
UC Irvine
ICS Technical Reports

Title
Self-organizing search lists using probabilistic back-pointers

Permalink
https://escholarship.org/uc/item/64m171s2

Authors
Hester, J. H.
Hirschberg, D. S.

Publication Date
1985

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/64m171s2
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Self-Organizing Search Lists

Using Probabilistic Back-Pointers

J. H. Heatef' and D. S. Hif'achbef'g

Technical Report # 85-14

April, 1985

Abstract. A class of algorithms is given for maintaining self-organizing sequential
search lists, where the only permutation applied is to move the accessed record
of each search some distance towards the front of the list. During searches, these
algorithms retain a back-pointer to a previously probed record in order to determine
the destination of the accessed record's eventual move. The back-pointer does
not traverse the list, but rather it is advanced occationally to point to the record
just probed by the search algorithm. This avoids the cost of a second traversal
through a significant portion of the list, which may be a significant savings when
each record access may require a new page to be brought into primary memory.
Probabilisticlunctions for deciding when to advance the pointer are presented and
analyzed. These functions demonstrate average case complexities of measures such
as asymptotic cost and convergence similar to some of the more common list update
algorithms in the literature. In cases where the accessed record is moved forward
a distance proportional to the distance to the front of the list, the use of these
functions may save up to 50% of the time required for permuting the list.

Self-Organizing Search Lists Using Probabilistic Back-Pointers

J. H. Hester

D. S. Hirschberg

University of California, Irvine

ABSTRACT

A class of algorithms is given for maintaining self-organizing sequential search

lists, where the only permutation applied is to move the accessed record of each

search some distance towards the front of the list. During searches, these algorithms

retain a back-pointer to a previously probed record in order to determine the

destination of the accessed record's eventual move. The back-pointer does not

traverse the list, but rather it is advanced occationally to point to the record

just probed by the search algorithm. This avoids the cost of a second traversal

through a significant portion of the list, which may be a significant savings when

each record access may require a new page to be brought into primary memory.

Probabilistic functions for deciding when to advance the pointer are presented and

analyzed. These functions demonstrate average case complexities of measures such

as asymptotic cost and convergence similar to some of the more common list update

algorithms in the literature. In cases where the accessed record is moved forward

a distance proportional to the distance to the front of the list, the use of these

functions may save up to 50% of the time required for permuting the list.

- 2 -

INTRODUCTION

Sequential searches are performed on a list of initially unordered records.

After a record is found, the list is permuted by some algorithm in an effort to place

the more frequently accessed records closer to the front of the list, thus reducing

expected search time. One common application in which this situation arises is a

list (or lists) of identifiers maintained by a compiler or interpreter. The list cannot

be initially ordered since frequencies are unknown, but since most programs tend to

access some identifiers much more often than others, the more frequently accessed

identifiers should be nearer the front of the search list containing them. Interesting

questions are what algorithms can be used for this permutation, and how do they

perform relative to each other in terms of expected search time.

Much work has been done on this problem, and there is a wealth of methods

now available for permuting records [BIT79, GON81, HES8 5]. We propose a new

class of algorithms, called JUMP, which is based on retaining a back pointer in the

list during searches to be used for determining what reordering shall take place.

We show that specific members of this class involving probabilistic functions can

be made to demonstrate the same permutations, in the average case, as some of

the more commonly proposed algorithms in the literature, but the permutations

themselves often can be accomplished more efficiently.

1. PREVIOUS WORK

The most general case of the problem places no restriction on the permutation

applied to the list or on how much time or space is required for the permutation.

However, most analyses in the literature are of permutation algorithms that use only

constant extra space (called memoryless algorithms), and only move the accessed

record some distance forward in the list while leaving the relative ordering of all

other records unchanged.

- 3 -

Let p be the search sequence. The first record is in location 1 and the last of

n records is in location n. The accessed record is the record we are looking for, and

the probed record is the record we are currently looking at during the search.

1.1. EVALUATION CRITERIA

For a given initial list configuration and search sequence p, the cost of a

permutation algorithm a is the average number of comparisons made per record

searched over all searches in p. Recall that this only reflects the count of probes

needed to find the record, not any extra cost to apply the permutation.

