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Abstract
Abstract

The need for quantification of cell growth patterns in a multilayer, multi-cellular tissue necessitates the devel-
opment of a 3D reconstruction technique that can estimate 3D shapes and sizes of individual cells from Confocal
Microscopy (CLSM) image slices. However, the current methods of 3D reconstruction using CLSM imaging
require large number of image slices per cell. But, in case of Live Cell Imaging of an actively developing tissue,
large depth resolution is not feasible in order to avoid damage to cells from prolonged exposure to laser radiation.
In the present work, we have proposed an anisotropic Voronoi tessellation based 3D reconstruction framework
for a tightly packed multilayer tissue with extreme z-sparsity (2-4 slices/cell) and wide range of cell shapes and
sizes. The proposed method, named as the ‘Adaptive Quadratic Voronoi Tessellation’ (AQVT), is capable of han-
dling both the sparsity problem and the non-uniformity in cell shapes by estimating the tessellation parameters for
each cell from the sparse data-points on its boundaries. We have tested the proposed 3D reconstruction method
on time-lapse CLSM image stacks of the Arabidopsis Shoot Apical Meristem (SAM) and have shown that the
AQVT based reconstruction method can correctly estimate the 3D shapes of a large number of SAM cells.

1 Introduction
The causal relationship between cell growth patterns and gene expression dynamics has been a major topic of
interest in developmental biology. However, most of the studies in this domain have attempted to describe the
interrelation between the gene regulatory network and cell growth and deformation qualitatively. A proper quanti-
tative analysis of the cell growth patterns in both the plant and the animal tissues has remained mostly elusive so
far. Information such as rates and patterns of cell expansion play a critical role in explaining cell growth and defor-
mation dynamics and thereby can be extremely useful in understanding morphogenesis. The need for quantifying
these biological parameters (such as cell volume, cell growth rate, cell shape, mean time between cell divisions
etc.) and observing their time evolution is, therefore, of utmost importance to biologists.

For complex multi layered, multi cellular plant and animal tissues, the most popular method to capture indi-
vidual cell structures and to estimate the aforementioned parameters for growing cells is the Confocal Microscopy
based Live Cell Imaging. Confocal Laser Scanning Microscopy (CLSM) enables us to visually inspect the inner
parts of the multilayered tissues. Through this technique we can image tissues as a collection of serial optical slices
(also known as the ‘Z-Stack’), which can then be used for analysis. Live cell imaging is a class of microscopy,
where the same living cells are observed and imaged at regular time intervals over several hours to monitor their
motion or displacement and to visualize cell growth and division dynamics.

Recently, there has been a substantial amount of work in automated processing and analysis of cellular images
- though mostly on image segmentation and cell tracking. Methods such as [1, 2] show that individual cells can be
efficiently segmented in a multicellular field and [3,4] provide automated methods to track individual cells in time.
Estimation of cell shape and volumes as a function of time is most fundamental to understanding of the growth
process. Due to the large quantity of data collected during the growth of a tissue, computational methods for robust
estimation of 3D cell structures and cell volumes are absolutely necessary in order to obtain statistically significant
results of these growth parameters.
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Inspite of the extreme usefulness of CLSM based live cell imaging for analysing such tissue structures, there
are number of technical challenges associated with this imaging technique that makes the problem of cell shape
estimation non-trivial. To keep the cells alive and growing, we have to limit the laser radiation exposure to the
specimen, i.e. if dense samples in one time point are collected, it is highly unlikely that we will be able to get
time lapse images as the specimen will not continue to grow in time due to high radiation exposure. Therefore
the number of slices in which a cell is imaged is often very low (2-4 slices per cell). Again, the fluorescent signal
fades as we image the deeper layers of the tissue, thereby bringing in the problem of very low SNR in parts of the
confocal image stack. Please note that in some cases, a two-photon excitation microscopy or light sheet microscopy
can be better choices for live-cell imaging for more efficient light detection and less photo-bleaching effect. But,
a large number of data sets exist that are imaged using CLSM or exhibit the characteristic of our data and our
method can be useful in analyzing them. We have found that two photon excitation is toxic to SAM cells than the
single photon CLSM and since the SAM is surrounded by several developing flower buds, the side ward excitation
may not be possible. Also, by designing an image-analysis method that is capable of handling the worse quality
data, we can ensure that same or better accuracy can be achieved on a data-set having superior image quality and
resolution. Thus, from an image analysis perspective, we are looking at a very challenging problem where we want
to obtain a 3D surface reconstruction of arbitrary cell shapes from a set of very sparsely sampled data points in
presence of unavoidable imaging noise. Also, the reconstruction pipeline must be fully automated. In most cases,
manual analysis (which has been the trend) is usually extremely tedious and, often, only provides qualitative trends
in the data rather than precise quantitative models.

In this study, we have looked at the problem of 3D reconstruction of a tightly packed multi-layer tissue from its
Z-sparse confocal image slices. As a special example, in this paper we have proposed a novel, fully automated cell
resolution 3D reconstruction framework for Shoot Apical Meristem (SAM) of Arabidopsis Thaliana. SAM, also
referred to as the stem cell niche, is a very important part of a plant body plan because it supplies cells for all the
above ground plant parts such as leaves, branches and stem. A typical Arabidopsis SAM is a densely packed multi
layered cell cluster consisting about five hundred cells where the cell layers are clonally distinct from one another.
The tight tessellation of cells in SAM enabled us to estimate the 3D structure of individual cells using the slice
information of the cell as well as that of its nearest neighbors. The 3D estimation is based on prior geometrical
tessellation models, the parameters for which are estimated from the sparse image data to hand and then this model
is used to partition the 3D SAM structure into individual cellular regions.

Being motivated by the methods in [5, 6], we first assume a ‘Voronoi’ tessellation model based on Euclidean
distance metric to segment / reconstruct the 3D cell shapes. Through the results obtained on 3D sparse confocal
stacks of SAM images we show that this model yields a good approximation of cell shapes where the shapes and
sizes of the cells are uniform along all three axes of the cells and the major axes of growth of the neighbouring
cells are isotropic. But, in practice, this is not always the case and the cells can have very anisotropic shape and
growth, even in a close neighborhood. In such cases, the Voronoi tessellation using the Euclidean distance fails to
generate accurate enough cell walls.

We, therefore, propose an anisotropic Voronoi Tessellation defined on a quadratic distance metric to capture
the growth anisotropy of individual cells along all of their axes. We show that the parameters of this metric
can be estimated from the sparse set of confocal image slices of the individual cells and the tessellation based
on this metric can provide very accurate 3D cell shapes as quadratic surfaces even in the case of non-uniform
cell shapes,sizes or growth along different cell axes. The tessellation, named as the ‘Adaptive Quadratic Voronoi
Tessellation’ (AQVT) and the 3D reconstruction technique based on it, presented in this paper, provides accurate
enough 3D reconstructed cell shapes and sizes in the SAM as validated through the experiments in Section 5.3
(see Figures 8, 9). We also show that the proposed anisotropic Voronoi tessellation (AQVT) can also be applied on
tissues, where the cell shapes in the tissue follow a standard Euclidean distance based Voronoi tessellation.

