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ARTICLE

Visualizing the nucleoplasmic maturation of human pre-60S
ribosomal particles
Yunyang Zhang1, Xiaomeng Liang1, Sha Luo1, Yan Chen1, Yu Li 1, Chengying Ma1,2, Ningning Li 1,2 and Ning Gao 1,2,3✉

© The Author(s) under exclusive licence to Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences 2023

Eukaryotic ribosome assembly is a highly orchestrated process that involves over two hundred protein factors. After early assembly
events on nascent rRNA in the nucleolus, pre-60S particles undergo continuous maturation steps in the nucleoplasm, and prepare
for nuclear export. Here, we report eleven cryo-EM structures of the nuclear pre-60S particles isolated from human cells through
epitope-tagged GNL2, at resolutions of 2.8–4.3 Å. These high-resolution snapshots provide fine details for several major structural
remodeling events at a virtual temporal resolution. Two new human nuclear factors, L10K and C11orf98, were also identified.
Comparative structural analyses reveal that many assembly factors act as successive place holders to control the timing of factor
association/dissociation events. They display multi-phasic binding properties for different domains and generate complex binding
inter-dependencies as a means to guide the rRNA maturation process towards its mature conformation. Overall, our data reveal that
nuclear assembly of human pre-60S particles is generally hierarchical with short branch pathways, and a few factors display specific
roles as rRNA chaperones by confining rRNA helices locally to facilitate their folding, such as the C-terminal domain of SDAD1.

Cell Research (2023) 33:867–878; https://doi.org/10.1038/s41422-023-00853-9

INTRODUCTION
Eukaryotic ribosome biogenesis is the most energetically expen-
sive process in the cell, involving the transcription, processing,
modification and folding of rRNAs, and the incorporation of ~80
ribosomal proteins. Over two hundred protein factors, organized
in temporal/spatial groups, participate in the making of ribosomal
subunits.1–4 The assembly of ribosomal subunits starts co-
transcriptionally in the nucleolus on the nascent elongating pre-
rRNA transcripts. The primary pre-rRNA contains rRNA sequences
for both the large and small subunits as well as the external and
internal transcribed spacers.5,6 After the cleavages in the internal
transcribed spacer 1 (ITS1), the pre-40S and pre-60S particles
undergo separate maturation pathways in the nucleolus and
nucleoplasm, and are subsequently exported to the cytoplasm for
the final maturation.7 In the past ten years, our knowledge on
eukaryotic ribosome assembly has been greatly expanded by
structural studies of the yeast endogenous pre-ribosomal inter-
mediates in various assembly stages (reviewed in refs. 3,4), and
major assembly events, general assembly pathways, and quality
control checkpoints have been identified. The rich structural
information from these high-resolution snapshots in nearly all
major assembly stages8–21 has enabled the formulation and
experimental validation of various functional models for individual
assembly factors (e.g., see refs. 22–29).
Despite these progresses on yeast ribosome biogenesis, the

assembly of human ribosomal subunits is less characterized. The
length of human pre-rRNA is twice the size of its yeast
counterpart, and human ITS2 alone is ~5 times the size of yeast
ITS2.5 In addition, previous studies have suggested a largely

increased complexity for human ribosome assembly, and poten-
tially much more factors are required in the pre-rRNA processing
and assembly processes.1,30–35 Furthermore, an increasing body of
evidence shows that human ribosome biogenesis is tightly
coupled with other cellular regulatory processes, such as c-Myc,
mTOR and p53 pathways.36–40 On one side, defective human
ribosome biogenesis caused by mutations on assembly factors
and ribosomal proteins, results in a reduction of functional
ribosomes and/or an accumulation of functionally impaired
ribosomes, which underlies several genetic diseases collectively
known as ribosomopathies that are characterized by impaired
hematopoiesis and increased cancer susceptibility.41 On the other
side, hyperactivated ribosome biogenesis is also a common
hallmark of cancer cells,37 and abnormally upregulated expression
levels of various assembly factors and/or certain ribosomal
proteins have been reported in many types of clinical tumor
samples (e.g., see refs. 42,43).
In the past five years, structures of the human pre-40S and 90S

(small subunit processome) have been reported,19,44,45 but our
understanding towards human large subunit assembly is limited
to stages before and after nuclear export.20 Here we report the
structural characterization of human pre-60S particles purified
through epitope-tagged nucleolar guanine nucleotide binding
protein-like 2 (GNL2). This collection of high-resolution structures
nearly spans the complete nucleoplasmic assembly stages and
reveals the details of several major structural remodeling events.
Moreover, structural analyses demonstrate that local folding
events of rRNA helices facilitated by assembly factors are key
steps of the conformational maturation of pre-60S particles and
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that assembly factors act as successive place holders to direct the
assembly process.

RESULTS
Structures of human pre-60S particles obtained through
epitope-tagged GNL2
Native nuclear pre-60S particles were purified from an engineered
HEK293 cell line, in which affinity tags were inserted to the
C-terminus of GNL2 (Nog2 in yeast) using CRISPR/Cas9 (Supple-
mentary information, Fig. S1a). Affinity-purified samples were first
subjected to SDS-PAGE and silver staining, and multiple non-
ribosomal proteins could be clearly identified (Supplementary
information, Fig. S1b). Mass spectrometry analysis indicated that
the sample contained many human proteins with homology to
known yeast ribosomal assembly factors (Supplementary informa-
tion, Table S1). Cryo-EM was next employed to characterize these
pre-60S particles (Supplementary information, Figs. S1c, d and S2).
Through hierarchical 3D classifications, we obtained eleven
density maps for the nuclear pre-60S particles at resolution range
between 2.8 Å and 4.3 Å, representing a collection of distinct
assembly intermediates at nucleolar and nucleoplasmic assembly
stages (Fig. 1; Supplementary information, Fig. S3). From yeast pre-
60S structures at similar stages8,12,21 and AlphaFold-predicted
models of human factors,46 we built atomic models for these
density maps (Supplementary information, Fig. S4).
The first observation from these structures is that the ITS2

