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Abstract

Synchronous firing of neural units has recently been proposed as
a new way of solving the variable binding problem in connectionist
networks. Firing synchrony appears to be unrelated to earlier
methods of variable binding, nearly all of which can be analyzed
as species of tensor product representations, where vectors
representing variables and values are bound together with the outer
product. In this paper, we argue that, despite appearances, firing
synchrony is also a case of tensor product representation. This
analysis exposes two logically independent components of the
synchronous firing idea. The most obvious is the idea of using
time as a resource: spatio-temporal patterns of activation are used.
This, we argue, is a purely implementational issue which does not
bear on the complexity issues of variable binding. In contrast, the
second idea does bear on genuinely representational issues, and is
the source of most of the formal properties claimed for the
synchrony scheme. Rather than explicirly binding a semantic role
like giver to a semantic filler like John, these two are implicitly
bound—by explicitly binding each to a common formal role, via
the tensor product. The analysis situates synchronous firing in a
typology of alternative variable binding schemes.

The Variable Binding Problem

A classic obstacle for connectionist networks processing
structured data is the variable binding problem. One aspect
of this problem is the binding of fillers to semantic roles,
such as those distinguishing the arguments of a predicate.
For example, the predicate give(x,y.z)—'x gives z to
y'—has three semantic roles: giver, recipient, and
give-object. (Here and throughout, we use the notation
and terminology of Shastri & Ajjanagadde 1993). A
proposition such as give(John, Mary, book) may be
understood as having three variable bindings: giver =
John, recipient = Mary, and give-object = book.

Binding by Synchronized Firings

A recent solution to the variable binding problem is inspired
by phase synchronization of neurons, a suggested biological
mechanism of feature segmentation and linking (von der
Malsburg & Schneider 1986). Much of the recent biological
data and modeling has focused on perceptual modalities,
especially vision (Gray, Konig, Engel, & Singer 1989;
Eckhorn, Reitboeck, Arndt, & Dicke 1990). Neurons
functioning as feature detectors fire synchronously (or ‘in
phase’) with other neurons responding to other features of
the same entity, and out of phase with neurons responding
to features of other entities.

Shastri and Ajjanagadde (1993) have proposed phase
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synchronization as a connectionist solution to the general
dynamic variable binding problem, as have Hummel &
Biederman (1992). They present their binding
representation scheme as a more biologically plausible
alternative to other kinds of connectionist variable binding
schemes.

The representation system proposed in Shastri &
Ajjanagadde (1993) uses single binary-valued nodes to
represent roles and fillers. For the proposition give(John,
Mary, book), separate, single nodes represent each of
giver, recipient, give-object, John, Mary, and book
(see Fig. 1 for an illustration of this example).

Time is thought of as divided into cycles, each cycle
having duration P (the period of the nodes). An active node
fires once per cycle (inactive nodes don’t fire at all). Two
nodes are said to be bound together if they are both active,
and their firings are synchronized, that is, they fire at the
same time during each cycle.

Because each firing unit has a fixed pulse width W during
which it is on, the number of independent sets of
synchronized firings that can be represented within a cycle
is P/W which we’ll call N. A cycle may thus be viewed as
a set of N ‘binding slots,” with each slot permitting the
representation of the simultaneous binding of a set of nodes.
An active node occupies exactly one of the binding slots by
firing during the part of the cycle corresponding to that slot.

Thus in the give example above, the first slot is occupied
by the give-obj/book binding, the second slot by
recipient/Mary, etc. We will call the first slot the first
formal role; this formal role is occupied by both give-obj,
the semantic role, and by book, the semantic filler. These
two elements which occupy the first formal role comprise
the formal filler of that role. The second formal role is
occupied by the formal fillers recipient and Mary; one of
these is a semantic role, the other a semantic filler. The
crux of our analysis is summarized in Table 1.

