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ABSTRACT OF THE THESIS 

 

Investigating the Association Between Uncommon Exposures and Rare Disease Outcomes: 

an Application of a Simulation Approach to 

Extremely Low Frequency Magnetic Field (ELF-MF) and Childhood Leukemia 

 

By 

 

Fan Zhao 

 

Master of Science in Epidemiology 

University of California, Los Angeles, 2020 

Professor Leeka I. Kheifets, Chair 

 

Background: Studying risk factors of rare outcomes can be difficult as single studies tend to have 

few exposed cases, resulting in rather wide confidence intervals. Therefore, combination of 

multiple studies is usually necessary to draw a conclusion. Pooling of individual patient data (IPD) 

is considered the gold standard due to increased statistical power through large sample sizes and 

other advantages. However, present pooling is limited to studies of the same designs, which does 

not make full use of existing data.  

Objectives: To generalize pooling to studies of different designs (including cohort study, case 

control study, nested case control study and matched case control study), by incorporating 
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simulation of the association of extremely low frequency magnetic field (ELF-MF) and childhood 

leukemia.   

Method: I first simulated large cohort and case control samples based on parameters extracted 

from both the literature and existing large cohort and case control datasets, which included ELF-

MF exposure prevalence, childhood leukemia incidence rate, prevalence of confounders including 

age, gender, race and SES. Then I combined these simulated data using three different methods: 

two stage meta-analysis, one stage pooling and two stage meta-analysis with pooling. 

Results: Estimates from three synthesis methods were close to the causal estimate and there was 

no obvious trend of overestimation or underestimation. One stage pooling seemed to have the 

worst efficiency with the widest 95%CI but the difference was not significant. 

Conclusion: The performance of three synthesis methods in the study was not certain. Further 

simulations with varying parameters and possible mathematical derivations are needed to assess 

why and when these methods lead to different effect estimates. 

Keywords: Individual patient data (IPD); meta-analysis; pooling; simulation with R; Extremely 

Low Frequency Magnetic Field (ELF-MF); childhood leukemia 
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Investigating the Association Between Uncommon Exposures and Rare Disease Outcomes: 

an Application of a Simulation Approach to Extremely Low Frequency Magnetic Field 

(ELF-MF) and Childhood Leukemia 

 

Introduction 

Rare diseases are defined by the Rare Disease Act of 2002 as diseases affecting 200,000 

individuals or fewer in the United States. (1) Research on treatments or management strategies for 

rare diseases can be challenging primarily due to the limited number of individuals who will be 

eligible to participate in any given study, resulting in underpowered studies. (2,3) Therefore, 

combination of multiple studies is usually necessary to draw a conclusion.  

Traditional meta-analysis methods involve combining and analyzing aggregate data (usually 

obtained from published studies). (4) Pooling of individual participant data (IPD) has been 

considered the gold standard. (5) By standardization of data and analyses across studies, IPD 

removes potential sources of heterogeneity across studies and increases the statistical power and 

precision of estimates. (6–8) 

However, studies of rare outcome tend to be of different designs. (9) A case-control design is 

often necessary for studies investigating rare outcomes. Other possibilities include nested case 

control designs, nested prospective studies and prospective cohort designs. (9,10) To combine 

information from these studies with disparate designs is necessary to make full use of existing IPD 

and several authors proposed generalized pooling methods. Brumback et al. proposed two stage 

meta-analysis with maximum likelihood estimations (MLE). (11) In the Hormonal Factors in 

Breast Cancer collaborative study, researchers have implemented Mantel-Haenszel stratified two 

stage meta-analysis. (12) Ahlbom et al. selected a control group from the Finland cohort study, 

making it into matched case control study, and then pooled with other 8 case control studies. (13)  
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In this project, we show the relative performance of these generalized pooling methods applied 

to studies of different designs (including cohort studies, case control studies, nested case control 

studies and matched case control studies), by incorporating simulation of the association of 

extremely low frequency magnetic field (ELF-MF) on childhood leukemia. 