removal shows no coordination with the maturation events in the
central protuberance (CP) and peptidyl transferase center (PTC)
regions, which was also observed in yeast pre-60S structures.8,12 For
clarity and consistency, the states with and without the ITS2 (foot
structure) are named state N’ and state N, respectively. This
structural observation indicates that the ITS2 processing proceeds
relatively independently of the GNL2-particles and spans the entire
lifetime of GNL2 (Fig. 1). If we ignore the differences in the ITS2
region, these structures could be assigned into a generally
continuous and hierarchical maturation pathway, based on
conformational difference of the CP and known temporal relation-
ships of corresponding yeast factors,3,4 and they have covered a
few major structural remodeling events on the GNL2-particles.
The first is the rotation of the 5S RNP (consisting of the 5S rRNA,

ribosomal protein L5/uL18 and L11/uL5),12,13,47 which separates
these eleven GNL2-structures into two groups (pre-rotation vs
post-rotation). Two states (A and B’) are in the pre-rotation group
(Fig. 1a), and similar to the yeast pre-60S particles purified through
Nog2,12 they share a common set of human counterparts of yeast
assembly factors, such as GNL2, RPF2, RRS1, NLE1 (Rsa4 in yeast),
NSA2, GNL3 (Nug1 in yeast), CCDC86 (Cgr1 in yeast), MRTO4,
GTPBP4 (Nog1 in yeast), LLPH (YBL028C in yeast), eIF6 and RLP24.
After the 5S RNP rotation, the next major remodeling event is

the removal of Rsa4 from the pre-60S particles, which is
catalyzed by an AAA+ assembly factor Rea1.48,49 Yeast pre-60S
structures8,12,13 have demonstrated that the docking of Rea1
requires a prior binding of Sda1 and the Rix1 complex (Ipi1, Ipi3
and Rix1). Although the removal of NLE1 during human pre-60S
assembly has not been fully characterized, it should involve a
similar set of factors, including MDN1 (Rea1 in yeast),50 SDAD1
(Sda1 in yeast), and the equivalent PELP1–TEX10–WDR18
complex.51 Based on the presence or absence of NLE1, the rest
nine structures could be further divided into two groups (NLE1+
vs NLE1–) (Fig. 1b, c). Although MDN1, SDAD1 and the
PELP1–TEX10–WDR18 complex are all present in our samples
(Supplementary information, Table S1), 3D classification failed to
enrich an MDN1-bound or PELP1–TEX10–WDR18-bound popula-
tion, indicating that the MDN1-catalyzed process could be very
transient. However, stable binding of SDAD1 was found in four
structures, including both the NLE1+ states (states D/D’) and
NLE1– states (states F/F’).

In the NLE1– group of the pre-60S structures, concomitant with
the NLE1 removal, CCDC86 and the remaining N-terminal segment
of GNL3 have dissociated, and NSA2 begins to depart. Importantly,
a new finding is the discovery of TMA16 and a previously
uncharacterized factor L10K (Leydig cell tumor 10 kDa protein
homolog, C19orf53) in the latest states of the NLE1– group. While
TMA16 and its yeast homolog were recently identified to be a
component of late nuclear pre-60S particles,20,26,52 the involve-
ment of L10K in ribosome assembly was previously unknown.
Overall, with deep 3D classification, we were able to generate

multiple high-resolution structures for the continuous nucleoplas-
mic assembly steps on the GNL2-particles that involve multiple
association/dissociation events of assembly factors (Fig. 1d). These
structures provide successive snapshots for visualizing the CP
maturation at a virtual “temporal” resolution.

Replacement of SPB1 by ZNF593 marks the completion of
nucleolar assembly steps
In states A and B’, the construction of the CP has completed and the
5S RNP in pre-rotational state stably associates with the CP. A major
difference between the two states is the presence of either SPB1 or
ZNF593 (Fig. 1a, CP pre-rotation). These two factors are mutually
exclusive on the pre-60S particles, as they share overlapping binding
sites, similar to the yeast counterparts Spb1 and Bud20.8,11,12 Yeast
Spb1 is a nucleolar factor that binds during early stages of peptide
exit tunnel construction, with an enzymatic activity as an RNA 2′-O-
methyltransferase for G2922 in the ribosomal A-loop (Helix 92).8,11,53,54

Per analogy with yeast Spb1, human SPB1 is expected to modify
G4499 of the A-loop.55,56 Both Spb1 and SPB1 contain an N-terminal
methyltransferase domain, a middle DUF3381 and a long flexible
C-terminal tail. In state A, only the middle domain (residues 249–319)
of SPB1 is found, and the catalytic domain and the C-terminal tail are
completely invisible. This is consistent with the yeast pre-60S
structures in which the C-terminal domain (CTD) of Spb1 interferes
with the assembly of domain V of the 25S rRNA, including the CP and
L1 stalk,8 and the catalytic domain of Spb1 overlaps with Nog2 on the
pre-60S particle.4,11,12 However, unlike previous yeast pre-60S
structures, which have suggested that the complete release of Spb1
occurs before Nog2 enters the nucleolar pre-60S particle,4,8 our
structures show that DUF3381 of SPB1 could stay throughout the
whole construction process of domain V and that the replacement of
DUF3381 by ZNF593 occurs on the GNL2-particles.
Bud20, the yeast homolog of ZNF593, has been demonstrated to

be an export factor required for pre-60S export through the nuclear
pore complex.57 Both ZNF593 and Bud20 possess a long N-terminal
loop, which inserts into the junctional region of domains 0, II, IV and
V of the 28S or the 25S rRNA.12,20 Given their strategic position in a
multi-domain interface, it is possible that the binding of ZNF593/
Bud20 is a checkpoint event, which integrates subtle conforma-
tional signals from major domains of the 28S/25S rRNA. Consistent
with this notion, yeast genetic and structural data showed that the
disruption of the early nucleolar stages of peptide exit tunnel
construction by rpl4Δ63–87 or by nog1Δ595–647 resulted in
misassembled L1 stalk (H74–H76 of domain V) and central helices
H68–H69, and also the absence of Bud20 in Nog2-particles.23 Our
structures indicate that ZNF593 is the first export factor recruited to
the GNL2-particles. Thus, the replacement of SPB1 by
ZNF593 signifies a completion of nucleolar maturation events and
a start to prepare for nuclear export.