While this method is motivated by our previous work in [7], there are fundamental differences in both theory
and implementation between [7] and the present work based on AQVT. The main differences are as follows. 1. The
AQVT poses and solves the problem of 3D segmentation/reconstruction in the standard framework of geometric
tessellation, which is very intuitive for such type of problems and has solid theoretical basis in the literature. 2. The
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method described in [7] is an iterative method that can have long runtime depending on desired level of accuracy
and chosen parameters (e.g. step-size in the deformation stage). AQVT based reconstruction method described in
this paper is a single-step process and hence has lesser execution time in comparison to [7]. 3. While there are a
number of user defined parameters and thresholds required for the method in [7], AQVT does not require any user
input other than the sparsely sampled segmented cell slices for reconstruction, thereby making the present method
less ambiguous and easy to use. It can be shown that under a very specific criterion, [7] can generate similar results
as the proposed method, which is discussed in detail in Section 4.2.3.

2 Problem Formulation

2.1 Goal
The objective of the present work is to obtain a fully automated cell-resolution 3D reconstruction/segmentation of
a tightly packed anisotropically growing tissue from initial 2D segmentations and slice to slice correspondences of
its sparsely Z-sampled confocal image slices.

2.2 Research Challenges and Contributions
There are several methods of shape and size estimations for individual cells such as impedance method [8] and
light microscopy methods [9]. Methods such as [10] are used to study changes in cell sizes in cell monolayers. In
live plant tissues, a number of work focussed on the surface reconstruction [11, 12]. But we are looking at a much
more challenging problem where the subject of study is a dense cluster of cells. Plant meristem is one example of
such cell clusters where hundreds of small cells are densely packed into a multilayer structure (Figure 1D). In such
cases, now-a-days, the most popular practice is to use Confocal Laser Scanning Microscopy (CLSM) to image cell
or nucleus slices at a very high spatial resolution and then reconstruct the 3D volume of the cells from those serial
optical slices which has been shown to be reasonably accurate [13–15].

However, performance of the current imaging based 3D reconstruction techniques depends heavily on the
availability of a large number of very thin optical slices of a cell and the performance rapidly deteriorates in the
cases where the number of cell slices becomes limited. This problem is very common especially in CLSM based
live cell imaging when the time gap between successive observations is small. In order to keep the cells alive and
growing for a longer period of time and obtain frequent observations, a cell cannot be imaged in more than 2-4
slices, i.e., high depth-resolution and time-resolution cannot be achieved simultaneously.

A very recent method [14] accurately reconstructs the Shoot Apical Meristem of Arabidopsis. This method
uses a dataset containing fine slice images acquired from 3 different angles, each at a Z-resolution of 1 µm. They
have reported 24 hours as the time resolution in imaging. But, for analyzing the growth dynamics of cell clusters
where the time gap between successive cell divisions is in the range of 30 to 36 hours, we need a much higher time
resolution in imaging in order to capture the exact growth dynamics. To obtain longer cell lineages at high time
resolution we may have to sacrifice the spatial or depth resolution and hence the number of image slices in which
a cell is present can be really small. With such a limited amount of image data, the existing 3-D reconstruction/
segmentation techniques cannot yield a good estimate of cell shape. In the present work we have addressed this
problem of reconstructing plant cells in a tissue when the number of image slices per cell is very limited.

There is a basic difference between the segmentation problem at hand and a classical 3D segmentation scheme.
A classical method solves the segmentation problem using the pixel intensities and cannot work when no intensity
information is provided for a majority of 3D pixels in the image. In such situations, the most intuitive way
to perform the segmentation is to first segment sections in the image with known intensity information using a
classical segmentation scheme, and then to extrapolate between these sparse segments using a known geometric
model or a function which could be generic or data-specific. In this work, we have shown that a quadratic Voronoi
tessellation is a very accurate choice for such a geometric model for segmenting a tissue with anisotropically
growing tightly packed cells starting with a sparse set of 2D Watershed segmented slices per cell.
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The Shoot Apical Meristem is a multilayer, multicellular structure where the cells are tightly packed together
with hardly any void in between. Motivated by this physical structure of SAM, we propose our novel cell resolu-
tion 3D reconstruction in a geometric tessellation framework. A tessellation is a partition of a space into closed
geometric regions with no overlap or gap among these regions. In case of the SAM tissue, each cell is represented
by such a closed region and any point in the 3D SAM structure must be the part of one and only one cell. In fact,
there are some recent works in the literature as [5] which predicted that the 3D structures of Arabidopsis SAM
cells could be represented by convex polyhedrons forming a 3D ‘Voronoi’ tessellation pattern.

A Voronoi tessellation is one of the simplest form of partitioning of the metric space, where the boundaries
between two adjacent partitions are equidistant from a point inside each of these regions, also known as the ‘sites’.
In [5,6], these sites are the approximate locations of the center of the cell nuclei about which the tissue is tessellated
into individual cells. However, this work used a dataset where both the plasma membrane as well as the nucleus of
each cell is marked with fluorescent protein, whereas, in our case, only the plasma membrane is visible under the
confocal microscope.

In this work, we present and evaluate a fully automated cell resolution 3D reconstruction framework for recon-
structing the Arabidopsis SAM where the number of confocal image slices per cell is very limited. The framework
comprises of different modules such as cell segmentation, spatial cell tracking, SAM surface reconstruction and fi-
nally a 3D tessellation module. We evaluate the Euclidean distance based Voronoi tessellation model on our dataset
and then from its limitation, we continue to propose a quadratic distance based anisotropic Voronoi tessellation,
where the distance metric for each cell is estimated from the segmented and tracked sparse data-points for the cell.
This method is applicable to the densely packed multi-cellular tissues and can be used to reconstruct tissues with-
out voids between cells with sufficiently high accuracy. Note that, for the proposed 3D reconstruction module, we
start with a handful of data-points on each segmented cell which are pre-clustered through the cell tracking method
(i.e. an incomplete segmentation of the 3D) whereas, the final output of our algorithm is a complete tessellation of
the entire 3D structure of the SAM, where each cell is represented by a very dense point cloud. These point clouds
for individual cells can be visualized by 3D convex polyhedrons that approximate the shape of the cells (Figures
6, 7).

2.3 Organization
The rest of the paper is organized as follows. Section 3 describes the overview of our approach and challenges
associated with various steps in it. The mathematical and algorithmic details of the proposed reconstruction method
is provided in Section 4. We have shown experimental results and validation of our approach in Section 5 followed
by concluding discussion and future work in Section 6.

3 Overview of the Proposed Method
To properly understand the research challenges and our contributions, we first explain the data (Section 3.1). We
also briefly describe the necessary preprocessing stages such as cell segmentation and cell tracking that generate
the final data structure as an input to the 3D reconstruction pipeline.