The investigation of the possible relation between magnetic field exposure and the occurrence 

of childhood cancer started with Wertheimer and Leeper’s study. (14) Using wire codes, increased 

cancer occurrence was found to be associated with occupancy in higher exposure homes. Although 

not provided in the paper, calculated point estimates of odds ratio (OR) were consistently in the 

2.0-3.0 range. However, this study has been criticized concerning exposure assessment, exposure 

misclassification by study investigators and absence of information on potential confounders such 

as maternal smoking or use of x-rays. (15) To address some of the shortcomings, others used field 

measurements, but these measurements were vulnerable to nonresponse bias. (16) The methods of 

subject identification and selection could also introduce bias. Controls tended to be more 

residentially stable compared with cases and the possibility that mobility patterns of cases are 

affected by the disease could bias the results in a manner that would not have been identifiable 

with the available data. (16) To address this, studies utilized calculated fields. (15,17,18) 

Due to the combination of an uncommon high exposure and a rare disease outcome, as well as 

possible confounding, exposure misclassification and selection bias by social economic status 

(SES) and mobility, epidemiologic evidence linking ELF-MF exposure to childhood leukemia 

appeared inconsistent, before the following pooled analyses were conducted.  Greenland et al. and 

Ahlbom et al. pooled the major epidemiological studies in 2000, and reported an increased 

childhood leukemia risk associated with ELF-MF exposure above 0.3 or 0.4 uT (OR=1.69, 95% 

CI 1.25-2.29; OR=2.00, 95% CI 1.27-3.13 respectively). (13,19) A pooled analysis of ELF-MF 
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and childhood leukemia studies published after 2000 had similar, albeit somewhat reduced risk 

(OR=1.44, CI 0.88-2.36 for above 0.3uT). (20)  

Given that some 40 epidemiologic studies have examined the relationship of magnetic fields or 

its surrogates and childhood leukemia, little can be gained from further repetition of investigations 

of risks at moderate and low exposure levels, unless such studies can be designed to test specific 

hypotheses, such as selection bias or aspects of exposure not previously captured. (21,22) New 

approaches are needed to elucidate this consistent, but small risk.  One such approach depends on 

the presence in some apartment buildings of indoor substations, adjacent to living areas. In some 

circumstances, the apartment immediately above (or next to) the substation can receive an elevated 

exposure from it. (23–28) Assembling a cohort of children who have lived in such buildings and 

comparing different apartments in the same building, which are expected to have similar socio-

economic characteristics, may be a way of avoiding socioeconomic bias, and assessing exposure 

without requiring subject participation. The study, known as “TransExpo,” will be feasible only as 

an international collaboration, because of the low prevalence of such exposure situations in any 

one country. (29) The attraction of TransExpo includes objective exposure assessment blind to 

case/controls status, avoidance of selection bias due to differential participation of cases and 

controls, some control of unidentified confounding, and subjects with high exposure. However, 

different designs are being used due to various limitations in the availability and quality of 

information in different countries. 
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Methods 

Aim 

The aim of this paper is to show the relative performance of one stage and two stage pooling of 

rare outcomes studies with different designs, based on the association of ELF-MF and childhood 

leukemia. 

Simulation set up 

I first simulated large cohort, nested case control and matched case control samples based on 

parameters extracted from both the literature and existing large cohort and case control datasets 

that included ELF-MF exposure and childhood leukemia incidence. To accommodate matched 

case control studies, I also included confounders as matching factors (for example, in some 

countries buildings with transformers in which cases lived are identified and controls are selected 

from the same buildings, i.e. matched on buildings). For the sake of simplicity, I only simulated a 

general confounding variable. I also assumed no measurement error and no selection bias.  

