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Abstract. A class of algorithms is given for maintaining self-organizing sequential 
search lists, where the only permutation applied is to move the accessed record 
of each search some distance towards the front of the list. During searches, these 
algorithms retain a back-pointer to a previously probed record in order to determine 
the destination of the accessed record's eventual move. The back-pointer does 
not traverse the list, but rather it is advanced occationally to point to the record 
just probed by the search algorithm. This avoids the cost of a second traversal 
through a significant portion of the list, which may be a significant savings when 
each record access may require a new page to be brought into primary memory. 
Probabilisticlunctions for deciding when to advance the pointer are presented and 
analyzed. These functions demonstrate average case complexities of measures such 
as asymptotic cost and convergence similar to some of the more common list update 
algorithms in the literature. In cases where the accessed record is moved forward 
a distance proportional to the distance to the front of the list, the use of these 
functions may save up to 50% of the time required for permuting the list. 
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ABSTRACT 

A class of algorithms is given for maintaining self-organizing sequential search 

lists, where the only permutation applied is to move the accessed record of each 

search some distance towards the front of the list. During searches, these algorithms 

retain a back-pointer to a previously probed record in order to determine the 

destination of the accessed record's eventual move. The back-pointer does not 

traverse the list, but rather it is advanced occationally to point to the record 

just probed by the search algorithm. This avoids the cost of a second traversal 

through a significant portion of the list, which may be a significant savings when 

each record access may require a new page to be brought into primary memory. 

Probabilistic functions for deciding when to advance the pointer are presented and 

analyzed. These functions demonstrate average case complexities of measures such 

as asymptotic cost and convergence similar to some of the more common list update 

algorithms in the literature. In cases where the accessed record is moved forward 

a distance proportional to the distance to the front of the list, the use of these 

functions may save up to 50% of the time required for permuting the list. 

- 2 -



INTRODUCTION 

Sequential searches are performed on a list of initially unordered records. 

After a record is found, the list is permuted by some algorithm in an effort to place 

the more frequently accessed records closer to the front of the list, thus reducing 

expected search time. One common application in which this situation arises is a 

list (or lists) of identifiers maintained by a compiler or interpreter. The list cannot 

be initially ordered since frequencies are unknown, but since most programs tend to 

access some identifiers much more often than others, the more frequently accessed 

identifiers should be nearer the front of the search list containing them. Interesting 

questions are what algorithms can be used for this permutation, and how do they 

perform relative to each other in terms of expected search time. 

Much work has been done on this problem, and there is a wealth of methods 

now available for permuting records [ BIT79, GON81, HES8 5]. We propose a new 

class of algorithms, called JUMP, which is based on retaining a back pointer in the 

list during searches to be used for determining what reordering shall take place. 

We show that specific members of this class involving probabilistic functions can 

be made to demonstrate the same permutations, in the average case, as some of 

the more commonly proposed algorithms in the literature, but the permutations 

themselves often can be accomplished more efficiently. 

1. PREVIOUS WORK 

The most general case of the problem places no restriction on the permutation 

applied to the list or on how much time or space is required for the permutation. 

However, most analyses in the literature are of permutation algorithms that use only 

constant extra space (called memoryless algorithms), and only move the accessed 

record some distance forward in the list while leaving the relative ordering of all 

other records unchanged. 
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Let p be the search sequence. The first record is in location 1 and the last of 

n records is in location n. The accessed record is the record we are looking for, and 

the probed record is the record we are currently looking at during the search. 

1.1. EVALUATION CRITERIA 

For a given initial list configuration and search sequence p, the cost of a 

permutation algorithm a is the average number of comparisons made per record 

searched over all searches in p. Recall that this only reflects the count of probes 

needed to find the record, not any extra cost to apply the permutation. 

Since it is assumed that p is unknown before the searches are performed, it is 

necessary to make some assumptions about the contents of p. The most common 

assumption is that there is a fixed probability of access for each record, and that 

accesses to records are independent of each other. Under this assumption the 

asymptotic cost of the algorithm is the limit of the average cost per access as IPI 

increases and the worst case cost is the greatest average cost per access of any p. 