Coordinated rotation of the 5S RNP and CP upon RPF2/RRS1
release
The remodeling of the 5S RNP, characterized by a nearly 180°
rotation, is a major nucleoplasmic maturation event.12,13,47 After
rotation, the 5S RNP assumes an orientation similar to the one
seen in the mature 60S subunit. Previously, it was noted in the
pre-rotational structure of the yeast Nog2-particles that the CP
helices (H80–H88, Fig. 2a) are in completely different arrangements
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Fig. 1 Cryo-EM structures of human pre-60S particles obtained through epitope-tagged GNL2. a–c Based on the conformational difference
of the CP and the presence or absence of NLE1, cryo-EM density maps of the eleven structures of GNL2-particles were divided into 3 groups:
CP pre-rotation (a), CP post-rotation, NLE1+ (b) and CP post-rotation, NLE1– (c). The maps were viewed from the subunit interface, and
Gaussian filtered with sDev of 1 Å in ChimeraX. Individual assembly factors, RNA/RNPs (including 5S RNP, L1 stalk, H38, H69, ITS2 and
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the foot structure is ignored in the schematic diagram.
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from their mature conformation.12 Similar to the yeast structures, the
CP helices in states A/B’ (pre-rotational conformation for the 5S RNP)
are orientated in dramatically different positions, compared to those
in states C/D (post-rotational state for the 5S RNP) (Supplementary
information, Figs. S5a, b and S6a–d). Consistent with the observation
from yeast structures,12,13,47 all the CP helices, except H88, are seen to
undergo large conformational changes from pre-rotational to post-
rotational conformations. Previously, the structural details regarding
5S RNP rotation have not been clearly illustrated on yeast pre-60S
particles due to the lack of sequential high-resolution structures. In
the current study, we found that when the CP helices in the two
conformations were structurally aligned using the 5S RNA as
reference, the relative anchor points of the 5S RNA to the CP remain
largely unaltered (Supplementary information, Fig. S6c, e and
Video S1). This was also noted in the yeast structural data when a
mature conformation of the CP was used as the post-rotational
state.13 Thus, our findings clarify that there is no separate 5S RNP
rotation, which in fact arises from the CP remodeling upon RPF2/
RRS1 release.
Structural comparisons indicate that such a drastic rearrange-

ment of the CP-5S RNP could be attributed to the conformational

changes of two linker regions of domain V. One is the linker
between H88 and H87 (including H82), and the other is H80. In the
pre-rotational state, H80 is stretched as a single strand (Supple-
mentary information, Fig. S6c), with bases of 4198-GCGG-4201
forming a helix with the H87–H88 linker (4331-GCCU-4334)
(Fig. 2h). This non-canonical helix between two remote rRNA
fragments is stabilized by the C-terminal region of RRS1, which
tightly encircles the two strands (Fig. 2b, c). Importantly, two
tryptophan residues of RRS1, W114 and W144, perfectly stack on
the two terminal bases of this helix, U4334 and G4201,
respectively (Fig. 2d). Apparently, the conserved C-terminal region
of RRS1 is crucial to maintain the pre-rotational conformation of
the CP (Supplementary information, Fig. S6f).
It is unclear what triggers the release of RRS1 and RPF2. Based

on the yeast structural data, it was proposed that the binding of
Sda1 could be responsible for the release of Rpf2 and Rrs1 due to
the overlapping binding sites between Sda1 and Rpf2.4 However,
in state C, RPF2 and RRS1 have been released, but SDAD1 is yet to
be recruited (Fig. 1b), indicating that the SDAD1 binding is not a
determining factor for RPF2/RRS1 release. Nevertheless, upon their
departure in states C/D, this non-canonical helix is freed from such
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a restricted conformation, and the two strands separate and
become disordered in the density maps of states C/D (Fig. 2e, i).
Upon the rotation of the CP, NLE1 displays a large rotation
towards CCDC86, coupled with the reposition of H38 and a
conformational change of CCDC86 (Supplementary information,
Fig. S7c, d). Due to this rotation, it could be observed from the
structures that the interactions of NLE1 with the CP and other
factors in the pre-rotational state are mostly gone, resulting in a
significantly weakened ribosomal association (Supplementary
information, Fig. S7a, b, e–h).
These analyses indicate that the first major rRNA remodeling

event on the GNL2-particles is the rotation of the CP-5S rRNA as a
whole (Supplementary information, Video S1). This event is
triggered by conformational rearrangements of long-range
tertiary interactions in the H80 region after RRS1 release. Together
with the yeast pre-60S structures,12,13,47 our data suggest that this
CP remodeling process is highly conserved between yeast and
human cells.

Assembly factors act as successive place holders to facilitate
conformational maturation of the CP helices
After the CP rotation, the CP helices undergo further subtle
maturation steps, particularly in the linker sequences connecting
the rRNA helices. The general conformations of the CP in these
intermediate states are characterized by a deflection relative to
the main body of the pre-60S particle (Supplementary informa-
tion, Fig. S5b–f). A continuous rotational conformational change of
the CP is seen from state D to state E, and from state E to state G.
The CP eventually assumes a mature-like conformation in state G
after the incorporation of the CP-binding protein eL42. On the
level of individual rRNA helices, the most outstanding conforma-
tional changes take place in the regions of H80 and H82, which
become ordered in states E/F and their native helical conforma-
tions start to form (Fig. 2f, j). During these maturation steps,
certain nucleotide bases switch between alternative base pair
partners. For example, C4204 of H80 forms a canonical base pair
with G4228 of the H81–H82 linker in states F/F’. However, this base
pair is gone in states G/G’. Instead, C4204 forms a new G:C pair
with G4191 within H80 (Fig. 2f, g, j, k).
These rRNA maturation steps are coupled with the dissociation

