table 4.2: Speculative security properties in prior works. 115

x

ACKNOWLEDGEMENTS

I cannot begin this section without first thanking my partner, Louisa Fan. She has

supported me through the pits of my graduate career, both emotionally and mentally; without her

aid I would never have made it through my PhD. I am also truly blessed to have two wonderful

parents, Raghothama and Pankaja Cauligi, who have given me nearly 30 years of love and

encouragement despite my remaining a student for nearly 30 years.

I am incredibly thankful to my advisor, Deian Stefan, who decided to take a chance

on a rather immature second-year and fostered him into the academic I am now. His myriad

connections are what landed me with my frequent collaborator and quasi-advisor Gilles Barthe,

who introduced me to the joys of semantics, and despite working with me first-hand still offered to

put me up as a postdoc. And of course I must thank Geoff Voelker and Stefan Savage—my initial

advisors—who were no doubt confused why I still showed up to their meetings for so many years.

To my colleagues and labmates, whose friendship gave me so much joy while we toiled

away: Rob McGuinness, my perpetual roommate and brother-in-arms; Ariana Mirian, my twin

sister and fellow jokester; Craig Disselkoen, who I all but conscripted into being my research

assistant and also, somehow, my friend; and to the past and present members of the 3140 lunch

crew, for their many, many interesting discussions over the years.

Finally, thank you to all my collaborators and classmates, and everyone I’ve interacted

with during my research tenure at UCSD CSE and abroad—far too many to count and yet deeply

impactful all the same.

The Introduction, in part, uses material from all works listed below.

Chapter 1, in part, is a reprint of the material as it appears in 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI '19). Cauligi, Sunjay;

Soeller, Gary; Johannesmeyer, Brian; Brown, Fraser; Wahby, Riad S.; Renner, John; Grégoire,

Benjamin; Barthe, Gilles; Jhala, Ranjit; Stefan, Deian, ACM, 2019. The dissertation author was

the primary investigator and author of this paper.

xi

Chapter 2, in part, is a reprint of the material as it appears in 41st ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI '20). Cauligi, Sunjay;

Disselkoen, Craig; v. Gleissenthall, Klaus; Tullsen, Dean; Stefan, Deian; Rezk, Tamara; Barthe,

Gilles, ACM, 2020. The dissertation author was the primary investigator and author of this paper.

Chapter 3, in part, is currently being prepared for submission for publication of the

material. Cauligi, Sunjay; Guarnieri, Marco; Mehta, Aastha; Moghimi, Daniel; Narayan, Shravan;

Stefan, Deian; Vahldiek-Oberwagner, Anjo; Vassena, Marco. The dissertation author was the

primary investigator and author of this paper.

Chapter 4, in part, has been submitted for publication of the material as it may appear

in 43rd IEEE Symposium on Security and Privacy (Oakland '22), Cauligi, Sunjay; Disselkoen,

Craig; Moghimi, Daniel; Barthe, Gilles; Stefan, Deian. The dissertation author was the primary

investigator and author of this material.

xii

VITA

2015 Bachelor of Science, Mathematics, magna cum laude
University of Washington, Seattle

2015 Bachelor of Science, Computer Engineering, magna cum laude
University of Washington, Seattle

2015-2021 Research Assistant, Computer Science
University of California San Diego

2018 Master of Science, Computer Science
University of California San Diego

2021 Doctor of Philosophy, Computer Science
University of California San Diego

PUBLICATIONS

C. Watt, J. Renner, N. Popescu, S. Cauligi, D. Stefan. “CT-Wasm: Type-Driven Secure Cryptog-
raphy for the Web Ecosystem.” S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby,
J. Renner, B. Gregoire, G. Barthe, R. Jhala, and D. Stefan. 46th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL), January 2019.

“FaCT: A DSL for Timing-Sensitive Computation.” 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), June 2019.

S. Cauligi, C. Disselkoen, K. v Gleissenthall, D. Tullsen, D. Stefan, T. Rezk, and G. Barthe.
“Constant-Time Foundations for the New Spectre Era.” 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), June 2020.

M. Vassena, C. Disselkoen, K. v Gleissenthall, S. Cauligi, R. Kıcı, R. Jhala, D. Tullsen, D. Stefan.
“Automatically Eliminating Speculative Leaks from Cryptographic Code with Blade.” 48th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL), January 2021.

G. Barthe, S. Cauligi, B. Grégoire, A. Koutsos, K. Liao, T. Oliveira, S. Priya, T. Rezk, P. Schwabe.
“High-Assurance Cryptography in the Spectre Era.” 42nd IEEE Symposium on Security and
Privacy (Oakland), May 2021.

S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson, Z. Gang, A.Vahldiek-Oberwagner,
R. Sahita, H. Shacham, D. Tullsen, D. Stefan. “Swivel: Hardening WebAssembly against Spectre.”
30th USENIX Security Symposium (USENIX), August 2021.

S. Cauligi, C. Disselkoen, D. Moghimi, G. Barthe, D. Stefan. “SoK: Practical Foundations for
Spectre Defenses.” In submission.

S. Cauligi, M. Guarnieri, A. Mehta, D. Moghimi, S. Narayan, D. Stefan, A. Vahldiek-Oberwagner,
M. Vassena. “Formal Guarantees for Spectre-resistant SFI Sandboxing.” Unpublished.

xiii

ABSTRACT OF THE DISSERTATION

Foundations for Speculative Side Channels

by

Sunjay R Cauligi

Doctor of Philosophy in Computer Science

University of California San Diego, 2021

Professor Deian Stefan, Chair

Developers of high-security systems (e.g., cryptographic libraries, web browsers) must

not allow sensitive information (e.g., encryption keys, browser cookies) to make its way to an

attacker. However, clever attackers can make use of unintentional side-channels—such as timing

information or other hardware resource metrics—to infer or leak the values of these secrets. Even

worse, attackers can exploit hardware features such as speculative execution to create new vectors

for side-channel leakage even where none existed before.

Side-channels are not typically captured in formal program semantics—information from

a side-channel is leaked to an attacker purely as a side-effect of execution, rather than any explicit

data flow. Furthermore, speculative execution fundamentally destroys security properties like

xiv

memory or type safety, as they implicitly assume a standard sequential execution model. Without

formal models to rely on, developers find themselves manually applying ad-hoc mitigations as

a best-effort solution to prevent timing side-channels and speculative attacks. Unfortunately,

these ad-hoc mitigations often lead to obfuscated code—and yet give no guarantee of a sound or

complete defense.

This dissertation seeks to remedy this. We explore several formal frameworks that make

side-channel effects explicit, both with and without the threat of speculative execution. Along

the way, we introduce FaCT, a language and compiler for writing code free from side-channels;

Pitchfork, a semantics and tool for detecting speculative side-channels in binaries; and ZFI ,

a framework for validating sandbox protections against speculative attacks. In addition to the

systems presented in this dissertation, the research community writ large has developed several

program analysis and defense tools backed by formal models, whether these models are explicit

or implicit. We round out this dissertation by surveying these systems, examining various design

choices and identifying areas of open research.

Ultimately, this dissertation demonstrates the power of practical, formal foundations

when dealing with speculative side-channel security. By relying on sound, formal frameworks,

high-security developers can write programs that verifiably do not leak sensitive information.

xv

Introduction

Protecting secrets in software is hard. Security and cryptography engineers must write

programs that protect secrets both at the source level and when executed on real hardware.

Unfortunately, hardware too easily divulges information about a program’s execution via side-

channels—e.g., an attacker can learn program secrets by observing the side-effects of the program

on the hardware [59]. More alarmingly, modern hardware features such as speculative execution

give rise to attacks such as Spectre, in which an attacker can exploit architecturally invalid

execution paths to create new side-channels. Indeed, these issues destabilize the ground upon

which standard notions of security are built. And accordingly, developers of secure software

require sound structural support: Tools with sound, formal backing that can ensure that programs

are free from such vulnerabilities, even in the face of speculative execution.

1 Timing side-channels

We first give a background on timing side-channels, wherein code executes for observably

different amounts of time depending on the value of secret information. For example, a textbook

implementation of RSA decryption takes a different amount of time depending on the individual

key bits [84]—each ‘1’ bit requires an additional multiplication and thus more time. The

cumulative effects of these operations on the running time is large enough for the attacker to

reconstruct the value of the secret key. Timing vulnerabilities like these are not merely of academic

1

interest: They have been found in implementations of both RSA [32] and AES [20, 115], where

they allowed even remote network attackers to divine the values of secret keys.

The most robust way to deal with timing side-channels is via constant-time programming—

the paradigm used to implement almost all modern cryptography [13, 46, 50, 118, 119]. Constant-

time programs can neither branch on secrets nor access memory based on secret data.1 The first

class of vulnerability, from control flow, arises when the value of a secret influences control

flow, as attackers can often observe the path of execution through a program: For example, if

conditional branch targets take different amounts of time to execute [118] or if different program

paths use different amounts of hardware resources [29]. The second class of vulnerability, from

memory accesses, arises when memory access patterns depend on secret data. An attacker

co-located on the same machine as a victim process, for example, can easily infer secret memory

access patterns by observing their own cache hits and misses [59, 115]; alarmingly, attackers

might even learn such information across a datacenter—or even over the Internet [32, 126].

The constant-time paradigm implicitly assumes that each instruction in a program is

executed in order. However, modern processors do not execute sequentially—instead, they

speculatively execute (potentially incorrect) program instructions ahead of time before prior

instructions are fully resolved. Standard constant-time guarantees are therefore insufficient for

most modern hardware.

2 Spectre vulnerabilities

We next give an overview of Spectre attacks [9, 12, 69, 82, 86, 87, 97, 169], a recently

discovered family of vulnerabilities caused by speculative execution on modern processors.

Spectre allows attackers to learn sensitive information by causing the processor to mispredict

the targets of control flow (e.g., conditional jumps or indirect calls) or data flow (e.g., aliasing

1Constant-time programs must also not use secret data as input to any variable-time operation—e.g., floating-point
multiplication [10].

2

or value forwarding). When the processor learns that its prediction was wrong, it rolls back

execution, erasing the programmer-visible effects of the speculation. However, microarchitectural

state—such as the state of the data cache—is still modified during speculative execution; these

changes can be leaked during speculation and can persist even after rollback. As a result, the

attacker can recover sensitive information from the microarchitectural state, even if the sensitive

information was only speculatively accessed.

The following code gives an example of a vulnerable function; an attacker can exploit

branch misprediction to leak arbitrary memory via the data cache:

if (i < arrALen) { // mispredicted

int x = arrA[i]; // x is oob value

int y = arrB[x]; // leaked via address!

// ...

The attacker first primes the branch to predict that the condition i < arrALen is true by causing

the code to repeatedly run with appropriate (small) values of i. Then, the attacker provides

an out-of-bounds value for i. The processor (mis)predicts that the condition is still true and

speculatively loads out-of-bounds (potentially secret) data into x; subsequently, it uses the value x

as part of the address of a memory read operation. This encodes the value of x into the data cache

state—depending on the value of x, different cache lines will be accessed and cached. Once the

processor resolves the misprediction, it rolls back execution, but the data cache state persists. The

attacker can later interpret the data cache state in order to infer the value of x.

3 Principled and practical foundations

Many developers rely on community best-practices and recipes to manually write constant-

time code [104, 118]. Developers apply these recipes in an ad-hoc manner, leaving overlooked

vulnerabilities open to attack. Even then, it can be tricky for developers to correctly apply the

3

recipes. For example, an attempt to use a recipe to fix a timing attack vulnerability in TLS [104]

led to the Lucky13 timing vulnerability in OpenSSL [3]—and the purported fix for Lucky13

opened the door to yet another vulnerability [140].

Spectre mitigations, even when inserted automatically via tooling, have fared no bet-

ter: The MSVC compiler’s /Qspectre flag—one of the first compiler defenses [102]—inserts

mitigations by searching for code patterns. Since these patterns are not based in any rigorous

analysis, the compiler easily misses similarly vulnerable code patterns [113]. Chrome adopted

process isolation as its core defense mechanism against Spectre attacks [123], but this is also

unsound: [35] shows that Spectre attacks can be performed across the process boundary, and [128]

shows how to read cross-origin data in the browser. Like constant-time recipes, Spectre defense

mechanisms are applied ad-hoc and incompletely.

For targeted, flexible, sound defenses, we must turn to formal methods. Formal security

analysis is rooted in program semantics, which provides rigorous models of program behavior

and serves as the basis for formal security policies. These policies help us carefully and explicitly

spell out our assumptions about the attacker’s strength and to gain confidence that our tools are

sound with respect to this class of attackers—that timing side-channel defenses indeed enforce a

constant-time policy, or that Spectre detection tools find the vulnerabilities they claim.

Formal foundations not only ensure constant-time and Spectre defenses are secure, but also

help improve the performance of practical tools. Without formalizations, manual defenses cannot

be assured sound, and automatic defenses are usually either overly conservative (unnecessarily

flagging code as vulnerable, which ultimately leads to unnecessary and slow mitigations) or overly

aggressive (and thus vulnerable). Developing proper foundations allows us to craft defenses that

are instead targeted while still being provably secure [7, 65, 151].

4

4 Outline

This dissertation lays principled and practical foundations for rebuilding side-channel

defenses in the speculative domain.

Chapter 1 presents FaCT, a compiler and domain-specific language for writing sequentially

constant-time code. Although FaCT does not analyze speculative effects, it gives us a blueprint

for what security-aware compilation can achieve. At the core of FaCT is a set of formal compiler

transformations that describe how to soundly replace leaky program behavior: The results of

transformation are programs with equivalent behavior, but that don’t leak secrets. The FaCT

language itself is a C-like language augmented with secrecy annotations, which allow the

developer to explicitly specify which program variables are indeed secret. The FaCT compiler

tracks these annotations through the compilation pipeline, allowing it to apply the transformation

rules only when necessary to produce constant-time code.

Chapter 2 presents a structural foundation for speculative analysis: A formal instruction-

level semantics that models the speculative behavior—such as branch predictions and value

forwarding—of modern processors. On top of this execution model, we apply the secrecy

annotations from FaCT and define the notion of speculative constant-time (SCT): A speculative

side-channel leak (such as a Spectre attack) is a violation of SCT. This semantics is expressive

enough to capture all known Spectre attacks, including a variant of Spectre that was unrealized at

the time. This semantics has been used to show the soundness of several tools that detect Spectre

vulnerabilities, including our own verification tool, Pitchfork.

Chapter 3 builds upon this foundation, constructing a framework to analyze software

isolation (or sandboxing) in the speculative context. Current systems that prevent speculative

sandbox attacks are implemented as collections of ad-hoc mitigations, without any formal backing.

We rectify this, expanding our speculative properties and semantics to capture speculative sandbox

5

security in addition to SCT. Our formal model shows that existing systems are not sound and

make several implicit assumptions about the underlying hardware.

Finally, Chapter 4 surveys the current state of Spectre analysis and defense tools, both

with and without associated formal models. We examine and categorize these systems by the

different choices they make in their stated (or implied) semantics and security properties. Our

analysis provides practical suggestions and considerations both for developers of analysis and

mitigation tools and for researchers of speculative security.

Acknowledgements

Introduction, in part, uses the following material:

Material as it appears in 40th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI '19). Cauligi, Sunjay; Soeller, Gary; Johannesmeyer, Brian;

Brown, Fraser; Wahby, Riad S.; Renner, John; Grégoire, Benjamin; Barthe, Gilles; Jhala, Ranjit;

Stefan, Deian, ACM, 2019. The dissertation author was the primary investigator and author of

this paper.

Material as it appears in 41st ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI '20). Cauligi, Sunjay; Disselkoen, Craig; v. Gleissenthall,

Klaus; Tullsen, Dean; Stefan, Deian; Rezk, Tamara; Barthe, Gilles, ACM, 2020. The dissertation

author was the primary investigator and author of this paper.

Material currently being prepared for submission for publication. Cauligi, Sunjay;

Guarnieri, Marco; Mehta, Aastha; Moghimi, Daniel; Narayan, Shravan; Stefan, Deian; Vahldiek-

Oberwagner, Anjo; Vassena, Marco. The dissertation author was the primary investigator and

author of this paper.

Material that has been submitted for publication as it may appear in 43rd IEEE Symposium

on Security and Privacy (Oakland '22), Cauligi, Sunjay; Disselkoen, Craig; Moghimi, Daniel;

6

Barthe, Gilles; Stefan, Deian. The dissertation author was the primary investigator and author of

this material.

7

Chapter 1

FaCT: A DSL for Timing-Sensitive Computation
Or, a sketch of the tower.

Despite many strides in language design over the past half-century, modern cryptographic

routines are still typically written in C. This is good for speed but bad for keeping secrets.

Like most general-purpose languages, C gives the programmer no way to denote which data

is sensitive—and therefore gives the programmer no warnings about code that inadvertently

divulges secrets.

The only recourse developers have to avoid timing vulnerabilities is to make their code

ugly. Specifically, they use a selection of recipes to turn dangerous but readable code into safe

but obfuscated code: they re-write potentially secret-revealing constructs like branches into low

level sequences of assignments that operate in constant-time regardless of the values of secret

data. For example, the readable

if (secret) x = e

which branches on a secret bit is replaced by

x = (-secret & e) | (secret - 1) & x

which, unlike the branch, executes in the same amount of time no matter the value of secret.

8

This is a sorry state of affairs. First, developers apply the recipes in an ad-hoc way, and

any untransformed computation is left vulnerable to attack. Second, the recipes obfuscate the

code, making it harder to determine whether the routine is even computing the desired value.

Third, it can be tricky for developers to correctly apply the recipes. For example, an attempt

to use a recipe to fix a timing attack vulnerability in TLS [104] led to the Lucky13 timing

vulnerability in OpenSSL [3], and the purported fix for Lucky13 opened the door to yet another

vulnerability [140]!

In this chapter, we introduce FaCT, a domain-specific language and compiler for writing

readable and timing-secure cryptographic routines. FaCT lets developers write readable code

using high-level control-flow constructs like branches and procedural abstractions, but then

automatically compiles this code into efficient, constant-time executables. We develop FaCT via

four contributions:

1. Language design. Our first contribution is the design of a language for writing

cryptographic code. The language allows programmers to use standard control-flow constructs

like if and return statements. However, the language is equipped with an information-flow

type system that programmers can use to specify which data are secret. The type system

prevents leaks by ensuring that secrets do not explicitly or implicitly influence the public-visible

outputs (§1.2).

2. Public safety. Our second contribution is the observation that not all programs are

amenable to constant-time compilation. Specifically, we show that naive application of constant-

time recipes can mangle otherwise safe programs, causing memory errors or undefined behavior.

We address this problem by introducing a notion called public safety that characterizes the source

programs that can be compiled to constant-time without introducing errors (§1.2.2.3).

3. Constant-time compilation. Our third contribution is a compiler that automatically

converts (public safe) source programs into constant-time executables. The FaCT compiler

is based on the key insight that we can exploit the secrecy types to automatically apply the

9

recipes that developers have hitherto applied by hand, and can do so systematically, i.e., exactly

where needed to prevent the exposure of secrets via timing. We formalize the compiler with

two transformations, return deferral and branch removal, and prove that compilation yields

constant-time executables with source-equivalent semantics (§1.3).

4. Implementation and evaluation. Our final contribution is an implementation of

FaCT that produces LLVM IR from high-level sources, and uses LLVM’s clang to generate

the final object or assembly file. We evaluate FaCT’s usability with a user study, surveying

students in an upper-level, undergraduate programming languages course at a U.S. university,

where 57% of the participants found FaCT easier to write than C (compared to 15% who found C

easier). We evaluate FaCT’s expressiveness and performance by using our implementation to port

7 cryptographic routines from 3 widely used libraries: OpenSSL, libsodium, and curve25519-

donna, totaling about 2400 lines of C source. The unoptimized FaCT code—which we formally

guaranteed to be constant-time—is between 16–346% slower than the C equivalent. The clang-

optimized FaCT code—which we empirically check to be constant-time using dudect [125]—is

between 5% slower to 21% faster than the C equivalent, showing that FaCT yields readable

constant-time code whose performance is competitive with C (§1.4).

We make all source and data available under an open source license at: https://fact.programming.

systems.

1.1 Background

Some common C constructs—branches, returns, and array updates—can reveal secrets

via timing channels. In this section, for each potentially dangerous construct, we explain: (1) how

that construct could introduce bugs in real-world projects; (2) how developers must use recipes to

avoid the dangerous construct; and, (3) how FaCT allows programmers to forgo recipes and write

readable yet safe code.

10

https://fact.programming.systems
https://fact.programming.systems

Branching on secret values. A first class of vulnerability arises from directly branching

on the value of a secret—attackers can often reconstruct control flow through a program, and thus

secret condition values (e.g., because the true branch takes orders of magnitude longer to execute

than the false branch) [118]. To avoid this type of vulnerability, developers manually translate

branching code to straight-line code by replacing if-statements with constant-time bitmasks.

Consider the following example from OpenSSL (edited slightly for brevity), which formats a

message before computing a message authentication code (MAC):

for (j = 0; j < md_block_size; j++, k++) {

b = data[k - header_length];

b = constant_time_select_8(is_past_c, 0x80, b);

b = b & ~is_past_cp1;

b &= ~is_block_b | is_block_a;

block[j] = b;

}

It’s hard to tell, but this snippet (1) iterates over plaintext message data, (2) terminates the message

with standard-defined 0x80, and (3) pads the terminated message to fill a hash block—all while

keeping data secret. To this end, even the selection operator

constant_time_select_8(mask, a, b) is a series of bitmasks: (mask & a) | (~mask & b).

Translating each line of this OpenSSL code to FaCT leads to drastically more readable

code:

for (uint64 j from 0 to md_block_size) {

k += 1;

b = is_past_c ? 0x80 : data[k - (len header)];

if (is_past_cp1 || (is_block_b && !is_block_a)) {

b = 0;

}

11

block[j] = b;

}

With FaCT, the programmer declares the sensitive variables as used in the conditions as secret.

After doing so, they are free to use plain conditional expressions and ternary operators to compute

the final value of b. The FaCT compiler automatically uses the type annotations to generate

machine code equivalent to the C example.

Early termination. Both loops and procedures can terminate early depending on the value

of a secret, thereby leaking the secret. A well-known padding oracle attack in older versions of

OpenSSL exploits an early function return [152]: a packet processing function would decrypt

a packet and then check that the padding was valid, and, in the case of invalid padding, would

return immediately. An attacker could exploit this to recover the SSL session key by sending

specially crafted packets and use timing measurements to determine whether or not the padding of

the decrypted packet was valid. Similarly, if the number of loop iterations in a program depends

on a secret, attackers can use timing to uncover the value of that secret (e.g., in the Lucky13

attack [3]).

C programmers again use special recipes, turning idiomatic programs into hard-to-read

constant-time code. Consider the following buffer comparison code from the libsodium crypto-

graphic library:

for (i = 0; i < n; i++)

d |= x[i] ^ y[i];

return (1 & ((d - 1) >> 8)) - 1;

This snippet compares the first n bytes of the arrays x and y, returning 0 if they are the same,

and -1 otherwise. To avoid leaking information about the contents of the arrays, though, the

loop cannot simply return early when it detects differing values; instead, the programmer must

maintain a “flag” (d), and update it at each iteration to signal success or failure. While iterating

12

inside the loop, if the values x[i] and y[i] are the same, then x[i] ^ y[i] will be 0, leaving d

unchanged. However, if x[i] and y[i] are different, then their XOR will have at least one bit set,

causing d to also have a non-zero value. After the loop, the code uses a complex shift-and-mask

dance to collapse d into the value -1 if any bits are set, and 0 otherwise.

FaCT lets programmers avoid the “flag” contortions:

for (uint64 i from 0 to n)

if (x[i] != y[i])

return -1;

return 0;

With FaCT, the programmer can readily express returning -1 in the case of failure as the compiler

automatically generates a special variable for the return value, and uses the secret type to

translate returns-under-secret conditions into (constant-time) updates to this variable, producing

machine code roughly equivalent to the C recipe above.

Memory access. Memory access patterns that depend on secret data can also inadvertently

leak that secret data. An attacker co-located on the same machine as a victim process, for

example, can easily infer secret memory access patterns by observing their own cache hits and

misses [59, 115]; alarmingly, attackers might even learn such information across a datacenter—or

even over the Internet [32, 126].

To avoid leaking information via memory access patterns, developers rely on recipes that

avoid accessing memory based on secrets. The following C code (from the “donna” Curve25519

implementation), for example, swaps the values of array a with array b based on the value of a

secret (swap):

for (i = 0; i < 5; ++i) {

const limb x = swap & (a[i] ^ b[i]);

a[i] ^= x;

13

b[i] ^= x;

}

To avoid leaking the value of the secret swap, the code always accesses both a[i] and b[i] at

each loop iteration, and uses bitmask operations that only change them if swap is a mask of all

1-bits.

FaCT, again, makes such subterfuge unneccessary:

if (swap != 0) {

for (uint64 i from 0 to 5) {

secret uint64 tmp = a[i];

a[i] = b[i];

b[i] = tmp;

}

}

Once the programmer has marked swap as secret, the compiler will automatically synthesize

masked array reads similar to those from the original Curve25519 code.

1.2 FaCT

FaCT is a high-level, strongly-typed C-like DSL, designed for writing constant-time crypto

code. In this section, we describe the DSL and its type system, one that both disallows certain

unsafe programs and specifies how the compiler should transform code to run in constant-time.1

We describe the type-directed transformations in §1.3.

14

PROGRAM

program ::=
[

fdef | sdef
]
. . .

STRUCTURE DEFINITION

sdef ::= struct name { β x; . . . }

PROCEDURE DEFINITIONS

fdef ::=
| f (~x : ~β) { S } : β internal procedure
| export f (~x : ~β) { S } : β exported procedure
| extern f (~x : ~β) : β external procedure

Figure 1.1: FaCT grammar, top-level constructs.

1.2.1 Core language

FaCT is designed to be embedded into existing crypto projects (e.g., OpenSSL), and not

to be used as a standalone language. As such, FaCT “programs” are organized as collections of

procedures. As shown in Figure 1.1, developers can export these procedures as C functions to the

embedding environment. They can also import trusted procedures. This is especially useful when

using FaCT to implement error-prone glue code around already known-safe C crypto primitives

(e.g., building a block cipher mode that calls an AES primitive).

FaCT procedures are composed of a sequence of statements (e.g., if statements, for

loops, etc.), which are themselves composed of expressions. Both statements and expressions

are mostly standard. We only remark on the more notable language constructs we add to make

writing cryptographic code more natural.

First, FaCT includes a number of array primitives to capture common idioms in crypto-

graphic routines, and to replace unsafe pointer arithmetic. The operation len e returns the length

of an array e; zeros(β ,e) creates an array of zeros of type β of length e; clone(e) copies the

1The surface language as used by developers is slightly less verbose than the core language presented in this
section. For example, our surface syntax allows procedures to be called in expressions; FaCT desugars such
expressions into core language procedure-call statements. We refer to both the surface and core languages as FaCT.

15

S
TA

T
E

M
E

N
T

S

S
::=
|

{
S
}

bl
oc

k
|

S;
S

se
qu

en
ce

|
β

x
=

e
va

ri
ab

le
de

cl
ar

at
io

n
|

β
x
=

f(
~e)

pr
oc

ed
ur

e
ca

ll
|

f(
~e)

vo
id

pr
oc

ed
ur

e
ca

ll
|

e
:=

e
as

si
gn

m
en

t
|

e⊕
=

e
bi

no
p

as
si

gn
m

en
t

|
if

(e
)
{

S
}

co
nd

iti
on

al
[els

e
if

(e
)
{

S
}
] ...

[els
e
{

S
}]

|
fo

r
(x

fr
om

e
to

e)
{

S
}

ra
ng

e-
fo

r
|

re
tu

rn
e
|
re

tu
rn

re
tu

rn

U
N

A
R

Y
O

P
S

	
::=
|

!
bo

ol
ea

n
no

t
|

-
ne

ga
te

|
~

bi
tw

is
e

no
t

B
IN

A
R

Y
O

P
S

⊕
::=
|

+
|
-
|
*
|
/
|
\%

ar
ith

m
et

ic
|

==
|
!=

eq
ua

lit
y

|
<
|
<=
|
>
|
>=

co
m

pa
ri

so
n

|
&&
|
||

lo
gi

ca
l

|
&
|
|
|
^

bi
tw

is
e

|
«
|
»

bi
ts

hi
ft

|
«<
|
»>

bi
tr

ot
at

e

E
X

P
R

E
S

S
IO

N
S

e
::=
|

(e
)

pa
re

nt
he

se
s

|
tr

ue
|
fa

ls
e

bo
ol

ea
n

lit
er

al
|

n
nu

m
er

ic
lit

er
al

|
x

va
ri

ab
le

|
	

e
un

ar
y

op
|

e⊕
e

bi
na

ry
op

|
e?

e:
e

te
rn

ar
y

op
|

ct
se

le
ct

(e
,e
,e
)

co
ns

ta
nt

-t
im

e
se

le
ct

io
n

|
U

IN
T

s (
e)
|

IN
T

s (
e)

nu
m

er
ic

ca
st

|
[e
,.
..
]

ar
ra

y
lit

er
al

|
e[

e]
ar

ra
y

ge
t

|
le

n
e

ar
ra

y
le

ng
th

|
ze

ro
s(

β
,e
)

ze
ro

ar
ra

y
|

cl
on

e(
e)

ar
ra

y
cl

on
e

|
vi

ew
(e
,e
,e
)

ar
ra

y
vi

ew
|

re
f

e
re

fe
re

nc
e

|
de

re
f

e
de

re
fe

re
nc

e
|

〈n
,.
..
〉

ve
ct

or
lit

er
al

|
e〈

n,
..
.〉

ve
ct

or
se

le
ct

/s
hu

ffl
e

|
{x

:e
,.
..
}

st
ru

ct
lit

er
al

|
e.

x
st

ru
ct

ac
ce

ss
|

f(
~e)

pr
oc

ed
ur

e
ex

pr
es

si
on

|
de

cl
as

si
fy

(e
)

de
cl

as
si

fy
|

as
su

me
(e
)

as
su

m
e

Fi
gu

re
1.

2:
Fa

C
T

gr
am

m
ar

,s
ta

te
m

en
ts

,a
nd

ex
pr

es
si

on
s.

16

LABELS

` ::= PUB | SEC

SIZE

s ::= 8 | 16 | . . . | 128
ARRAY SIZE

sz ::= ∗ | 0 | 1 | . . .

MUTABILITY

m ::= R | RW
BASE TYPES

β ::= BOOL` | (U)INTs
` | REFm[β] | ARRsz[β] |

{
~x : ~β

}
Figure 1.3: FaCT types.

array e; and view(e1,e2,elen) returns a slice of array e1 starting at position e2 and with length

elen. We introduce views to make up for the lack of pointers: views allow developers to efficiently

compute on small pieces of large buffers.

Second, we provide vector primitives: parallel vector arithmetic and vector shuffle in-

structions. These instructions allow developers to implement crypto algorithms that leverage

fast SIMD instructions (e.g., SSE4 in x86_64) without resorting to architecture-specific inline

assembly or compiler intrinsics.

Third, we expose ctselect, a constant-time selection primitive. The operation

ctselect(e1,e2,e3) evaluates to either e2 or e3, depending on whether e1 is true or false,

respectively. The compiler guarantees that ctselect compiles to constant-time code (e.g., as

a series of bitmasks or the CMOV instruction on x86_64). Developers need not use ctselect

directly; instead, they can use our higher-level if-statements, which our compiler transforms to

such ctselects (§1.3).

Lastly, FaCT includes a declassify primitive that takes a secret expression as input and

returns a public value. Developers can use this primitive to bypass FaCT’s typing restrictions

(described below) and explicitly make information public. This is useful, e.g., for implementing

encryption: a buffer containing a secret message must be treated with care, but if the buffer is

encrypted in-place, it is thereafter safe to declassify because it contains ciphertext.

17

1.2.2 Type system

The most important feature of the FaCT language is its static information-flow type system.

We rely on this type system to: (1) provide a way for developers to demarcate the sensitivity

of data—whether it is secret or public; (2) reject unsafe programs, i.e., programs that are not

information-flow secure or cannot be safely transformed to constant-time code; and (3) direct the

compiler when applying transformations. Below, we give an overview of our type system and

explain how it fulfills the first two roles; we leave the third for §1.3.

Like previous information-flow type systems [109, 110, 129, 156], FaCT decorates each

base type with a secret or public secrecy label2. Figure 1.3 summarizes our base types; they

are largely standard. Reference types wrap another base type and inherit its secrecy label; they

are also access controlled, i.e., they can be read-only or read-write. In the FaCT surface syntax,

we disallow recursively-typed references—only references of integer and boolean types are

expressible. Array types, like references, inherit the secrecy of their base type; arrays have a size

which is either a statically known constant or dynamically determined (∗). Struct types do not

carry a secrecy label; instead, each struct field is individually labeled.

Developers explicitly specify labels when they declare variables and procedures. FaCT’s

type system, in turn, uses these labels to reject unsafe programs and specify how the com-

piler should transform high-level code that uses seemingly unsafe constructs (e.g., secret if-

statements) to constant-time code. Below, we walk through our typing rules for expressions,

statements, and procedures.

2Labels are partially ordered according to v as usual: PUB v ` and `v SEC holds true for any label `. The join
of two labels is similarly standard: `1t `2 is SEC if either label is SEC, and PUB otherwise. For brevity, we also use
these operators on types (operating on the underlying label), much like previous work (e.g., [109, 110]).

18

1.2.2.1 Expression typing

FaCT’s expression typing judgment Γ ` e : β states that under the type context Γ, which

maps variables to their declared types, the expression e has the type β . We write x : β ∈ Γ when

variable x maps to type β in the context Γ.

Figure 1.4 gives the typing rules for the most interesting expressions. The rule for

ctselect, for example, ensures that (1) the result is at least as secret as all the arguments to

ctselect and (2) all the arguments can be cast to integers—since, internally, ctselect may be

implemented as a series of constant-time bitmasks. The typing rules for other constructs similarly

preserve secrecy.

The type system also disallows certain kinds of unsafe computations. For example, we

reject programs that index memory based on secrets: the rules for T-ARR-GET and T-ARR-VIEW

ensure that array indices are public and in-bounds. The in-bounds checks are highlighted , and

detailed in §1.2.2.3.

1.2.2.2 Statement and procedure typing

FaCT allows developers to write code whose control flow depends on sensitive data.

Unfortunately, not all such code can be safely or efficiently transformed. For example, to safely

allow writes to arrays using a secret-dependent index we must (transform the code to) write to all

indices [103, 117, 122]; such a transformation would be expensive, and FaCT instead disallows

such computations. As such, typing rules for statements and procedures rely on a secrecy context,

which comprises a pair of secrecy labels pc,rc called the path and return context, respectively.

The path context label pc for a statement is secret if the statement is contained within—

i.e., is control-dependent upon—a secret branch. Since a procedure caller’s path context must

persist through to the callee’s path context, the initial path context label of a procedure is secret

if it is ever called from a secret context; otherwise the initial path context label is public. We

use ω to map procedures to their initial path context labels.

19

The return context label rc for a statement is secret if the statement may be preceded by a

return statement that is itself control-dependent on a secret value. A procedure’s return context

label is always initially public. Thus, the secrecy context (pct rc) for a statement represents

whether the flow of control (to get to the statement) can be influenced by secret values. For

example, if the conditional expression of an if statement is secret, then the statements of each

branch are judged with pc = SEC, and are thus typed under a secret context.

Statement typing. FaCT’s statement typing judgment is of the form ω,pc,βr ` S : Γ,rc→

Γ′,rc′, where βr is the return type of the procedure containing the statement S. This judgment

states that, given a type- and security- context defined by ω,pc,βr and initial Γ,rc, the statement

S: (1) can be safely compiled into constant-time code, and (2) yields a new updated type context

Γ′ and return context rc′. This typing judgment accounts for new variable declarations and ensures

that the secrecy context influences subsequent statements. For example, if a return statement

resides within a secret branch, then all statements executed after that branch must also be typed

under a secret context, since their execution now depends on the return.

Figure 1.5 shows the most interesting statement typing rules. For example, (T-ASGN)

checks that when updating a reference, the current secrecy context does not exceed the secrecy

label of the value e2 being assigned. This ensures that secret data cannot be leaked via control

flow. Rules (T-IF) and (T-RET) account for such secret contexts; the latter additionally ensures

that the procedure cannot return a value more sensitive than specified by the procedure return

type.

Rule (T-FOR) is more restricting: it ensures that secrets do not influence the running

time of for loops by requiring that the loop bounds—and therefore the number of iterations—be

public. The updated return context rc′ must both be a fixpoint of the loop, and must be no lower

than the original return context rc. In practice, our type checker only assigns rc′ to be secret if it

cannot assign it to be public.

20

T-CT-SEL
Γ ` e1 : BOOL` β is numeric or BOOL Γ ` e2 : β Γ ` e3 : β

Γ ` ctselect(e1,e2,e3) : β t `

T-ARR-GET
Γ ` e1 : ARRsz[β] Γ ` e2 : UINTs

PUB Γ⇒ e2 < len e1

Γ ` e1[e2] : β

T-ARR-VIEW
Γ ` e1 : ARRsz[β] Γ ` e2 : UINTs

PUB Γ ` elen : UINTs
PUB sz′ = szOfExpr(elen)

Γ⇒ e2 < len e1 Γ⇒ elen ≤ len e1− e2

Γ ` view(e1,e2,elen) : ARRsz′ [β]

Figure 1.4: FaCT expression typing rules (subset).

The typing for procedure calls given by (T-CALL) is slightly more complex. In particular,

this rule ensures that procedures can only be called with suitable inputs and checks that the output

type is compatible with the variable being assigned. To this end, we ensure that if the procedure f

has visible effects, then its initial path context ω(f) must be at least the label of the calling context.

This, in effect, ensures that in a secret context we cannot call procedures that (1) modify public

parameters, i.e., take mutable public references as input parameters; (2) are externally defined

and so possibly have publicly visible side-effects; or (3) are exported (top-level) procedures.

Procedure typing. Figure 1.6 shows rules for typing procedure definitions. FaCT’s

procedure typing judgment is of the form ω ` f (~x : ~β) { S } : βr, which states that under ω , the

procedure f with named parameters~x of types ~β has return type βr. Procedures in FaCT may

only return simple types (i.e., boolean values or integers), but there are no such restrictions on

the types of parameters. When typing procedures, the initial type context Γ is formed from the

procedure’s parameters, and the initial path context pc is given by ω(f). The return context rc

always starts as PUB, as the procedure body S (vacuously) has no preceding secret-dependent

return statements. The return type βr is taken from the procedure definition. If the body S is

well-typed under these initial contexts, then the procedure itself is considered well-typed.