For the three cohort studies, I set sample sizes to 100,000, 500,000 and 1,000,000 with the same 

ELF-MF prevalence but they varied due to randomness. Childhood leukemia incidence was 0.05% 

among children and the prevalence of the confounder was 5%. I assumed that these variables 

followed the Bernoulli distributions. The simulation settings are presented in Table 1, based on the 

causal structure DAG (Figure 1). In particular, the probability of being exposed to ELF-MF was 

specified as: 

𝑃𝐸 =
exp⁡(𝛾0+𝛾𝐶𝐶)

1+exp⁡(𝛾0+𝛾𝐶𝐶)
 (1) 

Similarly, the probability of leukemia given the ELF-MF exposure and the confounder was 

specified as: 
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𝑃𝐷 =
exp⁡(𝛽0+𝛽𝐸𝐸+𝛽𝐶𝐶)

1+exp⁡(𝛽0+𝛽𝐸𝐸+𝛽𝐶𝐶)
 , where exp (𝛽𝐸) is interpreted as odds ratio (OR) (2) 

Featuring studies of rare outcome and exposure, it was often when there were no exposed cases 

in the above cohort simulations. Therefore, instead of sampling and selecting from cohort studies 

to get  nested case control and matched case control studies, which poses technical difficulties in 

data simulation, I manipulated the feature of case control studies that controls be representative of 

the total population in terms of exposure and covariates prevalence, and implemented the 

following simulation method. 

For nested case control studies, I first simulated the control arm with the same model (1) as the 

cohort to get the confounder as well as exposure. Then I calculated the prevalence of exposure and 

confounder in the case arm based on the following relationship with OR: 

𝑂𝑅 = exp⁡(𝛽𝐸) =
𝑙𝑜𝑔𝑂𝑑𝑑𝑠𝑐𝑎𝑠𝑒

𝑙𝑜𝑔𝑂𝑑𝑑𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙
=

log⁡[𝑃𝐸−𝑐𝑎𝑠𝑒/(1−𝑃𝐸−𝑐𝑎𝑠𝑒)]

log⁡[𝑃𝐸−𝑐𝑜𝑛𝑡𝑟𝑜𝑙/(1−𝑃𝐸−𝑐𝑜𝑛𝑡𝑟𝑜𝑙)]
(3) 

I built 3 nested case control studies this way, with sample sizes of 1,000, 5,000 and 10,000, 

with equal numbers of cases and controls. 

Similarly, I simulated the control arm of matched case control studies based on the same model 

(1) as the cohort. Then I implemented 1:1 exact matching based on the confounder and calculated 

the prevalence of exposure in the case arm based on the equation (3). I built 3 matched case control 

studies this way, with sample sizes of 1,000, 5,000 and 10,000. 

All scenarios were simulated S=500 times. (Figure 2) And I repeated the above procedure with 

varying parameters for ELF-MF prevalence (1.5%, 3% and 5%) and OR (1.5, 3 and 5), resulting 

in 9 situations. I used statistical software R version 4.0.0 (the R Foundation for Statistical 

Computing, Vienna, Austria) to simulate and analyze our data. 

Random deviations of simulated studies from the true effect 
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Due to the random error of sampling, the effect estimates of ELF-MF on childhood leukemia 

[𝑂𝑅̂ = exp⁡(𝛽𝐸)̂ ] from simulated studies may not be the same as the causal effect. Therefore, I 

also pooled the three cohort studies, nested case control and matched case control studies 

separately with mixed-effects logistic regression model to gauge the size of the random error. 

Table 1 Overview of Simulation Settings. 

 Scenarios 

Cohort study  

Confounding factor (C) Binary, C ∼Bernoulli(p); prevalence (Pc)=0.05 

ELF-MF (E)a Binary, E ∼Bernoulli(p); 𝛾𝐶=1.10; 𝛾0 varies. 

Leukemia (D)b Binary, D ∼Bernoulli(p); 𝛽𝐸varies; 𝛽𝐶=1.60; 𝛽0varies. 

Sample size (N) 100,000, 500,000 and 1,000,000 

Nested case control study  

Confounding factor (C) in the 

control arm 
Binary, C ∼Bernoulli(p); prevalence (Pc)=0.05 

ELF-MF (E)a in the control arm Binary, E ∼Bernoulli(p); 𝛾𝐶=1.10; 𝛾0 varies. 