and association of different assembly factors, suggesting that some
factors have roles as place holders to control the timing of next
assembly events. An outstanding example is the coordinated
release of NSA2, which occurs in several steps. NSA2 contains three
helices in the N-terminal region (H1, H2 and H3), a middle linker
region (residues 73–114), and a β-barrel CTD (Supplementary
information, Fig. S8e, h). From states B’ to C/D, the middle region of
NSA2 loses its interaction with NLE1 and GNL2, and becomes
disordered (Supplementary information, Figs. S7a, b, g and S8a, b,
h), due to the repositioning of NLE1 (Supplementary information,
Fig. S7c, d). From states D to F, the release of NLE1 is coupled with
the dissociation of the H3 and CTD of NSA2, and only the
N-terminal H1 and H2 remain bound to the pre-60S particle
(Supplementary information, Fig. S8b, c, e). It is worth mentioning
that the N-terminus of yeast Nsa2 was demonstrated to be essential
for its association with the pre-60S particles.58 The dissociation of
the H3 and CTD of NSA2 is necessary for the binding of L10K, as
they share overlapping binding sites with L10K (Supplementary
information, Fig. S8e–h). After L10K associates in states F/F’, L10K
takes turn to act as a place holder in the same region on the pre-
60S particle. As suggested in the structures of human NMD3-
particles, L10K presents a steric hindrance for the accommodation
of the N-terminal domain of NMD3.20

Furthermore, some factors also display a chaperone function to
guide the rRNA conformational maturation. Although we have not
obtained an MDN1-containing structure, two sets of pre-60S
structures contain SDAD1, representing the snapshots after the
initial binding of SDAD1 (states D/D’) and the moment

immediately before its departure (states F/F’). An inspection of
the SDAD1-containing states F/F’ reveals a highly specific role of
SDAD1 in chaperoning the folding of H80. The C-terminal region
of SDAD1, which is disordered in states D/D’, is stabilized in states
F/F’ and displays extensive interactions with the CP helices.
Interestingly, the C-terminal region of SDAD1 closely circles
around H80 (Fig. 3a–d), and in this conformation three base pairs
in the stem region of H80 have formed (G4200:U4194,
G4201:C4193 and U4202:A4192) (Fig. 2j). Probably to avoid
undesired base pairs in its G-rich stem-loop region, an evolutio-
narily invariant phenylalanine residue of SDAD1, F651 (Fig. 3f), is
inserted into the terminal loop of H80 (Fig. 3e). After SDAD1
dissociation, one non-canonical G4200:U4194 base pair is gone,
replaced by a native base pair of G4191:C4204 on the other end of
the stem (Fig. 2j, k). The terminal loop of H80 is functionally known
as the P-loop, which interacts with the CCA end of the P-site tRNA
during translation.59,60 Of note, the C-terminal region of SDAD1 is
highly conserved from yeast to mammalian species (Fig. 3f).
Although not functionally tested, it is highly likely that a specific
role of SDAD1 is to facilitate the conformational maturation of the
P-loop as an rRNA chaperone.
Altogether, our structural data indicate that these CP-binding

factors act as successive place holders to control the association
timing of the next factor(s), and in this way to facilitate the
maturation of the CP helices towards the native conformation.

Novel assembly factors identified in the human pre-60S
structures
The structure of state G was solved at 2.8-Å resolution, enabling
the identification and modeling of L10K, which is the previously
unidentified protein X found in the early states of NMD3-
particles.20 L10K was first reported as a tumor-associated protein
in rat three decades ago,61 and was later shown to be a nuclear
factor.62 However, its exact function has remained elusive. L10K is
recruited to the space between the CP and the P0 stalk together
with TMA16 in state F (Fig. 4a–c). L10K consists of a central helix
and two terminal loops (Fig. 4d, e). The N-terminal loop is located
between H42 and H89 of the 28S rRNA, and interacts with both
rRNA helices through a few arginine or lysine residues (Fig. 4f, g).
The N-terminal portion of the middle helix is roughly parallel with
the N-terminal helix of TMA16, and establishes hydrophobic
interactions with both TMA16 and GTPBP4 (Fig. 4h; Supplemen-
tary information, Fig. S8c, d). The tight hydrophobic packing
between the two helices of TMA16 and L10K suggests that these
two factors may join together and be co-recruited to pre-60S
particle at the same time. The C-terminal loop of L10K is located
between GNL2 and GTPBP4, with the 20 terminal residues floating
in the PTC region (Fig. 4d; Supplementary information, Fig. S8d).
An important finding is that the N-terminal helices of TMA16, L10K
and GTPBP4 together encircle H89 (Supplementary information,
Fig. S8c, d), in a similar manner to the CTD of SDAD1 does to H80.
In fact, this helical segment of H89 is isolated from the rest of the
28S rRNA and its terminal region is still flexible. Thus, this spatial
segregation is probably also a means to avoid non-native folding.
Homology search of L10K identified its homologs in other species,
including R. norvegicus, D. rerio, S. pombe, S. cerevisiae and C.
elegans, and many of its pre-60S-interacting residues are highly
conserved (Fig. 4d). Although the yeast equivalent of L10K,
YLR363W-A has not been found in yeast pre-60S structures of
similar assembly stages, it should presumably work in a similar
way in the assembly of yeast pre-60S particles.
In the solvent face of the pre-60S particle, another new factor

was found in the map of state F’ (Supplementary information, Fig.
S9a). Tentative modeling of potential candidates from our mass
spectrometry data identified a previously uncharacterized protein,
C11orf98 (123 residues in full length). This factor binds at a
generally equivalent position of the yeast factor Alb1 (Supple-
mentary information, Fig. S9b), but the sequence homology
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between them is very limited (only 28.8% sequence identity,
Supplementary information, Fig. S9g). Structurally, a middle helix of
C11orf98 (residues 67–83) aligns well with that of Alb1 (residues
90–113), and both of them interact with H19 and H24 in a similar way
(Supplementary information, Fig. S9c, d). Other than this, although
the N-termini of the two factors occupy equivalent positions
underneath H94, H98 and ES39b, they adopt different secondary
structures and show distinct atomic contacts with the pre-60S
particles. Sequence alignment shows that C11orf98 lacks the Arx1-
interacting motif of Alb1, and the C-terminal sequence beyond
residue K83 is completely flexible (Supplementary information, Fig.
S9c, g). This observation might provide an explanation for the fact
that no PA2G4 (Arx1 in yeast) is observed in any of our GNL2-
containing structures.
We also identified a species-specific feature for the assembly

factor LLPH, which interacts with the N-terminal region of
C11orf98 (Supplementary information, Fig. S9a). LLPH is highly
conserved in its very N-terminus with its yeast counterpart
YBL028C (Supplementary information, Fig. S9h). However, their
C-terminal sequences fold differently, but are still embedded in
the same rRNA pocket surrounded by H94, H98 and ES39b
(Supplementary information, Fig. S9a, b, e, f).
These findings indicate that human ribosome assembly factors

do possess species-specific features, different from the yeast
model system, and some of these features may reflect a subtle
difference in the kinetics of certain steps of the 28S/25S assembly.