21

T-CALL

ω ` f (~β) : β hasEffects(f)⇒ pct rcv ω(f) Γ ` ei : βi Γ
′ = Γ,x : β

ω,pc,βr ` β x = f (~e) : Γ,rc→ Γ
′,rc

T-ASGN
Γ ` e1 : REFW[β]

Γ ` e2 : β pct rcv β

ω,pc,βr ` e1 := e2 : Γ,rc→ Γ,rc

T-IF
Γ ` e : BOOL`

ω,pct `,βr ` S1 : Γ ∧ e ,rc→ Γ1,rc1
ω,pct `,βr ` S2 : Γ ∧ ¬e ,rc→ Γ2,rc2

ω,pc,βr ` if (e) { S1 } else { S2 } : Γ,rc→ Γ,rc1t rc2

T-FOR
Γ ` e1 : UINTPUB Γ ` e2 : UINTPUB

Γ
′ = Γ,x : UINTPUB ∧ e1 ≤ x < e2 rcv rc′ ω,pc,βr ` S : Γ

′,rc′→ Γ
′′,rc′

ω,pc,βr ` for (x from e1 to e2) { S } : Γ,rc→ Γ,rc′

T-RET
Γ ` e : βr pct rcv βr

ω,pc,βr ` return e : Γ,rc→ Γ,pct rc

T-ASSUME
Γ ` e : BOOL` Γ

′ = Γ ∧ e
ω,pc,βr ` assume(e) : Γ,rc→ Γ

′,rc

Figure 1.5: FaCT statement type rules (subset).

1.2.2.3 Public safety

The FaCT type system ensures that procedures can be transformed using constant-time

recipes without giving up safety. Naively applying recipes can inadvertently introduce safety and

security vulnerabilities while making the code constant-time. Consider the following procedure:

void potential_oob(secret mut uint32[] buf

, public uint64 i

, secret uint64 secret_index) {

assume(secret_index <= len buf);

if (i < secret_index)

22

T-FN
pc = ω(f)
Γ = {~x : ~β}

βr is numeric or BOOL

ω,pc,βr ` S : Γ,PUB→ Γ
′,rc′

ω ` f (~x : ~β) { S } : βr

T-FN-EXTERN
ω(f) = PUB

βr is numeric or BOOL

ω ` extern f (~x : ~β) : βr

Figure 1.6: FaCT procedure typing rules (subset).

buf[i] = 0;

...

}

This code is memory safe as the branch condition ensures that we only update buf[i] when

i is within bounds. However, the update is predicated upon a secret condition. To make

the above code constant-time, we must ensure that the access to buf[i] happens regardless

of that condition, or else the memory access pattern will reveal the secret. Consequently, the

constant-time recipes—that we discuss in §1.3—would compile the code into:

cond = (i < secret_index);

buf[i] = ctselect(cond, 0, buf[i]);

Such a naive transformation introduces a potential out-of-bounds access. In other cases it can

introduce yet different kinds of undefined behavior.

Public safety. We avoid the above problem with the key observation that for a program to

be amenable to constant-time compilation, the source must be publicly safe: It must be memory-

safe and free from buffer overflows and undefined behavior using only public-visible information,

i.e., the code must be safe even after removal of secret-dependent control-flow. We formalize

the notion of public safety in FaCT’s type system by extending the type environment Γ to track

public-visible path conditions, using these conditions to check safety. In Figures 1.4 and 1.5

these public safety extensions are highlighted .

23

Public views. We first define the judgment Γ `i e to mean that e is immutable in Γ; that

is, e is only composed of constants, immutable variables, array lengths, or operations thereon.

Next, we define the operation Γ ∧ e, which conjoins Γ with a public view of the condition e:

if e is a public bool (Γ ` e : BOOLPUB) and e is immutable (Γ `i e), then Γ ∧ e represents

the environment Γ with the additional assumption that e is true. Otherwise, Γ ∧ e = Γ, i.e.,

conjoining Γ with a secret condition does not add any new assumptions to Γ. Rules T-IF and

T-FOR in Figure 1.5 show how we propagate public views, tracking (public) conditions and loop

ranges to use when type checking statements.

For cases where the public safety checker is incomplete, we allow developers to add

assumptions directly to the environment Γ with the assume primitive (Figure 1.2). This is useful

for aiding the checker by, e.g., adding preconditions to a procedure.

Checking public safety. Finally, we define Γ⇒ e to mean that the conditions in Γ imply

e. This is checked via an SMT solver. We use this predicate in the expression typing rules

T-ARR-GET and T-ARR-VIEW (Figure 1.4) to check that memory accesses are never out of

bounds. In the example program given earlier, since the expression i < secret_index is of type

BOOLSEC, it is not added to Γ; thus the predicate Γ⇒ i< len buf does not hold when typing the

expression buf[i], and the program (correctly) does not type check.

The FaCT type system also prevents undefined behavior from invalid operand values (not

shown in Figure 1.4). For example, integer division has the additional requirement Γ⇒ e2 6= 0,

and the left- and right-shift operators have the requirement Γ⇒ 0≤ e2 < s where s is the bitwidth

of e1.

1.3 Front-end compiler

The FaCT compiler consists of two passes. The first pass is a source to source

transformation—it compiles well-typed code into semantically equivalent FaCT constant-time

24

code whose observable timing is secret-independent. The second pass is straightforward—it

takes the secret-independent code and generates LLVM bitcode. In the rest of the section, we

thus only describe and formalize FaCT’s transformation pass.

Since our type checker (§1.2.2) already ensures that memory accesses, loop iterations, and

variable-time instructions are secret-independent, the transformations need only make procedure

returns and branches secret-independent. FaCT does this in two steps, return deferral and branch

removal.

The first step replaces secret-dependent return statements by (1) creating a boolean that

represents whether the procedure has returned and (2) conditioning all later code on that boolean

to prevent statements from executing after the original procedure would have terminated. That

is, return deferral converts control flow in terms of secret returns into control flow in terms of

secret ifs.

The second step turns all secret-dependent conditional branches into straight-line code.

This includes both secret if statements in the original source as well as those generated by return

deferral. Thus, by eliminating secret ifs—the last source of secret-dependent timing—this

transformation yields constant-time code.

1.3.1 Return deferral

As previously mentioned, early returns that depend on secrets often leak information.

Consider the following snippet:

if (sec) { return 1; }

// long-running computation ...

Here, an attacker can determine whether sec is true by observing a quick computation, or false

by observing a slow computation.

FaCT prevents code from leaking such secrets by deferring returns to the end of each

procedure. For example, the compiler transforms the above code to:

25

TR-RET-DEC

Φ = (ω,{~x : ~β},βr) Φ,ω(f),PUB ` S→ S′

ω ` f (~β) { S } : βr →
f (~β) { REFRW[βr]rval = init(βr);

REFRW[BOOLSEC]notRet = true;
S′; return rval } : βr

TR-RET-GUARD-PUB
Φ,pc,PUB ` S→ S′

Φ,pc,PUB ` S S′

TR-RET-GUARD-SEC
Φ,pc,SEC ` S→ S′

Φ,pc,SEC ` S if (notRet) { S′ }

TR-RET
pct rc = SEC

Φ,pc,rc ` return e→ rval := e;notRet := false

TR-RET-SEQ

Φ = (ω,Γ,βr) ω,pc,βr ` S1 : Γ,rc→ Γ
′,rc′

Φ,pc,rc ` S1→ S′1 Φ,pc,rc′ ` S2 S′2
Φ,pc,rc ` S1;S2→ S′1;S′2

TR-RET-FOR
Φ = (ω,Γ,βr) rcv rc′ ω,pc,βr ` S : Γ,rc′→ Γ

′,rc′ Φ,pc,rc′ ` S S′

Φ,pc,rc ` for (x from e1 to e2) { S }→ for (x from e1 to e2) { S′ }

Figure 1.7: Transformation rules for return deferral.

secret mut uint32 rval = 0;

secret mut bool notRet = true;

if (sec) { rval = 1; notRet = false; }

if (notRet) {

// long-running computation ...

}

return rval;

26

The new notRet variable tracks whether or not the procedure would have returned, and any

statement that could be executed after the return is guarded by the notRet variable. Finally, the

actual return occurs at the very end of each procedure, returning the value stored in rval.

Transformation rules. We formalize return deferral using three kinds of rewrite rules,

shown in Figure 1.7. The first procedure-transformation rule ω ` f (~x : ~β) { S } : βr → f (~x :

~β) { S′ } : βr is used to rewrite the body S of a procedure f into a secret-independent body

S′. (This is accomplished using the other two rewrite rules.) The second guarded-execution

rule Φ,pc,rc ` S S′ transforms a statement S, given a secrecy context pc,rc, into S′ by

making implicit control flow (due to secret returns) explicit. Finally, the return-elimination rule

Φ,pc,rc ` S→ S′ transforms S into S′ by replacing all secret returns with assignments. Below,

we walk though some of these rules in detail.

1. Procedure transformation. The TR-RET-DEC rule declares two special (mutable)

variables notRet and rval that respectively hold the secret-dependent return state and the value

to be returned. The return state notRet is set to true, while the return value rval is initialized

to a default value for its type. The rule then eliminates all secret returns from S and inserts a

(deferred) return after, as the very last statement of the transformed body S′.

2. Guarded execution. Rules TR-RET-GUARD-PUB and TR-RET-GUARD-SEC are used

to transform statements that appear after any secret returns. Both of these rules first eliminate

secret returns from S to obtain S′. If the original statement S is typed with rc = SEC, i.e., S may be

preceded by a secret return, then the rule TR-RET-GUARD-SEC additionally guards the execution

of S′ with the condition notRet.

3. Return elimination. The bulk of the transformation is done by the remaining rules in

Figure 1.7. We omit rules where we either do not transform the statement, or simply recursively

transform any sub-statements. Rule TR-RET replaces secret returns by updating rval with the

(deferred) return value and setting notRet to false, to signal that subsequent code should not be

executed.

27

Rule TR-RET-SEQ handles sequenced statements S1;S2 by guarding the execution of

instructions in S2 against possible secret returns in S1. The rule first eliminates the secret returns

from the first block to get S′1. Next, it extracts the secrecy context rc′ produced by type checking

S1. Finally, the rule uses rc′ to derive a guarded version of the second statement S′2.

The TR-RET-FOR rule handles secret returns inside loops. As control flow can jump back

to the beginning of a loop, a secret return inside a loop body S can affect the execution of the

entire body, as in the following example:

for (uint32 i from 0 to 5) {

b[i] = 1;

if (i == sec) { return i; }

a[i] = 2;

}

Here, if i == sec becomes true, the program must stop overwriting the elements in both a and b.

The rule accounts for returns in the body S by using the secrecy context rc′ from type checking

the body, and in turn, uses this to derive the guarded form of the body S′. In our example, the

secret-dependent return makes the return context rc′ = SEC, and so the entire body is guarded

by notRet, to obtain the transformed program:

for (uint32 i from 0 to 5) {

// for-loop rule

if (notRet) {

b[i] = 1;

if (i == sec) { rval = i; notRet = false; }

// sequencing rule

if (notRet) { a[i] = 2; }

}

}

28

TR-BR-DEC

Φ = (ω,{~x : ~β},βr) ω(f) = PUB Φ,true ` S→ S′

ω ` f (~x : ~β) { S } : βr → f (~x : ~β) { S′ } : βr

TR-BR-DEC-SEC

Φ = (ω,{~x : ~β},βr) ω(f) = SEC Φ,callCtx ` S→ S′

ω ` f (~x : ~β) { S } : βr → f (~x : ~β ,callCtx : BOOLSEC) { S′ } : βr

TR-BR-IF
Φ = (ω,Γ,βr)

Γ ` e : BOOLSEC FRESH mt , m f Φ,(p&mt) ` S1→ S′1 Φ,(p&m f) ` S2→ S′2
Φ, p ` if (e) { S1 } else { S2 } → { BOOLSEC mt = e;

BOOLSEC m f = ¬mt ;
S′1; S′2 }

TR-BR-ASSIGN
p 6= true

Φ, p ` e1 := e2 →
e1 := ctselect(p,e2,e1)

TR-BR-CALL
ω(f) = SEC

Φ, p ` β x = f (~e) →
β x = f (~e, p)

Figure 1.8: Transformation rules for branch removal.

1.3.2 Branch removal

Return deferral eliminates secret returns by introducing secret-dependent branches. In

this section we eliminate secret-dependent control flow as the final step towards producing

constant-time code.

To this end, FaCT replaces secret branches with constant-time selections. Consider the

following snippet:

if (sec1) { a[1] = 3; }

else if (sec2) { a[2] = 4; }

The updates to a[1] and a[2] are guarded by the secret values sec1 and sec2 and, therefore, pro-

duce memory access patterns that can reveal the values of those secrets when left untransformed—

this is the classic implicit flows problem [129]. We eliminate the implicit flow in two steps. First,

29

we track the control predicates that correspond to (the conjunction of) the secret-conditions.

Then, we perform both memory writes, but use ctselect to preserve conditional semantics:

a[1] = ctselect(sec1 , 3, a[1]);

a[2] = ctselect(~sec1 & sec2, 4, a[2]);

Our general strategy is to transform each conditional array assignment into a re-assignment to a

conditional (ctselect).

Transforming code that calls procedures is less straightforward: if a procedure takes a

mutable parameter, the procedure may update that parameter’s value in a way that is visible to the

caller. For example:

void foo(secret mut uint32 x) { x = 5; }

...

if (sec) {

foo(x);

// x is now 5

}

The transformation of this code must ensure that updates to x only occur if sec is true. We

do so using a call-context parameter passed to callee foo; this parameter is the caller control

predicate—in this case, sec—which we use to guard updates in foo. Our compiler converts the

above into semantically equivalent constant-time code:

void foo(secret mut uint32 x,

secret bool callCtx) {

x = ctselect(callCtx, 5, x);

}

...

foo(x, sec);

// x is 5 only if sec is true

30

Transformation rules. We formalize branch removal using two kinds of rules, shown in

Figure 1.8. The procedure transformation rule ω ` f (~x : ~β) { S } : βr → f (~x′ : ~β ′) { S′ } : βr

transforms the body S of the procedure f to S′, much like for secret-return removals. This rule,

however, additionally extends f ’s set of parameters~x to include the extra call-context parameter

callCtx. The statement transformation rule Φ, p ` S→ S′, transforms S to S′ given context Φ and

control predicate p. We walk though some of the rules below.

1. Procedure transformation rule. Both TR-BR-DEC and TR-BR-DEC-SEC remove

branches from procedures. TR-BR-DEC transforms procedures that do not depend on secret

contexts by transforming each procedure’s body S into S′ using the initial control predicate true.

TR-BR-DEC-SEC, on the other hand, transforms a procedure f if ω(f) = SEC, i.e., where f

depends on the caller’s secret context. The rule adds a new parameter secret bool callCtx

that holds the control predicate at each call-site, and then transforms the body S starting with the

initial control predicate callCtx.

2. Branch elimination. The remaining rules in Figure 1.8 remove branches from

statements. Rule TR-BR-IF, for example, eliminates secret-dependent conditional branches

by saving the condition (resp. its negation) in the variable mt (resp. m f). The “then” statement

S1 (resp. “else” statement S2) is then transformed after conjoining mt (resp. m f) to the control

predicate p. To prevent name collision when transforming nested conditionals, the FRESH

metafunction guarantees that all mt and m f variables have unique names. The declarations of mt ,

m f and transformed branches S′1, S′2 are sequenced to obtain the final result.

Rule TR-BR-ASSIGN handles side-effecting assignment statements, using the control

predicate to ctselect the old or new values. But, if the assignment occurs under the trivial control

predicate (i.e., the literal true), the assignment is left unchanged.

Finally, rule TR-BR-CALL handles calls to ω-SEC procedures f by explicitly passing the

control predicate p as the call-context parameter. This ensures that updates within f only occur

according to the caller’s control flow.

31

1.3.3 Compiler correctness and security

In this section, we prove that our compiler preserves semantics and outputs constant-time

procedures. To formalize these claims, we define an instrumented semantics that describes

procedure behavior and leakage, i.e., the sequence of branches taken, the memory addresses

accessed, and the operands to variable-time instructions. Intuitively, a procedure is constant-time

if its leakage is not influenced by any secret values [15].

In particular, we consider a big-step semantics of the form F : (~v,h)
ψ

−→ (v,h′) where F is

shorthand for a procedure f (~x : ~β) { S } : βr, the term~v represents the values of parameters, h

and h′ are heaps mapping pointers to values, v is the final value of the procedure, and ψ is the

leakage. The semantics is parametrized by an allocation function, and the proofs of the claims

below rely on several (minor) assumptions on this function. We give these assumptions, formal

definition, and complete proofs in Appendix A.

We first prove the correctness of our compiler, using the notation ω ` F → F ′ to denote

the combined return deferral and branch removal transformations. Compiler correctness states

that the compiler preserves the meaning of well-typed statements. To account for new references

and variables that are introduced by the compiler pass itself, we show equivalence of the final

heaps h′ and h′′, i.e., for any pointer p′ in h′, there is an equivalent pointer p′′ in h′′ such that

h′(p′) and h′′(p′′) are either equal values, or are themselves equivalent pointers.

Theorem 1.3.1 (Compiler correctness). If ω ` F → F ′ and F ′ is well-typed, then

F : (~v,h)
ψ

−→ (v,h′) implies that F ′ : (~v,h) ψ ′−−→ (v,h′′) and h′ and h′′ are equivalent.

Proof sketch. By induction on the derivation.

Note that our compiler correctness theorem does not make any claim about leakage. We

separately prove that the compiler produces constant-time procedures. To this end, we first define

the notion of a constant-time procedure.

32

Definition 1.3.2. A procedure F where ω ` F is constant-time iff for every pair of executions

F : (~v1,h1)
ψ1
−−→ (v1,h′1) and F : (~v2,h2)

ψ2
−−→ (v2,h′2), we have ~v1,h1 ≡~v2,h2 implies ψ1 = ψ2,

where ≡ is a suitably parametrized notion of equivalence (e.g., public or “low” equivalence [7,

15, 156]).

Much like CT-Wasm [156], we cannot prove that all FaCT procedures are constant-time—

FaCT allows procedures to declassify secret data and call external procedures over which it has

no control. We can, however, provide guarantees for a safe subset of declassify-free procedures,

i.e., procedures that do not contain any declassify statements nor call other procedures unless

they too are declassify-free (and not extern).

Theorem 1.3.3 (Compiler security). If F is declassify-free and ω ` F → F ′, then F ′ is constant-

time.

Proof sketch. We define two additional type systems that impose stricter constraints on programs,

and prove type-preservation for return deferral and branch removal. We then conclude by proving

that the final type system guarantees that programs are constant-time. It is important to note that

these type systems are merely proof artifacts, i.e., type checking is not performed again after

transformations.

Informally, the two type systems are incremental restrictions on the FaCT type system.

The first type system, which we denote by `rd , rejects programs that contain secret returns; the

second type system, denoted `ct , rejects programs that branch on secrets.

We then establish type-preservation for return deferral and branch removal:

I If ω ` F and ω `rd F → F ′ then ω `rd F ′.

I If ω `rd F and ω `ct F → F ′ then ω `ct F ′.

Both are proved by induction on derivations, using adequate ancillary statements for the induction

to go through.

33

We conclude by proving that `ct guarantees that programs are constant-time. The proof

follows from a “locally preserves” unwinding lemma, stating that equivalent states yield equivalent

final configurations and equal leakage.

1.4 Implementation and evaluation

We implement a prototype compiler for FaCT in ∼6000 lines of OCaml. The compiler

transforms FaCT source code into LLVM IR, which it passes to clang (version 6.0.1) to generate

assembly or object code. The compiler uses the Z3 SMT solver [49] to check public safety

assertions (§1.2.2.3).

We evaluate FaCT by asking the following questions:

I Is FaCT expressive enough to implement real-world cryptographic algorithms?

I Does FaCT produce constant-time code?

I What is FaCT’s performance overhead?

I Compared to C, does FaCT improve non-experts’ experience reading and writing constant-

time code?

We answer the first three questions with case studies in which we integrate FaCT into real-world

projects (§1.4.1). We find that FaCT is expressive enough to implement a range of cryptographic

primitives. We use dudect [125] to empirically check that our implementations, including compiler

optimizations, are constant-time. We find that, compared to optimized C code, unoptimized FaCT

code runs 16–346% more slowly, while optimized FaCT code ranges from 5% slower to 21%

faster.

We answer the fourth question with a study comparing user experiences reading and

writing FaCT and C (§1.4.2). In sum, a plurality of participants found FaCT easier to read than C,

and a majority found FaCT easier to write.

34

1.4.1 Case studies

We integrate FaCT into three popular open source libraries by porting pieces of these

libraries from C to FaCT:

I The NaCl secretbox API for symmetric-key authenticated encryption and decryption.

We port the entire libsodium (version 1.0.16) [50] secretbox API, including the two

underlying primitives, the Poly1305 message authentication code (MAC) and the XSalsa20

stream cipher.

I The Curve25519 Elliptic-Curve Diffie-Hellman (ECDH) primitive for asymmetric key

exchange. We port Adam Langley’s curve25519-donna library [90] in whole.

I The OpenSSL [114] ssl3_cbc_digest_record function used to verify decrypted SSLv3

messages. At its core, this function computes the MAC of a padded message without

revealing the padding length. Our implementation invokes OpenSSL’s SHA-1 hash

primitive as an extern (§1.2.1).

I The OpenSSL aesni_cbc_hmac_sha1_cipher function used in the MAC-then-Encode-

then-CBC-Encrypt (MEE-CBC) construction. This function performs AES-CBC decryp-

tion and then verifies the MAC and padding of the decrypted message. Our implementation

invokes OpenSSL’s AES and SHA-1 primitives as externs.

We choose these functions because they (1) are complex enough to exercise all of the FaCT

language features; (2) implement a range of algorithms; and (3) demonstrate that FaCT can be

used in different settings, from implementing individual procedures to large portions of libraries.

Method. We port in three steps. First, we port the C code to FaCT by translating

C constructs to their corresponding FaCT counterparts. During this translation process, we

label sensitive messages, keys, etc. as secret, and add assume and declassify statements as

appropriate to ensure the code typechecks (§1.4.1.1); we also replace “bit hacks” (§1.1) with

high-level FaCT constructs (e.g., if). Second, we check the correctness of our ports using each

35

Table 1.1: FaCT case study summary: lines of code (per cloc) and uses of assume (#A),
declassify (#D), and extern (#E).

Case study Lines of code #A #D #EC FaCT

libsodium secretbox 984 1068 16 1 0
curve25519-donna 310 342 0 0 0
OpenSSL record validate 92 91 3 0 2
OpenSSL MEE-CBC 201 219 10 1 4

library’s test harness, and we empirically check that the ports are constant-time using dudect

(§1.4.1.2). Finally, we use each library’s benchmarking suite to compare our ports to the C

implementations (§1.4.1.3).

1.4.1.1 Expressiveness

Table 1.1 summarizes our ports. FaCT implementations are at worst ∼10% longer than

the corresponding C code. Much of the extra length is because FaCT does not have a macro

system; instead, we translated macro definitions and then manually expanded them. (We note

that it would be straightforward to instead use the C preprocessor with FaCT.) FaCT code is also

more verbose than C when processing buffers: since FaCT has no pointer arithmetic, FaCT code

must use extra variables to track offsets into arrays.

Our ports make sparing use of extern, declassify, and assume. For example, our ports

use assume to help the public safety verifier track values through memory and reason across

procedure and language boundaries. We declassify in two cases: in libsodium secretbox

decryption and in OpenSSL MEE-CBC verification; these declassifications are permitted by

the libraries’ respective attacker models [26, 45, 91]. Finally, we use extern to invoke existing

primitives (e.g., OpenSSL’s SHA-1 implementation).

36

Table 1.2: Overhead of FaCT ports compared to optimized C, for each benchmark. secretbox
results are for encryption and decryption overhead, respectively.

Benchmark % Overhead of FaCT
Unoptimized Optimized

secretbox (reference) 345.57/373.49% -20.92/-14.56%
secretbox (vectorized) 427.21/427.09% -6.54/-4.99%
curve25519-donna 144.42% 2.21%
OpenSSL record validate 30.13–35.16% 0.64–4.62%
OpenSSL MEE-CBC 16.15–31.97% -2.56–4.16%

1.4.1.2 Security

We prove that FaCT’s transformations produce constant-time code (§1.3.3), but this

applies only to the unoptimized LLVM IR produced by the FaCT compiler.3 Since we use clang

to generate optimized object code, an LLVM optimization pass might break FaCT’s constant-time

guarantees.

To empirically check that our case study implementations run in constant-time, even after

optimization, we use the dudect [125] analysis tool. At a high level, dudect tests for constant-time

execution by running the code under test for a large number of iterations and collecting timing

information using the CPU’s cycle counters. It then tests the collected timing information for

statistically significant variation in execution time that are correlated with changes to secret inputs.

In our evaluation, we configure dudect to collect 50 million measurements for each benchmark.

It finds no statistically significant timing variation.

Several other works concerned with constant-time crypto implementation [14, 125, 139,

156] have reported using dudect. In our testing, we found the tool to quickly and reliably find

timing differences in buggy code. We note, however, that dudect is only a check—not a proof—of

constant-time behavior; we discuss further in Section 1.5.

37

1.4.1.3 Performance

Table 1.2 shows the performance cost of porting C to FaCT. We benchmark each imple-

mentation on an Intel i7-6700K at 4GHz with 64GB of RAM using clang 6.0.1. We compare both

unoptimized and optimized FaCT implementations with C implementations that are compiled at

the corresponding project’s default optimization level.4 Our optimized FaCT code uses the same

optimization flags as the C code.

For libsodium and curve25519-donna, we use the library’s benchmarking suites. We

measure the mean of ∼224 and ∼217 iterations, respectively, and report the median of five such

measurements. For the OpenSSL implementations, we use OpenSSL’s s_server and s_client

commands to measure throughput when transferring 256MB, 1GB, and 4GB files. We compute

the median throughput of five transfers at each file size, and report the minimum and maximum

result; overhead was uncorrelated with file size.

For most benchmarks, we find that optimized FaCT is comparable to C: the overhead

is never more than 5%. Notably, the FaCT implementation of libsodium secretbox is 15-

20% faster than the C reference implementation. We attribute this speedup to vectorization:

inspecting the XSalsa20 assembly code, we find that clang generates vector instructions for the

FaCT implementation, but not for C. To explore this discrepancy, we measure performance of

secretbox with XSalsa20 explicitly vectorized (using vectors in FaCT, intrinsics in C). In this

case, FaCT is still 5-6% faster than C, but this speedup appears to be an artifact of LLVM’s

applying different optimizations to different code.

1.4.2 User study

We evaluate the usability of FaCT by conducting a user study as part of an upper-level,

undergraduate programming languages course at UC San Diego.5 Prior to the study, we dedicated
3And to procedures that do not use declassify.
4For OpenSSL, -O3; for other projects, -O2.
5Our study was reviewed and exempted by the IRB.

38

three lectures to timing side-channels, constant-time programming in general, and constant-time

programming specifically in C and FaCT. As an optional assignment, students were asked to

(1) explain the behavior of constant-time code written in C and FaCT, and (2) implement constant-

time algorithms in both C and FaCT. Of the 129 enrolled students, 77 completed the study over a

nine-day period. We describe methods and conclusions below; in our extended paper [39], we

give further lessons from the study, e.g., compilation errors participants ran into frequently.

Method. The user study is a sequence of web-based tasks. For each task, the participant

is first given a warm-up code comprehension question, whose answer is subsequently revealed.

The participant is then given a second, related question. This question is repeated twice, in C and

in FaCT; we randomize the order of the languages per participant, i.e., half the participants’ tasks

are in C and then FaCT, and vice-versa. On a given question, participants can repeatedly check

partial answers for correctness; once finished, the participant submits a final answer, which can

no longer be viewed or revised. A task is complete if the participant submits a final answer for

both C and FaCT; we discard incomplete tasks.

The user study was built on an earlier version of FaCT which did not enforce public

memory safety. Nevertheless, we believe the results largely translate to the version presented in

this chapter, because the surface language did not change significantly.

1.4.2.1 Understanding constant-time code

To evaluate participants’ understanding of C and FaCT code, we asked them to describe

the behavior of two functions. The first function takes two input buffers—a header and a message—

and copies the header and message to an output buffer and adds padding up to a fixed size. The

second function implements long division: it computes a quotient and remainder, writes each to

an output buffer, and returns a status code indicating success or failure.

We graded participants on their ability to correctly describe each function’s behavior. In

both cases, we find that participants showed slightly better understanding of FaCT than of C: for

39

Table 1.3: Number of correct and constant-time solutions for each task: Number of participants
(out of 77) that submitted correct and constant-time solutions for each task. The check_-
pkcs7_padding task was misconfigured, and marked variable-time code as constant-time (16
submissions); we report these numbers for completeness (§1.4.2.2).

Programming task FaCT C

remove_secret_padding 62 49
check_pkcs7_padding 35 32 (16)
remove_pkcs7_padding 34 24

the first function, the mean score was 57% for FaCT and 53% for C; for the second, it was 40%

for FaCT and 32% for C. Participants also reported a slight preference for FaCT; specifically,

31 participants found FaCT easier to understand compared to 10 that found C easier and 28 that

reported similar difficulty.

1.4.2.2 Writing constant-time code

To evaluate participants’ ability to write constant-time code in FaCT and C, we had them

implement three functions:

I remove_secret_padding: given a buffer and secret length, this function removes any

secret padding, i.e., sets every element of the buffer past the length to zero.

I check_pkcs7_padding: this function checks whether a supplied buffer contains a valid

PKCS#7 [79] message.

I remove_pkcs7_padding: this function removes padding from a supplied buffer, if it

contains a valid message.

Participants could compile their code, run a test suite, and, for C code, check constant-time

correctness with ct-verif [7]. They could also give up on a task and move to the next one.

Table 1.3 summarizes our findings. Of the 68 participants that completed the first task, 62

submitted correct and constant-time FaCT code, and 49 submitted correct and constant-time C

code. For the third task, 34 participants submitted correct, constant-time FaCT code compared

40

to 24 participants for C. In the survey, 40 participants reported finding FaCT easier to write, 11

found C easier, and 18 found them similar.

We cannot draw conclusions from check_pkcs7_padding, because the task had a bug

that incorrectly marked variable-time code as constant-time; only 16 of the 32 C submissions

marked “correct” were constant-time. The bug was limited to this task, but because check_-

pkcs7_padding is required for remove_pkcs7_padding, some participants needed to correct

their code to pass the third task.

1.5 Limitations and future work

FaCT makes it easier to write constant-time code, but it is not perfect. Limitations and

future work include:

The type system. The type system lacks polymorphism and flow sensitivity [110, 129],

which reduces both expressivity and performance. For example, our type system cannot express

a program that branches on a buffer’s public contents and then decrypts the buffer in-place,

upgrading its label to secret. We leave such extensions to future work.

The public safety checker. FaCT’s public safety checker does not reason about mutable

variables or properties across function calls. For example, indexing an array based on a mutable

variable requires assume-ing the index is in bounds.

The brittleness of constant-time behavior. FaCT’s compiler only guarantees constant-time

behavior for the LLVM IR that it produces. Crucially, this means that LLVM’s optimization passes

and lowering to assembly can introduce variable-time behavior. Though many optimizations do

preserve constant-time property [17], FaCT relies on dudect to empirically check that a piece of

code is constant-time.

Sound, symbolic verification of constant-time behavior using ct-verif [7] would give much

stronger guarantees. Unfortunately, ct-verif currently has limited support for declassification and

41

vector instructions. Extending ct-verif to support these primitives and applying it to optimized

FaCT code is future work.

The evaluation. Our evaluation of FaCT is preliminary and thus incomplete. For example,

we relied on extern versions of SHA-1 and AES (§1.4.1) because we preferred to focus on

porting higher-level OpenSSL functions with a history of timing attacks. Moreover, some of the

low-level primitives we ported (XSalsa20, Poly1305, and Curve25519) were explicitly designed

for ease of constant-time implementation [21,22,24]. Future work is expanding FaCT’s repertoire

with potentially more challenging algorithms.

Finally, our user study has limited scope and involves only non-expert users; remedying

these issues is also future work.

1.6 Related work

This work supersedes an initial design we previously described in [38]. In particular, we

present a design and implementation of a DSL for writing constant-time crypto, provide a formal

semantics and security guarantees for FaCT, and evaluate FaCT on several dimensions; in [38]

we outlined the vision for such a DSL. Our implementation and formalization efforts revealed

insights previously missed in [38]—e.g., the need for public safety (§1.2.2.3) and challenges with

using ct-verif [7] to verify code with inline declassifications. At the same time, in this chapter,

we did not explore parts of the design space outlined in [38]—e.g., we do not expose some

hardware-specific instructions like add-with-carry, which could simplify asymmetric-key crypto

implementations.

Domain-specific languages. There are several efforts designing DSLs for implementing

cryptographic primitives and protocols. Bernstein’s qhasm is a low-level portable assembly for

writing high-speed crypto routines [23]; it does not distinguish secret data from public data, so

does not prevent information leaks by construction.

42

Vale [30] and Jasmin [5] are DSLs for writing and verifying high-performance assembly

code. Vale developers write platform-independent assembly code and specify the target archi-

tecture; the Vale compiler uses Dafny to verify semantics and non-interference. Jasmin allows

developers to use architecture-specific instructions alongside higher-level code, and the verified

Jasmin compiler rejects non-constant-time programs. Low* is a higher-level, embedded (in F*)

DSL that compiles to verified constant-time C [120]. The verified NaCl [25] library, HACL* [172],

is written in Low*. CT-Wasm [156] is a formally verified extension to the WebAssembly lan-

guage [157] for writing crypto code in the browser. CT-Wasm uses a strict label-based type system

to enforce its constant-time policy. These languages provide support for high-level control flow

constructs and procedures, but they require developers to manually write constant-time code.

Constant-Time Toolkit (CTTK) is a C library [119] that follows recipes in [46, 118]

to provide functions—including low-level constant-time primitives—for crypto libraries, but

developers must compose these low-level blocks.

Verification. There is a growing body of work on both building verified cryptographic

implementations and verifying existing libraries. Bhargavan et. al verify an implementation

of TLS, including low-level cryptographic primitives [27]. Barthe et. al [15] verify constant-

time properties of various PolarSSL implementations. Ye et. al [165] verify the mbedTLS

implementation of HMAC-DRBG. Appel [11] and Beringer et. al [19] respectively verify

OpenSSL’s implementation of SHA-256 and HMAC. Tsai et. al [147] verify core parts of

X25519. Almeida et. al [6] verify AWS Lab’s s2n MEE-CBC implementation (after identifying

a vulnerability); they also verify security properties of NaCl libraries [8]. Erbsen et. al [53]

synthesize and verify elliptic curve implementations from high-level descriptions. Almeida et. al

develop ct-verif [7] and verify constant-time properties of several cryptographic algorithms. Many

of these verification efforts are specific to the projects being analyzed. Additionally, developers

still bear the burden of manually writing constant-time code, which FaCT aims to alleviate.

43

General techniques for eliminating timing channels. FaCT uses an information flow

control type system to eliminate programs that may introduce information leaks or are otherwise

inefficient (or impossible) to transform to constant-time. Our label-based type system is a standard

IFC type system [129] that borrows explicit mutability from ownership-based systems [43].

Previous solutions have also relied on type- and static-analysis techniques (e.g., [15, 52, 127,

143, 168]) to address timing leaks. FaCT automatically transforms secret sub-computations into

constant-time straight-line code. Our approach follows several previous efforts on eliminating

timing channels via source code transformations [1, 18, 108, 112, 117, 122]. Most similar in ethos

is SC-Eliminator [160]. This system takes as input a program and a list of secrets, and uses

tag propagation to transform LLVM IR into its constant-time equivalent. Though both projects

perform transformations, they use orthogonal approaches: SC-Eliminator repairs already-existing

code, while FaCT is a language for writing such code from the start. Finally, many other efforts

employ system-level techniques to eliminate and detect timing-channels [31,59,94,125,141,171].

Acknowledgements

We thank the anonymous PLDI and PLDI AEC reviewers and our shepherd Limin Jia for

their suggestions and insightful comments. We thank the participants of the Dagstuhl Seminar on

Secure Compilation for early feedback on this work, especially Tamara Rezk. We thank Ariana

Mirian for handling the IRB for our user study, Shravan Narayan for his help in understanding the

subtleties of LLVM, and Joseph Jaeger and Jess Sorrell for helping us understand elliptic curve

implementations. We also thank the CSE 130 TAs for their help in testing our user study, and the

CSE 130 students for participating in the user study. This work was supported in part by gifts

from Fujitsu and Cisco, by the National Science Foundation under Grant Number CNS-1514435,

by ONR Grant N000141512750, and by the CONIX Research Center, one of six centers in JUMP,

a Semiconductor Research Corporation (SRC) program sponsored by DARPA.

44

Chapter 1, in part, is a reprint of the material as it appears in 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI '19). Cauligi, Sunjay;

Soeller, Gary; Johannesmeyer, Brian; Brown, Fraser; Wahby, Riad S.; Renner, John; Grégoire,

Benjamin; Barthe, Gilles; Jhala, Ranjit; Stefan, Deian, ACM, 2019. The dissertation author was

the primary investigator and author of this paper.

45

Chapter 2

Constant-Time Foundations for the
New Spectre Era

In which we shore up the earth.

The previous chapter demonstrated how we can compile a high-level language, FaCT, all

the way down to low-level code, while enforcing sound constant-time guarantees—as long as we

assume a standard sequential execution model. As we will see, microarchitectural features—and

in particular, speculative execution—break many of our constant-time techniques. To reclaim

constant-time properties even when accounting for such features, we must develop a new formal

strategy for analyzing programs.

In this chapter, we lay the foundations for constant-time in the presence of microarchitec-

tural features that have been exploited in recent attacks: Out-of-order and speculative execution.

We focus on constant-time for two key reasons. First, impact: Constant-time programming is

largely used in real-world crypto libraries—and high-assurance code—where developers already

go to great lengths to eliminate leaks via side-channels. Second, foundations: Constant-time

programming is already rooted in foundations, with well-defined semantics [15, 40]. These

semantics consider very powerful attackers—e.g., attackers in [15] have control over the cache

and the scheduler. An advantage of considering powerful attackers is that the semantics can

46

overlook many hardware details—e.g., since the cache is adversarially controlled, there is no

point in modeling it precisely—making constant-time amenable to automated verification and

enforcement.

Contributions. We first define a semantics for an abstract, three-stage (fetch, execute,

and retire) machine. Our machine supports out-of-order and speculative execution by modeling

reorder buffers and transient instructions, respectively. We assume that attackers have complete

control over microarchitectural features (e.g., the branch target predictor) when executing a

victim program and model the attacker’s control over predictors using directives. This keeps

our semantics simple yet powerful: our semantics abstracts over all predictors when proving

security—of course, assuming that predictors themselves do not leak secrets. We further show

how our semantics can be extended to capture new predictors—e.g., a hypothetical memory

aliasing predictor.

We then define speculative constant-time, an extension of constant-time for machines with

out-of-order and speculative execution. This definition allows us to discover microarchitectural

side channels in a principled way—all four classes of Spectre attacks as classified by Canella et

al. [35], for example, manifest as violations of our constant-time property.