ELF-MF (E)c in the case arm Binary, E ∼Bernoulli(p) 

Sample size (N) 1,000, 5,000 and 10,000 

Matched case control study  

Confounding factor (C) in the 

control arm 
Binary, C ∼Bernoulli(p); prevalence (Pc)=0.05 

ELF-MF (E)a in the control arm Binary, E ∼Bernoulli(p); 𝛾𝐶=1.10; 𝛾0 varies. 

ELF-MF (E)c in the case arm Binary, E ∼Bernoulli(p) 

Confounding factor (C) in the case 

arm 

Binary, C ∼Bernoulli(p); prevalence (Pc)=0.05 (the same as in 

the control arm). 

Sample size (N) 1,000, 5,000 and 10,000 

Number of simulations (S) 500 

OR = odds ratio; NCC= nested case control study; MCC=matched case control study. 

a𝑃(𝐸) =
exp⁡(𝛾0+𝛾𝐶𝐶)

1+exp⁡(𝛾0+𝛾𝐶𝐶)
, 1.5%, 3% and 5%. 

b𝑃(𝐷) =
exp⁡(𝛽0+𝛽𝐸𝐸+𝛽𝐶𝐶)

1+exp⁡(𝛽0+𝛽𝐸𝐸+𝛽𝐶𝐶)
, exp (𝛽𝐸)=1.5, 3 and 5. 

c 𝑃(𝐸)

1−𝑃(𝐸)
 in the case arm is equal to 𝑂𝑅 ×

𝑃(𝐸)

1−𝑃(𝐸)
 in the control arm. 
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Figure 1 Causal diagram illustrating causal structures under investigation. Gamma coefficients for 

association of confounder (C) and ELF-MF (E) and beta coefficients for effects of ELF-MF (E) on 

childhood leukemia (D) in equations 1 and 2. 

 

Methods for pooling analysis 

Two stage meta-analysis 

Effect estimates (ORs) were obtained for each study separately and then combined using a 

DerSimonian and Laird random-effects meta-analysis model. For this random-effects meta-

analysis model, I assumed that the studies have enough in common that it made sense to synthesize 

the information, but there is no reason to assume that they are ‘identical’ in the sense that the true 

effect size is exactly the same in all the studies. 

One stage pooling 

I sampled from cohort studies to make nested case control studies. I then pooled, in which data 

from all studies were entered simultaneously into a single mixed-effects logistic regression model 

with random intercepts for study. I broke the matching and adjusted for the matching factor. In 

this case, I assumed that baseline risk is different between studies, but still assumed that relative 

risks are same across studies. 

 

 

 

C 

E D 

𝛾𝐶 𝛽𝐶 

𝛽𝐸 
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Two stage meta-analysis with pooling 

I first pooled cohort studies, nested case control studies and matched case control studies 

separately, getting effect estimates for three types of studies and then combined them using a 

DerSimonian and Laird random-effects meta-analysis model. 

Performance measures 

I pooled nine studies with three methods and estimated the effect of ELF-MF on childhood 

leukemia [𝑂𝑅̂ = exp⁡(𝛽𝐸)̂ ]. I assessed the variability between estimates from 500 simulation runs 

(i.e. the variation between different studies) by 2.5 and 97.5 percentiles of the 500 OR estimates. 

I also took it as a measure of efficiency. Bias of different methods was defined as the difference 

between the mean of 𝑂𝑅̂ estimates based on 500 simulation runs and the true exposure effect OR, 

calculated as percentage change (
𝑂𝑅̂̅̅ ̅̅ −𝑂𝑅

𝑂𝑅
) × 100%. A negative bias indicates that the method 

underestimates the true underlying effect, and a positive bias indicates that the method 

overestimates the true underlying effect. I also assessed precision in estimates with the empirical 

standard error in the log scale, that is, the standard deviation of the 𝛽𝐸̂ estimates across the samples, 

√
1

(𝑆−1)
∑ (𝛽̂ℎ − 𝛽̅̂)2𝑆
ℎ=1 , where h is the hth simulation ranging from 1 to S and 𝛽̅̂ is the empirical 

mean 𝛽𝐸̂ of S simulations. The higher the SD, the higher the variability is and thus the lower the 

efficiency of the method is. 
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Figure 2 Simulation of the data and pooling. NCC: nested case control study; MCC: matched case control 

study. 