ITS2 and associated factors in the human pre-60S structures
The human ITS2 is 1156 nt, significantly longer than that of the
budding yeast (232 nt) (Supplementary information, Fig. S10c).5

Despite this difference, in the ITS2-containing structures of the
GNL2-particles, the resolved ITS2 region displays a similar size to
the yeast one (Supplementary information, Fig. S10d), with the 3′-

end of the 5.8S containing roughly 63 nucleotides (helix 1 and
helix 2, Supplementary information, Fig. S10a, b). Therefore, most
of the ITS2 sequences in these states might have been cleaved,
suggesting that the precursor form is in the processing stages of
the 8S species.63 In our maps of the ITS2 region, except the
connecting region between ITS2 and the 5.8S rRNA, ITS2
nucleotides were not resolved at atomic resolution (Supplemen-
tary information, Fig. S10d). However, two helices could be easily
identified (Supplementary information, Fig. S10d). This observa-
tion is consistent with the secondary structural model of the
human ITS2 sequence. Following the 3′-end of the 5.8S rRNA,
there are two predicted helices, with an overall similarity to the
yeast one (Supplementary information, Fig. S10a, b).
Five ITS2-associated factors were identified, including PES1 (Nop7

in yeast), NIFK (Nop15 in yeast), NOP53, RPL7L1 (Rlp7 in yeast), and
RSL1D1 (Cic1 in yeast) (Fig. 5a; Supplementary information, Figs.
S11, S12). Some of these factors possess species-specific sequence
or structural features (Supplementary information, Figs. S11, S12). In
yeast, Nop7, Nop15, Rlp7 and Cic1 remain associated with ITS2 from
nucleolus to nucleus, and the replacement of Erb1 by Nop53
determines the timing of ITS2 processing,8,11,12 because Nop53 is
responsible for the recruitment of the exosome. With focused
classification, we were able to trace the nearly full-length sequence
of NOP53 on the pre-60S particle (Fig. 5e, f). The N-terminal region
of NOP53 is inserted in the major groove of the L1 stalk (H76), and
its C-terminus ends in the region next to the stem base of ES31a.
Both of these two rRNA helices are part of domain V, explaining the
previous observation that yeast Nop53 starts to associate with the
pre-60S particles when the construction of domain V is in progress.8

Starting from the N-terminus, NOP53 makes contacts with multiple
rRNA helices and proteins, including eL36, RSL1D1, eL8, PES1, uL23,
uL29, RPL7L1, eL27, eL30, eL19, eL38, rRNA helices H15, ES20a, H58,
ES31a, ES31b and the 28S–5.8S duplex (Fig. 5e, f; Supplementary
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information, Fig. S11d, e). It is distributed on a large surface area of
the pre-60S particle, involving Domains I, II, III and V of the 28S rRNA,
the 5.8S rRNA and ITS2. Of note, a helix of NOP53 is seen to be
parallel with ES27 and to stabilize its conformation (Fig. 5e, f). This
observation was also recently reported for yeast Nop53, which
stabilizes ES27 after the release of Spb4 during late nucleolar stages
of yeast pre-60S assembly.25 These observations suggest that
NOP53 could integrate conformational signals from different

regions of the pre-60S particle to control the timing of the ITS2
processing.
One important observation from the human GNL2-containing

pre-60S structures is that the ITS2 processing spans the lifetime of
GNL2 until very late stages such as state G’. This is in contrast to
the yeast structures, in which the ITS2 removal completes at
earlier stages. Given the length and the complexity of human ITS2
(Supplementary information, Fig. S10a), the removal of human
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ITS2 could be more time-consuming. After the full processing of
ITS2, significant conformational changes occur on a few rRNA
helices that are next to the ITS2. A comparison of the 28S rRNA in
states F and F’ (Fig. 5b, c) shows that ES19 and ES31 are the two
most affected regions (Fig. 5d).

The PTC maturation is initiated in H92 and coordinated by the
GTP hydrolysis on GNL2
GNL2 is a highly conserved nuclear GTPase among species
(Supplementary information, Fig. S13b).64 It is stably bound in all
the states we obtained. The major difference among these states
is that a gradual loss of interactions with the ribosomal
components and other factors was seen at the N-terminal
extension (NTE) of GNL2 (Fig. 6a–d). In states A and B’, the NTE
of GNL2 interacts with H87–H88 linker, RPF2, NSA2, NLE1, and
GTPBP4 (Fig. 6a; Supplementary information, Fig. S13a). After
the CP rotation, GNL2 no longer interacts with H87–H88 linker
(due to the CP rotation), RPF2 (due to RPF2 release) and NLE1 (due
to the repositioning of NLE1), and the corresponding parts of
the NTE of GNL2 become flexible in states C/D (Fig. 6b). After the
subsequent NSA2 release in state F, the N-terminus of GNL2
(before residue 133) becomes completely invisible, and only the