It is usually assumed that the initial list is unordered. As a permutes the list 

after each access, the expected search time for the next record should decrease until 

a steady state is reached where many further permutations by a are not expected 

to increase or decrease the expected search time significantly. Note that this steady 

state is not any single ordering of the list, or even a set of orderings, but rather 

a condition where further changes are not expected to have a significant effect 

on the average search_ time. When we say an algorithm converges on its steady 

state, we mean that the effect of further permutations on the average search time 

decreases as permutations are ,performed, and the effect should approach zero as 

the number of permutations approaches infinity and the number of future searches 

considered in the average approaches infinity. There is generally a tradeoff between 

low asymptotic cost and high convergence rate. In cases where IPI is small, the speed 

with which a converges to its steady state may be a more important measure than 
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its asymptotic cost. This is even more important in cases which demonstrate some 

degree of locality, i.e. where the accesses in p are not independent. Cases where 

those records accessed in the near past are more likely to be accessed again in the 

near future are common in both English text and programming, where words or 

variables tend to occur in bursts. In these cases, algorithms with high convergence 

rates often have lower cost than other algorithms that have lower asymptotic costs. 

1.2. ALGORITHMS 

The following list of permutation algorithms only includes those that will be 

referenced relative to the results of this paper. Although this is not a complete 

list of existing algorithms, it does include most of the more commonly addressed 

algorithms in the literature. 

1.2.1. Move-to-front 

When the accessed record is found, it is moved to the front of the list if it is not 

already there. This is the most commonly mentioned algorithm in the literature. 

The move-to-front algorithm tends to converge quickly to a steady state, but 

the price of this convergence speed is a large asymptotic cost since a record accessed 

only once moves all the way to the front, which increases the costs of accesses 

to many other records. When the search sequence has a large degree of locality 

(the searches to some records are not evenly distributed throughout the sequence), 

move-to-front- is quick to adjust to the changing probabilities of access for local 

sections of the sequence. 

1.2.2. Transpose 

The accessed record, if not at the front of the list, is moved up one position by 

changing places with the record just ahead of it. This way a record only approaches 

the front of the list if it is accessed frequently. 
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The slower record movement gives transpose slower convergence, but the 

resultant stability tends to keep the expected cost of its steady state lower than 

that of move-to-front for search sequences having a small degree of locality. 

1.2.3. Move-ahead-k 

Move-ahead-k is a compromise between the relative extremes of move-to-front 

and transpose. Move-ahead-k moves the record forward k positions, where k can 

be a constant, or a function of n and/or the location of the accessed record. 

By this definition, if r is the location of the accessed record, move-to-front is 

move-ahead-(r-1) and transpose is move-ahead-1. 

This can be generalized to move a percentage of the distance to the front, 

or some other function based on the distance. Other possible parameters to the 

function may also be of interest, such as how many accesses have taken place so 

far. As usual, if the distance to be moved exceeds the distance to the front, then 

the record is only moved to (or left at) the front. 

The move-ahead-k algorithm was proposed by Rivest [RIV76], and addressed 

later by Gonnet, Munro and Suwanda [GoN81]. They showed that, for j > k, 

move-ahead-j converges on a steady state faster than move-ahead-k, but at the 

penalty of a higher asymptotic cost. 

1.2.4. k-t'n-a-row 

k-in-a-row is a ~eta-algorithm proposed by Gonnet, Munro and Suwanda 

[ GON81 J. It can be applied in conjunction with many (if not all) permutation 

algorithms. An algorithm is applied only if the accessed record has been accessed k 

times in a row. This does not break the memoryless assumption, since it only needs 

to remember the last record accessed, with a finite counter for previous consecutive 

accesses. It was shown that the rate of convergence using move-to-front with 

2-in-a-row is the same as that of transpose without a k-in-a-row meta-algorithm. 
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1.3. HYBRIDS 

Due to the tradeoff between convergence rate and asymptotic cost, Bitner 

[ BIT79 J proposed hybrid algorithms that initially use an algorithm with fast con­

vergence until that algorithm approaches its steady state, and then switching to an 

algorithm with a better asymptotic cost for further searches. 