Tensor Product Representations

On the face of it, phase synchrony binding seems a
completely new method of solving the variable binding
problem, totally unrelated to other techniques. One of these
techniques, which generalizes many more specialized
methods, is tensor product represemtation. In this
technique, a structure is viewed as a set of bindings of
formal roles to formal fillers. For example, the string ABC
may be regarded as a set of three bindings: the first formal
role is ‘first position’, which has formal filler A; the fillers
of the second and third roles are B and C, respectively.
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Fig. 1: Temporal synchrony representation of give(John, Mary, bopk), with N=3 binding slots per cycle
(Shastri & Ajjanagadde 1990). Each label on the vertical axis denotes a single unit.

Table 1: Key to the Analysis

formal role = lor2or...or N

e.g.:  formal role = 1 is occupied by

formal filler =
{ a semantic role, its semantic filler }

formal filler = {give-obj, book}

Each formal role is bound to its formal filler with the tensor
product operation, and the roles and fillers are both
represented by patterns of activation with the structure of a
tensor. The properties of tensor product representations,
and their relations to symbolic structures in connectionist
models generally, are discussed extensively in Smolensky
(1990). Tensor products have been used in models of
memory (e.g., Humphreys et al. 1989) and analogy
(Halford et al., 1994) and in grammatical theory (Legendre,
Miyata & Smolensky 1990 et seq.).

Here, a tensor may be thought of as a multi-dimensional
array with multiple indices and real valued elements. The
number of indices that a tensor possesses is called its rank.
A rank 2 tensor is just a matrix; it has two indices, as in
T;. A rank 1 tensor is a garden-variety vector: it has one
index, as in T;. Tensor product representations of recursive
structures require tensors of rank higher than 2; here we
need only tensors of rank 1 and 2 (vector and matrix).

Let v denote a vector (rank 1 tensor) of dimensionality
d,: v consists of d, elements, the ith element being v;. Let
u denote another vector, with dimensionality d,,. The tensor
product of u and v, denoted u®yv, is defined to be a rank
2 tensor T with indices having the dimensionalities d, and
d, (in that order), and with elements defined as T;; = uv..
The tensor product is not commutative (u@v a{ v®u),
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because uy; # v, (unless of course u = v). (For u®v,
the first index has dimensionality d;, the second d; for
v®u, the dimensionalities reverse.) When u and v are rank
1 tensors—regard them as column vectors—the tensor
product is the same as the outer product of matrix algebra:
u®v reduces to uv’.

Addition of tensors is the straightforward generalization
of addition of vectors: each element of the resulting tensor
is the sum of the corresponding elements of the addend
tensors. Two tensors may only be added together if they
have the same number of indices and each pair of
corresponding indices have the same dimensionality.

A tensor product representation binds a formal filler to a
formal role by taking the tensor product of the tensor
representing the filler and the tensor representing the role.
Multiple bindings may be combined into one tensor
representation by superimposing the representations of the
individual bindings (that is, by summing the tensor
representations): see Fig. 2.

Synchronized Firing as a Tensor Product

Figs. 1 and 2, depicting the representations using temporal
synchrony and tensor product variable binding, suggest that
the two schemes are entirely different. This is an illusion,
however; dissolving this illusion is our main goal here.



A@l"z

O @0 @
oK X X®

O 0O
' JoR N
eC o
O 0O

B®ry (A®rj) + (B®ry)

ON N0
L OGN _
00
O O O

OO0 O O O
2 JION NON
OlO0 O O O

Fig. 2. A tensor product representation of BA. The formal roles are ry,ry
(101),1‘1 = (0 1 0); the ﬁllcrsareA =(1010),B

represented by the vectors ry =
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=(0110).

The representation of BA is BA = A®r; + B®r,, a rank-2 tensor.