3.1 Imaging Setup and Preprocessing
The SAM of Arabidopsis Thaliana consists of approximately 500 cells and they are organized into multiple cell
layers that are clonally distinct from one another. By changing the depth of the focal plane, CLSM can provide
in-focus images from various depths of the specimen. To make the cells visible under laser, fluorescent dyes are
used. The set of images, thus obtained at each time point, constitute a 3-D stack, also known as the ‘Z-stack’. Each
Z-stack is imaged at a certain time interval (e.g. 3 hours between successive observations) and it is comprised of a
series of optical cross sections of SAMs that are separated by approx. 1.5 µm (Figure 1(C, E)). A standard shoot
apical meristematic cell has a diameter of about 5 - 6 µm and hence in most cases, a single cell is not visible in
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more than 3-4 slices when the tissue is sparsely imaged at 1.5 µm to avoid photodynamic damage to the cells. To
account for any minor shift in the alignment of the images in the 3-D stack, each stack is registered by a method
of maximization of mutual information [16].

As we are interested in computing volume of every cell in the SAM cell cluster, we need to segment out all the
cells in each slice. We can employ various segmentation algorithms like Watershed [17], Level-Set segmentation
[1] etc. which have their own advantages and disadvantages. Although the method we propose here is independent
of the segmentation strategy we choose to employ, we have preferred Watershed [18] over level-set segmentation
as it produces more accurate and realistic cell boundaries for our SAM confocal data (Figure 5(B)). Please note
that, the contribution of our method lies in the post segmentation and tracking stage though a better segmented data
is guaranteed to improve the performance of both the tracking and 3D reconstruction methods.

In order to find a cell’s correspondence across multiple slices in both the spatial and temporal direction, we
have used our local-graph matching based robust cell tracking algorithm [4, 19]. This algorithm starts by finding
out a seed cell pair between two SAM slice images using ‘local graph matching’ and progressively moves outward
from the seed-pair to obtain correspondences between neighboring cells until all the cells are tracked. This method
is robust because it fuses tracking results over the entire 4-D image stack and thereby minimizes the chances of
losing a cell in any of the slices caused by poor segmentation of noisy data. Another advantage comes from the
batch processing capability of this method which enables us to reconstruct a large number of SAM cells at a time.

3.2 Proposed 3D Reconstruction - Overview
Once the sparse image slices are segmented and tracked to generate the initial clustering of individual cell slices,
the objective is to obtain full 3D reconstructions of these cells. As explained above, for live imaging with frequent
observations in time, the number of slices in which a particular cell can be present is very small (e.g. 2-4 slices/cell).
Unfortunately, the existing 3-D reconstruction methods are not capable of handling such sparsity in data. Motivated
by the physical structures of the cells, we handle this issue by assuming a prior geometrical 3D tessellation model
for the tissue, the parameters of which is estimated to fit the given sparse set of segmented cross sectional images.

In [5, 6], the authors have used a standard Voronoi tessellation technique to estimate the cell boundaries from
the known information of the nucleus location for individual cells. Motivated by their work, we first show how a
Voronoi tessellation can be fitted to our CLSM dataset which only have the partial cell wall information (Section
4.1.1, Section 4.1.2). Unlike the dataset used in [5, 6], we do not have the cell nuclei marked in our dataset. The
standard affine Voronoi tessellation is not always accurate enough to reconstruct the cells in SAM as different cells
in the tissue can have very diverse sizes as well as the neighbouring cells might not have isotropic growth directions.
This motivates us to propose an anisotropic Voronoi tessellation model (Section 4.2) for the tissue, which is also a
generalization of the standard Affine Voronoi tessellation. We show how to estimate the parameters (Section 4.2.1)
of an anisotropic or quadratic distance function for individual cells from the sparse data-points on the boundaries
of these cells. The proposed quadratic Voronoi tessellation approach, termed as the ‘Adaptive Quadratic Voronoi
Tessellation’ (AQVT) is then used to cluster a dense point cloud obtained from within the estimated 3D surface of
the SAM and thereby, to generate the final 3D shapes of each individual cell (Section 4.2.2).

4 Detailed 3D Reconstruction Framework

4.1 Voronoi Tessellation Based 3D Reconstruction
4.1.1 A Brief Overview of Voronoi Tessellation and Its Properties

‘Voronoi Diagram’ is a geometric minimization diagram that splits its embedding space into non-overlapping
regions. Each of these regions is characterized by a generating point or an object also known as the ‘site’. All other
points in each of these regions are closer to the site in its region than to any other site in the entire embedding space.
The closeness of the points to the sites is computed using a distance metric. There can be different types of sites
ranging from a point, a line to any complex geometric shape. Depending on the type of sites, the distance metric



6

or the embedding space, several different variations of the Voronoi diagram can be defined. Detailed discussions
on many of such variants can be found in [20–22].

Based on the characteristic of site and distance function, the locus of the points equidistant from two neighbor-
ing sites (also termed as the ‘bisectors’ or ‘edges’) can be hyperplanes or higher order hypersurfaces. We call the
Voronoi diagrams with hyperplane bisectors as the ‘Affine Voronoi’ diagrams. The most common example of such
an affine diagram is the Voronoi diagram of points based on the Euclidean distance metric.

Let there be n point sites in a space Rd, and the set of all sites S be {s1, s2, · · · sn}. The Voronoi regions
associated with these sites are represented as V (s1), V (s2), · · · V (sn) where,

V (si) =
⋂

sj∈S,j 6=i

H(si, sj) (1)

where H(si, sj) is the half-plane defined by,

H(si, sj) =
{
x ∈ Rd | d(x, si) < d(x, sj)

}
(2)

The distance d(x, si) for a standard Voronoi diagram is the Euclidean distance defined by

d(x, si) = ‖x − si‖2

Again, the set of all points on the bisector between two Voronoi regions V (si) and V (sj) is given by,

B(si, sj) =
{
x ∈ Rd | ‖x− si‖2 = ‖x− sj‖2

}
(3)

Some of the properties of the Euclidean distance based Voronoi diagram with point sites are as follows:
(1) The line joining any two Voronoi sites si and sj is always perpendicular to the Voronoi bisector/edge

B(si, sj),
(2) The perpendicular distances from si and sj to B(si, sj) are equal to one another,
(3) Any point x ∈ V (si) would satisfy

‖x− si‖2 ≤ ‖x− sj‖2, ∀j ∈ {1, 2, · · · n}

and
(4) The Voronoi regions, thus produced, are convex polyhedrons and can be expressed as intersection of a finite

number of open or closed half spaces.
In Figure 2(A), we have shown some of the properties for a 2D Voronoi tessellation with twenty sites (x1, x2, x3

etc.). It can be observed that each of these Voronoi regions is a convex polygon.

4.1.2 Voronoi Sites Estimation From Sparse Data

After segmentation and tracking, we are given a sparse set of 3D data-points that lie on the boundary between the
neighbouring cells. Our objective is to fit a Voronoi tessellation to these data-points to obtain complete structures
of individual cells, represented as Voronoi polyhedrons in 3D. Therefore, ideally the sparse data-points should lie
on the bisectors between the neighbouring Voronoi regions. Given a very sparse set of data-points on the bisectors
as in the case of ‘Live cell imaging’, the only way to reconstruct the Voronoi diagram is to first estimate the
approximate locations of Voronoi sites, from which the Voronoi edges/bisectors can then be computed.

