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ABSTRACT

Objectives: To demonstrate the application of the Large-scale Evidence Generation and Evaluation across a Net-

work of Databases (LEGEND) principles described in our companion article to hypertension treatments and as-

sess internal and external validity of the generated evidence.

Materials and Methods: LEGEND defines a process for high-quality observational research based on 10 guiding

principles. We demonstrate how this process, here implemented through large-scale propensity score model-

ing, negative and positive control questions, empirical calibration, and full transparency, can be applied to com-

pare antihypertensive drug therapies. We assess internal validity through covariate balance, confidence-

interval coverage, between-database heterogeneity, and transitivity of results. We assess external validity

through comparison to direct meta-analyses of randomized controlled trials (RCTs).

Results: From 21.6 million unique antihypertensive new users, we generate 6 076 775 effect size estimates for

699 872 research questions on 12 946 treatment comparisons. Through propensity score matching, we achieve

balance on all baseline patient characteristics for 75% of estimates, observe 95.7% coverage in our effect-

estimate 95% confidence intervals, find high between-database consistency, and achieve transitivity in 84.8% of

triplet hypotheses. Compared with meta-analyses of RCTs, our results are consistent with 28 of 30 comparisons

while providing narrower confidence intervals.

Conclusion: We find that these LEGEND results show high internal validity and are congruent with meta-

analyses of RCTs. For these reasons we believe that evidence generated by LEGEND is of high quality and can

inform medical decision-making where evidence is currently lacking. Subsequent publications will explore the

clinical interpretations of this evidence.

VC The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association.
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INTRODUCTION

The Observational Health Data Sciences and Informatics (OHDSI)

Large-Scale Evidence Generation and Evaluation across a Network

of Databases (LEGEND)1–3 strives to produce reproducible evidence

based on existing observational healthcare data, such as electronic

health records (EHRs) and administrative claims data, and thus

aims to fill in evidence gaps in medicine. Many studies document the

limitations of much of the current observational research.4,5 There

are challenges related to selective reporting, nonreproducibility, con-

founding, imprecision, and lack of robust validation. As such, these

studies are relegated to lower levels of evidence, and confidence in

their ability to make causal inference is low. Meanwhile, evidence

gaps in medicine are profound and the vast majority of recommen-

dations in guidelines, even in the most evidence-based fields such as

cardiology, are not supported by randomized trials. Clearly, we

need more randomized trials, but, in parallel, there is a great

need for credible observational evidence to support clinical decision-

making.

The LEGEND design and execution is based on its 10 guiding

principles,2 aimed at addressing the current concerns about observa-

tional research. In brief, these principles prescribe the generation

and dissemination of evidence on many research questions at once,

for example, comparing all treatments for a disease for a wide range

of outcomes, thus increasing the comprehensiveness of evidence and

preventing publication bias.6 These questions should be answered

using a prespecified and systematic approach, preventing p-hacking

(selective reporting). Best-practice statistical methods address mea-

sured confounding,7 and control questions (research questions

where the answer is known) quantify potential residual bias,

expressed in calibrated confidence intervals (CIs)8 and P values.9 Fi-

nally, the evidence is generated in a network of databases to assess

consistency, by sharing open source analytics code to enhance trans-

parency and reproducibility but without sharing patient-level infor-

mation, and ensuring patient confidentiality.

To demonstrate and evaluate LEGEND, in this article we apply

the LEGEND principles to treatments for hypertension. Antihyper-

tensive therapies carry well-established benefits in reducing blood

pressure and the risk of major cardiovascular events. There remain

large gaps in evidence about antihypertensive therapy—the health

benefits and drug safety concerns of any 1 antihypertensive drug rel-

ative to other drugs as first-line therapy remain debatable—but

among clinical areas, hypertension is less sparse than others.

Reboussin et al10 perform a systematic review of the current evi-

dence from RCTs, and this review constitutes the basis of the recent

2017 American College of Cardiology / American Heart Association

Guidelines11 and the 2018 European Society of Cardiology and Eu-

ropean Society of Hypertension Guidelines for the management of

arterial hypertension.12 However, the study by Reboussin et al

presents data on only 40 head-to-head treatment comparisons and is

based largely on studies completed before 2000.