We further use our semantics as the basis for a prototype analysis tool, Pitchfork, built on

top of the angr symbolic execution engine [138]. Like other symbolic analysis tools, Pitchfork

suffers from path explosion, which limits the depth of speculation we can analyze. Nevertheless,

we are able to use Pitchfork to detect multiple Spectre bugs in real code. We use Pitchfork to detect

leaks in the well-known Kocher test cases [85] for Spectre v1, as well as our more extensive test

suite which includes Spectre v1.1 variants. More significantly, we use Pitchfork to analyze—and

find leaks in—real cryptographic code from the libsodium, OpenSSL, and curve25519-donna

libraries.

Open source. Pitchfork and our test suites are open source and available at https://

pitchfork.programming.systems.

47

https://pitchfork.programming.systems
https://pitchfork.programming.systems

2.1 Motivating examples

In this section, we show why classical constant-time programming is insufficient when

attackers can exploit microarchitectural features. We do this via two example attacks and show

how these attacks are captured by our semantics.

Classical constant time is not enough. Our first example consists of 3 lines of code,

shown in Figure 2.1 (top right). The program, a variant of the classical Spectre v1 attack [86],

branches on the value of register ra (line 1). If ra’s value is smaller than 4, the program jumps to

program location 2, where it uses ra to index into a public array A, saves the value into register rb,

and uses rb to index into another public array B. If ra is larger than or equal to 4 (i.e., the index

is out of bounds), the program skips the two load instructions and jumps to location 4. In a

sequential execution, this program neither loads nor branches on secret values. It thus trivially

satisfies the constant-time discipline.

However, modern processors do not execute sequentially. Instead, they continue fetching

instructions before prior instructions are complete. In particular, a processor may continue

fetching instructions beyond a conditional branch, before evaluating the branch condition. In

that case, the processor guesses which branch will be taken. For example, the processor may

erroneously guess that the branch condition at line 1 evaluates to true, even though ra contains

value 9. It will therefore continue down the “true” branch speculatively. In hardware, such guesses

are made by a branch prediction unit, which may have been mistrained by an adversary.

These guesses, as well as additional choices such as execution order, are directly supplied

by the adversary in our semantics. We model this through a series of directives, as shown on the

bottom left of Figure 2.1. The directive fetch: true instructs our model to speculatively follow the

true branch and to place the fetched instruction at index 1 in the reorder buffer. Similarly, the two

following fetch directives place the loads at indices 2 and 3 in the buffer. The instructions in the

reorder buffer, called transient instructions, do not necessarily match the original instructions,

48

Registers Program
r ρ(r) n µ(n)

ra 9pub 1 br(>,(4,ra),2,4)
Memory 2 (rb = load([40,ra],3))

a µ(a) 3 (rc = load([44,rb],4))
40..43 array Apub 4 . . .
44..47 array Bpub
48..4B array Keysec

Speculative execution:
Directive Effect on reorder buffer Leakage

fetch: true 1 7→ br(>,(4,ra),2,(2,4))
fetch 2 7→ (rb = load([40,ra]))
fetch 3 7→ (rc = load([44,rb]))
execute 2 2 7→ (rb = Key[1]sec) read 49pub

execute 3 3 7→ (rc = X) read asec

where a = Key[1]sec +44

Figure 2.1: Example demonstrating a Spectre v1 attack. The branch at 1 acts as bounds check
for array A. The execution speculatively ignores the bounds check, and leaks a byte of the
secret Key.

but can contain additional information (see Table 2.1). For instance, the transient version of the

branch instruction records which branch has been speculatively taken.

In our example, the attacker next instructs the model to execute the first load, using the

directive execute 2. Because the bounds check has not yet been executed, the load reads from

the secret element Key[1], placing the value in rb. The attacker then issues directive execute 3

to execute the following load; this load’s address is calculated as 44+Key[1]. Accessing this

address affects externally visible cache state, allowing the attacker to recover Key[1] through a

cache side-channel attack [59]. This is encoded by the leakage observation shown in bold on the

bottom right. Though this secret leakage cannot happen under sequential execution, our semantics

clearly highlights the possible leak when we account for microarchitectural features.

Modeling hypothetical attacks. Next, we give an example of a hypothetical class of

Spectre attack captured by our extended semantics. The attack is based on a microarchitectural

49

feature which would allow processors to speculate whether a store and load pair might operate on

the same address, and forward values between them [75, 131].

We demonstrate this attack in Figure 2.2. The reorder buffer, after all instructions have

been fetched, is shown in the top right. The program stores the value of register rb into the

secretKeysec array and eventually loads two values from public arrays. The attacker first issues

the directive execute 2 : value; this results in a buffer where the store instruction at 2 has been

modified to record the resolved value xsec. Next, the attacker issues the directive execute 7 : fwd2,

which causes the model to mispredict that the load at 7 aliases with the store at 2, and thus

to forward the value xsec to the load. The forwarded value xsec is then used in the address

a = 48+ xsec of the load instruction at index 8. There, the loaded value X is irrelevant, but the

address a is leaked to the attacker, allowing them to recover the secret value xsec. The speculative

execution continues and rolls back when the misprediction is detected (details on this are given in

Section 2.2), but at this point, the secret has already been leaked.

As with the example in Figure 2.1, the program in this example follows the (sequential)

constant-time discipline, yet leaks during speculative execution. But, both examples are insecure

under our new notion of speculative constant-time as we discuss next.

2.2 Speculative semantics and security

In this section we define the notion of speculative constant time, and propose a speculative

semantics that models execution on modern processors. We start by laying the groundwork for

our definitions and semantics.

Configurations. A configuration C ∈ Confs represents the state of execution at a given

step. It is defined as a tuple (ρ,µ,n,buf) where:

I ρ : R ⇀ V is a map from a finite set of register names R to values;

I µ : V ⇀ V is a memory;

50

Ta
bl

e
2.

1:
In

st
ru

ct
io

ns
an

d
th

ei
rt

ra
ns

ie
nt

in
st

ru
ct

io
n

fo
rm

.

In
st

ru
ct

io
n

Tr
an

si
en

tf
or

m
(s

)
ar

ith
m

et
ic

op
er

at
io

n
(r

=
op

(o
p,
−− ~ rv
,n
′)
)

(r
=

op
(o

p,
−− ~ rv
))

(u
nr

es
ol

ve
d

op
)

(o
p

sp
ec

ifi
es

op
co

de
)

(r
=

v `
)

(r
es

ol
ve

d
va

lu
e)

co
nd

iti
on

al
br

an
ch

br
(o

p,
−− ~ rv
,n

tr
ue
,n

fa
ls

e)
br
(o

p,
−− ~ rv
,n

0,
(n

tr
ue
,n

fa
ls

e)
)

(u
nr

es
ol

ve
d

co
nd

iti
on

al
)

ju
m

p
n 0

(r
es

ol
ve

d
co

nd
iti

on
al

)

(r
=

lo
ad

(−− ~ r
v,

n′
))

(r
=

lo
ad

(−− ~ r
v)
)n

(u
nr

es
ol

ve
d

lo
ad

)
m

em
or

y
lo

ad
(r

=
lo

ad
(−− ~ r

v,
(v

`,
j)
))

n
(p

ar
tia

lly
re

so
lv

ed
lo

ad
w

ith
de

pe
nd

en
cy

on
j)

(a
tp

ro
gr

am
po

in
tn

)
(r

=
v `
{⊥

,a
})

n
(r

es
ol

ve
d

lo
ad

w
ith

ou
td

ep
en

de
nc

ie
s)

(r
=

v `
{j
,a
})

n
(r

es
ol

ve
d

lo
ad

w
ith

de
pe

nd
en

cy
on

j)

m
em

or
y

st
or

e
st

or
e(

rv
,−− ~ r

v,
n′
)

st
or

e(
rv
,−− ~ r

v)
(u

nr
es

ol
ve

d
st

or
e)

st
or

e(
v `
,a

`)
(r

es
ol

ve
d

st
or

e)

in
di

re
ct

ju
m

p
jm

pi
(−− ~ r

v)
jm

pi
(−− ~ r

v,
n 0
)

(u
nr

es
ol

ve
d

ju
m

p
pr

ed
ic

te
d

to
n 0

)

fu
nc

tio
n

ca
lls

ca
ll(

n
f,

n r
et
)

ca
ll

(u
nr

es
ol

ve
d

ca
ll)

re
t

re
t

(u
nr

es
ol

ve
d

re
tu

rn
)

sp
ec

ul
at

io
n

fe
nc

e
fe

nc
e

n
fe

nc
e

(n
o

re
so

lu
tio

n
st

ep
)

51

Registers Reorder buffer
r ρ(r) i buf(i)

ra 2pub 2 store(rb, [40,ra])
rb xsec . . .

Memory 7 (rc = load([45]))
a µ(a) 8 (rc = load([48,rc]))
40..43 secretKeysec
44..47 pubArrApub
48..4B pubArrBpub

Speculative execution
Directive Effect on buf Leakage

execute 2 : value 2 7→ store(xsec, [40,ra])
execute 7 : fwd2 7 7→ (rc = load([45],xsec,2))
execute 8 8 7→ (rc = X{⊥,a}) read asec

execute 2 : addr 2 7→ store(rb,42pub) fwd 42pub

execute 7 {7,8} /∈ buf
rollback,
fwd 45pub

where a = xsec +48

Figure 2.2: Example demonstrating a hypothetical attack abusing an aliasing predictor. This
attack differs from prior speculative data forwarding attacks in that branch misprediction is not
needed.

I n : V is the current program point;

I buf : N⇀ TransInstr is the reorder buffer.

Values and labels. As a convention, we use n for memory addresses that map to instruc-

tions, and a for addresses that map to data. Each value is annotated with a label from a lattice of

security labels with join operator t. For brevity, we sometimes omit public label annotation on

values.

Using labels, we define an equivalence 'pub on configurations. We say that two configu-

rations are equivalent if they coincide on public values in registers and memories.

Reorder buffer. The reorder buffer maps buffer indices (natural numbers) to transient

instructions. We write buf(i) to denote the instruction at index i in buffer buf , if i is in buf ’s

domain. We write buf [i 7→ instr] to denote the result of extending buf with the mapping from

52

(buf +i ρ)(r) =


v` if max(j)< i : buf(j) = (r = _)∧

buf(j) = (r = v`)
ρ(r) if ∀ j < i : buf(j) 6= (r = _)
⊥ otherwise

Figure 2.3: Definition of the register resolve function.

i to instr, and buf \buf(i) for the function formed by removing i from buf ’s domain. We write

buf [j : j < i] to denote the restriction of buf ’s domain to all indices j, s.t. j < i (i.e., removing all

mappings at indices i and greater). Our rules add and remove indices in a way that ensures that

buf ’s domain will always be contiguous.

Notation. We let MIN(M) (resp. MAX(M)) denote the minimum (maximum) index in the

domain of a mapping M. We denote the empty mapping as /0 and let MIN(/0) =MAX(/0) = 0.

For a formula ϕ , we may discuss the bounded highest (lowest) index for which a formula

holds. We write max(j) < i : ϕ(j) to mean that j is the highest index less than i for which ϕ

holds, and define min(j)> i : ϕ(j) analogously.

Register resolve function. In Figure 2.3, we define the register resolve function, which

we use to determine the value of a register in the presence of transient instructions in the reorder

buffer. For index i and register r, the function may (1) return the latest assignment to r prior to

position i in the buffer, if the corresponding operation is already resolved; (2) return the value

from the register map ρ , if there are no pending assignments to r in the buffer; or (3) be undefined.

Note that if the latest assignment to r is yet unresolved then (buf +i ρ)(r) =⊥. We extend this

definition to values by defining (buf +i ρ)(v`) = v` for all v` ∈ V , and lift it to lists of registers or

values using a pointwise lifting.

2.2.1 Speculative constant-time

We present our new notion of constant-time security in terms of a small-step semantics,

which relates program configurations, observations, and attacker directives.

53

Our semantics does not directly model caches, nor any of the predictors used by spec-

ulative semantics. Rather, we model externally visible effects—memory accesses and control

flow—by producing a sequence of observations. We can thus reason about any possible cache

implementation, as any cache eviction policy can be expressed as a function of the sequence of

observations. Furthermore, exposing control flow observations directly in our semantics makes

it unnecessary for us to track various other side channels. Indeed, while channels such as port

contention or register renaming produce distinct measurable effects [86], they only serve to leak

the path taken through the code—and thus modeling these observations separately would be

redundant. For the same reason, we do not model a particular branch prediction strategy; we

instead let the attacker resolve scheduling non-determinism by supplying a series of directives.

This approach has two important consequences. First, the use of observations and

directives allows our semantics to remain tractable and amenable to verification. For instance,

we do not need to model the behavior of the cache or any branch predictor. Second, our notion of

speculative constant-time is robust, i.e., it holds for all possible branch predictors and replacement

policies—assuming that they do not leak secrets directly, a condition that is achieved by all

practical hardware implementations.

Given an attacker directive d, we use C ↪→od C′ to denote the execution step from config-

uration C to configuration C′ that produces observation o. Program execution is defined from

the small-step semantics in the usual style. We use C O⇓N
DC′ to denote a sequence of execution

steps from C to C′. Here D and O are the concatenation of the single-step directives and leakages,

respectively; N is the number of retired instructions, i.e., N = #{d ∈ D |d = retire}. When such a

big step from C to C′ is possible, we say D is a well-formed schedule of directives for C. We omit

D, N, or O when not used.

Definition 2.2.1 (Speculative constant-time). We say a configuration C with schedule D satisfies

speculative constant-time (SCT) with respect to a low-equivalence relation 'pub iff for every C′

54

such that C 'pub C′:

C D⇓OC1 iff C′D⇓O′C
′
1 and C1 'pub C′1 and O = O′.

A program satisfies SCT iff every initial configuration satisfies SCT under any schedule.

Aside, on sequential execution. Processors work hard to create the illusion that assembly

instructions are executed sequentially. We validate our semantics by proving equivalence with

respect to sequential execution. Formally, we define sequential schedules as schedules that

execute and retire instructions immediately upon fetching them. We attach to each program

a canonical sequential schedule and write C⇓N
seqC′ to model execution under this canonical

schedule. Our sequential validation is defined relative to an equivalence ≈ on configurations.

Informally, two configurations are equivalent if their memories and register files are equal, even if

their speculative states may be different.

Theorem 2.2.2 (Sequential equivalence). Let C be an initial configuration and D a well-formed

schedule for C. If C⇓N
DC1, then C⇓N

seqC2 and C1 ≈C2.

Complete definitions, more properties, and proofs are given in Appendix B.

2.2.2 Overview of the semantics

As shown in Table 2.1, each instruction has a physical form and one or more transient

forms. Our semantics operates on these instructions similar to a multi-stage processor pipeline.

Physical instructions are fetched from memory and become transient instructions in the reorder

buffer. They are then executed until they are fully resolved. Finally they are retired, updating the

non-speculative state in the configuration.

In the rest of this section, we show how we model speculative execution (Section 2.2.3),

memory operations (Section 2.2.4), aliasing prediction (Section 2.2.5), and fence instructions

55

(Section 2.2.6). We also extend our semantics with indirect jumps (Section 2.2.7) and function

calls (Section 2.2.8).

Our semantics captures a variety of existing Spectre variants, including v1 (Figure 2.1),

v1.1 (Figure 2.5), and v4 (Figure 2.6), as well as a new hypothetical variant (Figure 2.2). Ad-

ditional variants (e.g., v2 and ret2spec) can be expressed with the extended semantics given

in Sections 2.2.7 and 2.2.8. Our semantics shows that these attacks violate SCT by producing

observations depending on secrets.

2.2.3 Speculative execution

We start with the semantics for conditional branches which introduce speculative execu-

tion.

Conditional branching. The physical instruction for conditional branches has the form

br(op,−−~rv,ntrue,nfalse), where op is a Boolean operator whose result determines whether or not to

execute the jump, −−~rv are the operands to op, and ntrue and nfalse are the program points for the true

and false branches, respectively.

We show br’s transient counterparts in Table 2.1. The unresolved form extends the

physical instruction with a program point n0, which is used to record the branch that is executed

(ntrue or nfalse) speculatively, and may or may not correspond to the branch that is actually taken

once op is resolved. The resolved form contains the final jump target.

Fetch. We give the rule for the fetch stage below.

COND-FETCH

µ(n) = br(op,−−~rv,ntrue,nfalse) i = MAX(buf)+1

buf ′ = buf [i 7→ br(op,−−~rv,ntrue,(ntrue,nfalse))]

(ρ,µ,n,buf) ↪−−−−−→
fetch: true

(ρ,µ,ntrue,buf ′)

56

The COND-FETCH rule speculatively executes the branch determined by a Boolean value b given

by the directive. We show the case for b = true; the case for false is analogous. The rule updates

the current program point n, allowing execution to continue along the specified branch. The rule

then records the chosen branch ntrue (resp. nfalse) in the transient jump instruction.

This semantics models the behavior of most modern processors. Since the target of the

branch cannot be resolved in the fetch stage, speculation allows execution to continue and not

stall until the branch target is resolved. In hardware, a branch predictor chooses which branch to

execute; in our semantics, the directives fetch: true and fetch: false determine which of the rules

to execute. This allows us to abstract over all possible predictor implementations.

Execute. Next, we describe the rules for the execute stage.

COND-EXECUTE-CORRECT

buf(i) = br(op,−−~rv,n0,(ntrue,nfalse)) ∀ j < i : buf(j) 6= fence

(buf +i ρ)(−−~rv) = −−~v` Jop(−−~v`)K = true` ntrue = n0 buf ′ = buf [i 7→ jump ntrue]

(ρ,µ,n,buf)
jump ntrue

`
↪−−−−−→

execute i
(ρ,µ,n,buf ′)

COND-EXECUTE-INCORRECT

buf(i) = br(op,−−~rv,n0,(ntrue,nfalse)) ∀ j < i : buf(j) 6= fence (buf +i ρ)(−−~rv) = −−~v`

Jop(−−~v`)K = true` ntrue 6= n0 buf ′ = buf [j : j < i][i 7→ jump ntrue]

(ρ,µ,n,buf)
rollback,jump ntrue

`
↪−−−−−−−−−−−→

execute i
(ρ,µ,ntrue,buf ′)

Both rules evaluate the condition op via an evaluation function J·K. In both, the function produces

true; but the false rules are analogous. The rules then compare the actual branch target ntrue

against the speculatively chosen target n0 from the fetch stage.

If the correct path was chosen during speculation, i.e., n0 agrees with the correct branch

ntrue, rule COND-EXECUTE-CORRECT updates buf with the fully resolved jump instruction and

emits an observation: jump ntrue
` . This models an attacker that can observe control flow, e.g., by

57

Table 2.2: Correct and incorrect branch prediction. Initially, ra = 3. In (b), the misprediction
causes a rollback to 4.

(a) Predicted correctly

i Initial buf(i) buf(i) after exe 4
3 (rb = 4) (rb = 4)
4 br(<,(2,ra),9,(9,12)) jump 9
5 (rc = op(+,(1,rb))) (rc = op(+,(1,rb)))

(b) Predicted incorrectly

i Initial buf(i) buf(i) after exe 4
3 (rb = 4) (rb = 4)
4 br(<,(2,ra),12,(9,12)) jump 9
5 (rd = op(*,(rg,rh))) -

timing executions along different paths. The leaked observation ntrue has label `, propagated from

the evaluation of the condition.

In case the wrong path was taken during speculation, i.e., the calculated branch ntrue

disagrees with n0, the semantics must roll back all execution steps along the erroneous path.

For this, rule COND-EXECUTE-INCORRECT removes all entries in buf that are newer than the

current instruction (i.e., all entries j ≥ i), sets the program point n to the correct branch, and

updates buf at index i with correct value for the resolved jump instruction. Since an attacker can

observer misspeculation through instruction timing [86], the rule issues a rollback observation

in addition to the jump observation.

Retire. The rule for the retire stage is shown below; its only effect is to remove the jump

instruction from the buffer.

JUMP-RETIRE

MIN(buf) = i buf(i) = jump n0 buf ′ = buf \buf(i)

(ρ,µ,n,buf) ↪−−→
retire

(ρ,µ,n,buf ′)

Examples. Table 2.2 shows how branch prediction affects the reorder buffer. In part (a),

the branch at index 4 is predicted correctly. The jump instruction is resolved, and execution

proceeds as normal. In part (b), the branch at index 4 is incorrectly predicted. Upon executing the

branch, the misprediction is detected, and buf is rolled back to index 4.

58

2.2.4 Memory operations

The physical instruction for loads is (r = load(−−~rv,n′)), while the form for stores is

store(rv,−−~rv,n′). As before, n′ is the program point of the next instruction. For loads, r is the

register receiving the result; for stores, rv is the register or value to be stored. For both loads and

stores, −−~rv is a list of operands (registers and values) which are used to calculate the operation’s

target address.

Transient counterparts of load and store are given in Table 2.1. We annotate unresolved

load instructions with the program point of the physical instruction that generated them; we omit

annotations whenever not used. Unresolved and resolved store instructions share the same syntax,

but for resolved stores, both address and operand are required to be single values.

Address calculation. We assume an arithmetic operator addr which calculates target

addresses for stores and loads from its operands. We leave this operation abstract in order to

model a large variety of architectures. For example, in a simple addressing mode, Jaddr(−~v)K

might compute the sum of its operands; in an x86-style address mode, Jaddr([v1,v2,v3])K might

instead compute v1 + v2 · v3.

Store forwarding. Multiple transient load and store instructions may exist concurrently in

the reorder buffer. In particular, there may be unresolved loads and stores that will read or write

to the same address in memory. Under a naive model, we must wait to execute load instructions

until all prior store instructions have been retired, in case they write to the address we will load

from. Indeed, some real-world processors behave exactly this way [42].

For performance, most modern processors implement store-forwarding for memory

operations: if a load reads from the same address as a prior store and the store has already been

resolved, the processor can forward the resolved value to the load. The load can then proceed

without waiting for the store to commit to memory [159].

To model these store forwarding semantics, we use annotations to recall if a load was

resolved from memory or forwarding. A resolved load has the form (r = v`{ j,a})n, where the

59

index j records either the buffer index of the store instruction that forwarded its value to the load,

or ⊥ if the value was taken from memory. We also record the memory address a associated with

the data, and retain the program point n of the load instruction that generated the value instruction.

The resolved load otherwise behaves as a resolved value instruction (e.g., for the register resolve

function).

Fetch. We now discuss the inference rules for memory operations, starting with the fetch

stage.

SIMPLE-FETCH

µ(n) ∈ {op, load,store, fence }

n′ = next(µ(n)) i = MAX(buf)+1 buf ′ = buf [i 7→ transient(µ(n))]

(ρ,µ,n,buf) ↪−−→
fetch

(ρ,µ,n′,buf ′)

Given a fetch directive, rule SIMPLE-FETCH extends the reorder buffer buf with a new transient

instruction (see Table 2.1). Other than load and store, the rule also applies to op and fence

instructions. The transient(·) function simply translates the physical instruction at µ(n) to its

unresolved transient form. It inserts the new, transient instruction at the first empty index in buf ,

and sets the current program point to the next instruction n′. Note that transient(·) annotates the

transient load instruction with its program point.

Load execution. Next, we cover the rules for the load execute stage.

LOAD-EXECUTE-NODEP

buf(i) = (r = load(−−~rv))n ∀ j < i : buf(j) 6= fence

(buf +i ρ)(−−~rv) = −−~v` Jaddr(−−~v`)K = a

`a = t
−~̀ ∀ j < i : buf(j) 6= store(_,a) µ(a) = v` buf ′ = buf [i 7→ (r = v`{⊥,a})n]

(ρ,µ,n,buf)
read a`a
↪−−−−−→
execute i

(ρ,µ,n,buf ′)

60

LOAD-EXECUTE-FORWARD

buf(i) = (r = load(−−~rv))n ∀ j < i : buf(j) 6= fence

(buf +i ρ)(−−~rv) = −−~v` Jaddr(−−~v`)K = a `a = t
−~̀

max(j)< i : buf(j) = store(_,a)∧buf(j) = store(v`,a,) buf ′ = buf [i 7→ (r = v`{ j,a})n]

(ρ,µ,n,buf)
fwd a`a

↪−−−−−→
execute i

(ρ,µ,n,buf ′)

Given an execute directive for buffer index i, under the condition that i points to an

unresolved load, rule LOAD-EXECUTE-NODEP applies if there are no prior store instructions in

buf that have a resolved, matching address. The rule first resolves the operand list −−~rv into a list of

values −−~v`, and then uses −−~v` to calculate the target address a. It then retrieves the current value v`

at address a from memory, and finally adds to the buffer a resolved value instruction assigning v`

to the target register r. We annotate the value instruction with the address a and ⊥, signifying

that the value comes from memory. Finally, the rule produces the observation read a`a , which

renders the memory read at address a with label `a visible to an attacker.

Rule LOAD-EXECUTE-FORWARD applies if the most recent store instruction in buf with

a resolved, matching address has a resolved data value. Instead of accessing memory, the rule

forwards the value from the store instruction, annotating the new value instruction with the

calculated address a and the index j of the originating store instruction. The rule produces a

fwd observation with the labeled address a`a . This observation captures that the attacker can

determine (e.g., by observing the absence of memory access using a cache timing attack) that a

forwarded value from address a was found in the buffer instead of loaded from memory.

Importantly, neither of the rules has to wait for prior stores to be resolved and can proceed

speculatively. This can lead to memory hazards when a more recent store to the load’s address

has not been resolved yet; we show how to deal with hazards in the rules for the store instruction.

61

Store execution. We show the rules for stores below.

STORE-EXECUTE-VALUE

buf(i) = store(rv,−−~rv)

∀ j < i : buf(j) 6= fence (buf +i ρ)(rv) = v` buf ′ = buf [i 7→ store(v`,
−−~rv)]

(ρ,µ,n,buf) ↪−−−−−−−−→
execute i:value

(ρ,µ,n,buf ′)

STORE-EXECUTE-ADDR-OK

buf(i) = store(rv,−−~rv)

∀ j < i : buf(j) 6= fence (buf +i ρ)(−−~rv) = −−~v` Jaddr(−−~v`)K = a `a = t
−~̀

∀k > i : buf(k) = (r = . . .{ jk,ak}) : (ak = a⇒ jk ≥ i) ∧ (jk = i⇒ ak = a)

buf ′ = buf [i 7→ store(rv,a`a)]

(ρ,µ,n,buf)
fwd a`a

↪−−−−−−−−→
execute i:addr

(ρ,µ,n,buf ′)

STORE-EXECUTE-ADDR-HAZARD

buf(i) = store(rv,−−~rv)

∀ j < i : buf(j) 6= fence (buf +i ρ)(−−~rv) = −−~v` Jaddr(−−~v`)K = a `a = t
−~̀

min(k)> i : buf(k) = (r = . . .{ jk,ak})nk : (ak = a∧ jk < i) ∨ (jk = i∧ak 6= a)

buf ′ = buf [j : j < k][i 7→ store(rv,a`a)]

(ρ,µ,n,buf)
rollback,fwd a`a
↪−−−−−−−−−−→

execute i:addr
(ρ,µ,nk,buf ′)

The execution of store is split into two steps: value resolution, represented by the directive

execute i : value, and address resolution, represented by the directive execute i : addr; a schedule

may have either step first. Either step may be skipped if data or address are already in immediate

form.

Rule STORE-EXECUTE-ADDR-OK applies if no misprediction has been detected, i.e., if no

load instruction forwarded data from an outdated store. We check this by requiring that all value

instructions after the current index (indices k > i) with an address a matching the current store

must be using a value forwarded from a store at least as recent as this one (ak = a⇒ jk ≥ i). We

62

define ⊥< n for any index n—that is, if a future load matches the address of the current store but

loaded its value from memory, we consider this a hazard.

If there is indeed a hazard, i.e., if there was a resolved load with an outdated value, the

rule STORE-EXECUTE-ADDR-HAZARD picks the earliest such instruction (index k) and restarts

execution by resetting the instruction pointer to the program point nk of this instruction. It then

discards all transient instructions at indices at least k from the reorder buffer. As in the case of

misspeculation, the rule issues a rollback observation.

Retire. Resolved loads are retired using the following rule.

VALUE-RETIRE

MIN(buf) = i buf(i) = (r = v`) ρ
′ = ρ[r 7→ v`] buf ′ = buf \buf(i)

(ρ,µ,n,buf) ↪−−→
retire

(ρ ′,µ,n,buf ′)

This is the same retire rule used for simple value instructions (e.g., resolved op instructions). The

rule updates the register map ρ with the new value, and removes the instruction from the reorder

buffer.

Stores are retired using the rule below.

STORE-RETIRE

MIN(buf) = i buf(i) = store(v`,a`a) µ
′ = µ[a 7→ v`] buf ′ = buf \buf(i)

(ρ,µ,n,buf)
write a`a
↪−−−−−→

retire
(ρ,µ ′,n,buf ′)

A fully resolved store instruction retires similarly to a value instruction. However, instead of

updating the register map ρ , rule STORE-RETIRE updates the memory µ . Since an attacker can

observe memory writes, the rule produces the observation write a`a with the labeled address of

the store.

Example. Figure 2.4 gives an example of store-to-load forwarding. In the starting

configuration, the store at index 2 is fully resolved, while the store at index 3 has an unresolved

63

Registers ρ(ra) = 40pub

Directives D= execute 4;execute 3 : addr
Leakage for D fwd 43pub;rollback,fwd 43pub

starting buf buf after execute 4 buf after D
2 store(12,43pub) 2 store(12,43pub) 2 store(12,43pub)
3 store(20, [3,ra]) 3 store(20, [3,ra]) 3 store(20,43pub)
4 (rc = load([43])) 4 (rc = 12{2,43})

Figure 2.4: Store hazard caused by late execution of store addresses. The store address for 3
is resolved too late, causing the later load instruction to forward from the wrong store. When
3’s address is resolved, the execution must be rolled back. In this example, Jaddr(·)K adds its
arguments.

Registers Reorder buffer
r ρ(r) i buf(i)
ra 5pub 1 br(>,(4,ra),2,(2,4))
rb xsec 2 store(rb, [40,ra])

Memory . . .
a µ(a) 7 (rc = load([45]))
40..43 secretKeysec 8 (rc = load([48,rc]))
44..47 pubArrApub
48..4B pubArrBpub

Directive Effect on buf Leakage
execute 2 : addr 2 7→ store(rb,45pub) fwd 45pub

execute 2 : value 2 7→ store(xsec,45pub)
execute 7 7 7→ (rc = xsec{2,45}) fwd 45pub

execute 8 8 7→ (rc = X{⊥,a}) read asec
where a = xsec +48

Figure 2.5: Example demonstrating a store-to-load Spectre v1.1 attack. A speculatively stored
value is forwarded and then leaked using a subsequent load instruction.

64

Registers Reorder buffer
r ρ(r) i buf(i)
ra 40pub 2 store(0, [3,ra])

Memory 3 (rc = load([43]))
a µ(a) 4 (rc = load([44,rc]))
40..43 secretKeysec
44..47 pubArrApub

Directive Effect on buf Leakage
execute 3 3 7→ (rc = secretKey[3]{⊥,43}) read 43pub

execute 4 4 7→ (rc = X{⊥,a}) read asec

execute 2 : addr
{3,4} /∈ buf rollback,
2 7→ store(0,43pub) fwd 43pub

where a = secretKey[3]sec +44

Figure 2.6: Example demonstrating a v4 Spectre attack. The store is executed too late, causing
later load instructions to use outdated values.

address. The first directive executes the load at 4. This load accesses address 43, which matches

the store at index 2. Since this is the most recent such store and has a resolved value, the load gets

the value 12 from this store. The following directive resolves the address of the store at index

3. This store also matches address 43. As this store is more recent than store 2, this directive

triggers a hazard for the load at 4, leading to the rollback of the load from the reorder buffer.

Capturing Spectre. We now have enough machinery to capture several variants of Spectre

attacks.

We discussed how our semantics model Spectre v1 in Section 2.1 (Figure 2.1). Figure 2.5

shows a simple disclosure gadget using forwarding from an out-of-bounds write. In this example,

a secret value xsec is supposed to be written to secretKey at an index ra as long as ra is within

bounds. However, due to branch misprediction, the store instruction is executed despite ra being

too large. The load instruction at index 7, normally benign, now aliases with the store at index 2,

and receives the secret xsec instead of a public value from pubArrA. This value is then used as the

address of another load instruction, causing xsec to leak.

Figure 2.6 shows a Spectre v4 vulnerability caused when a store fails to forward to a

future load. In this example, the load at index 3 executes before the store at 2 calculates its

65

address. As a result, this execution loads the outdated secret value at address 43 and leaks it,

instead of using the public zeroed-out value that would be written.

2.2.5 Aliasing prediction

We extend the memory semantics from the previous section to model aliasing prediction

by introducing a new transient instruction (r = load(−−~rv,(v`, j)))n. This instruction represents a

partially resolved load with speculatively forwarded data. As before, r is the target register, −−~rv

is the list of arguments for address calculation, and n is the program point of the physical load

instruction. The new parameters are v`, the forwarded data, and j, the index of the originating

store.

Forwarding via prediction.

LOAD-EXECUTE-FORWARDED-GUESSED

buf(i) = (r = load(−−~rv))n j < i ∀k < i : buf(k) 6= fence

buf(j) = store(v`,
−−~rv j) buf ′ = buf [i 7→ (r = load(−−~rv,(v`, j)))n]

(ρ,µ,n,buf) ↪−−−−−−−−→
execute i: fwd j

(ρ,µ,n,buf ′)

Rule LOAD-EXECUTE-FORWARDED-GUESSED implements forwarding in the presence of unre-

solved target addresses. Instead of forwarding the value from a store with a matching address, as

in Section 2.2.4, the attacker can now freely choose to forward from any store with a resolved

value—even if its target address is not known yet. Given a choice of which store j to forward

from—supplied via directive—the rule updates the reorder buffer with the new partially resolved

load and records both the forwarded value vl and the buffer index j of the store instruction.

Register resolve function. We extend the register resolve function (buf +i ρ) to allow

using values from partially resolved loads. In particular, whenever the register resolve function

computes the latest resolved assignment to some register r, it now considers not only fully resolved

66

value instructions, but also our new partially resolved load: whenever the latest assignment in the

buffer is a partially resolved load, the register resolve function returns its value.

We now discuss the execution rules, where partially resolved loads may fully resolve

against either the originating store or against memory.

Resolving when originating store is in the reorder buffer.

LOAD-EXECUTE-ADDR-OK

buf(i) = (r = load(−−~rv,(v`, j)))n (buf +i ρ)(−−~rv) = −−~v`

Jaddr(−−~v`)K = a `a = t
−~̀ buf(j) = store(v`,

−−~rv j)∧ (−−~rv j = a′⇒ a′ = a)

∀k : (j < k < i) : buf(k) 6= store(_,a) buf ′ = buf [i 7→ (r = v`{ j,a})n]

(ρ,µ,n,buf)
fwd a`a

↪−−−−−→
execute i

(ρ,µ,n,buf ′)

LOAD-EXECUTE-ADDR-HAZARD

buf(i) = (r = load(−−~rv,(v`, j)))n′

(buf +i ρ)(−−~rv) = −−~v` Jaddr(−−~v`)K = a `a = t
−~̀ (buf(j) = store(v`,a′)∧a′ 6= a) ∨

(∃k : j < k < i∧buf(k) = store(_,a)) buf ′ = buf [j : j < i]

(ρ,µ,n,buf)
rollback,fwd a`a
↪−−−−−−−−−−→

execute i
(ρ,µ,n′,buf ′)

To resolve (r = load(−−~rv,(v`, j)))n when its originating store is still in buf , we calculate the load’s

actual target address a and compare it against the target address of the originating store at buf(j).

If the store is not followed by later stores to a, and either (1) the store’s address is resolved and

its address is indeed a, or (2) the store’s address is still unresolved, we update the reorder buffer

with an annotated value instruction (rule LOAD-EXECUTE-ADDR-OK).

If, however, either the originating store resolved to a different address (mispredicted

aliasing) or a later store resolved to the same address (hazard), we roll back our execution to just

before the load (rule LOAD-EXECUTE-ADDR-HAZARD).

We allow the load to execute even if the originating store has not yet resolved its address.

When the store does finally resolve its address, it must check that the addresses match and that the

67

forwarding was correct. The gray formulas in STORE-EXECUTE-ADDR-OK and STORE-EXECUTE-

ADDR-HAZARD (Section 2.2.4) perform these checks: For forwarding to be correct, all values

forwarded from a store at buf(i) must have a matching annotated address (∀k > i : jk = i⇒ ak = a).

Otherwise, if any value annotation has a mismatched address, then the instruction is rolled back

(jk = i∧ak 6= a).

Resolving when originating store is not in the buffer. We must also consider the case

where we have delayed resolving the load address to the point where the originating store has

already retired, and is no longer available in buf . If this is the case, and no other prior store

instructions have a matching address, then we must check the forwarded data against memory.

LOAD-EXECUTE-ADDR-MEM-MATCH

buf(i) = (r = load(−−~rv,v`, j))n

j /∈ buf (buf +i ρ)(−−~rv) = −−~v` `a = t
−~̀ Jaddr(−−~v`)K = a

∀k < i : buf(k) 6= store(_,a) µ(a) = v` buf ′ = buf [i 7→ (r = v`{⊥,a})n]

(ρ,µ,n,buf)
read a`a
↪−−−−−→
execute i

(ρ,µ,n,buf ′)

LOAD-EXECUTE-ADDR-MEM-HAZARD

buf(i) = (r = load(−−~rv,v`, j))n′

j /∈ buf (buf +i ρ)(−−~rv) = −−~v` `a = t
−~̀ Jaddr(−~v`)K = a

∀k < i : buf(k) 6= store(_,a) µ(a) = v′`′ v′`′ 6= v` buf ′ = buf [j : j < i]

(ρ,µ,n,buf)
rollback,read a`a
↪−−−−−−−−−−→

execute i
(ρ,µ,n′,buf ′)

If the originating store has retired, and no intervening stores match the same address, we

must load the value from memory to ensure we were originally forwarded the correct value. If the

value loaded from memory matches the value we were forwarded, we update the reorder buffer

with a resolved load annotated as if it had been loaded from memory (rule LOAD-EXECUTE-

ADDR-MEM-MATCH).

68

If a store different from the originating store overwrote the originally forwarded value,

the value loaded from memory may not match the value we were originally forwarded. In this

case we roll back execution to just before the load (rule LOAD-EXECUTE-ADDR-MEM-HAZARD).

We demonstrate these semantics in the attack shown in Figure 2.2. An earlier draft of this

work [37] incorrectly claimed to have a proof-of-concept exploit for this attack on real hardware.

2.2.6 Speculation barriers

We extend our semantics with a speculation barrier instruction, fence n, that prevents

further speculative execution until all prior instructions have been retired.

FENCE-RETIRE

MIN(buf) = i buf(i) = fence buf ′ = buf \buf(i)

(ρ,µ,n,buf) ↪−−→
retire

(ρ,µ,n,buf ′)

The fence instruction uses SIMPLE-FETCH as its fetch rule, and its rule for retire only

removes the instruction from the buffer. It does not have an execute rule. However, fence

instructions affect the execution of all instructions in the reorder buffer that come after them.

In prior sections, execute rules have the highlighted condition ∀ j < i : buf(j) 6= fence. This

condition ensures that as long as a fence instruction remains in buf , any instructions fetched after

the fence cannot be executed.