Given a set of generating sites, the construction of the Voronoi diagram can be done through several methods,
the most popular of which being Fortune’s ‘sweep line’ algorithm. The inverse problem, i.e. to obtain the locations
of the sites given the Voronoi bisector, is, however, less studied in the literature. In [23], Evans et al. proposed
a linear least-square technique to estimate the Voronoi sites by fitting a Voronoi diagram over a given tessellation
pattern. Again, in [24], a number of algorithms have been proposed to obtain the Voronoi sites given the vertices
of the Voronoi polygons. But neither of these methods is applicable to the sparse data that we have. These methods
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require the knowledge of the complete structures of the Voronoi polyhedrons, which is precisely the output that we
are after. In fact, because of the extreme sparsity in our dataset, it is rather impossible to obtain unique estimates
of the Voronoi sites for individual 3D cells.

In this situation, the knowledge about the physical structure of the SAM stem cells help us in obtaining ap-
proximate locations of the Voronoi sites, where each cell is represented as a Voronoi region. In [6], the authors
observed that the SAM cells can be represented as Voronoi regions where the sites are located at the approximate
centers of the cell nuclei. This observation, along with the fact that the nucleus, located in the central region of the
cell, contributes to the majority of the size of a SAM cell motivates us to devise a simple strategy to estimate the
approximate site locations, even when the nuclei are not imaged in the confocal image stack.

Given that the sparse set of points on the segmented and tracked slices of a cell c are P
(c)
sparse (the 3D

data-point set {(x(c)
sparse, y

(c)
sparse, z

(c)
sparse)}), the approximate centroid location of the cell would be ŝc =

[x̄
(c)
sparse, ȳ

(c)
sparse, z̄

(c)
sparse], where the elements are the arithmetic means of {x(c)

sparse}, {y(c)
sparse} and {z(c)

sparse}
respectively. Thus, ŝc is also the estimated approximate location of the site corresponding to the Voronoi region
representing the cell c. The centroids for approximately 200 cells from a SAM tissue is shown in Figure 2(B).

Now, the next step would be to generate a dense point cloud sampled from within the SAM structure and to
cluster this dense set of 3D data-points into different Voronoi regions (representing individual cells) based on the
estimated locations of the sites ŝc, c = 1, 2, · · ·C.

4.1.3 Generation of Dense Point Cloud To Be Partitioned Into Cells: Global Shape of SAM

At this stage, we estimate the 3D structure of the SAM by fitting a smooth surface to its segmented contours. The
surface fitting is done in two steps. In step one, the SAM boundary in every image slice is extracted using the
‘Level Set’ method (Fig. 3(A)). A level set is a collection of points over which a function takes on a constant
value. We initialize a level set at the boundary of the image slice for each SAM cross section, which behaves like
an active contour and gradually shrinks towards the boundary of the SAM. Let the set of points on the segmented
SAM contours be PSAM ({xSAM , ySAM , zSAM}).

In the second step, we fit a surface on the segmented points PSAM . Assuming that the surface can be repre-
sented in the form z = f (x, y) (where the function f is unknown), our objective is to predict z at every point (x, y)
on a densely sampled rectangular grid of points bounded by

[
xSAM
min , ySAM

min , xSAM
max , y

SAM
max

]
. As the segmented set

of data points are extremely sparse, this prediction is done using a linear interpolation on a local set of points on
the grid around the point (x, y). As the value (z) for the point (x, y) is approximated by a linear combination of
the values at a few neighboring points on the grid, the interpolation problem can be posed as a linear least-square
estimation problem. We also impose a smoothness constraint in this estimation by forcing the first partial deriva-
tives of the surface evaluated at neighboring points to be as close as possible. A MATLAB visualization [25] of
the surface is shown in Figure 3(B).

Once the SAM surface (SSAM ) is constructed, we uniformly sample a dense set of 3D points (Pdense)
such that every point in Pdense must lie inside SSAM . Thus, Pdense = {x1,x2, · · ·xN} and the required
output from the proposed algorithm is a clustering of these dense data points into C cells/clusters such that
Pdense = {P̂ (1)

dense, P̂
(2)
dense, · · · P̂

(C)
dense} starting from the sparse set of segmented and tracked points Psparse =

{P (1)
sparse, P

(2)
sparse, · · ·P (C)

sparse} obtained from the confocal slice images of individual cells.

4.1.4 Segmentation of The Dense Point Cloud Into Voronoi Cells

In this step, we partition the dense point cloud Pdense, obtained in the last step, into C clusters based on the site
locations Ŝ = {ŝc}, c = 1, 2, · · ·C, estimated in Section 4.1.2.

The cth cell can be represented as a collection of dense data-points belonging to the cth Voronoi region as

P̂
(c)
dense = {x ∈ Pdense | ‖x− ŝc‖2 ≤ ‖x− ŝk‖2 ∀k ∈ {1, 2, · · ·C}} (4)
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Once the dense point cloud belonging to each Voronoi region is obtained, we can construct convex polyhedrons
with each of these dense point clusters (P̂ (1)

dense, · · · P̂
(C)
dense) to obtain the cell resolution 3D reconstruction of SAM.

A 3D reconstructed structure of a cluster of cells using Euclidean distance based Voronoi tessellation is shown in
Figure 7(B).

4.2 An Adaptive Quadratic Voronoi Tessellation (AQVT) For Non-uniform Cell Sizes
And Cell Growth Anisotropy

In a tissue like SAM, cells do not grow uniformly along all three axes (X,Y, Z). In fact, most of the cells show
a specific direction of growth. Again, neighboring cells in SAM, especially in the central region (CZ), are not
likely to grow along the same direction. Thus, even if a tessellation is initially an affine Voronoi diagram, it is not
likely to remain so after a few stages of growth. Such cases of non-uniform cell sizes and anisotropic growth can
be captured in a more generalized non-affine Voronoi tessellation called the ‘Anisotropic Voronoi Diagrams’. In
the most general form of such diagram for point sites, the distance metric has a quadratic form with an additive
weight [22].

Following similar notations used in previous sections, for a set of anisotropic sites S = {s1, s2, · · · sn} in
Rd, the anisotropic Voronoi region for a site si is given by,

VA(si) =
{
x ∈ Rd | dA(x, si) ≤ dA(x, sj) ∀j ∈ {1, 2, · · ·n}

}
(5)

where
dA(x, si) = (x− si)

T Σi(x− si) − ωi (6)

Σi is a d x d positive definite symmetric matrix associated with the site si and ωi ∈ R. Thus each of the anisotropic
Voronoi regions is parameterized by the triplet (si, Σi, ωi). Further assuming ωi = ωj ∀i, j ∈ {1, 2, · · ·n}, the
distance function becomes

dQ(x, si) = (x− si)
T Σi(x− si) (7)

As the bisectors of such a Voronoi diagram are quadratic hypersurfaces, these diagrams are called ‘Quadratic
Voronoi Diagrams’, wherein every Voronoi cell i is parameterized by (si, Σi) pairs.