Since it is assumed that p is unknown before the searches are performed, it is

necessary to make some assumptions about the contents of p. The most common

assumption is that there is a fixed probability of access for each record, and that

accesses to records are independent of each other. Under this assumption the

asymptotic cost of the algorithm is the limit of the average cost per access as IPI

increases and the worst case cost is the greatest average cost per access of any p.

It is usually assumed that the initial list is unordered. As a permutes the list

after each access, the expected search time for the next record should decrease until

a steady state is reached where many further permutations by a are not expected

to increase or decrease the expected search time significantly. Note that this steady

state is not any single ordering of the list, or even a set of orderings, but rather

a condition where further changes are not expected to have a significant effect

on the average search_ time. When we say an algorithm converges on its steady

state, we mean that the effect of further permutations on the average search time

decreases as permutations are ,performed, and the effect should approach zero as

the number of permutations approaches infinity and the number of future searches

considered in the average approaches infinity. There is generally a tradeoff between

low asymptotic cost and high convergence rate. In cases where IPI is small, the speed

with which a converges to its steady state may be a more important measure than

- 4 -

its asymptotic cost. This is even more important in cases which demonstrate some

degree of locality, i.e. where the accesses in p are not independent. Cases where

those records accessed in the near past are more likely to be accessed again in the

near future are common in both English text and programming, where words or

variables tend to occur in bursts. In these cases, algorithms with high convergence

rates often have lower cost than other algorithms that have lower asymptotic costs.

1.2. ALGORITHMS

The following list of permutation algorithms only includes those that will be

referenced relative to the results of this paper. Although this is not a complete

list of existing algorithms, it does include most of the more commonly addressed

algorithms in the literature.

1.2.1. Move-to-front

When the accessed record is found, it is moved to the front of the list if it is not

already there. This is the most commonly mentioned algorithm in the literature.

The move-to-front algorithm tends to converge quickly to a steady state, but

the price of this convergence speed is a large asymptotic cost since a record accessed

only once moves all the way to the front, which increases the costs of accesses

to many other records. When the search sequence has a large degree of locality

(the searches to some records are not evenly distributed throughout the sequence),

move-to-front- is quick to adjust to the changing probabilities of access for local

sections of the sequence.

1.2.2. Transpose

The accessed record, if not at the front of the list, is moved up one position by

changing places with the record just ahead of it. This way a record only approaches

the front of the list if it is accessed frequently.

- 5 -

The slower record movement gives transpose slower convergence, but the

resultant stability tends to keep the expected cost of its steady state lower than

that of move-to-front for search sequences having a small degree of locality.

1.2.3. Move-ahead-k

Move-ahead-k is a compromise between the relative extremes of move-to-front

and transpose. Move-ahead-k moves the record forward k positions, where k can

be a constant, or a function of n and/or the location of the accessed record.

By this definition, if r is the location of the accessed record, move-to-front is

move-ahead-(r-1) and transpose is move-ahead-1.

This can be generalized to move a percentage of the distance to the front,

or some other function based on the distance. Other possible parameters to the

function may also be of interest, such as how many accesses have taken place so

far. As usual, if the distance to be moved exceeds the distance to the front, then

the record is only moved to (or left at) the front.

The move-ahead-k algorithm was proposed by Rivest [RIV76], and addressed

later by Gonnet, Munro and Suwanda [GoN81]. They showed that, for j > k,

move-ahead-j converges on a steady state faster than move-ahead-k, but at the

penalty of a higher asymptotic cost.

1.2.4. k-t'n-a-row

k-in-a-row is a ~eta-algorithm proposed by Gonnet, Munro and Suwanda

[GON81 J. It can be applied in conjunction with many (if not all) permutation

algorithms. An algorithm is applied only if the accessed record has been accessed k

times in a row. This does not break the memoryless assumption, since it only needs

to remember the last record accessed, with a finite counter for previous consecutive

accesses. It was shown that the rate of convergence using move-to-front with

2-in-a-row is the same as that of transpose without a k-in-a-row meta-algorithm.

- 6 -

1.3. HYBRIDS

Due to the tradeoff between convergence rate and asymptotic cost, Bitner

[BIT79 J proposed hybrid algorithms that initially use an algorithm with fast con­

vergence until that algorithm approaches its steady state, and then switching to an

algorithm with a better asymptotic cost for further searches.