GTPBP4 interacting motifs are stabilized (Fig. 6c, d; Supplementary
information, Fig. S13a).
In all the states, the G-domain and CTD of GNL2 remain largely

as a rigid body, and no significant inter-domain conformational
change was observed. A close inspection of the GTPase center of
GNL2 reveals a major change in the ribosomal contact for the
G-domain. In states A–D, G4499 of H92 is in a flipped position and
the base interacts with a few residues close to the active center of
GNL2, including R205, V381 and Q383. In contrast, in states F and
G, H92 adopts a different conformation, with G4499 retracted
from GNL2 (Fig. 6h). These structural observations agree well with
recent structural studies on yeast Nog2,28,29 which reported two
similar conformations of H92, and discovered that one function of
Nog2 is directly linked to Spb1, the enzyme responsible for the 2′-
O-methylation of G2922 (the yeast counterpart of G4499 of the
human 28S rRNA). The flipping of G4499 is coupled to the release
of NSA2 in states F/G, and as a result, there are also drastic
conformational changes of H92 (Supplementary information, Fig.
S14). After this transition, H92 interacts extensively with the linker
between H89 and H90, but part of the single stranded H89
(4438–4447) now becomes relatively disordered (Supplementary
information, Fig. S14b, d). Based on these data, it could be
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concluded that this structural remodeling on H92 is the first major
step of the PTC maturation.
An important finding is that in the GTPase centers of GNL2 in

states F and G, a GDP molecule could be identified (Fig. 6e–h;
Supplementary information, Fig. S13e, f), and in the best-resolved
state G, one K+ and one Mg2+ could be clearly seen
(Supplementary information, Fig. S13f). In contrast, the examina-
tion of the GTPase centers in earlier states, including A–D,
suggests the presence of a γ-phosphate moiety, indicating that
they are in pre-catalytic state. Although the active centers in these
states are not fully resolved in atomic details as in state G, it is
clear that there is no density for K+ (Supplementary information,
Fig. S13c, d). Given the recent data on the functional coupling
between yeast Nog2 and Spb1,28,29 it could be possible that Spb1/
SPB1 or methylated G2922/G4499 might have a role in regulating
the catalytic activity of Nog2/GNL2. Regarding the maturation of
PTC, our structural data show that the release of NSA2 CTD and
the disengagement of G4499 from the active center of GNL2
(Supplementary information, Fig. S14) are correlated with the
post-catalytic GDP-bound state of GNL2 (Fig. 6h). Therefore, we
speculate that during the PTC maturation, the release of NSA2 CTD
causes the disengagement of H92 from the GNL2 active center,
which subsequently activates the GTPase of GNL2. Ours and
recent yeast data show that GNL2/Nog2 remains bound with the
pre-60S particles after GTP hydrolysis, indicating that unlike
translational GTPases, the GTP hydrolysis of GNL2/Nog2 is not
employed to regulate its own affinity with the pre-60S particle.
Instead, Nog2/GNL2 in the GDP-bound state continues to act as a
place holder for nuclear export adaptor Nmd3/NMD3.10,12,20,65

Given that GNL2 on the pre-60S particle is surrounded by the PTC
helices (H89–H93) and central helices (H68–H71), it is reasonable
to speculate that the conformational maturation of these helices
could have a determining role in the release of GNL2. In support of
this hypothesis, in the state pre-A structure of subsequent NMD3-
particles,20 both the G-domain and CTD of GNL2 have dissociated

(only the GTPBP4-interacting helix of GNL2 remained stably
bound), and H69–H71 already acquires a native-like conformation,
indicating that the release of the core domains of GNL2 might be
triggered by the binding of NMD3. In further support, a very
recent study on yeast NPC-trapped pre-60S particles reported an
assembly intermediate with simultaneous stable binding of Nog2-
CTD and Nmd3-CTD.66 In this structure, the G-domain of Nog2 has
been dislodged and become flexible due to the insertion of the
Nmd3-CTD. Therefore, these results together emphasize a possible
checkpoint on the maturation of the central helices and a crucial
role of GNL2 in monitoring the status of the central helices.

DISCUSSION
In the present work, we established a human cell line with
epitope-tagged assembly factor GNL2 for the purification of
endogenous nuclear pre-60S particles. To minimize any potential
interference with the assembly process, we have inserted a long
linker, 3*(GGGGS), between the C-terminus of GNL2 and the FLAG
tag (Supplementary information, Fig. S1a). Subsequently, we
obtained eleven cryo-EM structures for the pre-60S particles
isolated from this cell line. These structures span the whole
lifetime of GNL2 on the pre-60S particles and covers the majority
of assembly events during the late nucleolar and early to middle
nucleoplasmic stages. Compared to our previous study on yeast
pre-60S particles isolated through epitope-tagged Nog2,12 which
provides a high-resolution pre-rotation state (Nog2-particle state
1, PDB: 3JCT), the current study provides not only the pre-
rotational state B’ (an equivalent state to Nog2-particle state 1),
but also fine structural details for more subsequent assembly
states for human pre-60S particles. For some of these states,
similar or equivalent yeast pre-60S states have been previously
decribed, e.g., states D/D’ (similar to Rix1–Rea1 particle regarding
the pre-60S conformation, PDB: 6YLH8) and state E (equivalent to
the yeast late nuclear state, PDB: 6N8J21). Importantly, we have
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also provided details on assembly states that are not previously
characterized in yeast, such as states A, C/C’, F/F’ and G/G’. The rich
structural information in our structures virtually provides a
temporal resolution for understanding the continuous pre-60S
maturation as they gradually acquire nuclear export competency.
Together with our previous work on human NMD3-containing pre-
60S particles,20 our data show that the general assembly pathway
in eukaryotes is highly conserved.
An important conclusion from these structural data is the

presence of parallel assembly pathways (Supplementary informa-
tion, Fig. S15). The eleven structures could not be assigned in a
single linear assembly pathway, although they display a general
hierarchy. The first is that the ITS2 processing is relatively
independent of the maturation of the CP. For each major state,
both the ITS2-containing and -free maps were found, even for the
very late states G and G’. The second is that the release of certain
assembly factors does not follow a linear order. State F still contains
SDAD1 and the N-terminus of NSA2, indicating that it is between
states D and G. However, state E, which lacks SDAD1, does not
contain TMA16, L10K and eL42 as seen in state G (Fig. 1d), also
suggesting an intermediate state earlier than state G. In particular,
SDAD1 and NSA2 display two different temporal relationships. The
transition from state D to state E represents a maturation pathway
where SDAD1 is released in the first place before the departure of
the H3 and CTD of NSA2. In contrast, the transition from states D to
F defines a parallel pathway where the dissociation of the H3 and
CTD of NSA2 occurs first. These two branches eventually converge
at state G, which represents the latest state of GNL2-particles ready
for the binding of NMD3. Therefore, these data indicate that the
nucleoplamic assembly of the pre-60S particles is generally
sequential but also with limited short branches.
The rich structural information on various assembly factors