 

Result 

Pooled estimates from simulated cohorts, nested case controls and matched case controls were 

close to the causal estimates. (Figure 3, Appendix Table 1) Nested case control studies and 

matched case control studies were more efficient than cohort studies in that cohort studies had the 

widest 95%CI when the prevalence of exposure ELF-MF and OR were set. Measure by the width 

of 95%CI as well as standard error, the efficiency of nested case control studies and matched case 

control studies was similar. With the increase of exposure prevalence, efficiency improved in all 

Step 1: Basic setup. For the three cohort studies, sample sizes were 100,000, 500,000 and 

1,000,000. 

 

Step 2: Generation of confounding variable, exposure variable and outcome. 

 

Step 3: Simulated control arms in NCC and MCC, then case arms. Sample sizes were 1,000, 

5,000 and 10,000. 

 

Step 4: All scenarios were simulated 500 times. 

Step 6: Repeated with varying parameters for ELF-MF prevalence (1.5%, 3% and 5%) and 

OR (1.5, 3 and 5). 9 situations in total. 

Step 5: Pooled studies with three methods and extracted the evaluation parameters. 
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three study designs. On the contrary, with the decrease of OR to be closer to the null, efficiency 

improved in all three study designs. 

Estimates from three synthesis methods were close to the causal estimate and there was no 

obvious trend of overestimation or underestimation. One stage pooling seemed to have the worst 

efficiency with the widest 95%CI but the difference was not significant. Similar with pooled 

estimates from original simulated studies, as exposure prevalence increased, efficiency improved 

in all three synthesis methods. In contrast, as OR decreased to be closer to the null, efficiency 

improved in all three synthesis methods. (Figure 4, Appendix Table 2 and 3) 
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Figure 3 Pooled estimates from simulated cohorts, nested case controls and matched case controls, pooled 

with mixed-effects logistic regression model, with different combinations of ELF-MF prevalence (1.5%, 

3% and 5%) and OR (1.5, 3 and 5). 9 situations in total. 



12 
 

 

Figure 4 Estimates from three synthesis methods: two stage meta-analysis, one stage pooling and two stage 

meta-analysis with pooling, with different combinations of ELF-MF prevalence (1.5%, 3% and 5%) and 

OR (1.5, 3 and 5). 9 situations in total. 

 

Discussion 

The aim of this paper was to compare the relative performance of different methods to 

synthesize rare outcome studies of different designs. All three methods had similar point estimates, 

which were close to the causal estimate, but the one-stage pooling method where I first sampled 



13 
 

from cohort studies to make nested case control studies then pooled with mixed-effects logistic 

regression seemed to have the worst efficiency, measured by the widest 95%CI. But the difference 

was not significant and there was no essential difference among the three synthesis methods in 

terms of bias and precision. 

There are two statistical approaches for conducting an IPD meta-analysis: one-stage and two-

stage. The one-stage approach analyzes the IPD from all studies simultaneously, for example, in a 

hierarchical regression model with random effects. The two-stage approach derives aggregate data 

(such as effect estimates) in each study separately and then combines these in a traditional meta-

analysis model. (8) My first and second method corresponded to the two-stage and one-stage meta-

analysis. The two-stage approach is often preferred because in the second stage it uses standard 

meta-analysis methods that are well documented, for example, in the Cochrane Handbook. (30–

32) In my study, two-stage meta-analysis performed better in the sense of higher precision, 

whether I obtained the first stage estimates directly or by pooling. However, one-stage methods 

have also been recommended because they use a more exact likelihood specification, which avoids 

the assumptions of within-study normality and known within-study variances, which are especially 

problematic in meta-analyses with small studies and/or rare events. (33,34) Yet, one-stage methods 

are also criticized for being computationally intensive and prone to convergence problems. (34,35) 