VQ(si) =
{
x ∈ Rd | dQ(x, si) ≤ dQ(x, sj) ∀j ∈ {1, 2, · · ·n}

}
(8)

From Equation(7), it can be observed that Σi is essentially a weighting factor that non-uniformly weights
distances in every Voronoi regions along every dimension. When all the Voronoi regions are equally and uniformly
weighted along every axis, Σi = Idxd ∀i = 1, 2, · · ·n and the resulting diagram for point sites becomes an
Euclidean distance based Voronoi diagram.

4.2.1 Estimating The Distance Metric From Sparse Data: Minimum Volume Enclosing Ellipsoid

Now, the problem at hand is to estimate the parameter pair for each cell/quadratic Voronoi regions from the sparse
data-points, as obtained from the segmented and tracked slices, that belongs to the boundary of each cell. Given
the extreme sparsity of the data, there is no available method that would provide Σis for each region. We, in this
work, propose an alternative way of estimating (si, Σi) pairs directly from the sparse data-points.

An ellipsoidal surface in 3D is given by the locus of the point x that satisfies

(x− xc)
TM(x− xc) = 1 (9)

where xc is the center of the ellipsoid and M is a positive definite symmetric matrix. For any point x inside the
ellipsoid, (x− xc)

TM(x− xc) < 1 and for every x outside it, (x− xc)
TM(x− xc) > 1.



9

Now, (x − xc)
TM(x − xc) is, in fact, the Mahalanobis distance of the point x from the center xc of the

ellipsoid. Therefore, if a point y is equidistant for the centers of two ellipsoids (xc1 ,M1) and (xc2 ,M2) in the
Mahalanobis sense, then,

(y − xc1)TM1(y − xc1) = (y − xc2)TM2(y − xc2) (10)

Now, Equation (10) gives the locus of the points y, which is exactly the same as that of the points on the
bisector two neighbouring quadratic Voronoi regions parameterized by (xc1 ,M1) and (xc2 ,M2). We already have
a set of points (Psparse)which are sparsely but uniformly z-sampled from the boundaries between neighbouring
cells. The tracking algorithm provides us with the exact cell pairs on which every point from this set belongs to.
Therefore we can approximately estimate the distance parameters associated with every quadratic Voronoi region
individually by fitting an ellipsoid to the sparse data-points belonging to the boundaries of that region. In this
paper, we choose fit Minimum Volume Enclosing Ellipsoids (MVEE) to each of {P (1)

sparse, {P (2)
sparse, · · · {P (C)

sparse}
for C cells individually and obtain approximate estimates of {(s1,Σ1), (s2,Σ2), · · · (sC ,ΣC)}. The estimation
strategy is described later in this Section and the details of the same can be found in the Appendix.

As we are estimating the parameters of quadratic distance metric associated with every individual Voronoi cell
separately and then using the distance metrics, thus obtained, to tessellate a dense point cloud, we choose to call
the resulting Voronoi tessellation as the ‘Adaptive Quadratic Voronoi Tessellation’ (AQVT).

After registration, segmentation and identification of a cell in multiple slices in the 3-D stack, we can obtain
(x, y, z) co-ordinates of the set of points on the perimeter of the segmented cell slices. Let this set of points on the
cth cell be P (c)

sparse = {p1, p2, · · · pk} ∈ R3. We have to estimate the minimum volume ellipsoid which encloses
all these k points in R3 and we denote that with E . An ellipsoid in its center form is represented by

E(s,Σ) = {p ∈ R3 | (p− s)T Σ(p− s) ≤ 1} (11)

where s ∈ R3 is the center of the ellipsoid E and Σ ∈ R3×3. Since all the points in P (c)
sparse must reside inside E ,

we have
(pi − s)T Σ(pi − s) ≤ 1 for i = 1, 2, · · · k (12)

and the volume of this ellipsoid is

V ol(E) =
4

3
π{det(Σ)}− 1

2 (13)

Therefore, the problem of finding the Minimum Volume Enclosing Ellipsoid (MVEE) for the set of points P (c)
sparse

can be posed as

min
Σ,s

− log det(Σ)

s.t. (pi − s)T Σ(pi − s) ≤ 1 for i = 1, 2, · · · k
Σ � 0 (14)

To efficiently solve Problem (14) we convert the primal problem into its dual problem since the dual is easier to
solve. A detailed analysis on the problem formulation and its solution can be found in [26,27]. Solving this problem
individually for each sparse point set P (1)

sparse, P
(2)
sparse, · · ·P (C)

sparse, the parameters of the quadratic distance metrics
are estimated as {(ŝ1, Σ̂1), (ŝ2, Σ̂2), · · · (ŝC , Σ̂C)}. To visually represent these parameters, we have constructed
the ellipsoids with each of these parameter pairs and color coded them to represent individual cells in a SAM tissue
(Figure 4).

4.2.2 3D Tessellation Based on The Estimated Parameters of AQVT: The Final Cell Shapes

As soon as the parameters of the quadratic distance metrics are estimated from the previous step, the dense point
cloud Pdense obtained in Section 4.1.3 can be partitioned into different Voronoi regions based on Equation (8),
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i.e. the dense point cloud belonging to cell c is given as

P̂
(c)
dense =

{
x ∈ Pdense | (x− ŝc)

T Σ̂c(x− ŝc) ≤ (x− ŝj)
T Σ̂j(x− ŝj) ∀j ∈ {1, 2, · · ·C}

}
(15)

For visualization purpose of the cell resolution 3D reconstruction results, we fit convex polyhedrons to P̂ (1)
dense, P̂

(2)
dense,

· · · P̂ (C)
dense to represent each cell. Examples of the 3D reconstruction results using AQVT are shown in Figure 6

and Figure 7(C).

4.2.3 Relation Between The AQVT and Deformed Trucncated Ellipsoid Based Tessellation [7]

In a recent work [7], we have shown that the 3D shapes of individual cells in a tightly packed multi-layer tissue can
be approximated by deformed truncated ellipsoidal models. In that work, first, the enclosing ellipsoids (MVEE) are
fitted to the sparse data-points for each cell, which are then recursively deformed until a certain stopping criterion
(see [7]) is satisfied and finally truncated along the overlapping surfaces of those 3D deformed ellipsoids to obtain
the final 3D cell shapes.

Following the same notations used before, the estimated enclosing ellipsoids for the sparse point sets P (1)
sparse,

P
(2)
sparse, · · ·P (C)

sparse are given by {(ŝ1, Σ̂1), (ŝ2, Σ̂2), · · · (ŝC , Σ̂C)}. We observed through our experiments that the
best 3D reconstruction results are achieved when the estimated ellipsoids are deformed along their axes and the
deformation along each axes at each iteration step is proportional to the current length of the axes. Let the factor
by which each axis is deformed be f and let there be h iterations before the algorithm in [7] converges.