2. ASSUMPTIONS 

A standard assumption is that the list is linked. This allows moving a single 

record in constant time by relinking, once the record is found and the destination 

of the move has been determined. Move-to-front and transpose determine where to 

move the record in constant time, since a pointer to the front of the list is available, 

and the last record probed can easily be remembered. However, algorithms that 

move the record any non-constant distance forward may spend time proportional 

to the distance of the move searching for the destination of the move. 

We also assume that all records that will be searched for are in the list, and 

we can therefore ignore failed searches. If this assumption is false, we merely add 

detection of the end of the list to the search algorithm and append the record to 

the end of the list. In this case, whatever permutation is normally called for would 

be applied as usual. 

3. THE JUMP FUNCTION 

We wish to find record x. Our algorithm initially sets a back-pointer b to the 

first record in the list, and then begins searching. Each time a record p is probed 

and is not x, a boolean function /3 is evaluated. If f3 is true, b is advanced to p. 

The search then continues. When x is found, x is moved just ahead of b, unless 

b is x (which is true if and only if x is at the front of the list). Note that f3 can 

cause a record to move forward any distance between 1 and the full distance to 

the front of the list. The evaluation of /3 after a failed probe at the first record 
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in the list will have no effect because the initial value of b is already pointing to 

this record. Otherwise, the back-pointer always points at least I record behind the 

probed record. The following simplified search algorithm illustrates the use of the 

function: 

function search( searchkey, /isthead ) 
begin 

end 

b +- /isthead 
p +- /isthead 
while KEY[pJ i- searchkey do begin 

if /3 then 
b +- p 

p +- NEXT[pJ 
end 
remove p from list 
re-insert p in front of b 
return p 

The main advantage of this algorithm is that it allows moving a record forward 

a distance other than one place or all the way to the front of the list without 

requiring a second search through the list looking for the place to move to. If the 

keys are extremely large or (more likely) there are a large number of records, then 

each access will have a good chance of requiring access to slower secondary memory. 

The dynamic (linked) nature of the list prevents simple attempts to keep records 

that are close to each other (in terms of their logical location in the list) on the 

same physical page of memory as searches and permutations progress. 

f3 may be any f~nction desired. Thus we have defined a class of algorithms 

rather than a single one. /3 may take any parameters desired, such as the location 

of the probed record, the location of the record pointed to by the back-pointer, the 

number of accesses previously performed, the length of the list, etc. 

We define JUMP(p, b) as a class of /3 functions that take as parameters the 

locations of the current back-pointer and the current record being probed. We will 

give analyses of the use of various JUMP functions . 
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Note that move-to-front can be implemented by having JUMP always evaluate 

to false, and transpose can be implemented by having JUMP always evaluate to 

true. By using a non-constant JUMP function, we are able to move x forward by 

various distances without the need of additional searching to find where to move 

x. Since JUMP is calculated once for every record probed, the total time spent is 

of the same order as the time needed to perform a linear search to find where to 

move x, but calls to a simple JUMP function may have a trivial cost when_ compared 

with accesses to secondary memory. 

3.1. FIXED JUMPS 

Assume record xis in location r. Let JUMP(p, b) = (p/b ~ c) for any fixed c. 

Since p is an integer in the range [b+ 1, ... , cb], the average value of p in terms of b 

and c, assuming we know nothing about where in this range p lies, is 

p -
l cb 

(c - 1)b E i 
i=b+l 

c+lb+! 
2 2 

c +lb 
2 

Thus the average distance record x (at location r) will move forward is 

r-b ~ 
2 

r---r 
c+l 

c-1 
--r 
c+l 

Therefore, if we want records on the average to move forward P% of the total 

distance to the front, we want 

c-1 P 
--r=-r, 
c + -1 . 100 

lOO+P 
or solving for c, c = 

100 
_ p 

For example, if we want to move items forward by an average of 80%, JUMP should 

be true when 

p_ > c = 100 + 80 = 9 
b - 100- 80 

This allows fine tuning of the algorithm for the desired tradeoff between convergence 