Several authors have investigated the difference between one-stage and two-stage IPD meta-

analysis results, either empirically, theoretically or via simulation. (31,32,34,36–39) Most authors 

conclude that they give very similar results. However, differences can arise, and sometimes these 

may even be large with discrepant statistical or clinical significance. (34,40) Most differences 

between one-stage and two-stage approaches occur because of different modelling assumptions, 

including the specification of the likelihood and included parameters, the choice of fixed or random 
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effects and the utilization of correlation. In my study, the best choice of model specification and/or 

estimation method are unclear, therefore I implemented both one-stage and two-stage analyses and 

compared their results to check whether conclusions are the same. (8) In my two-stage meta-

analysis, I assumed that effect sizes in individual studies represent a random sample from a 

particular distribution of true effect. (41) The two-stage meta-analysis outperformed one-stage 

pooling in the sense of higher precision here. Further looking into the reasons is necessary. 

To my knowledge this is the first paper seeking to generalize pooling methods with simulation. 

Simulation methods are relatively straightforward once the assumptions of a model and the 

parameters to be used for data generation are specified. (42) 

There are several limitations of this simulation study that should be noted. First, due to hardware 

calculation capacity strains worsened by the rare exposure and outcome, I did not sample from 

cohorts to simulate nested case controls and matched case controls, which are the most common 

ways. Instead I utilized the quality that controls be representative of the total population in terms 

of exposure and covariates prevalence and simulated the control arms first. Then I simulated case 

arms based on the relationship with OR. Because this simulation method stuck to the qualities that 

were supposed to be achieved by nested case control and matched case control designs, I assumed 

this did not pose a big problem. And as was shown in Table 2 and Figure 3, pooled estimates from 

simulated cohorts, nested case controls and matched case controls centered around the causal 

estimates. Second, this study only simulated the simplest situation where there is only one binomial 

confounding variable but real-world data are much more complex and often do not adhere to the 

assumptions and parameters by which data are generated here. Therefore, I should further apply 

these pooling methods to real life data and compare results if possible. Third, it is practically 

impossible to know the values of true population parameters that are incorporated into current 
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simulation. For example, the regression coefficients 𝛽̂ often may be unknown. Even if previous 

research provides empirically estimated parameter estimates, the exact value for these population 

parameters is still unknown due to sampling error. Also, in the study I set both the outcome and 

exposure to be rare (prevalence 0.05% and 1.5%-3% respectively), its generalization to study of 

other more common outcomes should be further studied. To deal with these, I can run simulations 

across a wider range of parameter values to understand how their models may perform under 

different conditions. Last, not all statistical questions require simulations to obtain meaningful 

answers. I cannot exclude the possibility that the pooling questions here can be answered through 

mathematical derivations. If that is the case, simulation studies can demonstrate only what was 

shown already to be true through mathematical proofs. (43) 

Appendix 

Table 1 Mean OR Estimates and 95%CI from Cohort, Nested Case Control and Matched Case Control 

Studies by Pooling. 

𝑂𝑅̂̅̅ ̅̅ (95%⁡𝐶𝐼)a OR=1.5 OR=3 OR=5 

P(E)=1.5% 1.4920 (1.3154-1.7267) 

1.5044 (1.3919-1.6362) 

1.4965 (1.3916-1.6160) 

2.9656 (2.6826-3.3049) 

2.9884 (2.7801-3.1994) 

2.9982 (2.7700-3.1997) 

4.9640 (4.5901-5.3840) 

5.0115 (4.6678-5.3949) 

4.9968 (4.6448-5.3091) 

P(E)=3% 1.4880 (1.3511-1.6298) 

1.5022 (1.4209-1.5917) 

1.5073 (1.4188-1.5920) 

2.9884 (2.7883-3.2340) 

2.9737 (2.8186-3.1163) 

3.0097 (2.8697-3.1598) 

4.9943 (4.7050-5.3295) 

4.9523 (4.7241-5.2006) 

4.9964 (4.7761-5.2350) 

P(E)=5% 1.5021 (1.4006-1.6358) 

1.4974 (1.4289-1.5656) 

1.5028 (1.4356-1.5682) 