As we can express Σ as V DV −1 through Eigenvalue decomposition (see [7]) and the deformed Σ after h
iterations of deformation can be written as

Σdef = V (1/f)
2h
DV −1

the points on the reconstructed cell boundary between the cells i and j, after h steps of iteration would be given by,

{
x ∈ Pdense | (x− ŝi)

T V̂i (1/f)
2h
D̂iV̂

−1
i (x− ŝi) = (x− ŝj)

T V̂j (1/f)
2h
D̂j V̂

−1
j (x− ŝj) ∀i, j ∈ {1, 2, · · ·C}

}
(16)

where V̂iD̂iV̂
−1
i = Σ̂i

As f is a scalar, the Expression (16) can be rewritten as,{
x ∈ Pdense | (x− ŝi)

T Σ̂i(x− ŝi) = (x− ŝj)
T Σ̂j(x− ŝj) ∀i, j ∈ {1, 2, · · ·C}

}
(17)

Equation (17) is exactly same as the set of the boundary points between Voronoi regions i and j for a Adaptive
Quadratic Voronoi Tessellation. Thus, under the deformation condition described above, the method proposed
in [7] and AQVT produce the same tessellation result. But, the major advantage of using AQVT over [7] is that,
AQVT yields the 3D reconstruction result in a single step, whereas, the deformed truncated ellipsoidal model
described in [7] is an iterative process. The number of iterations can be very large depending on the choice of the
stopping criterion or the step-size in the deformation stage and hence [7] is, in general, a much slower algorithm.
Apart from that, the 3D reconstruction results can vary widely depending on the chosen step-size for deformation
in [7] and thus the quality of the reconstruction result is often unpredictable. We have experimentally observed
that in [7] the least error in reconstruction is achieved when the deformation step sizes for each cell in the tissue
are equal or very close to one another. This condition, as shown above, gives us the distance metric of AQVT.
Therefore, AQVT provides a unique solution to the 3D reconstruction and is, in most cases, guaranteed to yield
better or the same reconstruction result when compared to that in [7] at a significantly less execution time. It can
also be noted that the proposed AQVT does not require any user chosen threshold or parameter to be input into
reconstruction framework, making the method less ambiguous and more user friendly than [7].
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5 Experimental Results

5.1 Pre-processing Results
We have tested the proposed 3D Reconstruction framework on a cluster of around two hundred and twenty cells
spanning L1 and L2 layers of an Arabidopsis Shoot Apical Meristem. The details of the generation of raw image
data using CLSM technique are described in Section 3.1. We used a modified Watershed segmentation [18] to
segment individual cell slices and a sample Watershed segmented image slice is shown in Figure 5(B). In the next
step, we have clustered the slices belonging to each cell using the local graph-matching based cell tracking method
described in [4]. An example of the tracking result is shown in Figure 5(C), where the same cells are marked with
the same color in three successive slices. Once the sparse cell slices are clustered together, the sparse set of data
points on each cell are extracted and used to estimate the approximate location of the sites for Euclidean distance
based Voronoi tessellation or in case of the proposed AQVT based method, the site and weight parameters for the
quadratic distance metric for each cell.

5.2 3D Reconstruction Results
Figure 6(A) shows a cell resolution reconstruction of the cell cluster in SAM using AQVT. Note that for 3D
visualization purpose of the 3D structure only, we have represented each cell as a convex polyhedron fitted to the
dense point cloud clustered to the cells, as obtained from our 3D reconstruction/ 3D segmentataion scheme. For
better understanding of the 3D structures of individual cells, we have shown the reconstructed shapes of a smaller
cluster of cells in Figure 6(B).

5.3 Validation of The Proposed Method
5.3.1 Validation on 3D SAM Data

There is hardly any biological experiment which can directly validate the estimated growth statistics for individual
cells in a sparsely sampled multi layered cluster. In fact, the absence of a method to estimate growth statistics
directly using non-computational methods in a live-imaging developmental biology framework is the motivation
for the proposed work and we needed to design a method for computationally validating our 3D reconstruction
technique. Once the 3D reconstruction is achieved, we can computationally re-slice the reconstructed shape along
any arbitrary viewing plane by simply collecting the subset of reconstructed 3D point cloud that lies on the plane.

To show the validation of our proposed method, we have chosen a single time point dataset that is relatively
densely sampled along Z (0.225 µm between successive slices). Then, we resampled this dense stack at a resolution
of 1.35 µm to generate a sparser subset of slices that mimic the sparsity generally encountered in a live-imaging
scenario. The sparsely sampled slices for a cluster of cells spanning two layers (L1 and L2) in the SAM is shown
in Figure 7. The aforementioned tracking method [4] is used to obtain correspondences between slices of the same
cells. Different slices of the same cells imaged at different depths in Z are shown using the same number in Figure
7(A). Next, we reconstructed the cell cluster first by the standard Voronoi tessellation using the Euclidean distance
metric and then using our proposed method (AQVT) with a quadratic distance metric adapted for each of these
cells. The reconstruction results for a subset of the cells for each of these methods are shown in Figures 7(B) and
7(C) respectively for a direct comparison. It can be observed that not only our proposed method very accurately
reconstructed the cell shapes but also it has captured the multi-layer architecture of these SAM cells more closely
in comparison to its Voronoi counterpart with the Euclidean distance metric.

To better investigate the accuracy of the reconstruction and to show the clear advantage of using the proposed
method of reconstruction quantitatively, we measure distances between the 2D cross sections of the 3D recon-
struction results for each cell to the Watershed segmented cell boundaries. By choosing the reslicing plane as
z = 1.125, 2.475, 3.825µm (different slices than those used for reconstruction) from top of the stack for the L1
layer cells and z = 5.175, 6.525, 7.875µm for the L2 layer cells, we can computationally regenerate the cell walls
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for these imaging planes along Z. The shapes of cells in the reconstructed slices can be compared against their
counterparts in the 2D segmented images and the distance between the shapes would represent the reconstruction
error. There are several different distance metrics that can be used to compute the dissimilarity between two shapes
such as the Procrustes distance, Hausdorff distance etc., each one having its own advantages. We have chosen to
use the Modified Hausdorff Distance (MHD), one of the more popular distance measures in the Hausdorff distance
family, to evaluate our reconstruction method. The advantages of MHD over other distance measures for object
shape matching is described in details in [28]. It can be noted that the error, thus computed, is analogous to the re-
projection error that is widely used in the 3D reconstruction community to quantify the accuracy of reconstruction.

In Figure 8(A), we have shown the computationally resliced cell slices (color coded to represent the same cells
at multiple slices) at various depths for Euclidean distance based Voronoi tessellation and Figure 8(B) shows the
2D cross sections for the same cells as obtained by reslicing the 3D cell shapes in the proposed AQVT based
reconstruction method. For both the image sets, the computationally obtained cross sections of each cell are
superimposed by the Watershed segmentation results for the same cell slices (the ground truth). The MHD between
the original and computationally generated cell slices are computed and the for each of the cells in 6 different slices,
this error is shown in Figure 8(C).

It can be observed that each of the graphs in Figure 8(C) comprises of the reconstruction errors for individual
cell slices for both the methods of the reconstruction. For the slices closer to the center of the cells, both the
methods show similar and acceptably small reprojection error. However, in case of the terminal slices for each cell
along Z, the proposed adaptive quadratic distance based reconstruction method shows a far better reconstruction
accuracy (as evident in the 1st, 3rd, 4th, 6th graphs in Figure 8(C)). This improvement of result is more prominent
for cells that have non-uniform shapes and growth such as elongation along any one of the axis. We further
validate this observation by performing a similar experiment on a cluster of cells of various sizes and dimensions
in a sample root meristem longitudinal cross sectional slice image. This experiment and the results are elaborated
in the next subsection.