2. ASSUMPTIONS

A standard assumption is that the list is linked. This allows moving a single

record in constant time by relinking, once the record is found and the destination

of the move has been determined. Move-to-front and transpose determine where to

move the record in constant time, since a pointer to the front of the list is available,

and the last record probed can easily be remembered. However, algorithms that

move the record any non-constant distance forward may spend time proportional

to the distance of the move searching for the destination of the move.

We also assume that all records that will be searched for are in the list, and

we can therefore ignore failed searches. If this assumption is false, we merely add

detection of the end of the list to the search algorithm and append the record to

the end of the list. In this case, whatever permutation is normally called for would

be applied as usual.

3. THE JUMP FUNCTION

We wish to find record x. Our algorithm initially sets a back-pointer b to the

first record in the list, and then begins searching. Each time a record p is probed

and is not x, a boolean function /3 is evaluated. If f3 is true, b is advanced to p.

The search then continues. When x is found, x is moved just ahead of b, unless

b is x (which is true if and only if x is at the front of the list). Note that f3 can

cause a record to move forward any distance between 1 and the full distance to

the front of the list. The evaluation of /3 after a failed probe at the first record

- 7 -

in the list will have no effect because the initial value of b is already pointing to

this record. Otherwise, the back-pointer always points at least I record behind the

probed record. The following simplified search algorithm illustrates the use of the

function:

function search(searchkey, /isthead)
begin

end

b +- /isthead
p +- /isthead
while KEY[pJ i- searchkey do begin

if /3 then
b +- p

p +- NEXT[pJ
end
remove p from list
re-insert p in front of b
return p

The main advantage of this algorithm is that it allows moving a record forward

a distance other than one place or all the way to the front of the list without

requiring a second search through the list looking for the place to move to. If the

keys are extremely large or (more likely) there are a large number of records, then

each access will have a good chance of requiring access to slower secondary memory.

The dynamic (linked) nature of the list prevents simple attempts to keep records

that are close to each other (in terms of their logical location in the list) on the

same physical page of memory as searches and permutations progress.

f3 may be any f~nction desired. Thus we have defined a class of algorithms

rather than a single one. /3 may take any parameters desired, such as the location

of the probed record, the location of the record pointed to by the back-pointer, the

number of accesses previously performed, the length of the list, etc.

We define JUMP(p, b) as a class of /3 functions that take as parameters the

locations of the current back-pointer and the current record being probed. We will

give analyses of the use of various JUMP functions .

.. 8 ..

Note that move-to-front can be implemented by having JUMP always evaluate

to false, and transpose can be implemented by having JUMP always evaluate to

true. By using a non-constant JUMP function, we are able to move x forward by

various distances without the need of additional searching to find where to move

x. Since JUMP is calculated once for every record probed, the total time spent is

of the same order as the time needed to perform a linear search to find where to

move x, but calls to a simple JUMP function may have a trivial cost when_ compared

with accesses to secondary memory.

3.1. FIXED JUMPS

Assume record xis in location r. Let JUMP(p, b) = (p/b ~ c) for any fixed c.

Since p is an integer in the range [b+ 1, ... , cb], the average value of p in terms of b

and c, assuming we know nothing about where in this range p lies, is

p -
l cb

(c - 1)b E i
i=b+l

c+lb+!
2 2

c +lb
2

Thus the average distance record x (at location r) will move forward is

r-b ~
2

r---r
c+l

c-1
--r
c+l

Therefore, if we want records on the average to move forward P% of the total

distance to the front, we want

c-1 P
--r=-r,
c + -1 . 100

lOO+P
or solving for c, c =

100
_ p

For example, if we want to move items forward by an average of 80%, JUMP should

be true when

p_ > c = 100 + 80 = 9
b - 100- 80

This allows fine tuning of the algorithm for the desired tradeoff between convergence

and asymptotic cost.

- 9 -

The above analysis assumes that the list is unordered. This may be true

initially, but the effects of JUMP over many calls will, on the average, cause the

elements with higher probabilities to be located closer to the front of the search

list. This means that it is not clear what the average p as a function of b will be,

since the records which are closer to the front of the list will be more likely to be

found than records which are further from the front. It appears that the effect of

this could only be predicted by making further assumptions about the values of the

probabilities.