We use fence instructions to restrict out-of-order execution in our semantics. Notably, we

can use it to prevent attacks of the forms shown in Figures 2.1, 2.5 and 2.6.

Example. The example in Figure 2.7 shows how placing a fence instruction just after the

br instruction prevents the Spectre v1 attack from Figure 2.1. The fence in this example prevents

the load instructions at 2 and 3 from executing and forces the br to be resolved first. Evaluating

the br exposes the misprediction and causes the two loads (as well as the fence) to be rolled back.

69

Before executing 1 After
i buf [i] i buf [i]
1 br(>,(4,ra),2,(2,5)) 1 jump 5
2 fence
3 (rb = load([40,ra]))
4 (rc = load([44,rb]))

Figure 2.7: Example demonstrating fencing mitigation against Spectre v1 attacks. The fence
instruction prevents the load instructions from executing before the br.

2.2.7 Indirect jumps

We introduce a new form of control flow to our semantics, indirect jumps, which allow

the program to dynamically jump to arbitrary locations. The physical instruction for an indirect

jump is jmpi(−−~rv), where −−~rv is a list of operands used to calculate the jump target. The semantics

for jmpi are given below:

JMPI-FETCH

µ(n) = jmpi(−−~rv) i = MAX(buf)+1 buf ′ = bu f [i 7→ jmpi(−−~rv,n′)]

(ρ,µ,n,buf) ↪−−−−→
fetch: n′

(ρ,µ,n′,buf ′)

JMPI-EXECUTE-CORRECT

buf(i) = jmpi(−−~rv,n0) ∀ j < i : buf(j) 6= fence

(buf +i ρ)(−−~rv) = −−~v` `= t
−~̀ Jaddr(−−~v`)K = n0 buf ′ = buf [i 7→ jump n0]

(ρ,µ,n,buf)
jump n0`
↪−−−−−→
execute i

(ρ,µ,n,buf ′)

JMPI-EXECUTE-INCORRECT

buf(i) = jmpi(−−~rv,n0) ∀ j < i : buf [j] 6= fence (buf +i ρ)(−−~rv) = −−~v`

`= t
−~̀ Jaddr(−−~v`)K = n′ 6= n0 buf ′ = buf [j : j < i][i 7→ jump n′]

(ρ,µ,n,buf)
rollback,jump n′`
↪−−−−−−−−−−→

execute i
(ρ,µ,n′,buf ′)

When fetching a jmpi instruction, the schedule guesses the jump target n′. The rule records

the operands and the guessed program point in a new buffer entry. In a real processor, the jump

70

Registers Program
r ρ(r) n µ(n)
ra 1pub 1 (rc = load([48,ra],2))
rb 8pub 2 fence 3

Memory 3 jmpi([12,rb])
a µ(a) . . .
44..47 array Bpub 16 fence 17
48..4B array Keysec 17 (rd = load([44,rc],18))

Directive Effect on buf Leakage
fetch 1 7→ rc = load(48+ ra)
fetch 2 7→ fence
execute 1 1 7→ rc = Key[1]sec read 49pub

fetch: 17 3 7→ jmpi([12,rb],17)
fetch 4 7→ rd = load([44,rc])
retire 1 /∈ buf
retire 2 /∈ buf
execute 4 4 7→ rd = X read asec

where a = Key[1]sec +40

Figure 2.8: Example demonstrating a Spectre v2 attack from a mistrained indirect branch
predictor. Speculation barriers are not a useful defense against this style of attack.

target guess is supplied by an indirect branch predictor; as branch predictors can be arbitrarily

influenced by an adversary [54], we model the guess as an attacker directive.

In the execute stage, we calculate the actual jump target and compare it to the guess. If

the actual target and the guess match, we update the entry in the reorder buffer to the resolved

jump instruction jump n0. If actual target and the guess do not match, we roll back the execution

by removing all buffer entries larger or equal to i, update the buffer with the resolved jump to the

correct address, and set the next instruction.

Like conditional branch instructions, indirect jumps leak the calculated jump target.

Examples. The example in Figure 2.8 shows how a mistrained indirect branch predictor

can lead to disclosure vulnerabilities. After loading a secret value into rc at program point 1, the

program makes an indirect jump. An adversary can mistrain the predictor to send execution to 17

instead of the intended branch target, where the secret value in rc is immediately leaked. Because

indirect jumps can have arbitrary branch target locations, fence instructions do not prevent these

71

kinds of attacks; an adversary can simply retarget the indirect jump to the instruction after the

fence, as is seen in this example.

2.2.8 Function calls

Finally, we present how our semantics models function calls. The physical instructions

are call(n f ,nret), where n f is the target program point of the call and nret is the return program

point; and the return instruction ret. We “decode” calls and returns into multiple instructions,

leaving their respective transient forms simply as markers call and ret.

Call stack. To track control flow in the presence of function calls, our semantics explicitly

maintains a call stack in memory. For this, we use a dedicated register rsp which points to the top

of the call stack, and which we call the stack pointer register. On fetching a call instruction, we

update rsp to point to the address of the next element of the stack using an abstract operation succ.

It then saves the return address to the newly computed address. On returning from a function

call, our semantics transfers control to the return address at rsp, and then updates rsp to point to

the address of the previous element using a function pred. This step makes use of a temporary

register rtmp.

We use abstract operations succ and pred to manipulate rsp. On a 32-bit x86 processor with

a downward-growing stack, op(succ,rsp) would be implemented as rsp−4, while op(pred,rsp)

would be implemented as rsp +4; on an upward growing system, the reverse would be true. Note

that the stack register rsp is not protected from illegal access and can be updated freely.

Return stack buffer. For performance, modern processors speculatively predict return

addresses. To model this, we extend configurations with a new piece of state called the return

stack buffer (RSB), written as σ . The return stack buffer contains the expected return address at

any execution point. Its implementation is simple: for a call instruction, the semantics pushes the

return address to the RSB, while for a ret instruction, the semantics pops the address at the top of

72

Program
n 1 2 3
µ(n) call(3,2) ret ret

Directive n buf σ

fetch 1→ 3 1 7→ call 1 7→ push 2
2 7→ rsp = op(succ,rsp)
3 7→ store(2, [rsp])

fetch 3→ 2 4 7→ ret 4 7→ pop
5 7→ rtmp = load([rsp])

6 7→ rsp = op(pred,rsp)
7 7→ jmpi([rtmp],2)

fetch: n 2→ n 8 7→ ret 8 7→ pop
9 7→ rtmp = load([rsp])
10 7→ rsp = op(pred,rsp)
11 7→ jmpi([rtmp],n)

Figure 2.9: Example demonstrating a ret2spec-style attack [97]. The attacker is able to send
(speculative) execution to an arbitrary program point, shown in bold.

the RSB. Similar to the reorder buffer, we address the RSB through indices and roll it back on

misspeculation or memory hazards.

We model return prediction directly through the return stack buffer rather than relying on

attacker directives, as most processors follow this simple strategy, and the predictions therefore

cannot be (directly) controlled by an attacker.

Calling.

CALL-DIRECT-FETCH

µ(n) = call(n f ,nret)

i = MAX(buf)+1 buf 1 = buf [i 7→ call][i+1 7→ (rsp = op(succ,rsp))]

buf ′ = buf 1[i+2 7→ store(nret, [rsp])] σ
′ = σ [i 7→ push nret] n′ = n f

(ρ,µ,n,buf ,σ) ↪−−→
fetch

(ρ,µ,n′,buf ′,σ ′)

73

CALL-RETIRE

MIN(buf) = i buf(i) = call buf(i+1) = (rsp = v`) buf(i+2) = store(nret,a`a)

ρ
′ = ρ[rsp 7→ v`] µ

′ = µ[a 7→ nret] buf ′ = buf [j : j > i+2]

(ρ,µ,n,buf ,σ)
write a`a
↪−−−−−→

retire
(ρ ′,µ ′,n,buf ′,σ)

On fetching a call instruction, we add three transient instructions to the reorder buffer

to model pushing the return address to the in-memory stack. The first transient instruction,

call, simply serves as an indication that the following two instructions come from fetching a

call instruction. The remaining two instructions advance rsp to point to a new stack entry, then

store the return address nret in the new entry. Neither of these transient instructions are fully

resolved—they will need to be executed in later steps. We next add a new entry to the RSB,

signifying a push of the return address nret to the RSB. Finally, we set our program point to the

target of the call n f .

When retiring a call, all three instructions generated during the fetch are retired together.

The register file is updated with the new value of rsp, and the return address is written to physical

memory, producing the corresponding leakage.

The semantics for direct calls can be extended to cover indirect calls in a straightforward

manner by imitating the semantics for indirect jumps. We omit them for brevity.

Evaluating the RSB. We define a function top(σ) that retrieves the value at the top of the

RSB stack. For this, we let JσK be a function that transforms the RSB stack σ into a stack in the

form of a partial map (st : N ⇀ V) from the natural numbers to program points, as follows: the

function J·K applies the commands for each value in the domain of σ , in the order of the indices.

For a push n it adds n to the lowest empty index of st. For pop, it and removes the value with the

highest index in st, if it exists. We then define top(σ) as st(MAX(st)), where st = JσK, and ⊥, if

the domain of st is empty. For example, if σ is given as /0[1 7→ push 4][2 7→ push 5][3 7→ pop],

then JσK = /0[1 7→ 4], and top(σ) = 4.

74

Returning.

RET-FETCH-RSB

µ(n) = ret top(σ) = n′ i = MAX(buf)+1 buf 1 = buf [i 7→ ret]

buf 2 = buf 1[i+1 7→ (rtmp = load([rsp]))] buf 3 = buf 2[i+2 7→ (rsp = op(pred,rsp))]

buf 4 = buf 3[i+3 7→ jmpi([rtmp],n′)] σ
′ = σ [i 7→ pop]

(ρ,µ,n,buf ,σ) ↪−−→
fetch

(ρ,µ,n′,buf 4,σ
′)

RET-FETCH-RSB-EMPTY

µ(n) = ret top(σ) =⊥ i = MAX(buf)+1 buf 1 = buf [i 7→ ret]

buf 2 = buf 1[i+1 7→ (rtmp = load([rsp]))] buf 3 = buf 2[i+2 7→ (rsp = op(pred,rsp))]

buf 4 = buf 3[i+3 7→ jmpi([rtmp],n′)] σ
′ = σ [i 7→ pop]

(ρ,µ,n,buf ,σ) ↪−−−−→
fetch: n′

(ρ,µ,n′,buf 4,σ
′)

RET-RETIRE

MIN(buf) = i buf(i) = ret buf(i+1) = (rtmp = v1`1) buf(i+2) = (rsp = v2`2)

buf(i+3) = jump n′ ρ
′ = ρ[rsp 7→ v2`2] buf ′ = buf [j : j > i+3]

(ρ,µ,n,buf ,σ) ↪−−→
retire

(ρ ′,µ,n,buf ′,σ)

On a fetch of ret, the next program point is set to the predicted return address, i.e., the

top value of the RSB, top(σ). Just as with call, we add the transient ret instruction to the reorder

buffer, followed by the following (unresolved) instructions: we load the value at address rsp into

a temporary register rtmp, we “pop” rsp to point back to the previous stack entry, and then add an

indirect jump to the program point given by rtmp. Finally, we add a pop entry to the RSB. As with

call instructions, the set of instructions generated by a ret fetch are retired all at once.

When the RSB is empty, the attacker can supply a speculative return address via the

directive fetch: n′. This is consistent with the behavior of existing processors. In practice, there

are several variants on what processors actually do when the RSB is empty [97]:

75

Registers Program
r ρ(r) n µ(n)
rb 8pub 3 call(5,4)
rsp 7Cpub 4 fence 4

5 rd = op(addr, [12,rb],6)
6 store(rd , [rsp],7)
7 ret

Effect of successive fetch directives
n buf σ

3→ 5 3 7→ call 3 7→ push 4
4 7→ rsp = op(succ,rsp)

5 7→ store(4, [rsp])

5→ 6 6 7→ rd = op(addr, [12,rb])
6→ 7 7 7→ store(rd , [rsp])
7→ 4 8 7→ ret 8 7→ pop

9 7→ rtmp = load([rsp])
10 7→ rsp = op(pred,rsp)
11 7→ jmpi([rtmp],4)

4→ 4 12 7→ fence

Directive Effect on buf Leakage
execute 4 4 7→ rsp = 7B

execute 6 6 7→ rd = 20
execute 7 : value 7 7→ store(20, [rsp])
execute 7 : addr 7 7→ store(20,7B) fwd 7B
execute 9 9 7→ rtmp = 20 fwd 7B

execute 11
12 /∈ buf rollback,
11 7→ jump 20 jump 20

Figure 2.10: Example demonstrating “retpoline” mitigation against Spectre v2 attack. The
program is able to jump to program point 12 + rb = 20 without the schedule influencing
prediction.

I AMD processors refuse to speculate. This can be modeled by defining top(σ) to be a

failing predicate if it would result in ⊥.

I Intel Skylake/Broadwell processors fall back to using their branch target predictor. This

can be modeled by allowing arbitrary n′ for the fetch: n′ directive for the RET-FETCH-RSB-

EMPTY rule.

I “Most” Intel processors treat the RSB as a circular buffer, taking whichever value is

produced when the RSB over- or underflows. This can be modeled by having top(σ)

always produce an according value, and never producing ⊥.

Examples. We present an example of an RSB underflow attack in Figure 2.9. After

fetching a call and paired ret instruction, the RSB will be “empty”. When one more (unmatched)

76

ret instruction is fetched, since top(σ) =⊥, the program point n is no longer set by the RSB, and

is instead set by the (attacker-controlled) schedule.

Retpoline mitigation. A mitigation for Spectre v2 attacks is to replace indirect jumps

with retpolines [148]. Figure 2.10 shows a retpoline construction that would replace the indirect

jump in Figure 2.8. The call sends execution to program point 5, while adding 4 to the RSB. The

next two instructions at 5 and 6 calculate the same target as the indirect jump in Figure 2.8 and

overwrite the return address in memory with this jump target. When executed speculatively, the

ret at 7 will pop the top value off the RSB, 4, and jump there, landing on a fence instruction that

loops back on itself. Thus speculative execution cannot proceed beyond this point. When the

transient instructions in the ret sequence finally execute, the indirect jump target 20 is loaded

from memory, causing a roll back. However, execution is then directed to the proper jump target.

Notably, at no point is an attacker able to hijack the jump target via misprediction.

2.3 Detecting violations

We develop a tool Pitchfork based on our semantics to check for SCT violations. Pitchfork

only exercises a subset of our semantics; it only detects SCT violations stemming from branch

misprediction or basic store-forwarding errors (Sections 2.2.3 and 2.2.4). Regardless, Pitchfork

still soundly exposes Spectre-PHT and Spectre-STL vulnerabilities.

Pitchfork constructs worst-case schedules to maximize speculation, parametrized by a

speculation bound which limits the depth of speculation. When encountering conditional branches,

Pitchfork examines both possible path outcomes as if they were (mis)predicted), delaying the

execution of the branch condition itself as late as possible. To account for load-store forwarding

hazards, Pitchfork similarly examines all possible forwarding outcomes for each load instruction.

All other instructions are executed eagerly and in order. We formalize the soundness of Pitchfork’s

schedule construction in more detail in Appendix B.3.

77

We implement Pitchfork on top of the angr binary-analysis tool [138]. Pitchfork nec-

essarily inherits the limitations of angr’s symbolic execution—for instance, angr concretizes

addresses for memory operations instead of keeping them symbolic. Furthermore, exploring

every speculative branch and potential store-forward within a given speculation bound leads to

an explosion in state space. In our tests, we were able to support speculation bounds of up to 20

instructions, though we can increase this bound to 250 instructions when we disable checks for

store-forwarding hazards. Though these bounds do not capture the speculation depth of some

modern processors, Pitchfork still correctly finds SCT violations in all our test cases, as well as

SCT violations in real-world crypto code.

2.3.1 Evaluation procedure

To evaluate Pitchfork on real-world crypto implementations, we use the same case studies

as FaCT [40], a domain-specific language and compiler for constant-time crypto code. We use

FaCT’s case studies for two reasons: these implementations have been verified to be (sequentially)

constant-time, and their inputs have already been annotated by the FaCT authors with secrecy

labels.1

We analyzed both the FaCT-generated binaries and the corresponding C binaries for

the case studies. For each binary, we ran Pitchfork without forwarding hazard detection—only

looking for Spectre v1 and v1.1 violations—and with a speculation bound of 250 instructions. If

Pitchfork did not flag any violations, we re-enabled forwarding hazard detection—looking for

Spectre v4 violations—and ran Pitchfork with a reduced bound of 20 instructions. The reduced

bound ensured that the analysis was tractable.

1https://github.com/PLSysSec/fact-eval

78

https://github.com/PLSysSec/fact-eval

Table 2.3: SCT violations found by Pitchfork. A indicates Pitchfork found an SCT violation.
A f indicates the violation was found only with forwarding hazard detection.

Case Study C FaCT

curve25519-donna X X
libsodium secretbox X
OpenSSL ssl3 record validate f

OpenSSL MEE-CBC f

2.3.2 Detected violations

Table 2.3 shows our results. Pitchfork did not flag any SCT violations in the curve25519-

donna implementations; this is not surprising, as the curve25519-donna library is a straightforward

implementation of crypto primitives. Pitchfork did, however, find SCT violations (without

forwarding hazard detection) in both the libsodium and OpenSSL codebases. Specifically,

Pitchfork found violations in the C implementations of these libraries, in code ancillary to the

core crypto routines. This aligns with our intuition that crypto primitives will not themselves be

vulnerable to Spectre attacks, but higher-level code that interfaces with these primitives may still

leak secrets. Such higher-level code is not present in the corresponding FaCT implementations,

and Pitchfork did not find any violations in the FaCT code with these settings. However, with

forwarding hazard detection, Pitchfork was able to find vulnerabilities even in the FaCT versions

of the OpenSSL implementations. We describe two of the violations Pitchfork flagged next.

C libsodium secretbox. The libsodium codebase compiles with stack protection [58]

turned on by default. This means that, for certain functions (e.g., functions with stack allocated

char buffers), the compiler inserts code in the function epilogue to check if the stack was

“smashed”. If so, the program displays an error message and aborts. As part of printing the

error message, the program calls a function __libc_message, which does printf-style string

formatting.

2Code snippet taken from https://github.com/lattera/glibc/blob/895ef79e04a953cac1493863bcae29ad85657ee1/
sysdeps/posix/libc_fatal.c

79

https://github.com/lattera/glibc/blob/895ef79e04a953cac1493863bcae29ad85657ee1/sysdeps/posix/libc_fatal.c
https://github.com/lattera/glibc/blob/895ef79e04a953cac1493863bcae29ad85657ee1/sysdeps/posix/libc_fatal.c

1 for (int cnt = nlist - 1; cnt >= 0; --cnt) {
2 iov[cnt].iov_base = (char *) list->str;
3 // ...
4 list = list->next;
5 }

Figure 2.11: Vulnerable snippet from __libc__message().2

1 aesni_cbc_encrypt(/* ... */);
2 // (len _out) is in %r14
3 secret mut uint32 pad = _out[len _out - 1];
4 public uint32 maxpad = tmppad > 255 ? 255 : tmppad;
5 if (pad > maxpad) {
6 pad = maxpad;
7 ret = 0; // overwrites %r14
8 }
9 // ...

10 _sha1_update(/* ... */); // can return to line 3

Figure 2.12: Vulnerable snippet from the FaCT OpenSSL MEE implementation.3

Figure 2.11 shows a snippet from this function which traverses a linked list. When

running the C secretbox implementation speculatively, the processor may misspeculate on the

stack tampering check and jump into the error handling code, eventually calling __libc_message.

Again due to misspeculation, the processor may incorrectly proceed through the loop extra times,

traversing non-existent links, eventually causing secret data to be stored into list instead of a

valid address (line 4). On the following iteration of the loop, dereferencing list (line 2) causes a

secret-dependent memory access.

FaCT OpenSSL MEE. In Figure 2.12, we show the code from the FaCT port of

OpenSSL’s authenticated encryption implementation. The FaCT compiler transforms the branch

at lines 5-7 into straight-line constant-time code, since the variable pad is considered secret.

Initially, register %r14 holds the length of the array _out. The processor leaks this value

due to the array access on line 3; this is not a security violation, as the length is public. On line 7,

3Code snippet taken from https://github.com/PLSysSec/fact-eval/blob/888bc6c6898a06cef54170ea273de91868ea
621e/openssl-mee/20170717_latest.fact

80

https://github.com/PLSysSec/fact-eval/blob/888bc6c6898a06cef54170ea273de91868ea621e/openssl-mee/20170717_latest.fact
https://github.com/PLSysSec/fact-eval/blob/888bc6c6898a06cef54170ea273de91868ea621e/openssl-mee/20170717_latest.fact

the value of %r14 is overwritten with 0 if pad > maxpad, or 1 (the initial value of ret) otherwise.

Afterwards, the processor calls _sha1_update.

To return from _sha1_update, the processor must first load the return address from

memory. When forwarding hazard detection is enabled, Pitchfork allows this load to speculatively

receive data from stores older than the most recent store to that address (see Section 2.2.4).

Specifically, it may receive the prior value that was stored at that location: the return address for

the call to aesni_cbc_encrypt.

After the speculative return, the processor executes line 3 a second time. This time, %r14

does not hold the public value len _out; it instead holds the value of ret, which was derived

from the secret condition pad > maxpad. The processor thus accesses either _out[0] or _out[-1],

leaking information about the secret value of pad via cache state.

2.4 Related work

Prior work on modeling speculative or out-of-order execution is concerned with correct-

ness rather than security [4, 89]. We instead focus on security and model side-channel leakage

explicitly. Moreover, we abstract away the specifics of microarchitectural features, considering

them to be adversarially controlled.

Disselkoen et al. [51] explore speculation and out-of-order effects through a relaxed

memory model. Their semantics sits at a higher level, and is orthogonal to our approach. They do

not define a semantic notion of security that prevents Spectre-like attacks, and do not provide

support for verification.

Mcilroy et al. [100] reason about micro-architectural attacks using a multi-stage pipeline

semantics (though they do not define a formal security property). Their semantics models branch

predictor and cache state explicitly. However, they do not model the effects of speculative barriers,

81

nor other microarchitecture features such as store-forwarding. Thus, their semantics can only

capture Spectre v1 attacks.

Both Guarnieri et al. [64] and Cheang et al. [41] define speculative semantics that are

supported by tools. Their semantics handle speculation through branch prediction—where the

predictor is left abstract—but do not capture more general out-of-order execution nor other types

of speculation. These works also propose new semantic notions of security (different from

SCT); both essentially require that the speculative execution of a program not leak more than its

sequential execution. If a program is sequentially constant-time, this additional security property

is equivalent to our notion of speculative constant-time. Though our property is stronger, it is also

simpler to verify: we can directly check SCT without first checking if a program is sequentially

constant-time. And since we focus on cryptographic code, we directly require the stronger SCT

property.

Balliu et al. [63] define a semantics in a style similar to ours. Their semantics captures

various Spectre attacks, including an attack similar to our alias prediction example (Figure 2.2),

and a new attack based on their memory ordering semantics, which our semantics cannot capture.

Finally, several tools detect Spectre vulnerabilities, but do not present semantics. The oo7

static analysis tool [155], for example, uses taint tracking to find Spectre attacks and automatically

insert mitigations for several variants. Wu and Wang [161], on the other hand, perform cache

analysis of LLVM programs under speculative execution, capturing Spectre v1 attacks.

2.5 Conclusion

We introduced a semantics for reasoning about side-channels under adversarially con-

trolled out-of-order and speculative execution. Our semantics capture existing transient execution

attacks—namely Spectre—but can be extended to future hardware predictors and potential attacks.

We also defined a new notion of constant-time code under speculation—speculative constant-time

82

(SCT)—and implemented a prototype tool to check if code is SCT. Our prototype, Pitchfork,

discovered new vulnerabilities in real-world crypto libraries.

There are several directions for future work. Our immediate plan is to use our semantics

to prove the effectiveness of existing countermeasures (e.g., retpolines) and to justify new

countermeasures.

Acknowledgements

We thank the anonymous PLDI and PLDI AEC reviewers and our shepherd James

Bornholt for their suggestions and insightful comments. We thank David Kaplan from AMD for

his detailed analysis of our proof-of-concept exploit that we incorrectly thought to be abusing

an aliasing predictor. We also thank Natalie Popescu for her aid in editing and formatting the

original published paper. This work was supported in part by gifts from Cisco and Fastly, by the

NSF under Grant Number CCF-1918573, by ONR Grant N000141512750, and by the CONIX

Research Center, one of six centers in JUMP, a Semiconductor Research Corporation (SRC)

program sponsored by DARPA.

Chapter 2, in part, is a reprint of the material as it appears in 41st ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI '20). Cauligi, Sunjay;

Disselkoen, Craig; v. Gleissenthall, Klaus; Tullsen, Dean; Stefan, Deian; Rezk, Tamara; Barthe,

Gilles, ACM, 2020. The dissertation author was the primary investigator and author of this paper.

83

Chapter 3

Towards Verified Spectre-Resistant
SFI Sandboxing

In which we build to new heights.

Speculative constant-time (SCT) is difficult to achieve without some additional structure.

One way we can approach SCT is by placing programs inside a “speculation sandbox”: We

prevent them from speculatively accessing any data that they would not otherwise be able to

touch. If a given program is already sequentially constant-time—perhaps having been compiled

by FaCT—then it will certainly be SCT after being sandboxed.

One popular technique for sandboxing untrusted code is Software-based Fault Isolation

(SFI) [144]. Web browsers and cloud providers, for example, rely on SFI-based sandboxes to

prevent buggy or malicious code from corrupting the memory of the host and other sandboxes [68,

101, 166]. Unfortunately, untrusted code can leverage speculative execution to break out of

the sandbox and access trusted memory regions, thus making existing SFI implementations

vulnerable to Spectre attacks [77, 86].

Researchers have proposed different approaches to mitigate Spectre attacks in SFI-style

sandboxes [78, 111, 137]. However, these are best-effort proposals: They rely on carefully

combining several intricate software protections and hardware extensions to prevent unsafe

84

speculative behaviors. It is unclear whether the combination of these countermeasures work as

intended and so, in practice, these approaches may fail to provide the expected security guarantees

against Spectre attacks.

In this chapter, we develop principled foundations to build reliable sandboxing mech-

anisms against Spectre attacks. Towards this goal, we have formulated security properties to

formally capture the essence of Spectre SFI attacks, and have already uncovered bugs in the

implementation of the Swivel SFI system [111]. We investigate Swivel’s security claims and show

which Spectre attacks it can soundly mitigate and for which it falls short.

3.1 Formal model

To study SFI in the context of speculative execution attacks, we focus on a simple

assembly-style language, ZFI . We present the syntax of ZFI , then formalize its architectural

and speculative semantics.

3.1.1 Syntax

The syntax of ZFI programs is given in Figure 3.1. In ZFI , expressions are

constructed by combining immediate values v and registers r using basic arithmetic operations

⊕. ZFI supports standard control-flow instructions (direct and indirect jumps, function

calls and returns), register assignments (r := e), and memory loads (r′ := ∗(r+ e)) and stores

(∗(r+ e) := e′). Memory instructions always access an offset e from a base register r. ZFI

also supports dedicated instructions flush (e.g., clearing predictor state) and endbranch (e.g.,

control-flow integrity checks), which we use to model countermeasures against Spectre attacks.

85

3.1.2 Architectural semantics

We first cover the architectural semantics of ZFI , which models the execution of our

basic assembly programs without any speculative behavior. The semantics is defined in terms of

architectural configurations Ψ. Each configuration Ψ is a quadruple consisting of a program P

mapping values to instructions, a program counter pc ∈ V, a register file Reg : R→ V mapping

registers to values, and a memory Mem : V→ V that maps memory addresses to values. We use

dot-notation to access a context’s elements, e.g., Ψ.Mem denotes the memory associated with

Ψ. We use bracket-notation to update an element within a context, e.g., Ψ{Reg := Reg′} denotes

the context obtained by updating the register file to Reg′. Furthermore, Ψ[s] denotes that s is the

instruction pointed by the current program counter and Ψ++ denotes the context obtained by

incrementing Ψ’s program counter by 1.

The architectural semantics is formalized by the→ relation in Figure 3.2, which describes

how architectural contexts are modified during the computation. In the rules, JeKΨ denotes the

value of expression e in the context of Ψ, and rStk and rHeap represent the unique stack pointer

and heap pointer registers.

3.1.3 Attackers and observations

To represent the power of attackers to observe and exfiltrate secret data, we have our

semantics emit leakage observations that represent side-channel information an attacker can

glean. The observations emitted by different instructions depends on the leakage model we wish

to consider. We consider the following three leakage models, each giving increasing power to an

attacker:

• dmem, where attackers can observe the state of the data cache,

• ct, where attackers can observe leaks considered by the constant-time paradigm [36], and

• arch, where attackers can observe all values retrieved from memory [65].

86

Basic types
(Values) v ∈ V

(Registers) r ∈ R
(Operators) ⊕ ∈

⊕
Syntax
(Expressions) e ∈ v | r | e⊕ e
(Instructions) s ∈ r := e (assignments)

| r := ∗(r+ e) (memory load)
| ∗(r+ e) := e (memory store)
| jmp ±v (unconditional jump)
| jmp ±v if e (conditional jump)
| jmp r (indirect jump)
| call ±v (direct call)
| call r (indirect call)
| ret (return)
| flush (BTB state flush)
| endbranch (CET “endbranch”)

Figure 3.1: Syntax of the ZFI language.

The dmem model is the weakest of the three models, and considers the data cache as the

only viable leakage channel. In this model, an attacker can observe cache state—specifically,

the data cache—using attacks such as PRIME+PROBE [146], but cannot determine the control

flow trace of a program. In the ct model, we consider an attacker that can observe the standard

constant-time leakages [36] via timing or other microarchitectural leaks [62, 105, 164]. The data

cache as well as the control flow trace are visible to the attacker in this model. Finally, in the arch

model, we assume the attacker observes all values loaded from memory. Since the initial memory

is the source of all values in the program, this is equivalent to an attacker seeing the full trace of

all values during execution [65].

We formalize each leakage model by a function LEAKS(Ψ) that takes as input a configu-

ration Ψ[insn] and outputs a sequence of observations for each jump, load, or store operation that

occurs during the semantic execution rule for insn; Table 3.1 informally illustrates our leakage

models. For example, LEAKS(Ψ[ret]) under the ct model produces two observations: vStk, for

loading the return address; and Mem[vStk], for jumping to that location (see RETURN in Figure 3.2).

87

ASSIGNMENT
v = JeKΨ

Ψ[r := e]→Ψ
++ {Reg[r] := v}

LOAD
vaddr = Jrbase + eoff KΨ v = Ψ.Mem[vaddr]

Ψ[r := ∗(rbase + eoff)]→Ψ
++ {Reg[r] := v}

STORE
vaddr = Jrbase + eoff KΨ v = JeKΨ

Ψ[∗(rbase + eoff) := e]→Ψ
++ {Mem[vaddr] := v}

JUMP

Ψ[jmp +i]→Ψ{pc := pc+ i}

JUMP-COND-TAKEN
JeKΨ

Ψ[jmp +i if e]→Ψ{pc := pc+ i}

JUMP-COND-NOT-TAKEN
¬JeKΨ

Ψ[jmp +i if e]→Ψ
++

JUMP-INDIRECT
vaddr = JrKΨ

Ψ[jmp r]→Ψ{pc := vaddr}

CALL
vStk = JrStk−1KΨ

Ψ[call r]→Ψ{ Mem[vStk] := pc+1 ,
Reg[rStk] := vStk ,
pc := pc+ i }

CALL-INDIRECT
vaddr = JrKΨ vStk = JrStk−1KΨ

Ψ[call r]→Ψ{ Mem[vStk] := pc+1 ,
Reg[rStk] := vStk ,
pc := vaddr }

RETURN
vStk = JrStkKΨ

Ψ[ret]→Ψ{ Reg[rStk] := vStk +1 ,
pc := Mem[vStk] }

Figure 3.2: Architectural semantics for ZFI .

Finally, we include a structure Obs in our configuration to collect the sequence of leakage

observations during execution. We update Obs with each architectural step using the relation

→trace induced by the following rule:

TRACE

Ψ→Ψ
′ Obs′ = Ψ.Obs++LEAKS(Ψ)

Ψ[insn]→trace Ψ
′{Obs′}

We refer to this extended relation as→ for brevity, as it merely adds bookkeeping to the semantics.

88

Table 3.1: Leakage models.

LEAKS(·) dmem ct arch

any jump pc := v − v v
any load Mem[vaddr] = v vaddr vaddr vaddr,v
any store Mem[vaddr] := v vaddr vaddr vaddr

SPEC-PREDICT
ISCONTROLFLOW(insn)

pc′,µstate′ = Oracle(insn,Ψ.pc,Ψ.Reg,Ψ.µstate) Ψ→Ψ
′ correct = (pc′ = Ψ

′.pc)

Ψ[insn] Ψ
′{ pc′, µstate′,

mispredicted := Ψ.mispredicted∨¬correct }

SPEC-STEP
¬ISCONTROLFLOW(insn) insn 6= flush Ψ→Ψ

′

Ψ[insn] Ψ
′

Figure 3.3: Speculative semantics for ZFI .

3.1.4 Speculative semantics

To reason about speculative leaks, we equip ZFI with a speculative semantics that

captures the effects of speculatively executed instructions.

We model microarchitectural predictors using a prediction oracle which abstracts away

from the microarchitectural prediction details. The oracle is defined in terms of a set of oracle

states µstate (which contains a designated initial state ⊥) and a function

Oracle(insn,pc,Reg,µstate)

that, given the current instruction, the current pc, the register file Reg, and the current oracle state,

produces the prediction pc and an updated oracle state µstate′ (which is then used in following

predictions).

The speculative semantics is formalized by the relation given in Figure 3.3. In the rules

defining configurations, Ψ is extended to store the µstate of the prediction oracle (which is

89

updated throughout the computation) as well as a simple flag mispredicted that is set as soon as

an oracle prediction is incorrect.

Our speculative semantics consists of three rules: The SPEC-PREDICT rule describes the

execution of control-flow statements, where the prediction oracle is invoked to obtain the new

program counter and predictor state; the correctness of the prediction is recorded in the flag

mispredicted. The SPEC-FLUSH rule (described in Section 3.2.4) models the execution of flush

instructions, which reset the predictor state to ⊥. Finally, the SPEC-STEP handles the remaining

statements by updating the configuration according to the architectural semantics→.

Unlike prior semantics [36, 64], our language does not have any from of speculative

rollback. Instead, we track the speculative state through the mispredicted flag, which persists in

the configuration for the duration of the program.

3.2 Formalizing SFI security

Building atop the semantics for ZFI , we define what it means for a program to

be speculatively secure. We examine the security properties that Swivel claims to provide,

formalizing them in terms of our formal security property and investigate whether Swivel can

soundly uphold these properties.

3.2.1 Non-interference

We define the security of ZFI programs as a form of non-interference property. A pro-

gram is non-interferent if an attacker cannot distinguish between two executions that differ only

in their secret values. Formally, we define an equivalence relation on configurations: Two config-

urations are equivalent if and only if they differ only in their secret values. Then, if two equivalent

configurations produce identical leakage observations, they are indistinguishable to an attacker.

90

Definition 3.2.1 (Speculative leakage security). A program P is speculatively secure (up

to n steps) with respect to an equivalence ≈ and a given leakage model m if:

Ψ1 ≈Ψ2 and Ψ1
n

Ψ
′
1

and Ψ2
n

Ψ
′
2

=⇒ Ψ
′
1.Obs = Ψ

′
2.Obs.

When dealing with speculative execution, we can define what is secret (and thus our

equivalence relation) in two different ways: If we already have an idea of which values in memory

should not be leaked to an attacker, we can define an explicit secrecy policy that states which

addresses are public and secret. Alternatively, we can define secrets to be any values that are

not already observable by an attacker during architectural execution; that is, that speculative

execution leaks no additional information to an attacker.

Definition 3.2.2 (Policy equivalence, ≈π). Ψ1 and Ψ2 are equivalent with respect to a

secrecy policy π iff:

∀vaddr ∈ π : Ψ1.Mem[vaddr] = Ψ2.Mem[vaddr]

and all other structures in Ψ1 and Ψ2 are syntactically equal. We write this as Ψ1 ≈π Ψ2.

Definition 3.2.3 (Architectural equivalence, ≈m). Ψ1 and Ψ2 are architecturally equiva-

lent (up to n steps) with respect to a leakage model m if:

Ψ1→n
Ψ
∗
1 and Ψ2→n

Ψ
∗
2

=⇒ Ψ
∗
1.Obs = Ψ

∗
2.Obs.

and all structures other than Mem in Ψ1 and Ψ2 are syntactically equal. We write this as

Ψ1 ≈n
m Ψ2.

91

3.2.2 SFI security properties

Swivel enforces two distinct notions of security. First, the host application does not trust

the individual sandboxes: Swivel must prevent breakout attacks, where a sandbox accesses data

outside of its defined memory regions. Second, Swivel’s sandboxes are mutually distrusting:

Swivel must prevent poisoning attacks, where an attacker is able to leak secrets from a victim

sandbox. We can formalize both of these properties in terms of speculative leakage security.

The first property we formalize captures sandbox breakout attacks. A sandbox breakout

occurs when a malicious sandbox is able to directly access the contents of memory outside of its

own memory segments, e.g., from the host application or from another sandbox. As an example,

the following program has a possible breakout attack:

jmp +5 if echeck ; if echeck
∗(rStk +4) := rHeap ; spill rHeap to the stack
rHeap := rA ; and replace its contents with rA

jmp +2 if ¬echeck ; else
rB := ∗(rHeap +24) ; load a value from the heap

Even though architecturally the final load is safe, as the two conditions are mutually exclusive,

speculatively we might (mis)predict and enter both conditional blocks anyway. An attacker can

exploit this if it can control rA, as under these conditions the value in rA is incorrectly used as the

heap base address.

Formally, to prevent breakout attacks, we want non-interference under the arch leakage

model. We use equivalence with respect to a policy π that only defines the sandbox’s own memory

segments to be public. By using the arch model, we consider even accessing a secret value to be

a successful attack; since our policy π only considers the sandbox memory itself to be public, our

property fully captures sandbox breakout attacks.

The second property we formalize captures what we term poisoning attacks. Even if a

sandbox protects its own secrets from leaking architecturally, it may be speculatively poisoned

92

and still leak these secrets on mispredicted execution paths. We present the following simple

example, where X and Y are arrays of length 64 in the sandbox’s heap and rA is an index into X .

jmp +3 if rA ≥ 64 ; check bound for heap array X
rB := ∗(rHeap +X + rA) ; out of bounds if mispredicted
rC := ∗(rHeap +Y + rB) ; leak rB via memory address

Under architectural execution, any value within X may be leaked due to the final memory access,

but values outside of X are not leaked due to the initial conditional check. However, during

speculative execution, we may incorrectly predict that the branch should fall through even when

rA is out-of-bounds for X . If an attacker is able to control the value of rA, it can then leak any

value in the victim sandbox’s heap.