greatly facilitates the understanding of their roles in ribosome
assembly. Consistent with the previous yeast models based on
genetic, biochemical and structural data,2–4 assembly factors are
organized in temporal groups. Structural analyses indicate that the
key to keep this temporal setup is their molecular roles as place
holders. For instance, SPB1 contains two structured domains; the
N-terminal catalytic domain is mutually exclusive with GNL2 and
the middle DUF3381 is in conflict with ZNF593. For another
example, NSA2, TMA16/L10K, and NMD3 are successive factors
which share partially overlapped binding site in the central region.
In addition, the binding of a late factor may require the release of
more than one set of factors in different stages. The binding of
TMA16/L10K requires the release of NLE1 and CCDC86 in the CP
and the dissociation of H3 and CTD of NSA2 in the PTC region.
Therefore, the complex binding interdependencies among these
factors determine the directionality of the pre-60S assembly.
In terms of the rRNA conformational maturation, some assembly

factors display apparent roles as rRNA chaperones, such as RRS1
and SDAD1 in maintaining the conformations of H80 in pre-mature
(Fig. 2b–d) and mature-like (Fig. 3) states, respectively. These RNA
chaperone functions are largely executed through physical
isolation of certain rRNA fragments from their surroundings, as
seen for H80 (Figs. 2b–d and 3) and H89 (Supplementary
information, Fig. S8a–d). In fact, H89 is always in a relatively
isolated state throughout although different factors around it have
undergone association/dissociation events (Supplementary infor-
mation, Fig. S8a–d). These observations indicate that certain
assembly factors function to prevent potential non-native rRNA
folding traps.

MATERIALS AND METHODS
Generation of a C-terminally tagged GNL2 cell line
HEK293 cells were cultured in DMEM (Gibco) supplemented with 10% fetal
bovine serum (FBS) (BBI), at 37 °C in a 5.5% CO2 humidified atmosphere.
Genomic insertion of triple Flag-twin Strep-p2A-acGFP1 ORF at the

C-terminus of GNL2 was performed by standard CRISPR/Cas9.67 The design
of the guide RNAs (gRNAs) was performed by a web-based tool (http://
crispor.tefor.net/) and the selected gRNA (5′-GCAAAAGCAGTAATGTTTAAA-3′)
was cloned into pX330 vector (a gift from Dr. Jiazhi Hu). A linear donor
fragment carrying the knock-in sequence surrounded by ~800-bp homology
arms was amplified by PCR. HEK293 cells, in 6-well plates at 80% confluency,
were transfected with the gRNA vector and the donor fragment at mass ratio
of 1:1 using Polyethylenimine (PEI) (Polysciences Inc., 23966–1). After two
weeks, GFP-positive single cells were sorted and seeded on 96-well plates by
flow cytometry (MoFlo). After two weeks, clones were screened under
fluorescence microscope to remove multiclones and GFP-false-positive
clones. The GFP-positive monoclones were selected for expansion. These
positive monoclones were validated by PCR on extracted genomic DNA.
Subsequently, the homozygous clones were validated by DNA sequencing
and western blotting analysis. The validated clones were expanded to four
10-cm dishes, and adapted to suspension growth in SMM 293-TII (Sino
Biological Inc., M293TII).

Purification of pre-60S particles
The cells with homozygous 3×FLAG-tagged GNL2 were collected by
centrifugation and washed with PBS twice. Cell pellets were resuspended
in lysis buffer (50mM HEPES, pH 7.5, 150mM KCl, 5 mM Mg(OAc)2,
supplemented with 1× cocktail protease inhibitor, 0.1% Triton X-100, 1mM
NaF and 1mM DTT), and lysed using high pressure cell disruptor (JNBIO). The
lysate was centrifugated for 60min at 8000× g. Subsequently, the super-
natants were collected and incubated with equilibrated ANTI-FLAG Affinity
Agarose Gel (Sigma) for 2 h, followed by washing with 100 c.v. washing buffer
(50mM HEPES, pH 7.5, 150mM KCl, 5 mMMg(OAc)2, 0.05% NP-40, 1mM NaF
and 1mM DTT) and eluting with 1mg/mL 3× FLAG peptide in 5 c.v. washing
buffer (50mM HEPES, pH 7.5, 150mM KCl, 5 mM Mg(OAc)2, 1mM NaF and
1mM DTT). The eluate was concentrated on 100-kDa molecular mass cut-off
filters (Merck Millipore) for EM sample preparation. The samples were also
subjected to mass spectrometry and SDS-PAGE analyses.

Mass spectrometry analysis
For protein identification, 10 μL of GNL2 samples (12 of A260 units/mL)
were subjected to SDS-PAGE. Subsequently, the Coomassie-stained total
aggregated proteins were cut out of the gel and destained. After
dithiothreitol reduction and iodoacetamide alkylation, the proteins were
digested with porcine trypsin. The resulting tryptic peptides were
extracted, dried and resuspended in 10 μL of 0.1% formic acid (FA)/H2O.
Using an Easy-nLC 1200 system, 5 μL of samples were loaded at a speed

of 280 nL/min in 0.1% FA onto a trap column and eluted across a fritless
analytical resolving column with a 75-min gradient. Buffer A consisted of
0.1% (v/v) FA in H2O and Buffer B consisted of 0.1% (v/v) FA in 80%
acetonitrile. The gradient was set as follows: 4%–8% B in 4min; 8%–20% B
in 46min; 25%–35% B in 10min; 35%–90% B in 12min; 90% B in 3min.
Data-dependent tandem mass spectrometry (MS/MS) analysis was

performed with a Thermo Orbitrap Fusion Lumos (Thermo Fisher
Scientific). Full MS and tandem mass spectra were extracted from raw
files, and the tandem mass spectra were searched against a Homo sapiens
protein database by Proteome Discoverer 2.2 software. The false discovery
rate applied at the peptide and protein levels was 1%.