If this does have an effect, and the average p as a function of b becomes smaller

as the list becomes more ordered, then the average percent of move-ahead distance

decreases. This might be looked upon as a desirable attribute, since we would

like quick convergence when the list is unordered, with a better asymptotic cost

as the list becomes more ordered. It would demonstrate a behavior similar to the

hybrid algorithms proposed by Bitner [BIT79 J for similar results. Proving this and

determining the magnitude of the decreasing move, if any, is an open question we

chose not to presue due to a similar result we present in a later section.

3.2. PROBABILISTIC JUMPS

The definitions of JUMP are independent of the value of b in the following,

and thus will be denoted as JUMP(p) rather than JUMP(p, b).

3.2.1. CONSTANT MOVES

Let the probability that JUMP(p) evaluates to true be 1/c for any fixed c~ 1.

Recall that, unless a record is found in the first location of the list, it will move

forward at least one position. It will move further only if J UMP(p-1) evaluated

to false, which happens with probability 1-1/c. In this case, the record will move

the single space to the previous position in the list plus the expected move distance

from that position. This gives the following recurrence for the expected distance a

- 10 -

record found at location r will move forward:

{
o

Mc(r, c) =
1 + (1 - 1/c)Mc(r- 1, c)

r=l

r>l

To show that the expected move is about c, we define a fudge factor Xc(r, c) such

that Mc(r, c) =c+Xc(r, c), and bound the possible values of Xc(r, c).

LEMMA 1:

{

-c
Xc(r, c) =

(1 - 1/c)Xo(r- 1, c) = (1 - c)(l - l/cy-2

r=l

r>l

PROOF:

The value for r = 1 comes directly from the definitions of Mc and Xe. For

r> 1,
Mc(r, c) = 1 + (1 - 1/c)Mc(r - 1, c)

c + Xc(r, c) = 1 + (1 - 1/c)(c + Xc(r - 1, c))

solving for Xe (r, c) and simplifying gives the recursive form of the result. The closed

form follows directly, using the value for r = 2 as the basis of the recurrence. 1

Thus, for r > 2, Lemma 1 and the definition of Xe gives

Mc(r, c) = c + (1 - c)(l - l/cr-2 = c - c(l - l/cr-1

For c < < r, c is a good approximation of the expected move distance Mc. For c ~ r,

Mc ~ r(l-1/e) ~ .63r. For c >> r, Mc approaches r-1 from below. This will

only be significant if something more is known about the probabilities of accesses

for records such that most of the accesses are expected to be to positions not much

larger than c. In cases like this (where c implies desired moves equal to or greater

than the expected distance to the front), move-to-front is a better choice for an

algorithm.

Note that this result is similar to the fixed jump of the previous section, but

is independent of the fact that the records will become partially ordered over time.

- 11 -

Also note that this method does not have the side-effect of reading the records

a second time as would be the case if a pointer were maintained some constant

distance behind the accessed record.

3.2.2. FRACTIONAL MOVES

Sleator and Tarjan [SLE8 5] extended amortized results by Bentley and

McGoech [BEN85] to prove that the search time resulting from moving a record

forward a fraction of the distance to the front is no worse than a constant times

the optimal off-line algorithm. They further showed that the constant is 2 for

move-to-front and is inversely proportional to the fraction moved. Although

move-to-front has the best bound by this measure, moving a smaller fraction of

the full distance may be profitable if the search sequence has a small degree of

locality. The following function allows movement of any desired fraction in the

average case.

Let the probability that J UMP(p) evaluates to true be defined as

Pr(JUMP(p) evaluates to true)= { c~p p~c

p<c

for some constant c > 0. The expected distance a record located at location r will

move forward will be

{

o
Mp(r, c) = 1

1 + (1 - _c_) Mp(r - 1, c)
r-1

r=l

r > 1, c~r-1

r > 1, c~r-I

We will show that the expected distance a record found at location r will move

forward is about r/(c+I). As before, define a fudge factor Xp(r, c) such that

r
Mp(r, c) = - + Xp(r, c)

c+I

LEMMA 2: For r > 1 and c ~ r - 1,

Xp(r,c) = (1- _c_) Xp(r- l,c)
r-1

- 12 -

PROOF:

For r > 1 and c ~ r - 1,

Mp(r, c) = 1 + (1 - _c_) Mp(r - 1, c) r-1
r (c) (r-1) -- + Xp(r, c) = 1 + 1 - --

1
--

1
+ Xp(r - 1, c)

c+l r- c+

Solving for Xp(r, c) and simplifying gives the desired result. 1

For c ~ 1 and r = lcJ + 1, the recurrence gives Mp(lcJ + 1, c) = 1 and our

definition of Xp gives

Mp(lcJ + 1, c) = lcJ +
1

+Xp(lcJ+1, c)
c+l

Combining these two and solving for Xp,

Xp(lcJ + 1, c) = _c -_l_cJ
c+l

Since we assumed c~ 1 we get O~ Xp(lcJ+l, c) < 1. Using this as a basis, Lemma 2

then provides the body of an inductive proof that O~Xp(r, c) < 1 for all r ~ lcJ + 1

and c ~ 1.

For 0<c<1 and r= I, the recurrence gives Mp(l, c) =O and our definition of

Xp gives
1

Mp(l, c) = -
1

+ Xp(l, c)
c+

Combining these two and solving for Xp,

-1
Xp(l,c) = -

c+l

Since we assumed 0 < c < 1 we get -1 < Xp(l, c) < -1/2. Using this as a basis,

Lemma 2 then provides the body of an inductive proof that -1 <Xp(r, c) < 0 for

all r~ I and 0< c< 1.

- 13 -

Thus, for all 0 < c < r-1, we see that -1 < Xp(r, c) ~ 1, and the expected

distance a record will be moved forward is bounded by

r r
-- -1 < Mp(r c) < -- + 1
c+l ' -c+l

which shows that JUMP may be used to move records up by a distance which is

within 1 of any desired fraction of the distance to the front of the list, without need

of re-reading records to determine the move destination either during or after the

search.

4. SUMMARY AND OPEN QUESTIONS

We have presented a method of employing probabilistic back-pointers to im­

plement self-organizing lists for sequential search. This method can be used to

implement many of the memoryless permutation rules that involve moving only the

accessed record some distance forward in the list. In the case where each record

is large and requires a significant amount of time to read, this method avoids re­

reading a large number of records. Examples showed how constant and fractional

moves could be achieved on the average.

All of the random JUMP functions presented here have decreasing probabil­

ities as p increases. We have not considered possibilities where the probabilities

were increasing over time, or where the difference between p and b was used instead

of just p. We conjecture that, in both of these cases, the resultant move-up will be

a constant, and therefore would not be of utility since we already have a random

function giving constant moves. Nevertheless, it might be worthwhile to pursue

these cases and verify their behavior.

There may be useful strategies that move records forward other than a con­

stant amount or a fraction of the distance to the front. It might be interesting to

search for these, and determine whether a JUMP function can be made to imple­

ment them.

- 14 -

ACKNOWLEDGMENTS

Our thanks to L. L. Larmore, for suggesting the use of fudge factors as a

simple method of proving bounded solutions to the recurrences.

REFERENCES

[BEN85) Bentley, J.L., and McGeoch, C.C. Amortized Analyses of
Self-Organizing Sequential Search Heuristics Commun. ACM 28, 4
(Apr. 1985), 404-411.

[BIT79] Bitner, J.R. Heuristics that Dynamically Organize Data Structures.
SIAM J. Comput. 8, 1 (Feb. 1979), 82-110.

[GON81] Gonnet, G.H., Munro, J.I., and Suwanda, H. Exegesis of
Self-Organizing Linear Search. SIAM J. Comput. 10, 3 (Aug. 1981),
613-637.

[HES 8 5] Hester, J .H., and Hirschberg, D.S. Self-Organizing Linear Search. To
appear in Computing Survey~.

[RIV7 6 J Rivest, R. On Self-Organizing Sequential Search Heuristics. Commun.
ACM 19, 2 (Feb. 1976), 63-67.

[SLE8 5 J Sleator, D.D., and Tarjan, R.E. Amortized Efficiency of List Update
and Paging Rules. Commun. ACM 28, 2 (Feb. 1985) 202-208.

- 15 -

	20141030161257904_0001
	20141030161257904_0002
	20141030161257904_0003
	20141030161257904_0004
	20141030161257904_0005
	20141030161257904_0006
	20141030161257904_0007
	20141030161257904_0008
	20141030161257904_0009
	20141030161257904_0010
	20141030161257904_0011
	20141030161257904_0012
	20141030161257904_0013
	20141030161257904_0014
	20141030161257904_0015