Since we do not know which memory locations a sandbox developer considers secret

within their sandbox, we assume that sandboxed programs are architecturally constant-time, and

impose non-interference using architectural equivalence under the ct leakage model. This way we

can be certain that the sandbox, at the very least, leaks no more information than its architectural

execution would.

Swivel offers two different implementations to mitigate these attacks: The first approach,

Swivel-SFI, is intended for current x86 processors and relies heavily on rewriting control flow con-

structs. The second approach, Swivel-CET, relies on the Control-flow Enforcement Technology

(CET) extensions developed by Intel in their latest hardware [136].

We cover some useful properties common to both implementations, then examine whether

each implementation in turn can soundly prevent breakout and poisoning attacks.

3.2.3 Establishing security

Since Swivel only operates on valid WebAssembly programs, we can make certain

assumptions about the structure of our initial programs. For example, the stack region (represented

in ZFI as Mem[rStk + eoff]) is only used for local variables and register spills; all stack loads

93

and stores use constant (immediate) offsets from the stack pointer (i.e., eoff for rStk is always a

simple value).

Furthermore, Swivel modifies the WebAssembly compiler to ensure the security of

memory segment registers: The heap pointer (rHeap in ZFI) is never spilled to the stack, and

the stack pointer (rStk) is only modified when establishing function stack frames.

Linear blocks. A fundamental building block of Swivel’s mitigations is linear blocks. A

linear block is a sequence of instructions ending in any control flow instruction. In our execution

model, even during speculative execution, we can assume that all instructions within a linear

block are executed sequentially in order. Thus linear blocks allow us to establish local invariants:

E.g., if a heap offset is truncated to the size of the heap (e.g., via an arithmetic masking operation)

at the beginning of a linear block, we can assume it will still be safe to use for the rest of the block.

Chaining linear blocks. If we can show that a program, upon leaving any linear block,

will always land on the start of a new linear block, then we can inductively extend certain local

block invariants to cover the whole program—in particular, invariants about memory safety. For

example, if we show that within any linear block, all heap offsets are masked before they are

used, then we can inductively show that all heap offsets in the program are safe.

3.2.4 Swivel-SFI

Swivel-SFI provides security, somewhat counterintuitively, by replacing all non-trivial

control flow with indirect jumps. Conditional jumps are emulated by selecting the target block’s

address based on the relevant condition; calls and returns are replaced with instructions that save

return addresses to a separate stack, distinct from the existing stack memory region and with its

own dedicated stack pointer register.

By converting all control flow to indirect jumps, Swivel-SFI can protect speculative

control flow by flushing the indirect jump predictor (or BTB for Branch Target Buffer [35]) state

at the start of the program:

94

SPEC-FLUSH

Ψ[flush] Ψ
++ {µstate :=⊥}

Since the only relevant predictor in Swivel-SFI is the BTB, we treat flush as clearing the entire

µstate to the empty state ⊥. Flushing µstate will not prevent misprediction—it does, however,

limit an attacker attempting to mistrain victim predictors. Since BTB predictions have no state to

rely on beyond the program itself, any given jump instruction can only be trained to architecturally

valid targets for that instruction.

Breakout security. Swivel masks all memory operations within a linear block, we need

only show that Swivel-SFI executes programs as a sequence of linear blocks. Since we flush the

predictor state at the start of the program, we assume that the BTB can only be trained on valid

jump targets; thus Oracle(·) will only provide values for pc that were correct at least once. Since

all valid jump targets are linear blocks, we can be sure that predicted jump targets always land on

linear blocks.

Poisoning security. Unfortunately, even if we assume that the BTB always predicts valid

targets, we cannot prove security from poisoning attacks. As a trivial example, consider the

program demonstrating a poisoning attack in Section 3.2.2. Even after it is converted to use an

indirect jump to replace the conditional branch, it may still mispredict and execute the vulnerable

loads—flushing the BTB does not prevent mispredictions from happening. However, by flushing

the BTB, Swivel-SFI claims to prevent an attacker from actively mistraining a predictor—i.e.,

an attacker cannot force the victim sandbox to mispredict [111]. Our framework does not (yet)

distinguish active attackers in its security model, and so cannot verify this claim.

95

3.2.5 Swivel-CET

The Swivel-CET implementation makes use of two features from Intel’s CET hardware

extensions: The endbranch instruction and the shadow stack. We formalize the CET hardware

extensions as an augmented step relation cet built on top of our prior speculative relation :

SPEC-CET-STEP

¬ISCONTROLFLOW(insn) insn /∈ {call ·,ret} Ψ Ψ
′

Ψ[insn] cet Ψ
′

Breakout security. The endbranch instruction provides forward-edge control-flow in-

tegrity (CFI): Every control flow instruction (except ret) must land on an endbranch instruction,

even when executing speculatively. For most control flow instructions, the augmented semantics

simply ensures that the following instruction is indeed endbranch.

SPEC-CET-ENDBRANCH

ISCONTROLFLOW(insn) insn /∈ {call ·,ret} Ψ Ψ
′

Ψ
′[endbranch]

Ψ[insn] cet Ψ
′

For call and return instructions, CET provides a shadow stack: All calls and returns, in

addition to pushing and popping return addresses off the regular stack, also push and pop return

addresses on a separate protected memory region. On a ret, the processor will only jump to a

predicted return location if it agrees with the address popped from the shadow stack [136].

SPEC-CET-CALL

Ψ Ψ
′

Ψ
′[endbranch] vSStk = JrSStk−1KΨ

Ψ[call ·] cet Ψ
′{ Mem[vSStk] := pc+1 ,

Reg[rSStk] := vSStk }

96

SPEC-CET-RETURN

Ψ Ψ
′ vSStk = JrSStkKΨ Ψ

′.pc = Ψ.Mem[vSStk]

Ψ[ret] cet Ψ
′{Reg[rSStk] := vSStk +1}

The register rSStk is the protected pointer to the latest shadow stack entry.

As with Swivel-SFI, Swivel-CET masks all memory operations within a linear block. By

placing endbranches only at the tops of linear blocks and by relying on the CET shadow stack,

Swivel-CET ensures that programs always execute as a chain of linear blocks.

Poisoning security. To mitigate poisoning attacks, Swivel-CET constructs a register

interlock at every linear block transition. The register interlock detects whether speculative

control flow has been mispredicted, and if so, clears all the memory base registers (i.e., rHeap

and rStk). By doing so, all memory operations following a misprediction are directed to invalid

addresses near the address 0. Memory accesses to this faulting page will not leak the address as

they will not create a cache entry—we treat this behavior as a special exception to our established

leakage models.

The interlock is implemented as follows: We first give each linear block in the program

a unique label. At the end of each block we dynamically calculate the label of the target block

without branching. For example, at a conditional branch, we use the same condition expression to

select between the two target block labels. When we arrive at the new block, we compare the cal-

culated label to the label of executing block. If the labels do not match, we set rHeap and rStk to ⊥.

With register interlocks in place, we have the following lemma: If Ψ.mispredicted is true,

then all following memory operations will fail without leaking (per our earlier assumption about

near-zero addresses).

However, while this prevents leaking via memory operations, this does not stop leakages

via control flow. For example, if a sandbox secret is already in a register before we mispredict,

then a later linear block may branch on this register, leaking the secret value. Thus we can only

97

prove poisoning security for Swivel-CET with respect to the weaker dmem leakage model instead

of the stronger ct leakage model.

3.3 Conclusion

We present the first formal framework for SFI security in the face of Spectre attacks. Our

language, ZFI , is expressive enough to verify the security claims of the Swivel SFI system;

by formalizing Swivel’s security properties, we reveal which of its security claims it soundly

upholds, as well as the explicit assumptions about hardware execution that Swivel relies on.

Acknowledgements

This work was supported in part by gifts from Cisco and Intel; by the NSF under Grant

Numbers CNS-1514435, CCF-1918573, and CAREER CNS-2048262; by the Community of

Madrid under the project S2018/TCS-4339 BLOQUES; by the Spanish Ministry of Science,

Innovation, and University under the project RTI2018-102043-B-I00 SCUM and the Juan de la

Cierva-Formación grant FJC2018-036513-I; by the German Federal Ministry of Education and

Research (BMBF) through funding for the CISPA-Stanford Center for Cybersecurity; and by the

CONIX Research Center, one of six centers in JUMP, a Semiconductor Research Corporation

(SRC) program sponsored by DARPA.

Chapter 3, in part, is currently being prepared for submission for publication of the

material. Cauligi, Sunjay; Guarnieri, Marco; Mehta, Aastha; Moghimi, Daniel; Narayan, Shravan;

Stefan, Deian; Vahldiek-Oberwagner, Anjo; Vassena, Marco. The dissertation author was the

primary investigator and author of this paper.

98

Chapter 4

Practical Foundations for Spectre Defenses
Or, a view from the sky.

As we have seen throughout this dissertation, program semantics and formal security

policies can help us achieve provable security guarantees. These policies help us carefully

and explicitly spell out our assumptions about the attacker’s strength and ensure that our tools

are sound with respect to this class of attackers—e.g., that Spectre vulnerability-detection or

-mitigation tools find and mitigate the vulnerabilities they claim to mitigate and find.

Alas, not all foundations are equally practical. The systems presented here, as well as

other similar frameworks in the field, all explore different design choices—many of which have

important ramifications on defense tools and the software they produce or analyze. For instance,

one key choice is the leakage model of the semantics, which determines what the attacker is

allowed to observe. Another choice is the specific execution model, which simultaneously captures

the attacker’s strength and which Spectre variants the resulting analysis (or mitigation) tool can

reason about. These choices in turn determine which security policies can be verified or enforced

by these tools.

While formal design decisions fundamentally impact the soundness and precision of

Spectre analysis and mitigation tools, they have not been systematically explored by the security

99

community. For example, while there are many choices for a leakage model, the constant-

time [15] and sandbox isolation [65] models are the most pragmatic; leakage models that only

consider the data cache trade off security for no clear benefits (e.g., of scalability or precision). As

another example, the most practical execution models borrow (again) from work on constant-time:

They are detailed enough to capture practical attacks, but abstract across different hardware—and

are thus useful for both verification and mitigation of software. Other models, which capture

microarchitectural details like cache structures, make the analysis unnecessarily complicated:

They do not fundamentally capture additional attacks, and they give up on portability.

In this chapter, we systematize the community’s knowledge on Spectre foundations and

identify the different design choices made by existing work and their tradeoffs. This complements

existing, excellent surveys [34, 35, 162] on the low-level details of Spectre attacks and defenses

which do not consider foundations or, for example, high-level security policies. Throughout,

we discuss the limitations of existing formal frameworks, the defense tools built on top of these

foundations, and future directions for research.

Contributions. We systematize knowledge of software Spectre defenses and their asso-

ciated formalizations, by studying the choices available to developers of Spectre analysis and

mitigation tools. Specifically, we:

I Study existing foundations for Spectre analysis in the form of semantics, discuss the

different design choices which can be made in a semantics, and describe the tradeoffs of

each choice.

I Compare many proposed Spectre defenses—both with and without formal foundations—

using a unifying framework, which allows us to understand differences in the security

guarantees they offer.

I Identify open research problems, both for foundations and for Spectre software defenses

in general.

100

I Provide recommendations both for developers and for the research community that could

result in tools with stronger security guarantees.

Scope of systematization. In our systematization, we focus on software-only defenses

against Spectre attacks. We focus on Spectre because most other transient attacks (e.g., Melt-

down [93], LVI [150], MDS [71], or Foreshadow [149]) can efficiently be addressed in the

hardware, through microcode updates or new hardware designs. (This is also the reason existing

software-based tools against transient execution attacks focus solely on Spectre, as we discuss in

Section 4.3.4.) We focus on defenses because prior work, notably Canella et al. [35], already give

an excellent overview of the types of Spectre vulnerabilities and the powerful capabilities they give

attackers. And we focus on software-only defenses—although proposals for hardware defenses

are extremely valuable, hardware design cycles (and hardware upgrade cycles) are very long.

Moreover, software foundations are useful for understanding hardware and hardware-software

co-designs (e.g., they directly affect execution and leakage models). Having secure software

foundations allows us to defend against today’s attacks on today’s hardware, and tomorrow’s as

well.

4.1 Preliminaries

In this section, we first discuss Spectre attacks and how they violate security in two

particular application domains: high-assurance cryptography and isolation of untrusted code.

Then, we provide an introduction to formal semantics for security and its relevance to secure

speculation in these application domains.

4.1.1 Breaking cryptography with Spectre

High-assurance cryptography has long relied on constant-time programming [15] in order

to create software which is secure from timing side-channel attacks. Constant-time programming

101

if (i < arrALen) { // mispredicted
int x = arrA[i]; // x is oob value
int y = arrB[x]; // leaked via address!
// ...

Figure 4.1: Code snippet which an attacker can exploit using Spectre. If an attacker can control
i and cause the processor to transiently enter the branch, the attacker can load an arbitrary value
from memory into x, which is then leaked via the following memory access.

ensures that program execution does not depend on secrets. It does this via three rules of

thumb [15, 17]: control flow (e.g., conditional branches) should not depend on secrets, memory

access patterns (e.g., offsets into arrays) should not be influenced by secrets, and secrets should

not be used as operands to variable-latency instructions (e.g., floating-point instructions or integer

division on many processors). These rules ensure that secrets remain safe from an attacker

powerful enough to perform cache attacks, exfiltrate data via branch predictor state, or snoop data

via port contention [29].

In the face of Spectre, constant-time programming is not sufficient. The snippet in

Figure 4.1 is indeed constant-time if arrA contains only public data (and i and arrALen are also

public). Yet, a Spectre attack can still abuse this code to leak secrets from anywhere in memory.

Cache-based leaks are not the only way for an attacker to learn cryptographic secrets: In

the following example, an attacker can again (speculatively) leak out-of-bounds data, but this

time the leak is via control flow.

if (i < arrALen) {

int x = arrA[i];

switch(x) { // leak via branching!

case 'A': /* ... */

case 'B': /* ... */

// ...

102

This code uses x as part of a branch condition (in a switch statement). Just as before, the attacker

can speculatively read arbitrary memory into x. They can then leak the value of x in several

ways, including: (1) based on the different execution times of the various cases; (2) through

the data cache, based on differing (benign) memory accesses performed in the various cases;

(3) through the instruction cache or micro-op cache [124], based on which instructions were

(speculatively) accessed; or (4) through port contention [29], branch predictor state [76], or other

microarchitectural resources that differ among the branches.

4.1.2 Breaking software isolation with Spectre

Spectre attacks also break important guarantees in the domain of software isolation. In

this domain, a host application executes untrusted code and wants to ensure that the untrusted code

cannot access any of the host’s data. Common examples of software isolation include JavaScript or

WebAssembly runtimes, or even the Linux kernel, through eBPF [56]. Spectre attacks can break

the memory safety and isolation mechanisms commonly used in these settings [78, 98, 111, 137].

We demonstrate with a small example:

int guest_func() {

get_host_val(1);

get_host_val(1);

// ... repeat ...

char c = get_host_val(99999);

// ... leak c

}

char get_host_val(int idx) {

if (idx < 100) { // check if within bounds

return host_arr[idx];

103

} else {

return 0;

} }

Here, an attacker-supplied guest function guest_func calls the host function get_host_val to get

values from an array. Although get_host_val() implements a bounds check, the attacker can

still speculatively access out-of-bounds data by mistraining the branch predictor—breaking any

isolation guarantees. Once the attacker (speculatively) obtains an out-of-bounds value of their

choosing, they can leak the value (e.g., via data cache, etc.) and recover it after the speculative

rollback. In this setting, we need to ensure that, even speculatively, untrusted code cannot break

isolation.

4.1.3 Security properties and execution semantics

Formally, we will define safety from Spectre attacks as a security property of a formal

(operational) semantics. The semantics abstractly captures how a processor executes a program

as a series of state transitions. The states, which we will write as σ , include any information the

developer will need to track for their analysis, such as the current instruction or command and

the contents of memory and registers. The developer then defines an execution model—a set of

transition rules that specify how state changes during execution. For example, in a semantics for

a low-level assembly, a rule for a store instruction will update the resulting state’s memory with

a new value.

The rules in the execution model determine how and when speculative effects happen.

For example, in a sequential semantics, a conditional branch will evaluate its condition then step

to the appropriate branch. A semantics that models branch prediction will instead predict the

condition result and step to the predicted branch. We adapt notation from Guarnieri et al. [65],

writing J ·Kseq to represent the execution model for standard sequential execution. We notate other

104

execution models similarly; for example, J ·Kpht models prediction for Spectre-PHT attacks—i.e.,

conditional branch prediction. Other execution models are listed in Table 4.2.

Next, to precisely specify the attacker model, the developer must define which leakage

observations—information produced during an execution step—are visible to an attacker. For

example, we may decide that rules with memory accesses leak the addresses being accessed. The

set of leakage observations in a semantics’ rules is its leakage model. We again borrow notation

from Guarnieri et al. [65], which defines the leakage models J ·Kct and J ·Karch. The J ·Kct model

exposes leakage observations relevant to constant-time security: The sequence of control flow

(the execution trace) and the sequence of addresses accessed in memory (the memory trace).1

The J ·Karch model, on the other hand, exposes all values loaded from memory in addition to the

addresses themselves (or equivalently, it exposes the trace of register values) [65]. Under this

model, an attacker is allowed to observe all architectural computation; for a value to remain

unobserved, it cannot be accessed at all over the course of execution, adversarial or otherwise.

Since the leakage observations in J ·Karch are a strict superset of those in J ·Kct, we say that J ·Karch

is stronger than J ·Kct (i.e., it models a more powerful attacker). These properties make J ·Karch

most useful for software isolation, as any out-of-bounds accesses will immediately show up in an

J ·Karch leakage trace.

Surprisingly, the J ·Kct and J ·Karch models both generalize well to speculative execution—

for example, if we want to construct a semantics for Spectre-PHT attacks, we need only modify a

sequential constant-time semantics to account for branch misprediction. Indeed, the execution

model and leakage model of a semantics are orthogonal; we call the combination of the two the

contract provided by the semantics—a sequential constant-time semantics has the contract J ·Kseq
ct ,

while our hypothetical Spectre-PHT semantics would provide the contract J ·Kpht
ct . Formally, the

contract governs the attacker-visible information produced when executing a program: Given

1Like Guarnieri et al. [65], we omit variable-latency instructions from our formal model for simplicity.

105

a program p, a semantics with contract J ·Kα
` , and an initial state σ , we write JpKα

` (σ) for the

sequence (or trace) of leakage observations the semantics produces when executing p.

After determining a proper contract, the developer must finally define the policy that

their security property enforces: Precisely which data can and cannot be leaked to the attacker.

Formally, a policy π is defined in terms of an equivalence relation'π over states, where σ1 'π σ2

iff σ1 and σ2 agree on all values that are public (but may differ on sensitive values).

Armed with these definitions, we can state security as a non-interference property: A

program satisfies non-interference if, for any two π-equivalent initial states for a program p, an

attacker cannot distinguish the two resulting leakage traces when executing p. A developer has

several choices when crafting a suitable semantics and security policy; these choices greatly

influence how easy or difficult it is to detect or mitigate Spectre vulnerabilities. We cover these

choices in detail in Section 4.2: Sections 4.2.1 and 4.2.2 discuss choices in leakage models J ·K`
and security policies π . Sections 4.2.3 and 4.2.4 discuss tradeoffs for different execution models

J ·Kα and the transition rules in a semantics. In Section 4.2.5, we discuss how the input language

of the semantics affects analysis; and finally, in Section 4.2.6, we discuss which microarchitectural

features to include in formal models.

4.2 Choices in semantics

The foundation of a well-designed Spectre analysis tool is a carefully constructed formal

semantics. Developers face a wide variety of choices when designing their semantics—choices

which heavily depend on the attacker model (and thus the intended application area) as well as

specifics about the tool they want to develop. Cryptographic code requires different security

properties, and therefore different semantics and tools, than in-process isolation. Many of these

choices also look different for detection tools, focused only on finding Spectre vulnerabilities,

vs. mitigation tools, which transform programs to be secure. In this section, we describe the

106

important choices about semantics that developers face, and explain those choices’ consequences

for Spectre analysis tools and for their associated security guarantees. We also point out a number

of open problems to guide future work in this area.

What makes a practical semantics? A practical semantics should make an appropriate

tradeoff between detail and abstraction: It should be detailed enough to capture the microarchi-

tectural behaviors which we’re interested in, but it should also be abstract enough that it applies to

all (reasonable) hardware. For example, we do not want the security of our code to be dependent

on a specific cache replacement policy or branch predictor implementation.

In this respect, formalisms for constant-time have been successful in the non-speculative

world: The principles of constant-time programming—no secrets for branches, no secrets for

addresses—create secure code without introducing processor-specific abstractions. Speculative

semantics should follow this trend, producing portable tools which can defend against powerful

attackers on today’s (and tomorrow’s) microarchitectures.

4.2.1 Leakage models

Any semantics intended to model side-channel attacks needs to precisely define its attacker

model. An important part of the attacker model for a semantics is the leakage model—that is,

what information does the attacker get to observe? Leakage models intended to support sound

mitigation schemes should be strong—modeling a powerful attacker—and hardware-agnostic, so

that security guarantees are portable. That said, the best choice for a leakage model depends in

large part on the intended application domain.

Leakage models for cryptography. As we saw in Section 4.1.1, high-assurance cryp-

tography implementations have long relied on the constant-time programming model; thus,

semantics intended for cryptographic programs naturally choose the J ·Kct leakage model. Like

the constant-time programming model in the non-speculative world, the J ·Kct leakage model

is strong and hardware-agnostic, making it a solid foundation for security guarantees. The

107

Ta
bl

e
4.

1:
C

om
pa

ris
on

of
va

rio
us

se
m

an
tic

s
an

d
to

ol
s

(o
n

fo
llo

w
in

g
pa

ge
;l

eg
en

d
ap

pe
ar

s
he

re
).

Se
m

an
tic

s
ar

e
so

rt
ed

by
Le

ve
l,

th
en

al
ph

ab
et

ic
al

ly
;w

or
ks

w
ith

ou
ts

em
an

tic
s

ar
e

or
de

re
d

la
st

.
1 E

xt
en

si
on

to
ot

he
rv

ar
ia

nt
s

is
di

sc
us

se
d,

bu
tn

ot
pe

rf
or

m
ed

.2 Se
m

an
tic

s
ca

pt
ur

es
in

di
re

ct
ju

m
p

ef
fe

ct
s,

bu
tc

an
no

tm
is

pr
ed

ic
ti

nd
ir

ec
tj

um
p

ta
rg

et
s.

3 “W
ea

k”
va

ri
an

ts
of

se
m

an
tic

s
le

ak
lo

ad
ed

va
lu

es
du

ri
ng

no
n-

sp
ec

ul
at

iv
e

ex
ec

ut
io

n.
4 D

et
ec

ts
on

ly
“s

pe
cu

la
tiv

e
ty

pe
co

nf
us

io
n

vu
ln

er
ab

ili
tie

s”
,a

sp
ec

ifi
c

su
bs

et
of

Sp
ec

tr
e-

PH
T.

5 M
iti

ga
te

s
Sp

ec
tr

e-
PH

T
w

ith
ou

ti
ns

er
tin

g
fe

nc
es

.
6 D

ef
en

ds
by

ef
fe

ct
iv

el
y

pr
ev

en
tin

g
sp

ec
ul

at
io

n,
so

le
ak

ag
e

m
od

el
is

ir
re

le
va

nt
.

7 Sp
ec

ifi
ca

lly
,J
·K

m
em

fo
r

lo
ad

s,
bu

t
cl

os
er

to
J·

K a
rc

h
fo

r
st

or
es

.
8 O

pe
ra

te
s

on
W

eb
A

ss
em

bl
y,

w
hi

ch
do

es
no

th
av

e
fe

nc
es

.H
ow

ev
er

,c
an

in
se

rt
fe

nc
es

in
as

se
m

bl
y

ba
ck

en
d.

L
ev

el
–

H
ow

ab
st

ra
ct

is
th

e
se

m
an

tic
s?

(S
ec

tio
n

4.
2.

5)

L
ow

A
ss

em
bl

y-
st

yl
e,

w
ith

br
an

ch
in

st
ru

ct
io

ns
M

ed
iu

m
St

ru
ct

ur
ed

co
nt

ro
lfl

ow
su

ch
as

if
-t

he
n-

el
se

H
ig

h
In

th
e

st
yl

e
of

w
ea

k
m

em
or

y
m

od
el

s
—

T
he

w
or

k
ha

s
no

as
so

ci
at

ed
fo

rm
al

se
m

an
tic

s

L
ea

ka
ge

–
W

ha
tc

an
th

e
at

ta
ck

er
ob

se
rv

e?
(S

ec
tio

n
4.

2.
1)

P
–

Pa
th

/i
ns

tr
uc

tio
ns

ex
ec

ut
ed

L
–

V
al

s.
lo

ad
ed

fr
om

m
em

or
y

B
–

Sp
ec

ul
at

io
n

ro
llb

ac
ks

R
–

V
al

s.
in

re
gi

st
er

s
M

–
A

dd
rs

.o
fm

em
or

y
op

er
at

io
ns

S
–

B
ra

nc
h

pr
ed

ic
to

rs
ta

te
C

–
C

ac
he

lin
es

/c
ac

he
st

at
e

T
–

St
ep

co
un

te
r/

tim
er

V
ar

ia
nt

s
(S

ec
tio

n
4.

2.
3)

P
–

Sp
ec

tr
e-

PH
T

B
–

Sp
ec

tr
e-

B
T

B
R

–
Sp

ec
tr

e-
R

SB
S

–
Sp

ec
tr

e-
ST

L

Fe
nc

e
–

D
oe

s
it

re
as

on
ab

ou
ts

pe
cu

la
tio

n
fe

nc
es

?

X
Fu

lly
re

as
on

s
ab

ou
tf

en
ce

s
in

th
e

ta
rg

et
/in

pu
tc

od
e

v
T

he
m

iti
ga

tio
n

to
ol

in
se

rt
s

fe
nc

es
,b

ut
th

e
an

al
ys

is
do

es
no

tr
ea

so
n

ab
ou

tf
en

ce
s

in
th

e
ta

rg
et

/in
pu

tc
od

e
(a

nd
th

us
ca

nn
ot

ve
ri

fy
th

e
m

iti
ga

te
d

co
de

as
se

cu
re

)
×

D
oe

s
no

tr
ea

so
n

ab
ou

t,
or

in
se

rt
,f

en
ce

s

To
ol

–
D

oe
s

th
e

pa
pe

ri
nc

lu
de

a
to

ol
?

D
et

To
ol

de
te

ct
s

in
se

cu
re

pr
og

ra
m

s
or

ve
ri

fie
s

se
cu

re
pr

og
ra

m
s

M
it

To
ol

m
od

ifi
es

pr
og

ra
m

s
to

en
su

re
th

ey
ar

e
se

cu
re

V
al

To
ol

is
on

ly
us

ed
to

va
lid

at
e

th
e

se
m

an
tic

s,
do

es
no

t
au

to
m

at
ic

al
ly

pe
rf

or
m

an
y

se
cu

ri
ty

an
al

ys
is

*
To

ol
’s

co
nn

ec
tio

n
to

th
e

se
m

an
tic

s
is

in
co

m
pl

et
e/

un
cl

ea
r

(e
.g

.,
to

ol
do

es
no

ti
m

pl
em

en
tt

he
fu

ll
se

m
an

tic
s)

—
D

oe
s

no
ti

nc
lu

de
a

to
ol

H
ija

ck
–

C
an

it
m

od
el

or
m

iti
ga

te
sp

ec
ul

at
iv

e
hi

ja
ck

?

X
M

od
el

s/
m

iti
ga

te
s

sp
ec

ul
at

iv
e

hi
ja

ck
at

ta
ck

s
→

M
od

el
s/

m
iti

ga
te

s
fo

rw
ar

d-
ed

ge
(i

jm
p)

hi
ja

ck
on

ly
v

M
od

el
s/

m
iti

ga
te

s
hi

ja
ck

on
ly

vi
a

sp
ec

ul
at

iv
e

st
or

es
×

D
oe

s
no

tm
od

el
/m

iti
ga

te
sp

ec
ul

at
iv

e
hi

ja
ck

at
ta

ck
s

Im
pl

em
en

ta
tio

n
–

H
ow

do
es

th
e

to
ol

de
te

ct
or

m
iti

ga
te

vu
ln

er
ab

ili
tie

s?
(S

ec
tio

n
4.

2.
4)

Ta
in

t
Ta

in
tt

ra
ck

in
g

(a
bs

tr
ac

te
xe

cu
tio

n)
M

an
ua

l
M

an
ua

le
ff

or
t

Sa
fe

ty
M

em
or

y
sa

fe
ty

(a
bs

tr
ac

te
xe

cu
tio

n)
Fu

zz
Fu

zz
in

g
Se

lf
C

Se
lf

co
m

po
si

tio
n

(a
bs

tr
ac

te
xe

cu
tio

n)
Fl

ow
D

at
a

flo
w

an
al

ys
is

C
ac

he
C

ac
he

m
us

t-
hi

ta
na

ly
si

s
(a

bs
tr

ac
te

xe
cu

tio
n)

St
ru

ct
St

ru
ct

ur
ed

co
m

pi
la

tio
n

+
In

cl
ud

es
ad

di
tio

na
lw

or
k

or
co

ns
tr

ai
nt

s
to

re
m

ov
e

se
qu

en
tia

lt
ra

ce
(S

ec
tio

n
4.

2.
2)

N
on

de
t.

–
H

ow
is

no
nd

et
er

m
in

is
m

ha
nd

le
d?

(S
ec

tio
n

4.
2.

4)
O

O
O

–
M

od
el

s
ou

t-
of

-o
rd

er
ex

ec
ut

io
n?

(S
ec

tio
n

4.
2.

6)
W

in
.–

C
an

re
as

on
ab

ou
ts

pe
cu

la
tio

n
w

in
do

w
s?

(S
ec

tio
n

4.
2.

3)

108

Se
m

an
tic

s
or

to
ol

na
m

e
L

ev
el

L
ea

ka
ge

V
ar

ia
nt

s
N

on
de

t.
Fe

nc
eO

O
O

W
in

.
H

ij.
To

ol
Im

pl
.

C
au

lig
ie

ta
l.

[3
6]

(P
itc

hf
or

k)
L

ow
J·

K c
t

P,
B

,M
P,

B
,R

,S
D

ir
ec

tiv
es

X
X

X
X

D
et

*
Ta

in
t

C
he

an
g

et
al

.[
41

]
L

ow
J·

K a
rc

h
P,

M
,S

,R
P

O
ra

cl
e

X
×

X
×

D
et

/M
it

Se
lf

C
+

D
an

ie
le

ta
l.

[4
7]

(B
in

se
c/

H
au

nt
ed

)
L

ow
J·

K c
t

P,
M

P,
S

M
is

pr
ed

ic
t

×
×

X
×

D
et

Se
lf

C

G
ua

nc
ia

le
et

al
.[

63
](

In
Sp

ec
tr

e)
L

ow
J·

K c
t

P,
M

P,
B

,R
,S

—
X

X
×

X
—

—

G
ua

rn
ie

ri
et

al
.[

64
](

Sp
ec

te
ct

or
)

L
ow

J·
K c

t
P,

B
,M

P
O

ra
cl

e
X

×
X

→
D

et
Se

lf
C

+

G
ua

rn
ie

ri
et

al
.[

65
]

L
ow

(p
ar

am
et

ri
ze

d)
P1

O
ra

cl
e

X
X

X
×

D
et

Se
lf

C
+

M
ci

lr
oy

et
al

.[
10

0]
L

ow
J·

K c
ac

he
T

P2
O

ra
cl

e
v

×
X

→
M

it*
M

an
ua

l

B
ar

th
e

et
al

.[
16

](
Ja

sm
in

)
M

ed
iu

m
J·

K c
t

P,
B

,M
P,

S
D

ir
ec

tiv
es

X
×

×
×

D
et

Sa
fe

ty

Pa
tr

ig
na

ni
an

d
G

ua
rn

ie
ri

[1
16

]
M

ed
iu

m
J·

K c
t

P,
B

,M
,L

3
P1

M
is

pr
ed

ic
t

X
×

X
×

—
—

V
as

se
na

et
al

.[
15

1]
(B

la
de

)
M

ed
iu

m
J·

K c
t

B
,M

P
D

ir
ec

tiv
es

X
X

×
×

M
it

Fl
ow

C
ol

vi
n

an
d

W
in

te
r[

44
]

H
ig

h
J·

K m
em

M
P

W
ea

k-
m

em
X

X
×

×
V

al
V

al

D
is

se
lk

oe
n

et
al

.[
51

]
H

ig
h

J·
K m

em
M

P
W

ea
k-

m
em

X
X

×
×

—
—

A
IS

E
[1

61
]

—
J·

K c
ac

he
C

P
M

is
pr

ed
ic

t
×

×
X

×
D

et
C

ac
he

+

A
ST

C
V

W
[8

3]
—

J·
K a

rc
h

L
P4

—
×

×
×

×
D

et
Ta

in
t

E
L

Fb
ac

[7
8]

—
J·

K a
rc

h
L

P
—

×
5
×

×
X

M
it

St
ru

ct

K
L

E
E

Sp
ec

tr
e

[1
54

]
(w

/c
ac

he
)

—
J·

K c
ac

he
C

P
M

is
pr

ed
ic

t
X

×
X

×
D

et
C

ac
he

(w
/o

ca
ch

e)
—

J·
K m

em
M

P
M

is
pr

ed
ic

t
X

×
X

×
D

et
Ta

in
t

oo
7

[1
55

]
(v

1
pa

tte
rn

)
—

J·
K m

em
M

P
—

v
×

X
×

D
et

/M
it

Fl
ow

(“
w

ea
k”

an
d

v1
.1

pa
tte

rn
s)

—
J·

K a
rc

h
L

P
—

v
×

X
v

D
et

/M
it

Fl
ow

Sp
ec

fu
sc

at
or

[1
35

]
—

—
6

—
P,

B
,R

—
×

5
×

×
X

M
it

St
ru

ct

Sp
ec

Fu
zz

[1
13

]
—

J·
K a

rc
h

L
P

M
is

pr
ed

ic
t

—
—

—
X

D
et

Fu
zz

Sp
ec

Ta
in

t[
12

1]
—

J·
K m

em
7

M
P

M
is

pr
ed

ic
t

X
×

X
v

D
et

Ta
in

t

Sp
ec

uS
ym

[6
6]

—
J·

K c
ac

he
C

P
M

is
pr

ed
ic

t
×

×
X

×
D

et
Se

lf
C

+

Sw
iv

el
[1

11
]

(p
oi

so
ni

ng
pr

ot
ec

tio
n)

—
J·

K m
em

M
P,

B
,R

—
v

8
×

×
X

M
it

St
ru

ct

(b
re

ak
ou

tp
ro

te
ct

io
n)

—
J·

K a
rc

h
L

P,
B

,R
—

v
8
×

×
X

M
it

St
ru

ct

V
en

km
an

[1
37

]
—

J·
K a

rc
h

L
P,

B
,R

—
v

×
×

X
M

it
St

ru
ct

109

J ·Kct leakage model is a popular choice among existing formalizations: As we highlight in

Table 4.1, over half of the formal semantics for Spectre use the J ·Kct leakage model (or an

equivalent) [16, 36, 47, 63, 64, 116, 151]. Guarnieri et al. [65] leave the leakage model abstract,

allowing the semantics to be used with several different leakage models, including J ·Kct.

Leakage models for isolation. Sections 4.1.2 and 4.1.3 describe the J ·Karch leakage model,

which is a better fit for modeling speculative isolation, e.g., for a WebAssembly runtime executing

untrusted code [111] or a kernel defending against memory region probing [61]. Under J ·Karch,

all values in the program are observable—this is what lets it easily model properties for software

isolation: If we define a policy π where all values and memory regions outside the isolation

boundary are secret, then software isolation security (or speculative memory safety) is simply

non-interference with respect to J ·Karch and this π .

The J ·Karch leakage model appears less-frequently than J ·Kct in formal models: Only two

of the semantics in Table 4.1 ([41, 65]) use the J ·Karch leakage model. On the other hand, Spectre

sandbox isolation frameworks such as Swivel [111], Venkman [137], and ELFbac [78] implicitly

use the J ·Karch model, as do SpecFuzz [113], ASTCVW [83], SpecTaint [121], and certain modes

of oo7 [155]. The three isolation frameworks all explicitly prevent memory reads or writes

to any locations outside of isolation boundary—i.e., enforcing non-interference under J ·Karch.

The four detection tools, SpecFuzz, ASTCVW, SpecTaint, and oo7 (in “weak” or “v1.1” mode),

more generally look for gadgets that can speculatively access arbitrary or attacker-controlled

memory locations—i.e., breaking speculative memory safety. Unfortunately, these tools are not

formalized, so their leakage models are not explicit (nor clear).

Weaker leakage models. The remaining semantics and tools in Table 4.1 consider only

the memory trace of a program, but not its execution trace. The J ·Kmem leakage model, like

J ·Kct, allows an attacker to observe the sequence of memory accesses during the execution of

the program. The J ·Kcache leakage model instead tracks (an abstraction of) cache state. The

attacker in this model can only observe cached addresses at the granularity of cache lines. A few

110

tools have leakage models even weaker than these—for instance, oo7 only emits leakages that

it considers can be influenced by malicious input (see Section 4.2.3), and KLEESpectre (with

cache modeling enabled) only allows the attacker to observe the final state of the cache once the

program terminates.

All of these models, including J ·Kmem and J ·Kcache, are weaker than J ·Kct—they model

less powerful attackers who cannot observe control flow. As a result, they miss attacks which

leak via the instruction cache or which otherwise exploit timing differences in the execution

of the program. They even miss some attacks that exploit the data cache: If a sensitive value

influences a branch, an attacker could infer the sensitive value through the data cache based on

differing (benign) memory access patterns on the two sides of the branch, even if no sensitive

value influences a memory address. For instance, in the following code, even though cond does

not directly influence a memory address, an attacker could infer the value of cond based on

whether arr[a] is cached or not:

if (cond)

b = arr[a];

else

b = 0;

Because the J ·Kmem and J ·Kcache leakage models miss these attacks, they cannot provide the

strong guarantees necessary for secure cryptography or software isolation. Tools which want to

provide sound verification or mitigation should choose a strong leakage model appropriate for

their application domain, such as J ·Kct or J ·Karch.

That said, weaker leakage models are still useful in certain settings: Tools which are

interested in only a certain vulnerability class can use these weaker models to reduce the number

of false positives in their analysis or reduce the complexity of their mitigation. Even though these

models may miss some Spectre attacks—even some data cache leakage, as discussed above—

some detection tools still use the J ·Kcache or J ·Kmem models to find Spectre vulnerabilities in real

111

codebases. Using a leakage model which ignores control flow leakage may help the detection

tool scale to larger codebases.

Some tools [66,154] also provide the ability to reason about what attacks are possible with

particular cache configurations—e.g., with a particular associativity, cache size, or line size. This

is a valuable capability for a detection tool: It helps an attacker zero in on vulnerabilities which

are more easily exploitable on a particular target machine. However, security guarantees based

on this kind of analysis are not portable, as executing a program on a different machine with a

different cache model invalidates the security analysis. Tools that instead want to make guarantees

for all possible architectures, such as verifiers or compilers, will need more conservative leakage

models—models that assume the entire memory trace (and execution trace) is always leaked.