Cryo-EM sample preparation
The GNL2 sample was diluted to a concentration of 12 of A260 units/mL.
Prior to sample freezing, Quantifoil R1.2/1.3 grids were coated with a thin
layer of carbon and glow-discharged for 30 s in middle level with a plasma
cleaner (PDC-32G-2, Harrick Plasma). 3.5 μL of GNL2 samples were loaded
on grids and blotted for 1 s with –1 blot force using an FEI Vitrobot at 4 °C
and 100% humidity.

Data collection and image processing
Cryo-samples were screened in an FEI Talo Arctica at 200 kV and transferred
to a FEI Titan Krios (with Gatan K2 summit) at 300 kV for data collection.
Movies were acquired using SerialEM68 at a magnification of 92,000× (pixel
size of 1.37 Å) with the defocus range varying from −1.2 μm to −1.6 μm.
Each movie contained 32 frames with a dose rate of ~10 electrons/Å2/s for a
total exposure time of 6.4 s. Four batches of movies were collected and
processed using the same procedures in RELION 4.069 as follows.
Movie stacks were motion-corrected and dose-weighted via MotionCorr2.70

The CTF parameters were estimated using CTFind4 program.71 After particle
picking and extraction, 2D classification was performed to remove non-
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ribosomal and noisy classes. After further 3D classification, all 60S or pre-60S
classes were selected and four batches of selected particles were combined
for further processing (Supplementary information, Fig. S2).
The combined ~600,000 particles were split into two halves to lower the

computation burden. For each half, one round of global 3D classification
was performed with the state-1 map of the yeast Nog2 particle12 (low-pass
filtered to 40 Å) as reference. Based on the structural features of the
resulting maps, similar classes were pooled, including 1) 5S RNP-unrotated
state (class 1, 71,235 particles), 2) 5S RNA-rotated state with mixed
conformations of the L1 stalk and with weak densities of NLE1 and ITS2-
containing foot structure (class 2, 335,375 particles), and 3) 5S RNA-rotated
state with open L1 stalk and without NLE1 and ITS2-containing foot
structure (class 3, 166,757 particles). Subsequently, these three combined
classes were subjected to several rounds of mask-based 3D classification.
Regarding the 5S RNP-unrotated state, the densities of ITS2-containing

foot structure were not solid, indicating the presence of structural
heterogeneity. A mask-based 3D classification on this region generated
two major classes, with or without ITS2-containing foot structure (hereafter
abbreviated as “foot+ ” and “foot–”). Subsequently, both “foot+ ” and
“foot–” classes were further subjected to another round of mask-based 3D
classification on NLE1 region (including the 5S RNP) due to structural
heterogeneity in this region. After that, low-resolution and post-rotation
classes were discarded, resulting in two subsets of particles for high-
resolution refinement. After CTF refinement in RELION 4.0, the two maps
were further improved, state A (3.3 Å) and state B’ (3.5 Å).
Regarding the class 2, three rounds of mask-based 3D classifications

on SDAD1 region (including the L1 stalk and SDAD1), NLE1 region
(including NLE1 and the surrounding 5S RNP) and ITS2 region were
performed separately. With the resolution improvement, more structural
heterogeneities were observed and several more rounds of mask-based 3D
classifications on these three regions were performed. As a result, eight
distinct subclasses were obtained. Among these subclasses, six maps were
further improved by CTF refinement, including state C’ (4.3 Å), state D’ and
state D (3.2 Å), state F’ and state F (3.0 Å) and state G’ (3.2 Å).
The remaining two subclasses were similar to the class 3, and they were

combined with the class 3 for further analysis. As a result, three states with
distinct features were obtained, state C (3.2 Å), state E (3.3 Å) and state
G (2.8 Å).
For map analysis, all the maps were sharpened using DeepEMhancer72

and post-processing options in RELION 4.0.

Atomic model building and refinement
For modeling of the assembly factors, initial templates of TMA16, GTPBP4,
eIF6, RLP24, ZNF593 and LLPH were from the model of state pre-A pre-60S
NMD3-particles (PDB: 6LSS).20 For each of these factors, the template was
fitted into the maps by rigid-body fitting in UCSF Chimera,73 followed by
manual rebuilding in COOT.74 The starting model of GNL2, GNL3, NLE1,
CCDC86, NSA2, MRTO4, RPF2, RRS1, RSL1D1, RPL7L1, PES1 and NOP53 were
derived from AlphaFold protein structure database (https://
alphafold.ebi.ac.uk).46 The predicted 3D models were docked into the density
maps by rigid-body fitting, followed by extensive manual rebuilding in COOT.
Most of the assembly factors were well resolved, which enabled atomic

modeling for majority of their sequences. For many factors, AlphaFold-
predicted models were highly similar to the final refined models in the visible
portions of the assembly factors. For modeling of L10K and C11orf98, tentative
modeling of all possible candidates included in mass spectrometry data was
attempted to be built into the density map until the correct protein was
identified. Specifically, a poly-alanine model was first built manually, the
AlphaFold-predicated models were first screened manually by secondary
structural features and then by density fitting and side-chain density matching.
For modeling of the ribosomal components, starting models of ribosomal

proteins and rRNAs were from the published model of the human state pre-
A NMD3-particles (PDB: 6LSS20) and the yeast pre-60S structures (PDB:
3JCT12 and 6YLH8). The model of the 5S rRNA was fitted in the maps of
states A/B’ in Chimera and manually adjusted in COOT. Domain V of the 28S
rRNA displays large conformational differences among these classes, and
certain regions are highly flexible in different maps. These flexible regions
were removed from the initial model and not modeled.
For each assembly state, multiple rounds of model refinement using

real-space refinement in PHENIX75 (with secondary structure, geometry
and base pair constraints applied) and manual adjustment in COOT were
applied. Models were evaluated (Supplementary information, Table S2)
using Molprobity.76 The maps and models were visualized in UCSF Chimera
and ChimeraX77 for analysis. The figures were generated using ChimeraX.
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