We have also evaluated the accuracy of our method by studying how much do the estimated volumes of the
cells differ from ground truth for various levels of sparsity in the z-sampling. For the dense data described before
(0.225 µm between slices along z), we first estimate the ground truth cell volumes of a cluster of cells by counting
the total number of superpixels per cell and multiplying that with the superpixel size (0.2x0.2x0.225 µm3). Then,
we gradually resample the dense stack at 5 successive z resolutions (viz. 0.45, 0.675, 0.9, 1.125, 1.35 µm) and
for each of these resampled stacks, we reconstruct the same cells using the proposed AQVT and estimate the cell
volumes. It can be noted that with each of these respective resampling, the resultant 3D stack becomes more
and more sparse. For example, at 0.45 µm z resolution of sampling, the average number of slices per cell is 7
or 8, whereas, for 1.35 µm, the same cells are captured in an average of 3 slices. The errors in estimation of
individual cell volumes at various sparsity levels are shown in Figure 9. We have plotted the means and standard
deviations of the absolute errors expressed as a ratio to the ground truth cell volumes. It can be observed that at the
densest resampling (0.45 µm), the average estimation error is as low as 3% with a standard deviation of 1.3%. The
estimation error slowly increases with increased sparsity in the stack and at a sparsity of about 3 slices/cell, the
average estimation error is 5.3%, with standard deviation of around 4%. We have repeated the same experiment
for Voronoi tessellation with Euclidean distance metric and the average error is much higher at around 30% (see
Figure 2S in supplementary).

5.3.2 Validation On 2D Root Meristem Data

For further evaluating the performance of the proposed AQVT on tightly packed cells of heterogeneous sizes and
shapes, we perform similar experiments on a 2D image of root meristem longitudinal cross section with 226 cells
(the raw images are obtained from Figures 5(A, B) in [29]). From Figure 10(A), it can be seen that a large number
of cells in the tissue slice (shown as x-z plane in Figure 10(B)) is more elongated along the longitudinal direction
(shown as z-axis in Figure 10(B)), whereas the other cells have similar x and z diameters. Again, the cells towards
the the periphery are much larger than the cells in the lower central region of the tissue. To mimic the scenario of
sparse sampling along one dimension, we artificially sample the segmented cells along z (longitudinal) axis (see
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Figure 10(B)) to generate point clouds for each cell at various sparsity (∆z = dz/9, dz/6, dz/4 and dz/3, where
dz is the average cell diameter along z axis). We assume sparse clustering of sampled points per cell (analogous
to spatial tracking in 3D) is given to us as the contribution of the present work is dense reconstruction of cells
from sparse point clouds, which lies in the post segmentation and tracking stage of the reconstruction pipeline. For
each of the resampled point clouds, we use AQVT (in R2) to reconstruct the cells (Figure 10(C)). We compute
modified Hausdorff distances from every reconstructed cell shape to the ground truth segmentation for quantitative
evaluation of the reconstruction accuracy (Figure 10(D)). We can observe that the mean error in the reconstructed
cell shapes is less than 6% of average cell longitudinal diameter and the maximum reconstruction error for most
of the cells in the tissue is less that 10% for all sparsities upto ∆z = dz/3 (average 3 slices or lines/cell). We
have shown a very similar experiment on another sample 2D longitudinal cross section image of root apex in
Supplementary Section 1 and Supplementary Figure 1S.

6 Conclusion and Future Work
In this paper, we have presented a method of reconstructing densely packed cluster of cells using a very sparsely
z-sampled confocal live imaging dataset. We have provided a mathematically rigorous framework built on top
of basic geometric tessellation concepts. We have first shown how the cell shapes can be approximated by the
Voronoi tessellation based on Euclidean distance measure. Then, we proposed a quadratic distance metric based
Voronoi tessellation framework to capture the asymmetry of the cell sizes and growth along their different axes.
We described how the proposed tessellation can take care of the asymmetry by providing weights on the distance
metric along each axis for each cell and how these weights as well as the location of the sites can be approximately
estimated from the sparse image data for individual cells by fitting enclosing ellipsoids to the segmented sparse
image slices. We have validated our method by showing that the reconstruction error (both in reconstructed cell
shapes and estimated cell volumes) for the cells is sufficiently low and have provided a direct comparison of the
reconstruction error for the proposed method against the popular Euclidean distance based Voronoi tessellation
approach. As an application of the proposed method, we have shown some preliminary results on the estimation of
growth curves for a few SAM cells in Supplementary Figure 3S. Future work on this would include the integration
of this 3D reconstruction method with the spatio-temporal cell tracking method to form a complete image analysis
pipeline. This fully automated pipeline could be used to generate various cell division and cell growth statistics
in a fully automated, high-throughput manner. The statistics collected from such a pipeline could be extremely
useful in building a dynamical model to quantitatively analyse the spatio-temporal correlation in cell division and
cell growth in a complex multi-layered tissue.

7 Appendix: Estimation of MVEE Parameters
Here we provide the detailed solution to the optimization problem in (14) for estimation of the MVEE parameters.
We define a ’lifting’ from P ∈ R3 to R4 via

P
′

= {±q1, ±q2, · · · ± qn}

where qi = [pi, 1]T , i = 1, 2, · · ·n. Now, we define a hyperplaneH =
{

(p, p4) ∈ R4 : p4 = 1
}

such that

MVEE(P) = MVEE(P
′
) ∩ H (18)

MVEE(P ′
) is centered at origin and this helps us in changing the problem in (14) as a convex optimization problem

for MVEE(P ′
). Once this problem is solved we can find out MVEE(P) using Relation (18). Now, the lifted
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problem is

min
A

−log det(A)

s.t. qi
TAqi ≤ 1 for i = 1, 2, · · ·n

A is a 4×4 positive definite symmetric matrix (19)

The Lagrangian dual problem of the above:

max
u

log det F (u)

s.t. 1Tu = 1

u ≥ 0 (20)

where u ∈ Rn is the decision variable and ′F ′ is a linear operator such that

F (u) =

n∑
i=1

uiqiqi
T (21)

Problem(20) is a concave optimization problem which can be solved by an ascent method. Based on the work
by L.G. Khachiyan in [26], a conditional gradient ascent method [27] can be employed to solve this optimization
problem.