Open problems: Leakage models for weak-memory-style semantics. We have described

leakage models only in terms of observations of execution traces; this is a natural way to define

leakage for operational semantics, where execution is modeled simply as a set of program traces.

However, the weak-memory-style speculative semantics proposed by Colvin and Winter [44]

and Disselkoen et al. [51] have a more structured view of program execution, for instance, using

pomsets [60]. Both of these semantics define leakages in a way equivalent to the J ·Kmem leakage

model; it remains an open problem to explore how to define J ·Kct or J ·Karch leakage in this more

structured execution model—in particular, what it means for such a semantics to allow an attacker

to observe control-flow leakage.

Open problems: Leakage models for language-based isolation. As with most work on

Spectre foundations, we focus on cryptography and software-based isolation. Spectre, though, can

be used to break most other software abstractions as well—from module systems [67] and object

capabilities [96] to language-based isolation techniques like information flow control [129]. How

do we adopt these abstractions in the presence of speculative execution? What formal security

property should we prove? And what leakage model should be used?

112

4.2.2 Non-interference and policies

After the leakage model, we must determine what secrecy policy we consider for our

attacker model—i.e., which values can and cannot be leaked. Domains such as cryptography

and isolation already have defined policies for sequential security properties. For cryptography,

memory that contains secret data (e.g., encryption keys) is considered sensitive. Isolation simply

declares that all memory outside the program’s assigned sandbox region should not be leaked.

The straightforward extension of sequential non-interference to speculative execution is

to simply enforce the same leakage model (e.g., J ·Kct) with the same security policy—no secrets

should be leaked whether in normal or speculative execution. We refer to this straightforward

extension as a direct non-interference property, or direct NI.

Definition 4.2.1 (Direct non-interference). Program p satisfies direct non-interference with

respect to a given contract J ·K and policy π if, for all pairs of π-equivalent initial states σ and σ ′,

executing p with each initial state produces the same trace. That is, p ` NI(π,J ·K) is defined as

∀σ ,σ ′ : σ 'π σ
′⇒ JpK(σ) = JpK(σ ′).

We elide writing π for brevity—e.g., NI(J ·Kpht
ct) expresses constant-time security under Spectre-

PHT semantics.

Alternatively, we may instead want to assert that the speculative trace of a program has no

new sensitive leaks as compared to its sequential trace. This is a useful property for compilers

and mitigation tools that may not know the secrecy policy of an input program, but want to

ensure the resulting program does not leak any additional information. We term this a relative

non-interference property, or relative NI; a program that satisfies relative NI is no less secure than

its sequential execution.

Definition 4.2.2 (Relative non-interference). Program p satisfies relative non-interference from

contract J ·Kseq
a to J ·Kβ

b and with policy π if: For all pairs of π-equivalent initial states σ and σ ′,

113

if executing p under J ·Kseq
a produces equal traces, then executing p under J ·Kβ

b produces equal

traces. That is, p ` NI(π,J ·Kseq
a ⇒ J ·Kβ

b) is defined as

∀σ ,σ ′ : σ 'π σ
′∧ JpKseq

a (σ) = JpKseq
a (σ ′)

=⇒ JpKβ

b (σ) = JpKβ

b (σ
′).

For non-terminating programs, we can compare finite prefixes of JpKβ against their sequential

projections to JpKseq—since speculative execution must preserve sequential semantics, there will

always be a valid sequential projection. As before, we may elide π for brevity.

Interestingly, any relative non-interference property NI(π,J ·Kseq
a ⇒ J ·Kβ

b) for a program p

can be expressed equivalently as a direct property NI(π ′,J ·Kβ

b), where π ′= π \canLeak(p,J ·Kseq
a).

That is, we treat anything that could possibly leak under contract J ·Kseq
a as public. Relative NI is

thus a weaker property than direct NI, as it implicitly declassifies anything that might leak during

sequential execution.

However, relative NI is a stronger property than a conventional implication. For example,

the property NI(J ·Kseq
ct)⇒ NI(J ·Kpht

ct) makes no guarantees at all about a program that is not

sequentially constant-time. Conversely, the relative NI property NI(J ·Kseq
ct ⇒ J ·Kpht

ct) guarantees

that even if a program is not sequentially constant-time, the sensitive information an attacker

can learn during the program’s speculative execution is limited to what it already might leak

sequentially.

In Table 4.2, we classify speculative security properties of different works by which

direct or relative NI properties they verify or enforce. We find that tools focused on verifying

cryptography or memory isolation verify direct NI properties, whereas frameworks concerned

with compilation or inserting Spectre mitigations for general programs tend towards relative NI.

Verifying programs. Direct NI unconditionally guarantees that sensitive data is not leaked,

whether executing sequentially or speculatively. This makes it ideal for domains that already

114

Ta
bl

e
4.

2:
Sp

ec
ul

at
iv

e
se

cu
ri

ty
pr

op
er

tie
s

in
pr

io
rw

or
ks

an
d

th
ei

re
qu

iv
al

en
tn

on
-i

nt
er

fe
re

nc
e

st
at

em
en

ts
(o

n
fo

llo
w

in
g

pa
ge

;l
eg

en
d

ap
pe

ar
s

he
re

).
W

e
w

ri
te
≈

N
I(
··
·)

fo
ru

ns
ou

nd
ap

pr
ox

i-
m

at
io

ns
of

no
n-

in
te

rf
er

en
ce

pr
op

er
tie

s.
1 Tr

ac
ks

ta
in

to
fa

tta
ck

er
in

flu
en

ce
ra

th
er

th
an

va
lu

e
se

ns
iti

vi
ty

.
2 Th

es
e

w
or

ks
al

ld
er

iv
e

th
ei

rp
ro

pe
rty

fr
om

th
e

de
fin

iti
on

gi
ve

n
in

[3
6]

an
d

sh
ar

e
th

e
sa

m
e

pr
op

er
ty

na
m

e
de

sp
ite

di
ff

er
en

ce
s

in
ex

ec
ut

io
n

m
od

e.
3 T

he
an

al
ys

is
to

ol
of

[3
6]

,P
itc

hf
or

k,
on

ly
ve

ri
fie

s
th

e
w

ea
ke

r
pr

op
er

ty
N

I(
J·

Kph
t-

st
l

ct
).

4 T
he

de
fin

iti
on

s
of

SN
I

an
d

w
SN

I
ar

e
pa

ra
m

et
er

iz
ed

ov
er

th
e

ta
rg

et
le

ak
ag

e
m

od
el

.5 T
he

de
fin

iti
on

of
w

SN
Ii

n
[6

5]
do

es
no

tr
eq

ui
re

th
at

th
e

in
iti

al
st

at
es

be
π

-e
qu

iv
al

en
t.

Pr
op

er
ty

or
to

ol
na

m
e

N
on

-i
nt

er
fe

re
nc

e
pr

op
.

Pr
ec

is
io

n

M
ci

lr
oy

et
al

.[
10

0]
≈

N
I(

J·
Kph

t
ct

)
hy

pe
r

oo
7

[1
55

]Φ
sp

ec
tr

e
≈

N
I(

J·
Kph

t
m

em
)

ta
in

t1
Φ

w
ea

k
sp

ec
tr

e,
Φ

v1
.1

sp
ec

tr
e

≈
N

I(
J·

Kph
t

ar
ch
)

C
ac

he
an

al
ys

is
[6

6,
16

1]
N

I(
J·

Kph
t

ca
ch

e)
hy

pe
r

[1
54

]
ta

in
t

W
ea

k
m

em
or

y
m

od
el

in
g

[4
4,

51
]

N
I(

J·
Kph

t
m

em
)

hy
pe

r

[1
51

]
N

I(
J·

Kph
t

ct
)

ta
in

t

Sp
ec

ul
at

iv
e

co
ns

ta
nt

-t
im

e
(S

C
T

)2
[1

6,
47

]
N

I(
J·

Kph
t-

st
l

ct
)

hy
pe

r

[3
6]

N
I(

J·
Kpb

rs
ct

)3
hy

pe
r,

ta
in

t

Sp
ec

ul
at

iv
e

no
n-

in
te

rf
er

en
ce

(S
N

I)
[6

4,
65

]
N

I(
J·

Kse
q

ct
⇒

J·
Kph

t
—

)4
hy

pe
r

R
ob

us
ts

pe
cu

la
tiv

e
no

n-
in

te
rf

er
en

ce
(R

SN
I)

[1
16

]
N

I(
J·

Kse
q

ct
⇒

J·
Kph

t
ct

)
hy

pe
r

R
ob

us
ts

pe
cu

la
tiv

e
sa

fe
ty

(R
SS

)[
11

6]
ta

in
t

C
on

di
tio

na
ln

on
in

te
rf

er
en

ce
[6

3]
N

I(
J·

Kse
q

ct
⇒

J·
Kpb

rs
ct

)
hy

pe
r

W
ea

k
sp

ec
ul

at
iv

e
no

n-
in

te
rf

er
en

ce
(w

SN
I)

[6
5]

N
I(

J·
Kse

q
ar

ch
⇒

J·
Kph

t
—

)4,
5

hy
pe

r

W
ea

k
ro

bu
st

sp
ec

ul
at

iv
e

no
n-

in
te

rf
er

en
ce

(R
SN

I−
)[

11
6]

N
I(

J·
Kse

q
ar

ch
⇒

J·
Kph

t
ct

)

hy
pe

r
Tr

ac
e

pr
op

er
ty

-d
ep

en
de

nt
ob

se
rv

at
io

na
ld

et
er

m
in

is
m

(T
PO

D
)[

41
]

hy
pe

r
W

ea
k

ro
bu

st
sp

ec
ul

at
iv

e
sa

fe
ty

(R
SS
−

)[
11

6]
ta

in
t

E
xe

cu
tio

n
m

od
el

s
(S

ec
tio

n
4.

2.
3)

Pr
ec

is
io

n
of

th
e

de
fin

ed
se

cu
ri

ty
pr

op
er

ty

J·
Kse

q
Se

qu
en

tia
le

xe
cu

tio
n

hy
pe

r
N

on
-i

nt
er

fe
re

nc
e

hy
pe

rp
ro

pe
rt

y,
re

qu
ir

es
tw

o
π

-e
qu

iv
al

en
te

xe
cu

tio
ns

J·
Kph

t
C

ap
tu

re
s

Sp
ec

tr
e-

PH
T

ta
in

t
So

un
d

ap
pr

ox
im

at
io

n
us

in
g

ta
in

tt
ra

ck
in

g,
re

qu
ir

es
on

ly
on

e
ex

ec
ut

io
n

J·
Kph

t-
st

l
C

ap
tu

re
s

Sp
ec

tr
e-

PH
T

/-
ST

L
J·

Kpb
rs

C
ap

tu
re

s
Sp

ec
tr

e-
PH

T
/-

B
T

B
/-

R
SB

/-
ST

L

115

have clear policies about what data is sensitive, such as cryptography (e.g., secret keys) or

software isolation (e.g., memory outside the sandbox). Indeed, tools that target cryptographic

applications ([16,36,47,151]) all verify that programs satisfy the direct speculative constant-time

(SCT) property.

Additionally, we find that current tools that verify relative NI [41, 64] are indeed capable

of verifying direct NI, but intentionally add constraints to their respective checkers to “remove”

sequential leaks from their speculative traces. Although this is just as precise, it is an open

problem whether tools can verify relative NI for programs without relying on a direct NI analysis.

Verifying compilers. On the other hand, compilers and mitigation tools are better suited to

verify or enforce relative NI properties: The compiler guarantees that its output program contains

no new leakages as compared to its input program. This way, developers can reason about their

programs assuming a sequential model, and the compiler will mitigate any speculative effects.

For instance, if a program p is already sequentially constant-time NI(J ·Kseq
ct), then a compiler

that enforces NI(J ·Kseq
ct ⇒ J ·Kpht

ct) will compile p to a program that is speculatively constant-time

NI(J ·Kpht
ct). Similarly, if a program is properly sandboxed under sequential execution NI(J ·Kseq

arch),

and is compiled with a compiler that introduces no new arch leakage, the resulting program

will remain sandboxed even speculatively. Indeed, these propositions are proven by Guarnieri et

al. [65].

Similarly, Patrignani and Guarnieri [116] explore whether compilers preserve robust

non-interference properties. A security property is robust if a program remains secure even

when linked against adversarial code (i.e., if the program is called with arbitrary or adversarial

inputs)—indeed, most other security properties listed in Table 4.2 are implicitly robust. A

compiler preserves a non-interference property if, after compilation from a source to a target

language, the property still holds. In Patrignani and Guarnieri’s framework, the source language

describes sequential execution while the target language has speculative semantics, making their

notion of compiler preservation very similar to enforcing relative NI.

116

4.2.3 Execution models

To reason about Spectre attacks, a semantics must be able to reason about the leakage

of sensitive data in a speculative execution model. A speculative execution model is what

differentiates a speculative semantics from standard sequential analysis, and determines what

speculation the abstract processor can perform. For developers, choosing a proper execution

model is a tradeoff: On the one hand, the choice of behaviors their model allows—i.e., which

microarchitectural predictors they include—determines which Spectre variants their tools can

capture. On the other hand, considering additional kinds of mispredictions inevitably makes their

analysis more complex.

Spectre variants and predictors. Most semantics and tools in Table 4.1 only consider

the conditional branch predictor, and thus only Spectre-PHT attacks. (Mis)predictions from

the conditional branch predictor are constrained—there are only two possible choices for every

decision—so the analysis remains fairly tractable. Jasmin [16], Binsec/Haunted [47], and Pitch-

fork [36] all additionally model store-to-load (STL) predictions, where a processor forwards data

to a memory load from a prior store to the same address. If there are multiple pending stores to

that address, the processor may choose the wrong store to forward the data—this is the root of a

Spectre-STL attack. STL predictions are less constrained than predictions from the conditional

branch predictor: In the absence of additional constraints, they allow for a load to draw data from

any prior store to the same address.

Other control-flow mechanisms are significantly more complex: Return instructions and

indirect jumps can be speculatively hijacked to send execution to arbitrary (attacker-controlled)

points in the program.2 An attacker can trivially hijack a victim program if they can control

(mis)prediction of the RSB (for returns) [87] or BTB (for indirect jumps) [86]. Even without this

ability, an attacker can hijack control-flow if they speculatively overwrite the target address of

a return or jump (e.g., by exploiting a prior PHT misprediction) [82, 99, 142]. Formally, these

2Including, on x86-family processors, into the middle of an instruction [28].

117

attacks still fit within our non-interference framework—if a program can be arbitrarily hijacked,

then it will be unable to satisfy any non-interference property. However, to formally verify that

this is the case, our semantics needs to be able to model these behaviors in some fashion.

Although capturing all speculative behaviors in a semantics is possible, the resulting

analysis is neither practical nor useful; in practice, developers need to make tradeoffs. For example,

the semantics proposed by Cauligi et al. [36] can simulate all of the aforementioned speculative

attacks, but their analysis tool Pitchfork only detects PHT- and STL-based vulnerabilities. On

the other hand, tools like oo7 (with the “v1.1” pattern) [155] and SpecTaint [121] conservatively

assume that writes to transient addresses can overwrite anything, and thus immediately flag this

behavior as vulnerable.

The InSpectre semantics [63] proceeds in the opposite direction—it allows the processor

to (mis)predict arbitrary values, even the values of constants. InSpectre also allows more out-

of-order behavior than most other semantics (see Section 4.2.6)—in particular, it allows the

processor to commit writes to memory out-of-order. As a result, InSpectre is very expressive: It

is capable of describing a wide variety of Spectre variants both known and unrealized. But, as a

result, InSpectre cannot feasibly be used to verify programs; instead, the authors pose InSpectre

as a framework for reasoning about and analyzing microarchitectural features themselves.

Speculation windows. As shown in Table 4.1, several semantics and tools limit speculative

execution by way of a speculation window. This models how hardware has finite resources for

speculation, and can only speculate through a certain number of instructions or branches at a

time.

Explicitly modeling a speculation window serves two purposes for detection tools. One,

it reduces false positives: a mispredicted branch will not lead to a speculative leak thousands

of instructions later. And two, it bounds the complexity of the semantics and thus the analysis.

Since the abstract processor can only speculate up to a certain depth, an analysis tool need only

consider the latest window of instructions under speculative execution. Some semantics refine

118

this idea even further: Binsec/Haunted [47], for example, uses different speculation windows for

load-store forwarding than it uses for branch speculation.

Speculation windows are also valuable for mitigation tools: although tools like Blade [151]

and Jasmin [16] are able to prove security without reasoning about speculation windows, modeling

a speculation window would reduce the number of fences (or other mitigations) these tools need

to insert, improving the performance of the compiled code.

Eliminating variants. Instead of modeling all speculative behaviors, compilers and

mitigation tools can use clever tricks to sidestep particularly problematic Spectre variants. For

example, even though Jasmin [16] does not model the RSB, Jasmin programs do not suffer

from Spectre-RSB attacks: The Jasmin compiler inlines all functions, so there are no returns

to mispredict. Mitigation tools can also disable certain classes of speculation with hardware

flags [70]. After eliminating complex or otherwise troublesome speculative behavior, a tool only

needs to consider those that remain.

Cross-address-space attacks. Previous systematizations of Spectre attacks [35] differen-

tiate between same-address-space and cross-address-space attacks. Same-address-space attacks

are generally simpler to perform, as they rely on repeatedly executing the victim code itself in

order to train a microarchitectural predictor. Cross-address-space attacks are more powerful, as

they allow an attacker to perform the training step on a branch within the attacker’s own code.

Most of the semantics and tools in Table 4.1 make no distinction between same-address-

space and cross-address-space attacks, as they ignore the mechanics of training and consider

all predictions to be potentially malicious. A notable exception is oo7 [155], which explicitly

tracks attacker influence. Specifically, oo7 only considers mispredictions for conditional branches

which can be influenced by attacker input. Thus, oo7 effectively models only same-address-space

attacks. Unfortunately, as a result, oo7 misses Spectre vulnerabilities in real code, as demonstrated

by Wang et al. [154].

119

4.2.4 Nondeterminism

Speculative execution is inherently nondeterministic: Any given branch in a program

may proceed either correctly or incorrectly, regardless of the actual condition value. More

generally, speculative hijack attacks can send execution to entirely indeterminate locations. The

semantics in Table 4.1 all allow these nondeterministic choices to be actively adversarial—for

instance, given by attacker-specified directives [36,151], or, equivalently, by consulting an abstract

oracle [41, 64, 65, 100]. These semantics all (conservatively) assume that the attacker has full

control of microarchitectural prediction and scheduling; we explore the different techniques they

use to verify or enforce security in the face of adversarial nondeterminism.

Exploring nondeterminism. Several Spectre analysis tools are built on some form of

abstract execution: They simulate speculative execution of the program by tracking ranges

or properties of different values. By checking these properties throughout the program, they

determine if sensitive data can be leaked. Standard tools for (non-speculative) abstract execution

are designed only to consider concrete execution paths; they must be adapted to handle the many

possible nondeterministic execution paths from speculation. SpecuSym [66], KLEESpectre [154],

and AISE [161] handle this nondeterminism by following an always-mispredict strategy. When

they encounter a conditional branch, they first explore the execution path which mispredicts

this branch, up to a given speculation depth. Then, when they exhaust this path, they return

to the correct branch. This technique of course only handles the conditional branch predictor;

i.e., Spectre-PHT attacks. Pitchfork [36] and Binsec/Haunted [47] adapt the always-mispredict

strategy to additionally account for out-of-order execution and Spectre-STL. Although it may

not be immediately clear that these always-mispredict strategies are sufficient to prove security,

especially when the attacker can make any number of antagonistic prediction choices, these

strategies do indeed form a sound analysis [36, 47, 64].

Unfortunately, simulating execution only works for semantics where the nondeterminism

is relatively constrained: Conditional branches are a simple boolean choice, and store-to-load

120

predictions are limited to prior memory operations within the speculation window. If we pursue

other Spectre variants, we will quickly become overwhelmed—again, an unconstrained hijack

gadget can be exploited to land almost anywhere in a program. The always-mispredict strategy

here is nonsensical at best; abstract execution is thus necessarily limited in what it can soundly

explore.

Abstracting out nondeterminism. Mitigation tools have more flexibility dealing with

nondeterminism: Tools like Blade [151] and oo7 [155] apply dataflow analysis to determine

which values may be leaked along any path, instead of reasoning about each path individually.

Then, these tools insert speculation barriers to preemptively block potential leaks of sensitive data.

This style of analysis comes at the cost of some precision: Blade, for example, conservatively

treats all memory accesses as if they may speculatively load sensitive values, as its analysis cannot

reason about the contents of memory. Similarly, oo7’s “v1.1” pattern detection conservatively

flags all (attacker-controlled) transient stores, as they may lead to speculative hijack. However,

Blade and oo7—and mitigation tools in general—can afford to be less precise than verification

or detection tools; these, conversely, must maintain higher precision to avoid floods of false

positives.

Restricting nondeterminism. Compilers such as Swivel [111], Venkman [137], and

ELFbac [78] restructure programs entirely, imposing their own restricted set of speculative

behavior at the software layer. ELFbac allocates sensitive data in separate memory regions and

uses page permission bits to disallow untrusted code from accessing these regions of memory—

regardless of how a program may misspeculate, it will not be able to read (and thus leak) sensitive

data. Swivel and Venkman compile code into carefully aligned blocks so that control flow always

land at the tops of protected code blocks, even speculatively; Swivel accomplishes this by clearing

the BTB state after untrusted execution, while Venkman proposes to recompile all programs on

the system to mask addresses before jumping. Both systems also enforce speculative control-flow

integrity checks to prevent speculative hijacking, whether by relying on hardware features [74] or

121

by implementing custom CFI checks with branchless assembly instructions. Developers that use

these compilers can then reason about their programs much more simply, as the set of speculative

behaviors is restricted enough to make the analysis tractable. Of the techniques discussed in this

section, this line of work seems the most promising: It produces mitigation tools with strong

security guarantees, without relying on an abundance of speculation barriers (as often results

from dataflow analysis) or resorting to heavyweight simulation (e.g., symbolic execution).

Open problems: Rigorous performance comparison. To the best of our knowledge, no

work has rigorously compared the performance of all of the tools in Table 4.1. Perhaps the most

complete comparison is by Daniel et al. [47], who compare the detection tools KLEESpectre,

Pitchfork, and Binsec/Haunted in terms of the analysis time required to detect known violations

in a few chosen targets. A general and objective performance comparison is difficult, if not

impossible: The tools in Table 4.1 operate on different types of programs (general-purpose,

cryptographic, sandboxing) and different languages (x86, LLVM, WebAssembly). They also

provide different security guarantees, as we discuss above. An intermediate step towards an

expanded performance comparison, which would be a valuable contribution on its own, would be

to develop a larger corpus of known attacks on realistic (medium-to-large-size) programs. This

would help us evaluate both the security and performance of existing or newly-proposed tools.

4.2.5 Higher-level abstractions

Spectre attacks—and speculative execution—fundamentally break our intuitive assump-

tions about how programs should execute. Higher-level guarantees about programs no longer

apply: Type systems or module systems are meaningless when even basic control flow can go

awry. In order to rebuild higher-level security guarantees, we first need to repair our model of

how programs execute, starting from low-level semantics. Once these foundations are firmly in

place, only then can we rebuild higher-level abstractions.

122

Semantics for assembly or IRs. The majority of formal semantics in Table 4.1 operate on

abstract assembly-like languages, with commands that map to simple architectural instructions.

Semantics at this level implement control flow directly in terms of jumps to program points—

usually indices into memory or an array of program instructions—and treat memory as largely

unstructured. Since these low-level semantics closely correspond to the behavior of real hardware,

they capture speculative behaviors in a straightforward manner, and provide a foundational model

for higher-level reasoning. Similarly, many concrete analysis tools for constant-time or Spectre

operate directly on binaries or compiler intermediate representations (IRs) [36, 47, 48, 64, 154].

These tools operate at this lowest level so that their analysis will be valid for the program

unaltered—compiler optimizations for higher-level languages can end up transforming programs

in insecure ways [17, 47, 48]. As a result however, these tools necessarily lose access to higher-

level information such as control flow structure or how variables are mapped in memory.

Semantics for structured languages. The semantics proposed by Jasmin [16], Patrignani

and Guarnieri [116], and Blade [151] build on top of these lower-level ideas to describe what

we term “medium-level” languages—those with structured control flow and memory, e.g., ex-

plicit loops and arrays. For these medium-level semantics, it is less straightforward to express

speculative behavior: For instance, instead of modeling speculation directly, Vassena et al. [151]

first translate programs in their source language to lower-level commands, then apply speculative

execution at that lower level.

In exchange, the structure in a medium-level semantics lends itself well to program

analysis. For example, Vassena et al. are able to use a simple type system to prove security

properties about a program. Barthe et al. [16] also take advantage of structured semantics:

They prove that if a sequentially constant-time program is speculatively (memory) safe—i.e., all

memory operations are in-bounds array accesses—then the program is also speculatively constant-

time. Since their source semantics can only access memory through array operations, they can

statically verify whether a program is speculatively safe (and thus speculatively secure). An

123

interesting question for future work is whether their concept of speculative (memory) safety can

combine with other sequential security properties to give corresponding speculative guarantees,

such as for sandboxing, information flow, or rich type systems.

Weak-memory-style semantics. Colvin and Winter [44] and Disselkoen et al. [51] both

present a further abstracted semantics in the style of weak memory models. These semantics rep-

resent a fundamentally different approach: Rather than creating operational models of speculative

hardware, these authors lift the concept of speculative execution directly to a higher level and

reason about it there.

These works provide interesting insights about the relation between Spectre attacks and the

weak memory models which characterize modern hardware. They also open the door to adapting

techniques from that community to defend against Spectre attacks in software. However, as these

models are abstracted away from microarchitectural details, they are only suited for analyzing

particular Spectre variants—both [44, 51] focus only on Spectre-PHT—and are difficult to adapt

to other attacks. In addition, it remains an open problem to translate a semantics of this style into

a concrete analysis tool: Neither of these works present a tool which can automatically perform a

security analysis of a target program.3 That said, this high-level approach to speculative semantics

is certainly underexplored compared to the larger body of work on operational semantics, and is

worthy of further investigation.

Compiler mitigations. With adequate foundations in place, one avenue to regaining

higher-level abstractions is to modify compilers of higher-level languages to produce speculatively

secure low-level programs. Many compilers already include options to conservatively insert

speculation barriers or hardening into programs, which (when done properly) provides strong

security guarantees. Although some such hardening passes have been verified [116], they are

overly conservative and incur a significant performance cost. Other compiler mitigations been

3Colvin and Winter do present a tool, but it is only used to mechanically explore manually translated programs.

124

shown unsound [113]—or worse, even introduce new Spectre vulnerabilities [47]—further

reinforcing that these techniques must be grounded in a formal semantics.

Open problems: Formalization of new compilation techniques. Swivel [111],

Venkman [137], and ELFbac [78] show how the structure of code itself can provide secu-

rity guarantees at a reduced performance cost. For instance, Venkman [137] and Swivel [111]

demonstrate that organizing instructions into bundles or linear blocks respectively can mitigate

speculative hijacks, making these transient attacks tractable to analyze and prevent. However,

none of these compiler-based approaches are yet grounded in a formal semantics. Formalizing

these systems would increase our confidence in the strong guarantees they claim to provide.

Open problems: New languages. Another promising approach is to design new languages

which are inherently safe from Spectre attacks. Prior work has produced secure languages like

FaCT [40], which is (sequentially) constant-time by construction. An extension of FaCT, or a new

language built on its ideas, could prevent Spectre attacks as well. Vassena et al. [151] have already

taken a first step in this direction: They construct a simple while-language which is guaranteed

safe from Spectre-PHT attacks when compiled with their fence insertion algorithm. It would

be valuable to extend this further, both to more realistic (higher-level) languages, and to more

Spectre variants. The key question is whether dedicated language support can provide a path to

secure code that outperforms the de-facto approach: Compiling standard C code with Spectre

mitigations.

4.2.6 Expressivity and microarchitectural features

One theme of this chapter is that a good (practical) semantics needs to have an appropriate

amount of expressivity: On one hand, we want a semantics which is expressive—able to model

a wide range of possible behaviors (e.g., Spectre variants). This allows us to model powerful

attackers. On the other hand, a semantics which is too expressive—allows too many possible

behaviors—makes many analyses intractable. One fundamental purpose of semantics is to provide

125

a reasonable abstraction (simplification) of hardware to ease analysis; a semantics which is too

expressive simply punts this problem to the analysis writer. Thus, choosing how much expressivity

to include in a semantics represents an interesting tradeoff.

By far the most important choice for the expressivity of a semantics is which misprediction

behaviors to allow—i.e., which Spectre variants to reason about. We discussed these tradeoffs in

Section 4.2.3. But beyond speculative execution itself, there are many other microarchitectural

features which could be relevant for a security analysis, and which have been—or could be—

modeled in a speculative semantics. These features also affect the expressivity of the semantics,

which means that choosing whether to include them results in similar tradeoffs.

Out-of-order execution. Many speculative semantics simulate a processor feature called

out-of-order execution: they allow instructions to be executed in any order, as long as those

instructions’ dependencies (operands) are ready. Out-of-order execution is mostly orthogonal

to speculative execution; in fact, out-of-order execution is not required to model Spectre-PHT,

-BTB, or -RSB—speculative execution alone is sufficient. However, out-of-order execution is

included in most modern processors, and for that reason,4 many speculative semantics also model

out-of-order execution. Modeling out-of-order execution may provide an easier or more elegant

way to express a variety of Spectre attacks, as opposed to modeling speculative execution alone.

Further, as a result of including out-of-order execution in their respective semantics, Disselkoen

et al. [51] and Guanciale et al. [63] propose to abuse out-of-order execution to conduct (at least

theoretical) novel side-channel attacks.5

Although modeling out-of-order execution might make the semantics simpler, the ad-

ditional expressivity definitely makes the resulting analysis more complex. Fully modeling

out-of-order execution leads to an explosion in the number of possible executions of a program;

naively incorporating out-of-order execution into a detection or mitigation tool results in an
4Or, perhaps because out-of-order execution is often discussed alongside, or even confused with, speculative

execution
5Disselkoen et al. [51] propose to abuse compile-time instruction reordering, which is different from microarchi-

tectural out-of-order execution, but related.

126

intractable analysis. Indeed, while Guarnieri et al. [65] and Colvin and Winter [44] present

analysis tools based on their respective out-of-order semantics, they only analyze very simple

Spectre gadgets, not code used in real programs. Instead, for analysis tools based on out-of-order

semantics to scale to real programs, developers need to use lemmas to reduce the number of

possibilities the analysis needs to consider. As one example, Pitchfork [36] operates on a set

of “worst-case schedules” which represent a small subset of all possible out-of-order schedules.

The developers formally argue that this reduction does not affect the soundness of Pitchfork’s

analysis.

Caches and TLBs. Some speculative semantics and tools [66, 100, 154, 161] include

abstract models of caches, tracking which addresses may be in the cache at a given time. One

could imagine also including detailed models of TLBs. As discussed in Section 4.2.1, modeling

caches or TLBs is probably not helpful, at least for mitigation or verification tools—not only

does it make the semantics more complicated, but it potentially leads to non-portable guarantees.

In particular, including a model of the cache usually leads to the J ·Kcache leakage model, rather

than the J ·Kct or J ·Karch leakage models which provide stronger defensive guarantees. Following

in the tradition of constant-time programming in the non-speculative world, it seems wiser for

our analyses and mitigations to be based on microarchitecture-agnostic principles as much as

possible, and not depend on details of the cache or TLB structure.

Other leakage channels. There are a variety of specific microarchitectural mechanisms

which could result in leakages, beyond the ones we’ve been focusing on in this chapter. For

instance, in the presence of multithreading, port contention in the processor’s execution units can

reveal sensitive information [29]; and many processor instructions, e.g., floating-point or SIMD

instructions, can reveal information about their operands through timing side channels [10]. Most

existing semantics do not model these specific effects. However, the commonly-used J ·Kct and

J ·Karch leakage models are already strong enough to capture leakages from most of these sources:

for instance, port contention can only reveal sensitive data if the sensitive data influenced which

127

instructions are being executed—and the J ·Kct leakage model would have already considered

the sensitive data leaked once it influenced control flow. For variable-time instructions, most

works’ definitions of J ·Kct do not capture this leakage, but extending those definitions to cover it

is straightforward [7]. In both of these examples, the J ·Karch leakage model would capture all of

the leaks, because it (even more conservatively) would already consider the sensitive data leaked

once it reached a register, long before it could influence control-flow or be used in a variable-time

instruction. Although modeling any of these effects more precisely could increase the precision

with which an analysis detects potential vulnerabilities, the tradeoff in analysis complexity is

probably not worth it, and for mitigation and verification tools, the J ·Kct and J ·Karch leakage

models provide stronger and more generalizable guarantees.

In a similar vein, most semantics and tools do not explicitly model parallelism or concur-

rency: They reason only about single-threaded programs and processors. Instead, they abstract

away these details by giving attackers broad powers in their models—e.g., complete power

over all microarchitectural predictions, and the capability to observe the full cache state after

every execution step. The notable exceptions are the weak-memory-style semantics presented by

Colvin and Winter [44] and Disselkoen et al. [51]—multiple threads are an inherent feature for

this style of semantics. These semantics may be a promising vehicle for further exploring the

interaction between speculation and concurrency. For other semantics, adding detailed models of

multithreading is probably not worth the increased analysis complexity.

Open problems: Process isolation. In practice, a common response to Spectre attacks

has been to move all secret data into a separate process—e.g., Chrome isolates different sites in

separate processes [123]. This shifts the burden to OS engineers from application and runtime

system engineers. Developing Spectre foundations to model the process abstraction would

elucidate the security guarantees of such systems. This would be especially useful since there

is evidence showing that the process boundary does not keep an attacker from performing

128

out-of-place training of the conditional branch predictor, or from leaking secrets via the cache

state [35].

4.3 Related Work

There has been a lot of interest in Spectre and other transient execution attacks, both in

industry and in academia. We discuss other systematization papers that address Spectre attacks

and defenses, and we briefly survey related work which otherwise falls outside the scope of this

chapter.

4.3.1 Systematization of Spectre attacks and defenses

Canella et al. [35] present a comprehensive systematization and analysis of Spectre and

Meltdown attacks and defenses. They first classify transient execution attacks by whether they are

a result of misprediction (Spectre) or an execution fault (Meltdown); then they further classify the

attacks by their root microarchitectural cause, yielding the nomenclature we use in this chapter

(e.g., Spectre-PHT is named for the pattern history table). They then categorize previously known

Spectre attacks, revealing several new variants and exploitation techniques for each. Canella et

al. also propose a sequence of “phases” for a successful Spectre or Meltdown attack, and group

published defenses by the phase they target. A followup survey by Canella et al. [34] expands on

the idea of attack phases, categorizing both hardware and software Spectre defenses according to

which attack phase they prevent: preparation, misspeculation, data access, data encoding, leakage,

or decoding. Separately, Xiong et al. [162] also survey transient execution attacks, with a specific

focus on the mechanics of exploits for these attacks. In contrast, our systematization focuses on

the formal semantics behind Spectre analysis and mitigation tools rather than the specifics of

attack variants or types of defenses.

129

4.3.2 Hardware-based Spectre defenses

In this chapter, we focus only on software-based techniques for existing hardware. The

research community has also proposed several hardware-based Spectre defenses based on cache

partitioning [81], cleaning up the cache state after misprediction [130], or making the cache

invisible to speculation by incorporating some separate internal state [2, 80, 163]. Unfortunately,

attackers can still use side channels other than the cache to exploit speculative execution [29,

134]. NDA [158], DOLMA [95], and Speculative Taint Tracking (STT) [167] block additional

speculative covert channels by analyzing and classifying instructions that can leak information.

Fadiheh et al. [55] define a property for hardware execution that they term UPEC: A

hardware that satisfies UPEC will not leak speculatively anything more than it would leak

sequentially. In other words, UPEC is equivalent to the relative non-interference property

NI(π,J ·Kseq
arch⇒ J ·Kpht

arch).

The insights and recommendations from our work can guide future hardware mitigations;

properties like J ·Kct or J ·Karch can serve as contracts of what software expects from hardware [65]

(or how defenses need to bridge the gap in software when hardware only offers partial mitigations).

4.3.3 Software-hardware co-design

Although hardware-only approaches are promising for future designs, they require sig-

nificant modifications and introduce non-negligible performance overhead for all workloads.

Several works instead propose a software-hardware co-design approach. Taram et al. [145]

propose context-sensitive fencing, making various speculative barriers available to software. Li

et al. [92] propose memory instructions with a conditional speculation flag. Context [132] and

SpectreGuard [57] allow software to mark secrets in memory. This information is propagated

through the microarchitecture to block speculative access to the marked regions. SpecCFI [88]

suggests a hardware extension similar to Intel CET [74] that provides target label instructions

130

with speculative guarantees. Finally, several recent proposals allow partitioning branch predictors

based on context provided by the software [153, 170]. As these approaches require both software

and hardware changes, we will need a formal semantics to apply them correctly; this represents

valuable future work.

4.3.4 Other transient execution attacks

We focus exclusively on Spectre, as other transient execution attacks are probably better

addressed in hardware. For completeness, we briefly discuss these other attacks.

Meltdown variants. The Meltdown attack [93] bypasses implicit memory permission

checks within the CPU during transient execution. Unlike Spectre, Meltdown does not rely

on executing instructions in the victim domain, so it cannot be mitigated purely by changes

to the victim’s code. Foreshadow [149] and microarchitectural data sampling (MDS) [33, 71]

demonstrate that transient faults and microcode assists can still leak data from other security

domains, even on CPUs that are resistant to Meltdown. Researchers have extensively evaluated

these Meltdown-style attacks leading to new vulnerabilities [106, 107, 133], but most recent Intel

CPUs have hardware-level mitigations for all these vulnerabilities in the form of microcode

patches or proprietary hardware fixes [73].

Load value injection. Load value injection (LVI) [150] exploits the same root cause as

Meltdown, Foreshadow, and MDS. But LVI reverses these attacks: The attacker induces the

transient fault into the victim domain instead of crafting arbitrary gadgets in their own code space.

This inverse effect is subject to an exploitation technique similar to Spectre-BTB for transiently

hijacking control flow. Although there are software-based mitigations proposed against LVI [72,

150], Intel only suggests applying them to legacy enclave software. Like Meltdown, LVI does

not need software-based mitigation on recent Intel CPUs, and our systematization does not apply.

131

4.4 Conclusion

Spectre attacks break the abstractions afforded to us by conventional execution models,

fundamentally changing how we must reason about security. We systematize the community’s

work towards rebuilding foundations for formal analysis atop the loose earth of speculative

execution, evaluating current efforts in a shared formal framework and pointing out open areas

for future work in this field.