and asymptotic cost. 
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The above analysis assumes that the list is unordered. This may be true 

initially, but the effects of JUMP over many calls will, on the average, cause the 

elements with higher probabilities to be located closer to the front of the search 

list. This means that it is not clear what the average p as a function of b will be, 

since the records which are closer to the front of the list will be more likely to be 

found than records which are further from the front. It appears that the effect of 

this could only be predicted by making further assumptions about the values of the 

probabilities. 

If this does have an effect, and the average p as a function of b becomes smaller 

as the list becomes more ordered, then the average percent of move-ahead distance 

decreases. This might be looked upon as a desirable attribute, since we would 

like quick convergence when the list is unordered, with a better asymptotic cost 

as the list becomes more ordered. It would demonstrate a behavior similar to the 

hybrid algorithms proposed by Bitner [ BIT79 J for similar results. Proving this and 

determining the magnitude of the decreasing move, if any, is an open question we 

chose not to presue due to a similar result we present in a later section. 

3.2. PROBABILISTIC JUMPS 

The definitions of JUMP are independent of the value of b in the following, 

and thus will be denoted as JUMP(p) rather than JUMP(p, b). 

3.2.1. CONSTANT MOVES 

Let the probability that JUMP(p) evaluates to true be 1/c for any fixed c~ 1. 

Recall that, unless a record is found in the first location of the list, it will move 

forward at least one position. It will move further only if J UMP(p-1) evaluated 

to false, which happens with probability 1-1/c. In this case, the record will move 

the single space to the previous position in the list plus the expected move distance 

from that position. This gives the following recurrence for the expected distance a 
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record found at location r will move forward: 

{
o 

Mc(r, c) = 
1 + (1 - 1/c)Mc(r- 1, c) 

r=l 

r>l 

To show that the expected move is about c, we define a fudge factor Xc(r, c) such 

that Mc(r, c) =c+Xc(r, c), and bound the possible values of Xc(r, c). 

LEMMA 1: 

{

-c 
Xc(r, c) = 

(1 - 1/c)Xo(r- 1, c) = (1 - c)(l - l/cy-2 

r=l 

r>l 

PROOF: 

The value for r = 1 comes directly from the definitions of Mc and Xe. For 

r> 1, 
Mc(r, c) = 1 + (1 - 1/c)Mc(r - 1, c) 

c + Xc(r, c) = 1 + (1 - 1/c)(c + Xc(r - 1, c)) 

solving for Xe ( r, c) and simplifying gives the recursive form of the result. The closed 

form follows directly, using the value for r = 2 as the basis of the recurrence. 1 

Thus, for r > 2, Lemma 1 and the definition of Xe gives 

Mc(r, c) = c + (1 - c)(l - l/cr-2 = c - c(l - l/cr-1 

For c < < r, c is a good approximation of the expected move distance Mc. For c ~ r, 

Mc ~ r(l-1/e) ~ .63r. For c >> r, Mc approaches r-1 from below. This will 

only be significant if something more is known about the probabilities of accesses 

for records such that most of the accesses are expected to be to positions not much 

larger than c. In cases like this (where c implies desired moves equal to or greater 

than the expected distance to the front), move-to-front is a better choice for an 

algorithm. 

Note that this result is similar to the fixed jump of the previous section, but 

is independent of the fact that the records will become partially ordered over time. 
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Also note that this method does not have the side-effect of reading the records 

a second time as would be the case if a pointer were maintained some constant 

distance behind the accessed record. 

3.2.2. FRACTIONAL MOVES 

Sleator and Tarjan [ SLE8 5] extended amortized results by Bentley and 

McGoech [BEN85] to prove that the search time resulting from moving a record 

forward a fraction of the distance to the front is no worse than a constant times 

the optimal off-line algorithm. They further showed that the constant is 2 for 

move-to-front and is inversely proportional to the fraction moved. Although 

move-to-front has the best bound by this measure, moving a smaller fraction of 

the full distance may be profitable if the search sequence has a small degree of 

locality. The following function allows movement of any desired fraction in the 

average case. 