Fig. 3a illustrates our analysis of temporal synchrony
binding as a kind of tensor product representation. For each
‘real’ unit, e.g., John, in the temporal synchrony scheme,
there is now an entire row of ‘virtual’ units, each showing
the activity of John during one time slot during one time
cycle. We've simply replaced a bumpy activity trace with
a row of virtual units showing the same activation values.
Fig. 3a is a space-time diagram of an activity pattern: the
vertical axis is space, the horizontal axis time. A row of
virtual units in Fig. 3 shows the activity history over time
of a single real unit in Fig. 1; a column of units in Fig. 3
shows the activity pattern over the whole Fig. 1 network at
a single moment of time.

Fig. 3b shows one of the bindings in the full proposition
give(John,Mary,book) shown in Fig. 3a. This binding,
book/give-obj, is the tensor product of the formal filler
vector f; shown along the right edge and the formal role
vector ry shown along the bottom. The formal role vector
ry has activity value 1 during the first ‘slot’ of each time
cycle. The formal filler vector f; has activity value 1 in the
locations corresponding to the units for give-obj and book;
the subtlety is that the formal filler includes both the
semantic filler (book) and the semantic role (give-obj).
The formal role has no relation to the semantic role, which
is part of the formal filler. Rather than using the tensor
product to directly bind the semantic role and semantic
filler, these are implicitly bound together in virtue of both
being explicitly bound (via the tensor product) to a common
formal role, i.e. time slot. In equations: rather than
book® give-obj we have:

[book + give-obj]®r; = book®r; + give-obj®r;.

The first alternative (book@® give-obj) instantiates the
general tensor product binding scheme
formal-filler ® formal-role by setting the formal role

Sformal # semantic
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semantic role and the formal filler = semantic filler; this
method, which we’ll dub the formal=semantic approach, is
one way to use the tensor product technique to represent a
proposition. Another way, illustrated in Fig. 3, is to set the
formal filler to be the superposition of a semantic role and
its corresponding semantic filler, and set the formal role to
be an arbitrary pattern, independent of the other formal
roles used in the other bindings. We’ll call this the
approach. (Other  connectionist
representational schemes also instantiate this approach: see
the Conclusion section.)

Fig. 3b shows only one of the three bindings present in
Fig. 3a; the other two are analogous. Just as prescribed by
the general tensor product scheme, these three bindings are
combined by superposition (i.e., summation); this yields
exactly Fig. 3a. In Fig. 3a, we have distinguished the three
bindings by using different shading patterns for their active
units; in all cases, regardless of pattern, the shaded units
have activity 1.

The real resource measure of a representation, we claim,
is the number of activation values it requires; here, we’ll
call this rensor element complexity, TEC for short. The
TEC of the formal=semantic and formal semantic
representations differ. For the formal =semantic approach,
it's (#semantic roles)(#semantic fillers); for the other, it's
N(#semantic roles + #semantic fillers). (Recall that N is
the number of time slots in each cycle. We count only the
activation values in a single cycle, since multiple cycles
contain no more information.)

As Shastri and Ajjanagadde (1993) point out, temporal
synchrony allows book to be bound to both give-obj and,
say, own-obj in a single time slot; the tensor product
analysis of this is simply:

book®r; + give-obj®r; + own-obj®r,.
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Fig. 3a: Temporal synchrony binding as a spatio-temporal tensor product representation.
Fig. 3b: One of the three bindings which are superimposed in Fig. 3a, book/give-obj,
the tensor product of the indicated formal filler and formal role vectors.

A Two-Way Formal/Implementational
Representation Typology

Viewing the sychronized firing model as a kind of tensor
product has a number of advantages. Crucially, it allows us
to clearly separate issues lying at Marr’s lowest,
implementational, level from those at the next highest,
representational/algorithmic, level (Marr 1982).

Fig. 3 is a space-time diagram of a network. If the
horizontal axis is changed from time to space, it becomes a
normal diagram of a network, where each circle represents
a real rather than a virtual unit. The number of activity
values—the TEC—does not change, of course; we have only
the standard trade-off between space and time. In the
purely-spatial interpretation of Fig. 3, we have a pattern of
activity distributed over two space dimensions, but
unvarying in time; in the space-time interpretation, we have
a temporally varying pattern of activity across a one-space-
dimensional network. We can choose to expend N time
units on our representation, and (#semantic roles +
#semantic fillers) real units; or we can expend 1 time unit
and N(#semantic roles + #semantic fillers): the resulting
TEC is the same. The choice here is clearly an
implementation-level one: at the representational level, Fig.
3 characterizes the same representation whether the
horizontal axis is implemented in space or in time.