2.9892 (2.8088-3.1998) 

2.9652 (2.8308-3.1077) 

3.0126 (2.9086-3.1284) 

4.9786 (4.6626-5.2670) 

4.9149 (4.7235-5.1083) 

5.0113 (4.8412-5.2017) 

In the cells are estimates of cohort studies, nested case control studies and matched case control studies in 

sequence. 
aeffect estimates of ELF-MF ≥0.4uT  on incidence of childhood leukemia of three simulated types of studies: 

cohort, nested case control and matched case control studies measured by 𝑂𝑅 = exp⁡(𝛽𝐸). Studies were 

pooled with mixed-effects logistic regression model, respectively.  95%CI is calculated as 2.5 and 97.5 

percentiles of the S=500 samples. 
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Table 2 Mean OR Estimates and 95% CI Yielded by Three Methods. 

𝑂𝑅̂̅̅ ̅̅ a (95% CIb) OR=1.5 OR=3 OR=5 

P(E)=1.5% 1.5105 (1.4282-1.5978)  

1.5179 (1.4270-1.6171) 

1.5054 (1.4155-1.6000) 

3.0106 (2.8701-3.1412) 

3.0543 (2.9159-3.2007) 

3.0074 (2.8621-3.1417) 

4.9923 (4.7674-5.2142) 

5.0855 (4.8456-5.3259) 

4.9928 (4.7635-5.2137) 

P(E)=3% 1.5052 (1.4485-1.5624) 

1.5134 (1.4618-1.5752) 

1.5011 (1.4451-1.5590) 

2.9843(2.8966-3.0879) 

3.0197(2.9145-3.1274) 

2.9816(2.8799-3.0891) 

4.9651 (4.8085-5.1184) 

5.0517 (4.8948-5.2217) 

4.9655 (4.8154-5.1248) 

P(E)=5% 1.5001 (1.4575-1.5436) 

1.5084 (1.4633-1.5550) 

1.4973 (1.4550-1.5409) 

2.9904 (2.9136-3.0708) 

3.0231 (2.9361-3.1087) 

2.9898 (2.9101-3.0696) 

4.9709 (4.8402-5.0983) 

5.0420 (4.8986-5.1900) 

4.9709 (4.8339-5.0987) 

In the cells are estimates of cohort studies, nested case control studies and matched case control studies in 

sequence. 
athe mean of the estimated effect of ELF-MF ≥0.4uT on incidence of childhood leukemia across the S=500 

simulated samples, measured by OR. 
b2.5 and 97.5 percentiles of the S=500 samples. 

 

Table 3 Efficiency and Bias Yielded by Three Methods. 

SDa (Biasb) OR=1.5 OR=3 OR=5 

P(E)=1.5% 0.0878 (-0.70%) 

0.0914 (-1.19%) 

0.0904 (-0.36%)  

0.0686 (-0.35%) 

0.0723 (-1.81%) 

0.0692 (-0.25%) 

0.0681 (0.15%) 

0.0729 (-1.71%) 

0.0669 (0.14%) 

P(E)=3% 0.0469 (0.30%)  

0.0664 (-1.38%)  

0.0434 (0.30%)  

0.0511 (0.52%) 

0.0537 (-0.66%) 

0.0519 (0.61%) 

0.0451 (0.70%)  

0.0469 (-1.03%) 

0.0425 (0.69%) 

P(E)=5% 0.0428 (-0.00%) 

0.0432 (-0.56%) 

0.0434 (0.18%) 

0.0405 (0.32%) 

0.0417 (-0.77%) 

0.0406 (0.34%) 

0.0384 (0.58%) 

0.0401 (-0.83%) 

0.0382 (0.58%) 

In the cells are estimates of cohort studies, nested case control studies and matched case control studies in 

sequence. 
athe standard deviation of the estimates across the S=500 samples. 
bthe bias as a percentage of effect of ELF-MF ≥0.4uT on incidence of childhood leukemia in simulations 

(OR=1.5, 3 and 5, respectively). Positive value means overestimates and negative means underestimates. 
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