Let the probability that J UMP(p) evaluates to true be defined as 

Pr(JUMP(p) evaluates to true)= { c~p p~c 

p<c 

for some constant c > 0. The expected distance a record located at location r will 

move forward will be 

{

o 
Mp(r, c) = 1 

1 + (1 - _c_) Mp(r - 1, c) 
r-1 

r=l 

r > 1, c~r-1 

r > 1, c~r-I 

We will show that the expected distance a record found at location r will move 

forward is about r/(c+I). As before, define a fudge factor Xp(r, c) such that 

r 
Mp(r, c) = - + Xp(r, c) 

c+I 

LEMMA 2: For r > 1 and c ~ r - 1, 

Xp(r,c) = (1- _c_) Xp(r- l,c) 
r-1 
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PROOF: 

For r > 1 and c ~ r - 1, 

Mp(r, c) = 1 + (1 - _c_) Mp(r - 1, c) r-1 
r ( c ) (r-1 ) -- + Xp(r, c) = 1 + 1 - --

1 
--

1 
+ Xp(r - 1, c) 

c+l r- c+ 

Solving for Xp(r, c) and simplifying gives the desired result. 1 

For c ~ 1 and r = lcJ + 1, the recurrence gives Mp(lcJ + 1, c) = 1 and our 

definition of Xp gives 

Mp(lcJ + 1, c) = lcJ + 
1

+Xp(lcJ+1, c) 
c+l 

Combining these two and solving for Xp, 

Xp(lcJ + 1, c) = _c -_l_cJ 
c+l 

Since we assumed c~ 1 we get O~ Xp(lcJ+l, c) < 1. Using this as a basis, Lemma 2 

then provides the body of an inductive proof that O~Xp(r, c) < 1 for all r ~ lcJ + 1 

and c ~ 1. 

For 0<c<1 and r= I, the recurrence gives Mp(l, c) =O and our definition of 

Xp gives 
1 

Mp(l, c) = -
1 

+ Xp(l, c) 
c+ 

Combining these two and solving for Xp, 

-1 
Xp(l,c) = -

c+l 

Since we assumed 0 < c < 1 we get -1 < Xp(l, c) < -1/2. Using this as a basis, 

Lemma 2 then provides the body of an inductive proof that -1 <Xp(r, c) < 0 for 

all r~ I and 0< c< 1. 
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Thus, for all 0 < c < r-1, we see that -1 < Xp(r, c) ~ 1, and the expected 

distance a record will be moved forward is bounded by 

r r 
-- -1 < Mp(r c) < -- + 1 
c+l ' -c+l 

which shows that JUMP may be used to move records up by a distance which is 

within 1 of any desired fraction of the distance to the front of the list, without need 

of re-reading records to determine the move destination either during or after the 

search. 

4. SUMMARY AND OPEN QUESTIONS 

We have presented a method of employing probabilistic back-pointers to im­

plement self-organizing lists for sequential search. This method can be used to 

implement many of the memoryless permutation rules that involve moving only the 

accessed record some distance forward in the list. In the case where each record 

is large and requires a significant amount of time to read, this method avoids re­

reading a large number of records. Examples showed how constant and fractional 

moves could be achieved on the average. 

All of the random JUMP functions presented here have decreasing probabil­

ities as p increases. We have not considered possibilities where the probabilities 

were increasing over time, or where the difference between p and b was used instead 

of just p. We conjecture that, in both of these cases, the resultant move-up will be 

a constant, and therefore would not be of utility since we already have a random 

function giving constant moves. Nevertheless, it might be worthwhile to pursue 

these cases and verify their behavior. 

There may be useful strategies that move records forward other than a con­

stant amount or a fraction of the distance to the front. It might be interesting to 

search for these, and determine whether a JUMP function can be made to imple­

ment them. 
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