Now, û is an optimal solution to the optimization problem along with the dual solutions ŝ ∈ Rn and λ̂ ∈ R if
and only if the following conditions are satisfied [27]

qi
TF (û)−1qi + ŝi = λ̂ for i = 1, 2, · · ·n (22)

1T û = 1 (23)

and
ûiŝi = 0 for i = 1, 2, · · ·n (24)

where û, ŝ > 0. Then, multiplying both sides of (22) by ûi and summing up over all i gives

n∑
i=1

ûiqi
TF (û)−1qi = Trace

[
F (û)−1

(
n∑

i=1

ûiqiqi
T

)]
= Trace(I)

Now I is a 4× 4 matrix and hence Trace(I)=4. This implies λ̂ = 4. Consequently,

A =
1

4
F (û)

−1 (25)

Combining the results, the expression of MVEE:

MVEE(P) = {p ∈ R3 | 1

4

[
pT 1

]
F (û)

−1

[
p
1

]
≤ 1} (26)

Now, let P ∈ R3×n such that the i’th column of P is pi. Then, F (û) from Equation (21) can be alternatively
expressed in a matrix form in terms of P -

F (û) =

[
PÛPT Pû
(Pû)T 1

]
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where, U = diagonal(u) ∈ Rn×n. Upon inversion,

F (û)
−1

=

[
I 0

(−Pû)T 1

] [
(PÛPT − Pû(Pû)T )−1 0

0 1

] [
I −Pû
0 1

]
Plugging the value of F (û)

−1 into (26), we get MVEE(P) as

{p ∈ R3 | (p− Pû)T
1

3
(PÛPT − Pû(Pû)T )−1(p− Pû) ≤ 1} (27)

Hence, the estimated parameters of the MVEE(P) are

Σ̂ =
1

3
(PÛPT − Pû(Pû)T )−1 and ĉ = Pû (28)
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Figure Legends
Figure 1. Shoot Apical Meristem (SAM): A multilayer cell cluster. (A) SAM located at the top of the shoot
of Arabidopsis, (B) A detailed surface view showing different regions of SAM, (C1-C3) Three consecutive slices
of SAM, each 1.5µm apart, obtained through CLSM technique, (D) A cross sectional side view of SAM, which
clearly shows the multiple layers (L1, L2, L3) of tightly packed stem cells and their shapes, (E1-E3) The visible
cell walls of individual cells in 3 sparsely sampled consecutive slices of the SAM obtained from the 3D CLSM live
imaging dataset.

Figure 2. A schematic of Voronoi Tessellation and Estimated SAM cell centroids as Voronoi sites. (A)
A Voronoi diagram based on the Euclidean distance metric for twenty sites in 2D. The figures also show that
the Voronoi edges are perpendicular to the line joining any two neighbouring sites. AB, CD, EF are three of
the Voronoi edges and they are the perpendicular bisectors of x1x2, x3x4, x5x6 respectively. (B) Centroids are
estimated for around two hundred cells in a SAM tissue, which are also the sites of Euclidean distance based
Voronoi tessellation.

Figure 3. Generation of the dense point cloud from within the reconstructed SAM surface. (A) The SAM
contours extracted from the confocal image stack using Level-Set segmentation, (B) The SAM surface is recon-
structed using linear interpolation on a local neighbourhood of points on the SAM contours, (C) A very dense point
cloud is extracted from within the reconstructed SAM surface which is clustered using the proposed reconstruction
technique into individual cells.

Figure 4. Ellipsoidal representation of the AQVT parameters estimated from the sparse data-points. (A)
The Minimum Volume Enclosing Ellipsoids representing the (c,Σ) parameter pairs for individual cells are shown
in different colors. (B) The same representation viewed from top.

Figure 5. Sample segmentation and spatio-temporal tracking result. (A) Raw confocal image slice, (B)
Watershed segmented cell edges from the same image in A, (C) Individual cell slices are tracked in Z to find
correspondence between slices belonging to the same cells. The cells are color coded in the image to show the
correspondences. The cells can also be tracked in time (which is shown using the same color code) that can be
useful while reconstructing the same cells in consecutive time points to observe the growth of those cells.

Figure 6. Visualization of the AQVT based 3D reconstruction of SAM cell cluster. (A) Visualization of the
3D reconstructed structure of a cluster of around 220 closely packed cells using convex polyhedron approximations
of the densely clustered data-points for each cell, as obtained from the proposed 3D reconstruction scheme, (B) A
subset of cells from the same tissue.

Figure 7. Reconstruction of a cluster of cells using Euclidean distance based Voronoi tessellation and the
proposed AQVT for comparison of The 3D reconstruction accuracy. (A) Segmented and tracked cell slices
for a cluster of fifty two cells from the L1 and L2 layers of SAM. A dense confocal image stack is subsampled
at a z-resolution of 1.35 µm to mimic the ‘z-sparsity’ observed in a typical Live-Imaging scenario. The slices
belonging to the same cell are marked with the same number to show the tracking results. (B) 3D reconstructed
structure for a subset of these cells when reconstructed using the Euclidean distance based Voronoi Tessellation.
(C) The AQVT based reconstruction result for the same cell cluster.

Figure 8. Comparison of The 3D reconstruction accuracy for the proposed AQVT based reconstruction
against Euclidean distance based Voronoi tessellation. (A) The cells shown in Figure 7(A) are reconstructed
using the Euclidean distance based Voronoi tessellation and the computationally re-sliced cells are compared
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against the ground truth. (B) The same cells are reconstructed using the adaptive quadratic distance based Voronoi
tessellation and then computationally re-sliced along various depths in z at which we also have the ground truth (in
terms of the 2D segmentation results of the cell slices), but were not used in generating the reconstruction results.
The computationally obtained cell slices are shown in different colors for different cells and they are superimposed
by the ground truth segmentation results. (C) The error in reconstruction (similar to the reprojection error) is
computed as the Modified Hausdorff Distance (MHD) between the computationally generated cell slices and the
segmentation results on the ground truth images of the same cells. The MHD, computed for each of the 52 cells
at different depths in the Z-stack are plotted for both the methods to compare the methods against each other. It
can be clearly observed from the plots that the reconstruction error is much larger for the Euclidean distance based
Voronoi tessellation (VT) than for AQVT, especially at the terminal (3rd, 4thand 6th) slices, between consecutive
layers of cells.

Figure 9. Errors in AQVT estimated cell volumes from their respective ground truth volumes at various
levels of sparsity. A cluster of cells from a 3D confocal image stack with z resolution of 0.225µm is resampled
to generate stacks of 5 different levels of sparsity. Each of these resampled stacks is 3D reconstructed using the
proposed AQVT and volumes of each of the cells in the cluster is computed. The means and standard deviations
of absolute errors in volumes (expressed as a ratio to the ground truth volumes) of all the cells for each sparser
stacks are plotted. The average error slowly increases with increased sparsity but is less than 5.3% with a standard
deviation of 4% even at 1.35 µm/slice (i.e. 3 slices/cell on an average).

Figure 10. Validation of AQVT on 2D root apex longitudinal cross section data. (A) A sample cross sectional
slice of root apical meristem tissue (top) and the extracted cell contours (bottom) (Both the images are from Figures
5(A, B) in [29]). (B) The zoomed in tissue after segmentation (B-top) and sparser point clouds per cell (in the x-z
plane) after resampling the tissue at various z-resolutions (zoomed in for clarity). (C) The cells (color-coded) are
reconstructed using the proposed AQVT with the resampled point clouds as shown in B to present the change in
reconstruction quality with increased sparsity in the sampled point clouds for both the larger and elongated cells
towards the outer and upper part and the smaller cells towards the lower central part of the tissue. (D) Quantitative
measure of reconstruction errors: the difference between actual and reconstructed cell shapes are computed using
modified Hausdorff distance (MHD) and the histograms of MHDs for all the cells at every level of sparsity is
plotted.