On the other hand, Fig. 3, illustrating the
formal > semantic approach, differs at the representational
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level from the formal=semantic alternative (they have
different TECs, for example). Thus we can see in the
temporal synchrony proposal two separate ideas residing at
two different levels; these are shown along the two axes of
the two-by-two typology of representations shown in Table
2 (in which ‘f-’ and ‘s-’ abbreviate ‘formal’ and ‘semantic,’
respectively. The TEC depends on the representational but
not the implementational axis.

A larger and more general typology can be generated by
considering additional representational and implementational
issues, including those listed in Table 3.

Conclusion

The temporal synchrony representational scheme of Shastri
& Ajjanagadde (1993) and others provides an elegant
synthesis of two logically separate ideas. The first is the
implementation-level idea of using time as a representational
dimension: in addition to using space as a resource for
holding the activation values of a connectionist
representation, we can also use time as such a resource.
This is potentially quite useful for designing efficient
artificial or biologically faithful networks. As our analysis
shows, there is nothing inherently temporal about the role
played by time in the synchrony approach; this role could be
played by various other implementational resources, e.g.,
space, without changing the structure of the representations.



Table 2: A Typology of Representations

loﬁz

Representational Axis

Spatial Semantic Roles
time-complexity = 1

Temporal Semantic Roles
time-complexity = #s-roles

formal =semantic
#f-fillers = #s-fillers

|

space-complexity = space-complexity = #f-roles = #s-roles
(#s-roles)(#s-fillers) #s-fillers TEC = (#s-roles)(#s-fillers)
Spatial ‘Synchrony’ Temporal Synchrony formal # semantic

time-complexity = 1 time-complexity = N #f-fillers = #s-fillers + #s-roles
space-complexity = space-complexity = #f-roles= N
N(#s-fillers + #s-roles) #s-fillers + #s-roles TEC = N(#s-fillers +#s-roles)

[} 1 1

' Spatial Formal Roles !  Temporal Formal Rols !  TEC = _

3 H time-complexity X

! Implementational Axis ! space-complexity

Table 3: Representational- vs. Implementational-Level Issues

Representational-Level Issues
Distinction of formal and semantic roles and fillers

Localist vs. distributed representations

Continuous vs. discrete dimensional indexing

Dimensionality of the role and filler spaces (both semantic and formal)

Range of tensor component values used (e.g., real, binary)

Separate vs. overlapping subspaces for semantic roles and semantic fillers

—=

Implementational-Level Issues
Complexity in space (number of neural units)
Complexity in time (intrinsic to neural units)

Complexity of activation values of units (real vs. binary, complex, ‘label-passing’)

The second, higher-level, idea embodied in the temporal
synchrony scheme is that a semantic role/filler pair like
give-obj/book can be implicirly bound together by explicirly
binding each of give-obj and book to a common formal
role (using the tensor product). This kind of implicit
binding has been used by others, e.g., Pattern Similarity
Association of Barnden & Srinivas (1991). The explicit
binding can be analyzed within the tensor product
representational framework, like the explicit binding in
virtually all other connectionist representation schemes.

As our typology of representations spells out, the second
idea has a significant bearing on the abstract structure and
complexity of representations, whereas the first,
implementational idea, does not.

The tensor product analysis of temporal synchrony offers
a number of other contributions which we have insufficient
space to discuss here; for example, it renders completely
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straightforward the seemingly impossible generalizations of
the synchrony technique to distributed representations and to
overlapping firing patterns, and it allows direct formal
analysis of inference over these representations, exploiting
tensor calculus (Tesar & Smolensky, in preparation).
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