We find that, as with previous work in the sequential domain, solid foundations for

speculative analyses require proper choices for semantics and attacker models. Most importantly,

developers must consider leakage models no weaker than J ·Karch or J ·Kct. Weaker models—those

that only capture leaks via memory or the data cache—lead to weaker security guarantees with no

clear benefit. Next, though many frameworks focus on Spectre-PHT, sound tools must consider

all Spectre variants. Although this can increase the complexity of analysis, developers can

combine analyses with structured compilation techniques to restrict or remove entire categories

of Spectre attacks by construction. Finally, we recommend against modeling unnecessary

(micro)architectural details in favor of the simpler J ·Karch and J ·Kct models; details like cache

structures or port contention introduce complexity and give up on portability.

When properly rooted in formal guarantees, software Spectre defenses provide a firm

foundation on which to rebuild secure systems. We intend this systematization to serve as a

reference and guide for those seeking to build atop formal frameworks and to develop sound

Spectre defenses with strong, precise security guarantees.

Acknowledgements

We thank Matthew Kolosick for helping us understand some of the formal systems and in

organizing our presentation. This work was supported in part by gifts from Cisco; by the NSF

under Grant Numbers CNS-1514435, CCF-1918573, and CAREER CNS-2048262; and, by the

132

CONIX Research Center, one of six centers in JUMP, a Semiconductor Research Corporation

(SRC) program sponsored by DARPA. Work by Gilles Barthe was supported by the Office of

Naval Research (ONR) under project N00014-15-1-2750.

Chapter 4, in part, has been submitted for publication of the material as it may appear

in 43rd IEEE Symposium on Security and Privacy (Oakland '22), Cauligi, Sunjay; Disselkoen,

Craig; Moghimi, Daniel; Barthe, Gilles; Stefan, Deian. The dissertation author was the primary

investigator and author of this material.

133

Conclusion

We see time and time again that timing side-channels thoroughly erode our mental models

of how programs execute and how we can keep data confidential—even worse, the effects of

speculative execution topple all semblance of basic security properties such as memory safety,

type safety, or even simply basic control flow. These problems, however, are not insurmountable:

With the proper groundwork, we can yet reclaim these security properties in the face of speculative

execution. To that end, this dissertation has laid the foundation for rebuilding formal security atop

the shaky ground of speculative execution.

We started with FaCT, a DSL for writing sequential constant-time code. Although FaCT

doesn’t consider speculative effects, it gives us a blueprint for automatic, sound, and secure

compilation in the speculative domain. We introduced a formal type system for constant-time,

allowing us to capture timing side-channels as a violation of typing judgements. We then

demonstrated various compilation techniques that automatically transform potentially insecure,

high-level FaCT programs all the way down to low-level constant-time bitcode.

We then developed the foundations of speculative constant-time with Pitchfork: We

defined a formal semantics that captures the effects of microarchitectural predictors and spec-

ulative execution. Through this semantics, we were able to extend the traditional definition of

constant-time to the speculative domain and show that Spectre attacks are simply a violation of

this new property. We also showed that our formal foundation was indeed solid and practical:

Our verification tool, Pitchfork, was able to find subtle Spectre vulnerabilities in real code.

134

We built upon Pitchfork’s foundations, adapting its semantics for tackling speculative

security in the higher-level context of SFI and software sandboxing. We generalized the notion of

speculative constant-time to formally capture the SFI protections against both sandbox breakout

and poisoning attacks. We demonstrated the structural soundness of our framework, showing how

mitigations from existing tools serve (or fail) to uphold our speculative SFI properties.

Finally, we gave a bird’s eye view of speculative software semantics at the time of writing:

We categorized and systematized various design choices made in our and others’ semantics and

identified open areas that have yet to be filled in. We examined how each design choice taken

either builds towards or works against our eventual goals; how each open problem solved is one

less impediment in our pursuit of high-level software security.

Ultimately, we want to allow developers to program in high-level languages while be-

ing verifiably free from Spectre attacks. This dissertation presented formal foundations and

frameworks for reclaiming these security goals: We defined type systems, semantics, and formal

techniques for verifying and enforcing constant-time and sandbox properties even in the face of

speculation; and we implemented these techniques in practical tools to detect and defend against

constant-time and Spectre attacks.

135

Appendix A

FaCT: Deferred definitions and proofs

A.1 Semantics

We define the behavior of expressions, statements and functions using an instrumented

big-step semantics. Informally, the big-step semantics relates initial configurations, final con-

figurations, and leakages. Initial configurations are triples of the form (C,ρ,h) where C is an

expression, a statement or a function, ρ is an environment mapping variables to values, and h is a

heap mapping pointers to values.

Definition A.1.1 (Values). The set of values is defined by the following syntax:

v ::= n integer
| b boolean
| p pointer
| [v1; . . . ;vn] array of size n
| {x1 = v1, . . . ,xn = vn} structure

An environment is defined as a partial mapping from variables to values, and a heap is

defined as a partial mapping from pointers to values. We say that a pointer p is allocated in a

heap h, written p ∈ h, if h(p) is defined. If p ∈ h then the associated value to p can be updated:

h[p← v]. The associated values of other pointers are unchanged. We assume we are given a

136

EXPR-STEP

(e,ρ,h)
ψ

−→ (v,h)
STMT-STEP

(S,ρ,h)
ψ

−→ (ν ,h)

REF
(e,ρ,h)

ψ

−→ (v,h′)
FRESH(h′,v) = (p,h′′)

(ref e,ρ,h)
ψ

−→ (p,ρ,h′′)

ARRAY-GET
(e1,ρ,h)

ψ1
−−→ ([v0, . . . ,vk],h′)

(e2,ρ,h′)
ψ2
−−→ (n,h′′) 0≤ n < k

(e1[e2],ρ,h)
ψ1 +ψ2 +Arr(n)

−−−−−−−−−→ (vn,h′′)

SEQ-RET

(i,ρ,h)
ψ

−→ (v,h′)
(i;S,ρ,h)

ψ

−→ (v,h′)

SEQ-NORET

(i,ρ,h)
ψ1
−−→ (ρ ′,h′)

(S,ρ ′,h′)
ψ2
−−→ (ν ,h′′)

(i;S,ρ,h)
ψ1 +ψ2−−−−→ (ν ,h′′)

VARDEC
(e,ρ,h)

ψ

−→ (v,h′)
(x = e,ρ,h)

ψ

−→ (ρ[x← v],h′)

ASSIGN
(e1,ρ,h)

ψ1
−−→ (p,h′)

(e2,ρ,h′)
ψ2
−−→ (v,h′′)

(e1 := e2,ρ,h)
ψ1 +ψ2−−−−→ (ρ,h′′[p← v])

RETURN
(e,ρ,h)

ψ

−→ (v,h′)
(return e,ρ,h)

ψ

−→ (v,h′)

BLOCK
(S,ρ,h)

ψ

−→ (ν ,h′)
({S},ρ,h) ψ

−→ (ν ,h′)

FN-CALL
(e1,ρ,h)

ψ1
−−→ (v1,h1) . . . (en,ρ,hn−1)

ψn
−−→ (vn,hn)

(F,~v,hn)
ψ

−→ (v,h′)
(x = f (~e),ρ,h) Σψi +ψ

−−−−→ (ρ[x← v],h′)

FN
(F.S, [F.~x←~v],h)

ψ

−→ (v,h′)
(F,~v,h)

ψ

−→ (v,h′)

IF
(e,ρ,h)

ψ

−→ (b,h′)
(Sb,ρ,h′)

ψb
−−→ (ν ,h′′)

(if ∗` e then ST else SF,ρ,h)
ψ +if∗ (`,b)+ψb−−−−−−−−−−→ (ν ,h′′)

FOR
(e1,ρ,h)

ψ1
−−→ (n1,h1) (e2,ρ,h1)

ψ2
−−→ (n2,h2)

(if ∗` n1 < n2 then {{i = n1;S};
for ∗` i = n1 +1 to n2 DO S},ρ,h2)

ψ

−→ (ν ,h′)
(for ∗` i = n1 to n2 DO S},ρ,h) ψ1 +ψ2 +ψ

−−−−−−→ (ν ,h′)

Figure A.1: Big-step semantics.

137

deterministic operator FRESH for creating and initializing a fresh pointer: FRESH(h,v) = (p,h′).

This operator satisfies:

I p is a fresh pointer, i.e., p /∈ h

I The associated value of p is v, i.e., h′(p) = v

I Other pointers are unchanged, i.e., ∀p′, h(p′) = h′(p′)

We further assume the existence of an equivalence relation ≈ on heaps such that:

I ≈ is stable by allocation: If FRESH(h1,v1) = (p1,h′1) and FRESH(h2,v2) = (p2,h′2) and

h1 ≈ h2 then p1 = p2 and h′1 ≈ h′2.

I ≈ is stable by update: if h1 ≈ h2 then h1[p← v1]≈ h2[p← v2].

A final configuration is either a pair consisting of a value and a heap, or of an environment

and a heap. In particular, the semantics of expressions (e,ρ,h)
ψ

−→ (v,h′) returns a value and a

new heap (creation of fresh reference). Here, ψ corresponds to the leakage of the evaluation of e.

The semantics of statements is given by two judgments of similar form: (S,ρ,h)
ψ

−→ (ρ ′,h′) and

(S,ρ,h)
ψ

−→ (v,h′). These judgments correspond to statements that do not and do return values,

respectively. Again, ψ is the leakage produced by the evaluation of the statement. Finally, the

semantics of a function is modelled by a judgment of the form (f ,~v,h)
ψ

−→ (v′,h′), where~v denotes

the values of the parameters of the function, and v′ is the return value (we only consider functions

that return a value). Figure A.1 presents the semantics. Rules are standard, with the exception of

leakage. Primarily, array accesses leak the index at which they are accessed, conditionals leak

their control flow, and other rules combine leakage of sub-computations according to evaluation

order. Note that in the rules for conditionals and for loops we assume that the guard of the

statement is identified by a unique label, which we record in the leakage.

138

RULES
Γ ` e : β

pc,βr ` S : Γ→ Γ
′

ω ` βr f (~x : ~β) { S }

SEQ

pc,βr ` S1 : Γ→ Γ
′

pc,βr ` S2 : Γ
′→ Γ

′′

pc,βr ` S1;S2 : Γ→ Γ
′′

VAR-DEC
Γ ` e : β

Γ
′ = Γ,x : β

pc,βr ` β x = e : Γ→ Γ
′

VAR-DEC-FN-CALL

f : (~β)→ β

hasMut(f)⇒ pcv ω(f)
Γ ` ei : βi Γ

′ = Γ,x : β

pc,βr ` β x = f (~e) : Γ→ Γ
′

ASSIGN
Γ ` e1 : REFW[β]

Γ ` e2 : β pcv β

pc,βr ` e1 := e2 : Γ→ Γ

IF
Γ ` e : BOOL`

pct `,βr ` S1 : Γ→ Γ1
pct `,βr ` S2 : Γ→ Γ2

pc,βr ` if (e) { S1 } else { S2 } : Γ→ Γ

FOR-RANGE
Γ ` e1 : UINTSEC Γ ` e2 : UINTSEC

Γ
′ = Γ,x : UINTSEC pc,βr ` S : Γ

′→ Γ
′′

pc,βr ` for (x from e1 to e2) { S } : Γ→ Γ

RETURN
Γ ` e : βr
pcv βr

pc,βr ` return e : Γ→ Γ

FN-DEC

pc = ω(f) Γ = {~x : ~β}
pc,βr ` S : Γ,PUB→ Γ

′

ω ` βr f (~x : ~β) { S }

Figure A.2: Type system `rd for return deferral.

A.2 Return deferral

We prove that return deferral is correct, i.e., preserves the behavior of programs; and

secure, which we formalize as a type-preservation result.

Type system and type-preservation. We define a variant of the type system that only

allows return statements in PUB contexts. The judgments are thus of the form pc,βr ` S : Γ→ Γ′

or ω ` βr f (~x : ~β) { S }, i.e., the return context label is omitted. The typing rules for statements

are given in Figure A.2; rules for expressions do not change.

139

We prove that return deferral transforms typeable expressions (resp. statements and

procedures) of the source type system into typeable expressions (resp. statements and procedures)

of the `rd type system.

First, we prove preliminary lemmas.

Lemma A.2.1. If ω,pc,βr ` S : Γ,rc→ Γ′,rc′ then rcv rc′.

Lemma A.2.2 (PC subtyping type system for return deferral). For all pc1 v pc2, if pc2,βr ` S :

Γ→ Γ′ then

pc1,βr ` S : Γ→ Γ′.

Proof. By induction on pc2,βr ` S : Γ→ Γ′.

Lemma A.2.3 (Type preservation for return deferral).

If ω,pc,βr ` S : Γ,rc→ Γ′,rc′:

1. Φ,pc,rc ` S→ S′ then pct rc,βr ` S′ : Γ→ Γ′

2. Φ,pc,rc ` S S′ then pct rc,βr ` S′ : Γ→ Γ′

where Γ = Γ[notRet,rval← REFRW[BOOL] ,REFRW[βr]].

Proof. We start by proving (2). Assuming that (1) holds for a given S, we prove that (2) holds for

S. By case on rc:

I If rc is PUB then Φ,pc,rc ` S S′ is Φ,pc,rc ` S→ S′, and we can trivially conclude

using (1).

I If rc is SEC we should prove

pctSEC,βr ` if (deref notRet){S′} : Γ→ Γ′. By hypothesis we have pctSEC,βr ` S′ :

Γ→ Γ′ and we can apply the IF rule of type system 2 to conclude (where l is SEC).

We now prove (1) by induction on S. The cases for (VAR-DEC, ASSIGN, IF, FOR-RANGE,

RETURN) are trivial.

140

BOOL

b'm b
INT

i'm i

REF
p2 = m(p1)

p1 'm p2

ARR
vi 'm wi

[v0; . . . ;vn]'m [w0; . . . ;wn]

STRUCT
vi 'm wi

{x1 = v1, . . . ,xn = vn} 'm {x1 = w1, . . . ,xn = wn}

HEAP
∀p1 p2, m(p1) = p2⇒ h1(p1)'m h2(p2)

h1 'm h2

ENV
∀x, Defined ρ(x)⇒ Defined ρ

′(x) and ρ(x)'m ρ
′(x)

ρ 'm ρ
′

Figure A.3: Values equivalence.

I If S = S1;S2 then we have S′ = S′1;S′2 where

ω,pc,rc ` S1 : Γ,rc→ Γ′,rc′

Φ,pc,rc ` S1→ S′1

ω ′,pc,rc′ ` S2 : Γ′,rc′→ Γ′′,rc′′

Φ′,pc,rc′ ` S2 S′2

By induction hypothesis, we have pct rc,βr ` S′1 : Γ→ Γ′ and by (2) (using the induction

hypothesis on S2) we have pct rc′,βr ` S′2 : Γ′→ Γ′′. Since rcv rc′ (by lemma A.2.1), we

can apply lemma A.2.2 to obtain pct rc,βr ` S′2 : Γ′→ Γ′′ and conclude.

I If S = β x = f (~e), we can conclude by induction hypothesis (f .S can be seen as a sub-

statement of S since there is no recursion).

141

Preservation of semantics. We now prove the preservation of semantics for return deferral.

Since the compilation introduces references and variables, the correctness lemmas should take

this into account. Given a partial mapping m from pointers to pointers, we say that two values

v and v′ are in relation for m, v 'm v′ if they are equal up to pointers. Figure A.3 defines this

relation. The relation is extended to heaps h'm h′ (rule HEAP), if for all pointers p in m we have

h(p)'m h′(m(p)). The relation is extended to environments (rule ENV): for all defined variables

x in ρ , x should be defined in ρ ′ and the associated values should be in relation for m.

Lemma A.2.4 (Preservation of semantics for return deferral). Let ρ1 'm ρ ′1 and ρ ′1(notRet) = pr

and ρ ′1(rval) = pv and h1 'm h′1 and h′1(pr) = true and h′1(pv) = init(βr). If Φ,pc,rc ` S→ S′

and (S,ρ1,h1) −→ (ν ,h2), then there exists ν ′, m′,h′2 such that mvm′ and (S′,ρ ′1,h
′
1) −→ (ν ′,h′2)

and h2 'm′ h′2:

I If ν = ρ2 then there exists ρ ′2 such that ν ′ = ρ ′2 and ρ2 'm′ ρ ′2 and ρ ′2(notRet) = pr and

ρ ′2(rval) = pv and h′2(pr) = true and h′2(pv) = init(βr).

I If ν = v, there exists v′ such that v'm′ v′ and ν ′= v′, or there exists ρ ′2 such that ν ′= ρ ′2 and

ρ ′2(notRet) = pr and ρ ′2(notRet) = pv and h′2(pr) = false and h′2(pv) = v′ and v'm′ v′.

Furthermore, if h1 'm h′1 and~v'm ~v′ and ω ` F → F ′ and (F,~v,h1) −→ (v,h2) then there exists

v′, m′, h′2 such that v'm′ v′ and h2 'm′ h′2 and (F ′,~v′,h′1) −→ (v′,h′2).

Proof. The proof is done by mutual induction on Φ,pc,rc ` S→ S′ and (F,~v,h1) −→ (v,h2). The

case for functions is a direct consequence of the case for statements. For statements, the interesting

case is the one for sequencing, i.e., S = S1;S2. If S1 returns in a SEC context then S′1 will not

immediately return, but after its execution notRet will be false. So S′2 = if (notRet) { S′′2 } will

immediately terminate.

142

RULES
Γ ` e : β

βr ` S : Γ→ Γ
′

` βr f (~x : ~β) { S }

SEQ

βr ` S1 : Γ→ Γ
′

βr ` S2 : Γ
′→ Γ

′′

βr ` S1;S2 : Γ→ Γ
′′

VAR-DEC
Γ ` e : β

Γ
′ = Γ,x : β

βr ` β x = e : Γ→ Γ
′

VAR-DEC-FN-CALL

f : (~β)→ β

Γ ` ei : βi Γ
′ = Γ,x : β

βr ` β x = f (~e) : Γ→ Γ
′

ASSIGN
Γ ` e1 : REFW[β]

Γ ` e2 : β

βr ` e1 := e2 : Γ→ Γ

IF
Γ ` e : BOOLPUB

βr ` S1 : Γ→ Γ1
βr ` S2 : Γ→ Γ2

βr ` if (e) { S1 } else { S2 } : Γ→ Γ

FOR-RANGE
Γ ` e1 : UINTPUB Γ ` e2 : UINTPUB

Γ
′ = Γ,x : UINTPUB βr ` S : Γ

′→ Γ
′′

βr ` for (x from e1 to e2) { S } : Γ→ Γ

RETURN
Γ ` e : βr

βr ` return e : Γ→ Γ

FN-DEC

Γ = {~x : ~β}
βr ` S : Γ→ Γ

′

` βr f (~x : ~β) { S }

Figure A.4: Type system `ct for constant-time.

A.3 Branch removal

We prove that branch removal is correct, i.e., preserves the behavior of programs, and

secure. For the latter, we define a new type system `ct, show that branch removal returns programs

that are typeable with respect to `ct, and that typeable programs are constant-time.

Type system and type-preservation. The type system manipulates judgments of the form

βr ` S : Γ→ Γ′ and ` βr f (~x : ~β) { S }. Notably, the path context label is omitted. Since we

require that statements no longer branch on secrets, we can assume that the path context label is

public throughout execution.

Figure A.4 presents the typing rules for statements in `ct. Rules for expressions do not

change.

143

We prove that branch removal transforms expressions (resp. statements and procedures)

typeable in `rd into expressions (resp. statements and procedures) typeable in `ct.

Lemma A.3.1. If Φ, p ` S→ S′ and p,βr ` S : Γ→ Γ′ then βr ` S′ : Γp→ Γ′p, where p is PUB

if p = true, SEC otherwise and Γp = Γ[vars(p)← BOOLSEC] and vars(p) is the set of variables

in p.

Proof. By induction on S.

Typeable programs are constant-time. We start by defining an equivalence between

heaps. We index equivalence by a partial mapping t from pointers to types. Note that such partial

mappings are naturally equipped with a partial order relation: we write that t1 v t2 if for all p,β

such that t1(p) = β we have t2(p) = β .

We define a relation v1 ≡β ,t v2 between values saying that the two values v1 and v2 are in

relation with respect to the type β and the partial mapping t. The relation imposes that the values

have type β and are equal according to the security level. For example, base values (booleans

and integers) must be equal if their level is PUB but can be arbitrary otherwise. For pointers,

the relation imposes that the two pointers are equal and the mapping t should associate a type

β ′ such that β ′ v β . The relation h1 ≡t h2 is extended to heaps in the following way: the two

heaps should be in relation for ≈, and for all pointers p such that m(p) = β , the associated values

should be in relation with respect to t and β : h1(p) ≡β ,t h2(p). The relation is extended to

environments naturally: ρ1,h1 ≡Γ,t ρ2,h2. The relation is extended to final configurations in a

straightforward manner. The formal definition is given in Figure A.5.

We prove some preliminary lemmas.

Lemma A.3.2 (Stability of type interpretation). For all partial maps t and t ′ such that t v t ′ the

following properties hold:

1. For all v1 v2, if v1 ≡β ,t v2 then v1 ≡β ,t ′ v2

144

RULE
v1 ≡β ,t v2
h1 ≡m h2

ρ1,h1 ≡Γ,t ρ2,h2

BOOL
`= PUB⇒ b1 = b2

b1 ≡BOOL`,t b2

INT
`= PUB⇒ is1 = is2

is1 ≡INTs
`,t is2

UINT
`= PUB⇒ is1 = is2

is1 ≡UINTs
`,t is2

REF
m(p) = β

′
β
′ v β

p≡REFx[β],t p

ARR
vi ≡β ,t wi

[v0; . . . ;vn]≡ARR[β ,?],t [w0; . . . ;wn]

STRUCT
vi ≡βi,t wi

{x1 = v1, . . . ,xn = vn} ≡{x1:β1,...,xn:βn},t {x1 = w1, . . . ,xn = wn}

HEAP
h1 ≈ h2

∀p β , m(p) = β ⇒ h1(p)≡β ,t h2(p)

h1 ≡t h2

ENV
∀x,x ∈ Γ⇒ ρ1(x)≡Γ(x),t ρ2(x)

h1 ≡t h2

ρ1,h1 ≡Γ,t ρ2,h2

NORET
ρ1,h1 ≡Γ,t ρ2,h2

ρ1,h1 ≡Γ,βr,t ρ2,h2

RET
v1,h1 ≡βr,t v2,h2

h1 ≡t h2

v1,h1 ≡Γ,βr,t v2,h2

Figure A.5: Type interpretation.

145

2. For all heaps h1 h2 h′1 h′2 such that h′1 ≡t ′ h′2, ρ1,h1 ≡β ,t ρ2,h2⇒ ρ1,h′1 ≡β ,t ρ2,h′2

Proof. We prove (1) by induction on v1,h1 ≡β ,t v2,h2. The only interesting case is for REF,

which follows directly from definitions of t v t ′. (2) is a direct consequence of (1).

Lemma A.3.3 (Reference creation). If h1 ≡t h2 and

FRESH(h1,v1) = (p1,h′1) and FRESH(h2,v2) = (p2,h′2) and v1 ≡b,t v2 then p1 = p2 and

h′1 ≡m[p1←β] h′2.

Proof. h1 ≡t h2 implies h1 ≈ h2, so p1 = p2 and h′1 ≈ h′2. It remains to prove ∀p β ′, m[p1←

β](p) = β ′⇒ h′1(p)≡β ′,t h′2(p). If p = p1 then m[p1← β](p) = β and h′i(p) = vi and we have

v1 ≡β ,t v2 by hypothesis. Else p 6= p1 and m[p1 ← β](p) = m(p) and h′i(p) = hi(p) and the

property follows from h1 ≡t h2.

We now prove that typeable expressions and statements are constant-time.

Lemma A.3.4 (Typing constant-time, expressions).

ρ1,h1 ≡Γ,t ρ2,h2

Γ ` e : β

(e,ρ1,h1)
ψ1
−−→ (v1,h′1)

(e,ρ2,h2)
ψ2
−−→ (v2,h′2)


⇒∃t ′,



t v t ′

h′1 ≡t ′ h′2

ψ1 = ψ2

v1 ≡β ,t ′ v2

Proof. By induction on Γ ` e : β . We do only the interesting cases:

146

I Case e = e1[e2], we have

(e1,ρ1,h1)
ψ ′1−−→ ([w1; . . . ;wk1],h

′′
1)

(e1,ρ2,h2)
ψ ′2−−→ ([w′1; . . . ;w′k2

],h′′2)

(e2,ρ1,h′1)
ψ ′′1−−→ (n1,h′1)

(e2,ρ2,h′2)
ψ ′′2−−→ (n2,h′2)

v1 = wn1 v2 = w′n2

ψ1 = ψ ′1 +ψ ′′1 +ARR[n1]

ψ2 = ψ ′2 +ψ ′′2 +ARR[n2]

Γ ` e1 : ARR[β ,elen]

Γ ` e2 : UINTPUB

By induction hypothesis on e1 there exists t ′ such that

t v t ′′ h′′1 ≡t ′′ h′′2 ψ ′1 = ψ ′2

[w1; . . . ;wk1]≡ARR[β ,elen],t ′′ [w
′
1; . . . ;w′k2

]

By lemma A.3.2, we have ρ1,h′′1 ≡Γ,t ′′ ρ2,h′′2 and we can apply the induction hypothesis

on e2 to get:

t ′′ v t ′ h′1 ≡t ′ h′2 ψ ′′1 = ψ ′′2

n1 ≡UINTPUB,t ′ n2

So n1 = n2 and by lemma A.3.2 we get

[w1; . . . ;wk1]≡ARR[β ,elen],t ′ [w
′
1; . . . ;w′k2

]

which allows to conclude v1 ≡β ,t ′ v2. We conclude by using t ′ as witness.

147

I Case e = REF[e′], we have

(e′,ρ1,h1)
ψ ′1−−→ (v′1,h

′′
1)

(e′,ρ2,h2)
ψ ′2−−→ (v′2,h

′′
2)

FRESH(h′′1,v
′
1) = (p1,h′1)

FRESH(h′′2,v
′
2) = (p2,h′2)

v1 = p1 v2 = p2

Γ ` e′ : β ′ β = REFRW[β ′]

By induction hypothesis on e′ we get

t v t ′′ h′′1 ≡t ′′ h′′2 ψ ′1 = ψ ′2

v′1 ≡β ′,t ′′ v′2

We can conclude the proof by using

t ′ = t ′′[p1← β
′]

and use lemma A.3.3.

Lemma A.3.5 (Typing constant-time: statements).

ρ1,h1 ≡Γ,t ρ2,h2

βr ` S : Γ→ Γ′

(S,ρ1,h1)
ψ1
−−→ (ν1,h′1)

(S,ρ2,h2)
ψ2
−−→ (ν2,h′2)


⇒∃t ′,


t v t ′

ψ1 = ψ2

ν1,h1 ≡Γ,βr,t ν2,h2

Proof. By induction on (S,ρ1,h1)
ψ1
−−→ (ν1,h′1).

148

I Cases SEQ-RET, SEQ-NORET, and BLOCK are trivial.

I Cases VARDEC, ASSIGN, RETURN, IF and FN-CALL follow from lemmas A.3.4 and A.3.2.

I The last case, FOR, is almost a direct consequence of the induction hypothesis, the only

difficulty being to prove that the statement is well-typed:

βr `
if ∗` n1 < n2 then {{i = n1;S};

for ∗` i = n1 +1 to n2 DO S} : Γ→ Γ

Preservation of semantics. Finally, we prove that branch removal preserves the semantics

of programs. The proof is performed in two steps. First, we show that if the value of the

control predicate is false then the code does not modify the initial heap; it can only create fresh

references.

Lemma A.3.6. Let m a partial mapping on pointers. Assume that p is not trivially true (i.e., p

is not the literal true) and Φ, p ` S→ S′ and h'm h′1 and ρ 'm ρ ′1 and SEC,βr ` S : Γ→ Γ′

and (S′,ρ ′1,h
′
1) −→ (ν ′,h′2) (i.e., S′ is safe). If (p,ρ ′,h′1) −→ false then h'm h′2 and there exists

ρ ′2 such that ν ′ = ρ ′2 and ρ 'm ρ ′2.

Furthermore, assume that p is not trivially true and ω ` F → F ′ and ω(f) = SEC and

h'm h′1 and F is well typed and (F ′,(~v′,false),h′1) −→ (v′,h′2). Then h'm h′2.

Proof. By mutual induction on S and F . The key point of the proof is to notice that if p is not

trivially true then the pc used for type-checking is necessarily SEC, so there is no return statement

in S′.

We now prove that if the control predicate evaluates to true then the semantics of

statements and functions are preserved.

149

Lemma A.3.7. Let m be a partial mapping on pointers. Assume Φ, p ` S→ S′ and h1 'm

h′1 and ρ1 'm ρ ′1 and pc,βr ` S : Γ → Γ′ and pc = (if p = true then SEC else PUB) and

(S,ρ1,h1) −→ (ν ,h2) and (S′,ρ ′1,h
′
1) −→ (ν ′,h′2) (i.e., S′ is safe). If (p,ρ ′,h′1) −→ true then

there exists m′ such that mv m′ and h2 'm′ h′2 and ν 'm′ ν ′.

Furthermore, assume that ω ` F → F ′ and F is well typed and (F,~v,h1) −→ (v,h2) and

h1 'm h′1 and ~v 'm ~v′. If ω(f) = PUB and (F ′,~v′,h′1) −→ (v′,h′2) then there exists m′ such that

mv m′ and h2 'm′ h′2 and v'm′ v′. Else, if ω(f) = SEC and (F ′,(~v′,true),h′1) −→ (v′,h′2) then

there exists m′ such that mv m′ and h2 'm′ h′2 and v'm′ v′.

Proof. By mutual induction on S and F .

150

Appendix B

Pitchfork: Full proofs

B.1 Consistency

Lemma B.1.1 (Determinism). If C
o′
↪−→

d
C′ and C

o′′
↪−→

d
C′′ then C′ =C′′ and o′ = o′′.

Proof. The tuple (C,d) fully determines which rule of the semantics can be executed.

Definition B.1.2 (Initial/terminal configuration). A configuration C is an initial (or terminal)

configuration if |C.buf |= 0.

Definition B.1.3 (Sequential schedule). Given a configuration C, we say a schedule D is sequential

if every instruction that is fetched is executed and retired before further instructions are fetched.

Definition B.1.4 (Sequential execution). C O⇓N
DC′ is a sequential execution if C is an initial

configuration, D is a sequential schedule for C, and C′ is a terminal configuration.

We write C O⇓N
seqC′ if we execute sequentially.

Lemma B.1.5 (Sequential equivalence). If C O1⇓
N
D1

C1 is sequential and C O2⇓
N
D2

C2 is sequential,

then C1 =C2.

151

Proof. Suppose N = 0. Then neither D1 nor D2 may contain any retire directives. Since we

assume that both C1.buf and C2.buf have size 0, neither D1 nor D2 may contain any fetch

directives. Therefore, both D1 and D2 are empty; both C1 and C2 are equal to C.

We proceed by induction on N.

Let D′1 be a sequential prefix of D1 up to the N−1th retire, and let D′′1 be the remainder of

D1. That is, #{d ∈D′1 |d = retire}= N−1 and D′1‖D′′1 = D1. Let D′2 and D′′2 be similarly defined.

By our induction hypothesis, we know C O′1
⇓N−1

D′1
C′ and C O′2

⇓N−1
D′2

C′ for some C′. Since

D′1 (resp. D′2) is sequential and |C′.buf |= 0, the first directive in D′′1 (resp. D′′2) must be a fetch

directive. Furthermore, C′O′′1⇓
1
D′′1

C1 and C′O′′2⇓
1
D′′2

C2.

We can now proceed by cases on C′.µ[C′.n], the final instruction to be fetched.

I For op, the only valid sequence of directives is (fetch, execute i, retire) where i is the sole

valid index in the buffer. Similarly for fence, with the sequence {fetch, retire}.

I For load, alias prediction is not possible, as no prior stores exist in the buffer. Therefore,

just as with op, the only valid sequence of directives is (fetch, execute i, retire).

I For store, the only possible difference between D′′1 and D′′2 is the ordering of the execute i :

value and execute i : addr directives. However, both orderings will result in the same

configuration since they independently resolve the components of the store.

I For br, D′′1 and D′′2 may have different guesses for their initial fetch directives. However,

both COND-EXECUTE-CORRECT and COND-EXECUTE-INCORRECT will result in the same

configuration regardless of the initial guess, as the br is the only instruction in the buffer.

Similarly for jmpi.

I For call and ret, the ordering of execution of the resulting transient instructions does not

affect the final configuration.

Thus for all cases we have C1 =C2.

152

To make our discussion easier, we will say that a directive d applies to a buffer index i if

when executing a step C
o
↪−→

d
C′:

I d is a fetch directive, and would fetch an instruction into index i in buf .

I d is an execute directive, and would execute the instruction at index i in buf .

I d is a retire directive, and would retire the instruction at index i in buf .

We would like to reason about schedules that do not contain misspeculated steps, i.e.,

directives that are superfluous due to their effects getting wiped away by rollbacks.

Definition B.1.6 (Misspeculated steps). Given an execution C O⇓N
DC′, we say that D contains

misspeculated steps if there exists d ∈ D such that D′ = D\d and C O′⇓N
D′C

′′ =C′.

Given an execution C O⇓N
DC′ that may contain rollbacks, we can create an alternate

schedule D∗ without any rollbacks by removing all misspeculated steps. Note that sequential

schedules have no misspeculated steps1 as defined in Definition B.1.6.

Theorem B.1.7 (Equivalence to sequential execution). Let C be an initial configuration and D

a well-formed schedule for C. If C O1⇓
N
DC1, then C O2⇓

N
seqC2 and C1 ≈C2. Furthermore, if C1 is

terminal then C1 =C2.

Proof. Since we can always remove all misspeculated steps from any well-formed execution

without affecting the final configuration, we assume D1 has no misspeculated steps.

Suppose N = 0. Then the theorem is trivially true. We proceed by induction on N.

Let D′1 be the subsequence of D1 containing the first N − 1 retire directives and the

directives that apply to the same indices of the first N − 1 retire directives. Let D′′1 be the

complement of D′1 with respect to D1. All directives in D′′1 apply to indices later than any directive

1Sequential schedules may still misspeculate on conditional branches but the rollback does not imply removal of
any reorder buffer instructions as defined in Definition B.1.6.

153

in D′1, and thus cannot affect the execution of directives in D′1. Thus D′1 is a well-formed schedule

and produces execution C O′1
⇓N−1

D′1
C′1.

Since D1 contains no misspeculated steps, the directives in D′′1 can be reordered after the

directives in D′1. Thus D′′1 is a well-formed schedule for C′1, producing execution C′1 O′′1
⇓1

D′′1
C′′1

with C′′1 ≈C1. If C1 is terminal, then C′′1 is also terminal and C′′1 =C1.

By our induction hypothesis, we know there exists D′seq such that C O′2
⇓N−1

D′seq
C′2. Since

D′1 contains equal numbers of fetch and retire directives, ends with a retire, and contains no

misspeculated steps, C′1 is terminal. Thus C′1 =C′2.

Let D′′seq be the subsequence of D′′1 containing the retire directive in D′′1 and the directives

that apply to the same index. D′′seq is sequential with respect to C′1 and produces execution

C′1 O′′2
⇓1

D′′seq
C′′2 with C′′2 ≈C′′1 ≈C1. If C′′1 is terminal, then D′′seq = D′′1 and thus C′′2 =C′′1 =C1.

Let Dseq = D′seq‖D′′seq. Dseq is thus itself sequential and produces execution

C (O′2‖O′′2)⇓
N
seqC′′2 , completing our proof.

Corollary B.1.8 (General consistency). Let C be an initial configuration. If C O1⇓
N
D1

C1 and

C O2⇓
N
D2

C2, then C1 ≈C2. Furthermore, if C1 and C2 are both terminal then C1 =C2.

Proof. By Theorem B.1.7, there exists D′seq such that executing with C produces C′1 ≈ C1

(resp. C′1 = C1). Similarly, there exists D′′seq that produces C′2 ≈ C2 (resp. C′2 = C2). By

Lemma B.1.5, we have C′1 =C′2. Thus C1 ≈C2 (resp. C1 =C2).

B.2 Security

Theorem B.2.1 (Label stability). Let ` be a label in the lattice L . If C O1⇓
N
D1

C1 and ∀o ∈ O1 :

` /∈ o, then C O2⇓
N
seqC2 and ∀o ∈ O2 : ` /∈ o.

Proof. Let D∗1 be the schedule given by removing all misspeculated steps from D1. The corre-

sponding trace O∗1 is a subsequence of O1, and hence ∀o ∈ O∗1 : ` /∈ o. We thus proceed assuming

that execution of D1 contains no misspeculated steps.

154

Our proof closely follows that of Theorem B.1.7. When constructing D′1 and D′′1 from D1

in the inductive step, we know that all directives in D′′1 apply to indices later than any directive in

D′1, and cannot affect execution of any directive in D′1. This implies that O′1 is the subsequence of

O1 that corresponds to the mapping of D′1 to D1.

Reordering the directives in D′′1 after D′1 do not affect the observations produced by most

directives. The exceptions to this are execute directives for load instructions that would have

received a forwarded value: after reordering, the store instruction they forwarded from may have

been retired, and they must fetch their value from memory. However, even in this case, the address

a`a attached to the observation does not change. Thus ∀o ∈ O′′2 : ` /∈ o.

Continuing the proof as in Theorem B.1.7, we create schedule D′seq (with trace O′2) from

the induction hypothesis and D′′seq (with trace O′′2) as the subsequence of D′′1 of directives applying

to the remaining instruction to be retired. As noted before, executing the subsequence of a

schedule produces the corresponding subsequence of the original trace; hence ∀o ∈ O′′2 : ` /∈ o.

The trace of the final (sequential) schedule Dseq = D′seq‖D′′seq is O′2‖O′′2 . Since O′2 satisfies

the label stability property via the induction hypothesis, we have ∀o ∈ O′2‖O′′2 : ` /∈ o.

By letting ` be the label secret, we get the following corollary:

Corollary B.2.2 (Secrecy). If speculative execution of C under schedule D produces a trace O

that contains no secret labels, then sequential execution of C will never produce a trace that

contains any secret labels.

With this, we can prove the following proposition:

Proposition B.2.3. For a given initial configuration C and well-formed schedule D, if C is SCT

with respect to D, and execution of C with D results in a terminal configuration C1, then C is also

sequentially constant-time.

155

Proof. Since C is SCT, we know that for all C′ 'pub C, we have C O⇓N
DC1 and C′O′⇓N

DC′1 where

C1 'pub C′1 and O = O′. By Theorem B.1.7, we know there exist sequential executions such that

C Oseq⇓N
seqC2 and C′O′seq

⇓N
seqC′2. Note that the two sequential schedules need not be the same.

C1 is terminal by hypothesis. Execution of C′ uses the same schedule D, so C′1 is also

terminal. Since we have C1 =C2 and C′1 =C′2, we can lift C1 'pub C′1 to get C2 'pub C′2.

To prove the trace property Oseq =O′seq, we note that if Oseq 6=O′seq, then since C2'pub C′2,

it must be the case that there exists some o ∈ Oseq such that secret ∈ Oseq. Since this is also

true for O and O′, we know that there exist no observations in either O or O′ that contain secret

labels. By Corollary B.2.2, it follows that no secret labels appear in either Oseq or O′seq, and thus

Oseq = O′seq.

B.3 Soundness of Pitchfork

Definition B.3.1 (Affecting an index). We say a directive d affects an index i if:

I d is a fetch-type directive and would produce a new mapping in buf at index i.

I d is an execute-type directive and specifies index i directly (e.g., execute i).

I d is a retire directive and would cause the instruction at i in buf to be removed.

Definition B.3.2 (Path function). The function Path(C,D) produces the sequence of branch

choice (from fetching br instructions) and store-forwarding information (when executing load

instructions) when executing D with initial configuration C. That is, for a schedule D without

156

misspeculated steps:

Path(C, /0) = []

Path(C,D‖d) =



Path(C,D);(i,b), d = fetch: b

Path(C,D);(i, j), d produces v`{ j,a}

Path(C,D);(i,⊥), d produces v`{⊥,a}

Path(C,D), otherwise

where d affects index i. If D has misspeculated steps, then Path(C,D) = Path(C,D∗) where D∗ is

the subset of D with misspeculated steps removed. We write simply Path(D) when C is obvious.

For the Lemmas B.3.3, B.3.5 and B.3.6, we start with the following shared assumptions:

I C is an initial configuration.

I D1 and D2 are nonempty schedules.

I C D1⇓O1
C1 and C D2⇓O2

C2.

I Path(C,D1) = Path(C,D2).

I D1 = D′1‖d1 and D2 = D′2‖d2 and d1 = d2.

I d1 and d2 affect the same index i in the their respective reorder buffers.

Let o1 (resp. o2) be the observation produced during execution of d1 (resp. d2).

Lemma B.3.3 (Fetch). If d1 and d2 are both fetch-type directives, then C1.n = C2.n and

C1.buf [i] =C2.buf [i].

Proof. Since fetches happen in-order, the index i of a given physical instruction along a control

flow path is deterministic. Both D1 and D2 both have the same (control flow) path. Since by

157

hypothesis both d1 and d2 affect the same index i, d1 and d2 must necessarily both be fetching the

same physical instruction. Furthermore, since Path(D1) = Path(D2), if the fetched instruction is

a br instruction, then both d1 and d2 must have made the same guess. The lemma statements all

hold accordingly.

Corollary B.3.4. If D∗1 and D∗2 are nonempty schedules such that C D∗1⇓C∗1 and C D∗2⇓C∗2 and

Path(C,D∗1) = Path(C,D∗2), then: For any i ∈ C∗1 .buf , if i ∈ C∗2 .buf , then both C∗1 .buf [i] and

C∗2 .buf [i] were derived from the same physical instruction.

Proof. Let D1 be the prefix of D∗1 such that the final directive in D1 is the latest fetch that affects

i. Let D2 be similarly defined w.r.t. D∗2. Then by Lemma B.3.3, D1 and D2 both fetch the same

physical instruction to index i.

Lemma B.3.5. If d1 and d2 are both execute-type directives, then C1.buf [i] = C2.buf [i] and

o1 = o2.

Proof. We proceed by full induction on the size of D1.

For the base case: if |D1| = 1, then the lemma statements are trivial regardless of the

directive d1.

We know from Corollary B.3.4 that since d1 and d2 both affect the same index i, the two

transient instruction must be derived from the same physical instruction, and thus has the same

register dependencies. For each register dependency r, if the register was calculated by a transient

instruction at a prior index j, we can create prefixes D1, j and D2, j of D1 and D2 respectively that

end at the execute directive that resolves r at buffer index j. By our induction hypothesis, both

D1, j and D2, j calculate the same value v` for r.

We now proceed by cases on the transient instruction being executed.

Op, Store (value). Since all dependencies calculate the same values, both instructions

calculate the same value.

158

Store (address). Both instructions calculate the same address. Since Path(D1) =

Path(D2), both schedules have the same pattern of store-forwarding behavior. Thus execution of

d1 causes a hazard if and only if d2 causes a hazard.

Load. Both instructions calculate the same address, producing the same observations o1

and o2. Since Path(D1) = Path(D2), either d1 and d2 cause the values to be retrieved from the

same prior stores, or they both load values from the same address in memory. By our induction

hypothesis, these values will be the same, so both instructions will resolve to the same value.

Branch. Both instructions calculate the same branch condition, producing the same

observations o1 and o2. Since Path(D1) = Path(D2), execution of d1 causes a misspeculation

hazard if and only if d2 also causes misspeculation hazard.

Lemma B.3.6. If d1 and d2 are both retire directives, then o1 = o2.

Proof. From Lemmas B.3.3 and B.3.5 we know that for both d1 and d2, the transient instructions

to be retired are the same. Thus the produced observations o1 and o2 are also the same.

We now formally define the set of schedules examined by Pitchfork:

Definition B.3.7 (Tool schedules). Given an initial configuration C and a speculative window

size n, we define the set of tool schedules DT (n) recursively as follows: The empty schedule /0 is

in DT (n). If D0 ∈ DT (n) and C D0⇓C0 and |C0.buf |< n, then based on the next instruction to be

fetched (and where i is the index of the fetched instruction):

I op: D0‖fetch;execute i ∈ DT (n).

I load: D0‖fetch;execute i ∈ DT (n).

I store: D0‖fetch;execute i : value ∈ DT (n) and

D0‖fetch;execute i : value;execute i : addr ∈ DT (n).

159

I br: Let b be the “correct” path for the branch condition. Then D0‖fetch: b;execute i ∈

DT (n) and

D0‖fetch: ¬b ∈ DT (n).

Otherwise, if |C0.buf |= n, then we instead extend based on the oldest instruction in the reorder

buffer. If the oldest instruction is a store with an unresolved address, and will not cause a hazard,

then D0‖execute i : addr; retire ∈ DT (n). Otherwise, if the oldest instruction is fully resolved,

then D0‖retire ∈ DT (n).

Proposition B.3.8 (Path coverage). If D1 is a well-formed schedule for C whose reorder buffer

never grows beyond size n, then ∃D2 : Path(D1) = Path(D2)∧D2 ∈ DT (n).

Proof. The proof stems directly from the definition of DT (n); at every branch, both branches are

added to the set of schedules, and every load is able to “skip” any combination of prior stores.

Theorem B.3.9 (Soundness of tool). If speculative execution of C under a schedule D with

speculation bound n produces a trace O that contains at least one secret label, then there exists a

schedule Dt ∈ DT (n) that produces a trace Ot that also contains at least one secret label.

Proof. We can truncate D to a schedule D∗ that ends at the first directive to produce a secret

observation. By Proposition B.3.8 there exists a schedule D0 ∈ DT (n) such that Path(Dt) =

Path(D∗). By following construction of tool schedules as given in Definition B.3.7, we can find a

schedule Dt ∈ DT (n) that satisfies the preconditions for Lemma B.3.5. Then by that same lemma,

Dt produces the same final observation as D∗, which contains a secret label.

160

Bibliography

[1] Johan Agat. Transforming out timing leaks. In 27th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM, 2000.

[2] Sam Ainsworth and Timothy M Jones. MuonTrap: Preventing cross-domain Spectre-
like attacks by capturing speculative state. In 47th Annual International Symposium on
Computer Architecture. ACM/IEEE, 2020.

[3] Nadhem J. Al Fardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS and
DTLS record protocols. In 34th IEEE Symposium on Security and Privacy. IEEE, 2013.

[4] Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O. Myreen, Susmit Sarkar, Peter
Sewell, and Francesco Zappa Nardelli. The semantics of power and ARM multiprocessor
machine code. In Proceedings of the 4th Workshop on Declarative Aspects of Multicore
Programming, 2009.

[5] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire,
Vincent Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub.
Jasmin: High-assurance and high-speed cryptography. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 2017.

[6] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Dupressoir. Verifiable
side-channel security of cryptographic implementations: Constant-time MEE-CBC. In
Fast Software Encryption. Springer, 2016.

[7] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael
Emmi. Verifying constant-time implementations. In 25th USENIX Security Symposium.
USENIX Association, 2016.

[8] José Bacelar Almeida, Manuel Barbosa, Jorge S. Pinto, and Bárbara Vieira. Formal
verification of side-channel countermeasures using self-composition. Science of Computer
Programming, 2013.

[9] AMD. Security analysis of AMD predictive store forwarding. https://www.amd.com/
system/files/documents/security-analysis-predictive-store-forwarding.pdf, 2020.

161

https://www.amd.com/system/files/documents/security-analysis-predictive-store-forwarding.pdf
https://www.amd.com/system/files/documents/security-analysis-predictive-store-forwarding.pdf

[10] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner, and
Hovav Shacham. On subnormal floating point and abnormal timing. In 36th IEEE
Symposium on Security and Privacy. IEEE, 2015.

[11] Andrew W. Appel. Verification of a cryptographic primitive: SHA-256. ACM Transactions
on Programming Languages and Systems, 2015.

[12] ARM. Straight-line speculation. https://developer.arm.com/support/arm-security-updates/
speculative-processor-vulnerability/downloads/straight-line-speculation, 2020.

[13] Arm Mbed. mbed TLS. https://github.com/armmbed/mbedtls, 2018.

[14] Jean-Philippe Aumasson and Yolan Romailler. Automated testing of crypto software using
differential fuzzing. Black Hat USA, 2017.

[15] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David Pichardie. System-
level non-interference for constant-time cryptography. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 2014.

[16] Gilles Barthe, Sunjay Cauligi, Benjamin Gregoire, Adrien Koutsos, Kevin Liao, Tiago
Oliveira, Swarn Priya, Tamara Rezk, and Peter Schwabe. High-assurance cryptography in
the Spectre era. In IEEE S&P, 2021.

[17] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. Secure compilation of side-
channel countermeasures: the case of cryptographic “constant-time”. In Computer Security
Foundations Symposium, 2018.

[18] Gilles Barthe, Tamara Rezk, and Martijn Warnier. Preventing timing leaks through
transactional branching instructions. Electronic Notes in Theoretical Computer Science,
2006.

[19] Lennart Beringer, Adam Petcher, Q. Ye Katherine, and Andrew W. Appel. Verified
correctness and security of openssl hmac. In 24th USENIX Security Symposium, 2015.

[20] Daniel J. Bernstein. Cache-timing attacks on AES. Technical report, 2005. https://cr.yp.to/
antiforgery/cachetiming-20050414.pdf.

[21] Daniel J. Bernstein. The Poly1305-AES message-authentication code. In Fast Software
Encryption. IACR, 2005.

[22] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In International
Workshop on Public Key Cryptography. Springer, 2006.

[23] Daniel J. Bernstein. qhasm: Tools to help write high-speed software. https://cr.yp.to/
qhasm.html, 2007.

[24] Daniel J. Bernstein. The Salsa20 family of stream ciphers. In New Stream Cipher Designs.
Springer, 2008.

162

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/downloads/straight-line-speculation
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability/downloads/straight-line-speculation
https://github.com/armmbed/mbedtls
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/qhasm.html
https://cr.yp.to/qhasm.html

[25] Daniel J. Bernstein. Cryptography in NaCl. Technical report, 2009. http://cr.yp.to/
highspeed/naclcrypto-20090310.pdf.

[26] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of a new
cryptographic library. In International Conference on Cryptology and Information Security
in Latin America. Springer, 2012.

[27] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and Pierre-
Yves Strub. Implementing tls with verified cryptographic security. In 2013 IEEE Sympo-
sium on Security and Privacy. IEEE, 2013.

[28] Atri Bhattacharyya, Andrés Sánchez, Esmaeil M Koruyeh, Nael Abu-Ghazaleh, Chengyu
Song, and Mathias Payer. SpecROP: Speculative exploitation of ROP chains. In 23rd
International Symposium on Research in Attacks, Intrusions and Defenses, 2020.

[29] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessandro
Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. SMoTherSpectre: Exploiting
speculative execution through port contention. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019.

[30] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino, Jacob R. Lorch,
Bryan Parno, Ashay Rane, Srinath Setty, and Laure Thompson. Vale: Verifying high-
performance cryptographic assembly code. In 26th USENIX Security Symposium. USENIX
Association, 2017.

[31] Benjamin A. Braun, Suman Jana, and Dan Boneh. Robust and efficient elimination of
cache and timing side channels. https://arxiv.org/abs/1506.00189, 2015.

[32] David Brumley and Dan Boneh. Remote timing attacks are practical. Computer Networks,
2005.

[33] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina Minkin,
Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van Bulck, and Yuval
Yarom. Fallout: Leaking data on Meltdown-resistant CPUs. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security. ACM, 2019.

[34] Claudio Canella, Sai Manoj Pudukotai Dinakarrao, Daniel Gruss, and Khaled N Kha-
sawneh. Evolution of defenses against transient-execution attacks. In Great Lakes Sympo-
sium on VLSI, 2020.

[35] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp
Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. A systematic evaluation of
transient execution attacks and defenses. In 28th USENIX Security Symposium. USENIX
Association, 2019.

163

http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
https://arxiv.org/abs/1506.00189

[36] Sunjay Cauligi, Craig Disselkoen, Klaus v Gleissenthall, Dean Tullsen, Deian Stefan,
Tamara Rezk, and Gilles Barthe. Constant-time foundations for the new Spectre era. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2020.

[37] Sunjay Cauligi, Craig Disselkoen, Klaus von Gleissenthall, Dean Tullsen, Deian Stefan,
Tamara Rezk, and Gilles Barthe. Towards constant-time foundations for the new Spectre
era. https://arxiv.org/pdf/1910.01755v2.pdf, 2019.

[38] Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Johannesmeyer, Yunlu Huang, Ranjit
Jhala, and Deian Stefan. FaCT: A flexible, constant-time programming language. In Secure
Development Conference. IEEE, 2017.

[39] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby, John
Renner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala, and Deian Stefan. FaCT: A DSL
for timing-sensitive computation. https://fact.programming.systems/FaCT_extended.pdf,
2019.

[40] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby, John
Renner, Benjamin Gregoire, Gilles Barthe, Ranjit Jhala, and Deian Stefan. FaCT: A DSL
for timing-sensitive computation. In 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 2019.

[41] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod Subramanyan. A formal
approach to secure speculation. In 2019 IEEE 32nd Computer Security Foundations
Symposium, 2019.

[42] Tien-Fu Chen and Jean-Loup Baer. Reducing memory latency via non-blocking and
prefetching caches. In 5th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 1992.

[43] David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible alias
protection. In Proceedings of the 13th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications. ACM, 1998.

[44] Robert J Colvin and Kirsten Winter. An abstract semantics of speculative execution for
reasoning about security vulnerabilities. In International Symposium on Formal Methods,
2019.

[45] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter. Practical
mitigations for timing-based side-channel attacks on modern x86 processors. In 30th IEEE
Symposium on Security and Privacy,. IEEE, 2009.

[46] Cryptography Coding Standard. Coding rules. https://cryptocoding.net/index.php/Coding_
rules, 2016.

164

https://arxiv.org/pdf/1910.01755v2.pdf
https://fact.programming.systems/FaCT_extended.pdf
https://cryptocoding.net/index.php/Coding_rules
https://cryptocoding.net/index.php/Coding_rules

[47] Lesly-Ann Daniel, Sebastian Bardin, and Tamara Rezk. Hunting the haunter — efficient
relational symbolic execution for Spectre with Haunted RelSE. In Network and Distributed
Systems Security Symposium 2021. Internet Society, 2021.

[48] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. Binsec/Rel: Efficient relational
symbolic execution for constant-time at binary-level. In 41st IEEE Symposium on Security
and Privacy. IEEE, 2020.

[49] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. Tools and
Algorithms for the Construction and Analysis of Systems, 2008.

[50] Frank Denis. libsodium. https://github.com/jedisct1/libsodium, 2019.

[51] Craig Disselkoen, Radha Jagadeesan, Alan Jeffrey, and James Riely. The code that never
ran: Modeling attacks on speculative evaluation. In 40th IEEE Symposium on Security and
Privacy. IEEE, 2019.

[52] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke. Cacheaudit: A tool for
the static analysis of cache side channels. ACM Transactions on Information and System
Security, 2015.

[53] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chli-
pala. Systematic generation of fast elliptic curve cryptography implementations.
Technical report, 2018. https://people.csail.mit.edu/jgross/personal-website/papers/
2018-fiat-crypto-pldi-draft.pdf.

[54] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Ponomarev. Branchscope:
A new side-channel attack on directional branch predictor. In 23rd International Conference
on Architectural Support for Programming Languages and Operating Systems. ACM, 2018.

[55] Mohammad Rahmani Fadiheh, Johannes Müller, Raik Brinkmann, Subhasish Mitra, Do-
minik Stoffel, and Wolfgang Kunz. A formal approach for detecting vulnerabilities to
transient execution attacks in out-of-order processors. In 57th ACM/IEEE Design Automa-
tion Conference. ACM/IEEE, 2020.

[56] Matt Fleming. A thorough introduction to eBPF. https://lwn.net/Articles/740157/, 2017.

[57] Jacob Fustos, Farzad Farshchi, and Heechul Yun. SpectreGuard: An efficient data-centric
defense mechanism against Spectre attacks. In 56th ACM/IEEE Design Automation
Conference, 2019.

[58] GCC Team. Using the gnu compiler collection (gcc): Instrumentation options. https:
//gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html, 2019.

[59] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware. Journal of Cryptographic
Engineering, 2018.

165

https://github.com/jedisct1/libsodium
https://people.csail.mit.edu/jgross/personal-website/papers/2018-fiat-crypto-pldi-draft.pdf
https://people.csail.mit.edu/jgross/personal-website/papers/2018-fiat-crypto-pldi-draft.pdf
https://lwn.net/Articles/740157/
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

[60] Jay L Gischer. The equational theory of pomsets. Theoretical Computer Science, 1988.

[61] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cristiano Giuffrida.
Speculative probing: Hacking blind in the Spectre era. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020.

[62] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Translation leak-aside
buffer: Defeating cache side-channel protections with TLB attacks. In 27th USENIX
Security Symposium, 2018.

[63] Roberto Guanciale, Musard Balliu, and Mads Dam. Inspectre: Breaking and fixing
microarchitectural vulnerabilities by formal analysis. In CCS, 2020.

[64] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez. SPEC-
TECTOR: principled detection of speculative information flows. In 41st IEEE Symposium
on Security and Privacy. IEEE, 2020.

[65] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. Hardware-software contracts
for secure speculation. In 42nd IEEE Symposium on Security and Privacy. IEEE, 2021.

[66] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang, Meng Wu, and
Zhiqiang Zuo. SpecuSym: Speculative symbolic execution for cache timing leak detection.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering,
2020.

[67] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and Jf Bastien. Bringing the web up to speed with
WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2017.

[68] Pat Hickey. Announcing Lucet: Fastly’s native WebAssembly compiler and runtime. https:
//www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime,
2019.

[69] Jann Horn. Speculative execution, variant 4: speculative store bypass. https://bugs.
chromium.org/p/project-zero/issues/detail?id=1528, 2018.

[70] Intel. Speculative store bypass / CVE-2018-3639 / INTEL-SA-00115. https://software.
intel.com/security-software-guidance/software-guidance/speculative-store-bypass, 2018.

[71] Intel. Deep dive: Intel analysis of microarchitectural data sampling. https://software.intel.
com/security-software-guidance/software-guidance/microarchitectural-data-sampling,
2019.

[72] Intel. An Optimized Mitigation Approach for Load Value Injec-
tion. https://software.intel.com/security-software-guidance/best-practices/
optimized-mitigation-approach-load-value-injection, 2020.

166

https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/software-guidance/speculative-store-bypass
https://software.intel.com/security-software-guidance/software-guidance/microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/software-guidance/microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/best-practices/optimized-mitigation-approach-load-value-injection
https://software.intel.com/security-software-guidance/best-practices/optimized-mitigation-approach-load-value-injection

[73] Intel. Side channel mitigation by product CPU
model. https://software.intel.com/security-software-guidance/
processors-affected-transient-execution-attack-mitigation-product-cpu-model, 2020.

[74] Intel 64 and IA-32 architectures software developer’s manual, 2021.

[75] Saad Islam, Ahmad Moghimi, Ida Bruhns, Moritz Krebbel, Berk Gulmezoglu, Thomas
Eisenbarth, and Berk Sunar. SPOILER: Speculative load hazards boost rowhammer and
cache attacks. In 28th USENIX Security Symposium. USENIX Association, 2019.

[76] Md Hafizul Islam Chowdhuryy, Hang Liu, and Fan Yao. BranchSpec: Information
leakage attacks exploiting speculative branch instruction executions. In 38th International
Conference on Computer Design. IEEE, 2020.

[77] Jann Horn. Reading privileged memory with a side-channel. https://googleprojectzero.
blogspot.com/2018/01/reading-privileged-memory-with-side.html, 2018.

[78] Ira Ray Jenkins, Prashant Anantharaman, Rebecca Shapiro, J. Peter Brady, Sergey Bratus,
and Sean W. Smith. Ghostbusting: Mitigating spectre with intraprocess memory isolation.
In Proceedings of the 7th Symposium on Hot Topics in the Science of Security. ACM, 2020.

[79] Burt Kaliski. PKCS #7: Cryptographic Message Syntax Version 1.5. RFC 2315, 1998.

[80] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry Ev-
tyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Safespec: Banishing the Spectre
of a Meltdown with leakage-free speculation. In 56th ACM/IEEE Design Automation
Conference. ACM/IEEE, 2019.

[81] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and Joel Emer.
DAWG: A defense against cache timing attacks in speculative execution processors. In
51st Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 2018.

[82] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Overflows: Attacks and
Defenses. https://arxiv.org/pdf/1807.03757.pdf, 2018.

[83] Ofek Kirzner and Adam Morrison. An analysis of speculative type confusion vulnerabilities
in the wild. In 30th USENIX Security Symposium, 2021.

[84] Paul Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Advances in Cryptology. Springer, 1996.

[85] Paul Kocher. Spectre mitigations in Microsoft’s C/C++ compiler. https://www.paulkocher.
com/doc/MicrosoftCompilerSpectreMitigation.html, 2018.

[86] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre attacks: Exploiting speculative execution. In 40th IEEE Symposium on
Security and Privacy. IEEE, 2019.

167

https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://arxiv.org/pdf/1807.03757.pdf
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html

[87] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and Nael Abu-
Ghazaleh. Spectre returns! speculation attacks using the return stack buffer. In 12th
USENIX Workshop on Offensive Technologies (WOOT 18). USENIX Association, 2018.

[88] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N Khasawneh,
Chengyu Song, and Nael Abu-Ghazaleh. SPECCFI: Mitigating Spectre attacks using
CFI informed speculation. In 41st IEEE Symposium on Security and Privacy, 2020.

[89] Shuvendu K. Lahiri, Sanjit A. Seshia, and Randal E. Bryant. Modeling and verification of
out-of-order microprocessors in uclid. In International Conference on Formal Methods in
Computer-Aided Design. Springer, 2002.

[90] Adam Langley. curve25519-donna. https://github.com/agl/curve25519-donna.

[91] Adam Langley. ImperialViolet - lucky thirteen attack on tls cbc. https://www.imperialviolet.
org/2013/02/04/luckythirteen.html, 2013.

[92] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. Conditional speculation:
An effective approach to safeguard out-of-order execution against Spectre attacks. In IEEE
International Symposium on High Performance Computer Architecture, 2019.

[93] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders
Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike
Hamburg. Meltdown: Reading kernel memory from user space. In 27th USENIX Security
Symposium. USENIX Association, 2018.

[94] Chang Liu, Michael Hicks, and Elaine Shi. Memory trace oblivious program execution. In
IEEE 26th Computer Security Foundations Symposium. IEEE, 2013.

[95] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish Narayanasamy,
and Baris Kasikci. DOLMA: Securing speculation with the principle of transient non-
observability. In 30th USENIX Security Symposium, 2021.

[96] Sergio Maffeis, John C Mitchell, and Ankur Taly. Object capabilities and isolation of
untrusted web applications. In 31st IEEE Symposium on Security and Privacy, 2010.

[97] Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative execution using return
stack buffers. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018.

[98] Andrea Mambretti, Matthias Neugschwandtner, Alessandro Sorniotti, Engin Kirda,
William Robertson, and Anil Kurmus. Speculator: a tool to analyze speculative exe-
cution attacks and mitigations. In Proceedings of the 35th Annual Computer Security
Applications Conference, 2019.

[99] Andrea Mambretti, Alexandra Sandulescu, Alessandro Sorniotti, William Robertson, Engin
Kirda, and Anil Kurmus. Bypassing memory safety mechanisms through speculative
control flow hijacks. https://arxiv.org/pdf/2003.05503.pdf, 2020.

168

https://github.com/agl/curve25519-donna
https://www.imperialviolet.org/2013/02/04/luckythirteen.html
https://www.imperialviolet.org/2013/02/04/luckythirteen.html
https://arxiv.org/pdf/2003.05503.pdf

[100] Ross McIlroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, and Toon Verwaest. Spectre is
here to stay: An analysis of side-channels and speculative execution. https://arxiv.org/pdf/
1902.05178, 2019.

[101] Tyler McMullen. Lucet: A compiler and runtime for high-concurrency low-latency
sandboxing. Principles of Secure Compilation, 2020.

[102] Microsoft. Spectre mitigations in MSVC. https://devblogs.microsoft.com/cppblog/
spectre-mitigations-in-msvc/, 2018.

[103] John C. Mitchell, Rahul Sharma, Deian Stefan, and Joe Zimmerman. Information-flow
control for programming on encrypted data. In Computer Security Foundations Symposium.
IEEE, 2012.

[104] Bodo Moeller. Security of CBC ciphersuites in SSL/TLS: Problems and countermeasures.
https://www.openssl.org/~bodo/tls-cbc.txt, 2004.

[105] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk Sunar. Memjam: A false
dependency attack against constant-time crypto implementations. International Journal of
Parallel Programming, 2019.

[106] Daniel Moghimi. Data sampling on MDS-resistant 10th Generation Intel Core (Ice Lake).
arXiv:2007.07428, 2020.

[107] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz. Medusa: Microarchitec-
tural data leakage via automated attack synthesis. In 29th USENIX Security Symposium,
2020.

[108] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The program counter
security model: Automatic detection and removal of control-flow side channel attacks. In
Information Security and Cryptology. Springer, 2006.

[109] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, 1999.

[110] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel
Nystrom. Jif: Java information flow, 2006. http://www.cs.cornell.edu/jif.

[111] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan Johnson, Zhao
Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham, Dean Tullsen, and Deian
Stefan. Swivel: Hardening WebAssembly against Spectre. In 30th USENIX Security
Symposium, 2021.

[112] Van Chan Ngo, Mario Dehesa-Azuara, Matthew Fredrikson, and Jan Hoffmann. Verifying
and synthesizing constant-resource implementations with types. In 38th IEEE Symposium
on Security and Privacy. IEEE, 2017.

169

https://arxiv.org/pdf/1902.05178
https://arxiv.org/pdf/1902.05178
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://www.openssl.org/~bodo/tls-cbc.txt
http://www.cs.cornell.edu/jif

[113] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. SpecFuzz:
Bringing Spectre-type vulnerabilities to the surface. In 29th USENIX Security Symposium,
2020.

[114] The OpenSSL Project. OpenSSL. https://github.com/openssl/openssl.

[115] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: the
case of AES. In Cryptographers’ Track at the RSA Conference. Springer, 2006.

[116] Marco Patrignani and Marco Guarnieri. Exorcising Spectres with secure compilers. https:
//arxiv.org/pdf/1910.08607, 2020.

[117] Jérémy Planul and John C. Mitchell. Oblivious program execution and path-sensitive
non-interference. In 26th IEEE Computer Security Foundations Symposium. IEEE, 2013.

[118] Thomas Pornin. Why constant-time crypto? https://www.bearssl.org/constanttime.html,
2016.

[119] Thomas Pornin. Constant-time toolkit. https://github.com/pornin/CTTK, 2018.

[120] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananan-
dro, Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-Lavaud, Cătălin Hriţcu,
Karthikeyan Bhargavan, Cédric Fournet, and Nikhil Swamy. Verified low-level program-
ming embedded in F*. Proceedings of the ACM on Programming Languages, 2017.

[121] Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan, Peng Li, Heng Yin, and Tao Wei.
SpecTaint: Speculative taint analysis for discovering Spectre gadgets. In Network and
Distributed Systems Security Symposium 2021, 2021.

[122] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital side-channels
through obfuscated execution. In 24th USENIX Security Symposium. USENIX Association,
2015.

[123] Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site isolation: Process separation
for web sites within the browser. In 28th USENIX Security Symposium, 2019.

[124] Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan, Dean M Tullsen,
and Ashish Venkat. I see dead µops: Leaking secrets via Intel/AMD micro-op caches. In
ACM/IEEE 48th Annual International Symposium on Computer Architecture, 2021.

[125] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. Dude, is my code constant time?
In 2017 Design, Automation & Test in Europe Conference & Exhibition. IEEE, 2017.

[126] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get off of
my cloud: Exploring information leakage in third-party compute clouds. In Proceedings
of the 16th ACM conference on Computer and communications security. ACM, 2009.

170

https://github.com/openssl/openssl
https://arxiv.org/pdf/1910.08607
https://arxiv.org/pdf/1910.08607
https://www.bearssl.org/constanttime.html
https://github.com/pornin/CTTK

[127] Bruno Rodrigues, Fernando Magno Quintão Pereira, and Diego F. Aranha. Sparse represen-
tation of implicit flows with applications to side-channel detection. In 25th International
Conference on Compiler Construction. ACM, 2016.

[128] Stephen Röttger and Artur Janc. A Spectre proof-of-concept for a Spectre-proof web. https:
//security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html, 2021.

[129] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 2003.

[130] Gururaj Saileshwar and Moinuddin K Qureshi. CleanupSpec: An “undo” approach to safe
speculation. In 52nd Annual IEEE/ACM International Symposium on Microarchitecture,
2019.

[131] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss. Store-to-leak for-
warding: Leaking data on meltdown-resistant cpus. https://arxiv.org/pdf/1905.05725,
2019.

[132] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Florian Kargl, and
Daniel Gruss. ConTExT: A generic approach for mitigating Spectre. In NDSS, 2020.

[133] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina, Thomas
Prescher, and Daniel Gruss. ZombieLoad: Cross-Privilege-Boundary Data Sampling. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2019.

[134] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss. Net-
Spectre: Read arbitrary memory over network. In European Symposium on Research in
Computer Security, 2019.

[135] Martin Schwarzl, Claudio Canella, Daniel Gruss, and Michael Schwarz. Specfuscator:
Evaluating branch removal as a Spectre mitigation. In Financial Cryptography and Data
Security, 2021.

[136] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. Security analysis of processor
instruction set architecture for enforcing control-flow integrity. In Proceedings of the 8th
International Workshop on Hardware and Architectural Support for Security and Privacy,
2019.

[137] Zhuojia Shen, Jie Zhou, Divya Ojha, and John Criswell. Restricting control flow during
speculative execution with Venkman. https://arxiv.org/pdf/1903.10651, 2019.

[138] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Audrey
Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel, and Giovanni
Vigna. SoK: (State of) The Art of War: Offensive Techniques in Binary Analysis. In 37th
IEEE Symposium on Security and Privacy. IEEE, 2016.

171

https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://arxiv.org/pdf/1905.05725
https://arxiv.org/pdf/1903.10651

[139] Laurent Simon, David Chisnall, and Ross J. Anderson. What you get is what you C:
controlling side effects in mainstream C compilers. In 3rd IEEE European Symposium on
Security and Privacy. IEEE, 2018.

[140] Juraj Somorovsky. Curious padding oracle in OpenSSL (CVE-2016-2107). https:
//web-in-security.blogspot.co.uk/2016/05/curious-padding-oracle-in-openssl-cve.html,
2016.

[141] Deian Stefan, Pablo Buiras, Edward Z. Yang, Amit Levy, David Terei, Alejandro Russo,
and David Mazières. Eliminating cache-based timing attacks with instruction-based
scheduling. In European Symposium on Research in Computer Security. Springer, 2013.

[142] Marius Sternberger. Spectre-ng: An avalanche of attacks. In Wiesbaden Workshop on
Advanced Microkernel Operating Systems, 2018.

[143] Josef Svenningsson and David Sands. Specification and verification of side channel
declassification. In International Workshop on Formal Aspects in Security and Trust.
Springer, 2009.

[144] Gang Tan. Principles and Implementation Techniques of Software-Based Fault Isolation.
Now Publishers Inc., 2017.

[145] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Context-sensitive fencing:
Securing speculative execution via microcode customization. In Proceedings of the 24th
International Conference on Architectural Support for Programming Languages and
Operating Systems, 2019.

[146] Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks on AES, and
countermeasures. Journal of Cryptology, 2010.

[147] Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. Certified verification of algebraic
properties on low-level mathematical constructs in cryptographic programs. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM,
2017.

[148] Paul Turner. Retpoline: a software construct for preventing branch-target-injection. https:
//support.google.com/faqs/answer/7625886, 2019.

[149] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-order execution. In
27th USENIX Security Symposium, 2018.

[150] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel
Genkin, Yarom Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens. LVI: Hijacking tran-
sient execution through microarchitectural load value injection. In 41st IEEE Symposium
on Security and Privacy, 2020.

172

https://web-in-security.blogspot.co.uk/2016/05/curious-padding-oracle-in-openssl-cve.html
https://web-in-security.blogspot.co.uk/2016/05/curious-padding-oracle-in-openssl-cve.html
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886

[151] Marco Vassena, Craig Disselkoen, Klaus V Gleissenthall, Sunjay Cauligi, Rami Gökhan
Kici, Ranjit Jhala, Dean Tullsen, and Deian Stefan. Automatically eliminating speculative
leaks from cryptographic code with Blade. In Proceedings of the ACM on Programming
Languages, 2021.

[152] Serge Vaudenay. Security flaws induced by CBC padding — applications to SSL, IPSEC,
WTLS. . . . In International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2002.

[153] Ilias Vougioukas, Nikos Nikoleris, Andreas Sandberg, Stephan Diestelhorst, Bashir M
Al-Hashimi, and Geoff V Merrett. BRB: Mitigating branch predictor side-channels. In
2019 IEEE International Symposium on High Performance Computer Architecture, 2019.

[154] Guanhua Wang, Sudipta Chattopadhyay, Arnab Kumar Biswas, Tulika Mitra, and Ab-
hik Roychoudhury. KLEESpectre: Detecting information leakage through speculative
cache attacks via symbolic execution. ACM Transactions on Software Engineering and
Methodology, 2020.

[155] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and Abhik Roy-
choudhury. oo7: Low-overhead defense against spectre attacks via program analysis. IEEE
Transactions on Software Engineering, 2019.

[156] Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan. CT-Wasm:
Type-driven secure cryptography for the web ecosystem. Proceedings of the ACM on
Programming Languages, 2019.

[157] WebAssembly Community Group. Webassembly. http://webassembly.org, 2018.

[158] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F Wenisch, and Baris Kasikci. NDA:
Preventing speculative execution attacks at their source. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019.

[159] Henry Wong. Store-to-load forwarding and memory disambiguation in x86 processors.
https://blog.stuffedcow.net/2014/01/x86-memory-disambiguation/, 2014.

[160] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. Eliminating timing
side-channel leaks using program repair. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM, 2018.

[161] Meng Wu and Chao Wang. Abstract interpretation under speculative execution. In 40th
SIGPLAN ACM Conference on Programming Language Design and Implementation. ACM,
2019.

[162] Wenjie Xiong and Jakub Szefer. Survey of transient execution attacks and their mitigations.
ACM Computing Surveys, 2021.

173

http://webassembly.org
https://blog.stuffedcow.net/2014/01/x86-memory-disambiguation/

[163] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher Fletcher, and
Josep Torrellas. Invisispec: Making speculative execution invisible in the cache hierarchy.
In 51st Annual IEEE/ACM International Symposium on Microarchitecture, 2018.

[164] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: a timing attack on openssl
constant-time RSA. Journal of Cryptographic Engineering, 2017.

[165] Katherine Q. Ye, Matthew Green, Naphat Sanguansin, Lennart Beringer, Adam Petcher,
and Andrew W. Appel. Verified correctness and security of mbedTLS HMAC-DRBG. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017.

[166] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis Ormandy,
Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native client: A sandbox for portable,
untrusted x86 native code. In 30th IEEE Symposium on Security and Privacy, 2009.

[167] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and Christo-
pher W Fletcher. Speculative taint tracking (STT): A comprehensive protection for spec-
ulatively accessed data. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019.

[168] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. A hardware design
language for timing-sensitive information-flow security. ACM SIGPLAN Notices, 2015.

[169] Tao Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. Exploring branch predictors
for constructing transient execution trojans. In Proceedings of the 25th International
Conference on Architectural Support for Programming Languages and Operating Systems,
2020.

[170] Lutan Zhao, Peinan Li, Rui Hou, Jiazhen Li, Michael C Huang, Lixin Zhang, Xuehai
Qian, and Dan Meng. A lightweight isolation mechanism for secure branch predictors.
https://arxiv.org/pdf/2005.08183, 2020.

[171] Ziqiao Zhou, Michael K. Reiter, and Yinqian Zhang. A software approach to defeating
side channels in last-level caches. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016.

[172] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin
Beurdouche. HACL*: a verified modern cryptographic library. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. ACM, 2017.

174

https://arxiv.org/pdf/2005.08183

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Timing side-channels
	Spectre vulnerabilities
	Principled and practical foundations
	Outline

	FaCT: A DSL for Timing-Sensitive Computation
	Background
	FaCT
	Core language
	Type system

	Front-end compiler
	Return deferral
	Branch removal
	Compiler correctness and security

	Implementation and evaluation
	Case studies
	User study

	Limitations and future work
	Related work

	Constant-Time Foundations for the New Spectre Era
	Motivating examples
	Speculative semantics and security
	Speculative constant-time
	Overview of the semantics
	Speculative execution
	Memory operations
	Aliasing prediction
	Speculation barriers
	Indirect jumps
	Function calls

	Detecting violations
	Evaluation procedure
	Detected violations

	Related work
	Conclusion

	Towards Verified Spectre-Resistant SFI Sandboxing
	Formal model
	Syntax
	Architectural semantics
	Attackers and observations
	Speculative semantics

	Formalizing SFI security
	Non-interference
	SFI security properties
	Establishing security
	Swivel-SFI
	Swivel-CET

	Conclusion

	Practical Foundations for Spectre Defenses
	Preliminaries
	Breaking cryptography with Spectre
	Breaking software isolation with Spectre
	Security properties and execution semantics

	Choices in semantics
	Leakage models
	Non-interference and policies
	Execution models
	Nondeterminism
	Higher-level abstractions
	Expressivity and microarchitectural features

	Related Work
	Systematization of Spectre attacks and defenses
	Hardware-based Spectre defenses
	Software-hardware co-design
	Other transient execution attacks

	Conclusion

	Conclusion
	FaCT: Deferred definitions and proofs
	Semantics
	Return deferral
	Branch removal

	Pitchfork: Full proofs
	Consistency
	Security
	Soundness of Pitchfork

	Bibliography