We use the LEGEND methods to compare antihypertensive

drugs and drug classes on effectiveness and safety outcomes. We

start by illustrating our evidence generation process for a single re-

search question. We then assess internal validity of the generated

results for all the hundreds of thousands of research questions, based

on LEGEND diagnostics defined in the Materials and Methods, and

we use the meta-analysis of the Reboussin review as a benchmark to

assess external validity. Discussion of the evidence on hypertension

treatment itself, and the implications of this evidence for medicine,

are beyond the scope of this paper and are instead presented in

hypothesis-specific papers.13

MATERIALS AND METHODS

Figure 1 summarizes our approach based on the principles of LEG-

END.2 We define a large set of research questions and additionally

define a set of control questions where the answer is known. We use

effect estimates for the control questions to estimate systematic error

distributions (eg, due to confounding, measurement error, and selec-

tion bias) and subsequent empirical calibration. We apply a system-

atic causal effect estimation procedure reflecting current best

practices to generate estimates for all questions in an international

network of healthcare databases. Each site runs the analysis locally

and only shares aggregated statistics. The full result set is made

available in an online database, accessible through various web

applications. The protocol has been prespecified and made available

online, alongside the open source code for executing the entire

study.

Define a large set of research questions
Treatment comparisons

We analyze all pharmaceutical therapies indicated for hypertension

treatment, as listed in the 2017 American Heart Association Guide-

lines,11 categorized at 3 levels: drug ingredient, class, and major

class (Table 1). Because medications are often prescribed in combi-

nations, we also include all possible combinations of 2 treatments

(either coprescribed individual drugs or combination products con-

taining both ingredients). Similar to the guidelines, we focus on first-

line therapies; we only evaluate the first hypertension treatment a

patient receives and disregard all subsequent treatments. Only ob-

served (at least 2500 new users in at least 1 database) treatments are

considered and enumerated in Figure 1. For example, even though

Table 1 lists 58 ingredients, we observe only 40 in the data and in-

clude those in the analysis. Similarly, even though we could hypo-

thetically study 58 * (58 � 1) ¼ 3306 duo-ingredient therapies, only

66 are observed. We define our set of treatment comparisons as all

possible (ordered) pairs of treatments.

Outcomes

Table 2 lists the 55 outcomes we include in our study. The primary

effectiveness outcomes are acute myocardial infarction (AMI), hos-

pitalization with heart failure, ischemic or hemorrhagic stroke, and

a composite cardiovascular event outcome including the first 3 out-

comes and sudden cardiac death. Additionally, we define a large set

of safety outcomes based on known and suspected side effects of hy-

pertension treatments that are listed on the product labels. The large

number of treatment comparisons and outcomes not only allows us

to answer more questions, but it also allows us to assess the operat-

ing characteristics of our design, answering questions such as

whether we have an unexpected number of statistically significant

results or whether there is an unusual pattern to the significance (eg,

publication bias cuts at P¼ .05).6

We detect each outcome in the healthcare databases using care-

fully designed logic combining observed diagnosis, procedure, and
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other codes (see the protocol in the Supplementary Materials). For

example, AMI is detected as the occurrence of an AMI diagnosis

code in an emergency room or inpatient setting, with no AMI diag-

nosis in a similar setting in the prior 180 days. The AMI diagnosis

codes are specified using OHDSI’s Observational Medical Out-

comes Partnership vocabulary standard concepts that map to the

coding systems used in each of the databases (eg, 410.* in ICD-9).

Generate the evidence using best practices
For causal effect estimation, we compare a target treatment (T) to a

comparator treatment (C) for the risk of an outcome (O). We define

T and C as the first exposure to the treatments defined in Table 1,

while requiring at least 1 year of prior observation, no prior hyper-

tension treatment, and no other hypertension treatment starting

within 7 days of treatment initiation. We further require a diagnosis

Figure 1. Overview of the Large-scale Evidence Generation and Evaluation across a Network of Databases (LEGEND) Hypertension study. The numbers reported

here only include those data elements that were actually observed in the data. For exposures, a minimum of 2500 new users in at least 1 database was required.

Outcomes had to be observed at least once. Admin. claims ¼ administrative claims, EHRs ¼ electronic health records, ITT ¼ intent-to-treat.

1270 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 8



Table 1. Hypertension treatments included in this study

Ingredient Class Major class

Benazepril Moexipril ACE inhibitors Angiotensin converting enzyme (ACE) inhibitors

Captopril Perindopril

Enalapril Quinapril

Fosinopril Ramipril

Lisinopril Trandolapril

Doxazosin Terazosin Alpha-1 blockers Alpha-1 blockers

Prazosin

Azilsartan Losartan Angiotensin receptor blockers Angiotensin receptor blockers

Candesartan Olmesartan

Eprosartan Telmisartan

Irbesartan Valsartan

Atenolol Bisoprolol BB cardioselective Beta-blockers (BB)

Betaxolol Metoprolol

Nebivolol BB cardioselective and vasodilatory

Carvedilol Labetalol BB combined alpha and beta receptor

Acebutolol BB intrinsic sympathomimetic activity

Penbutolol Pindolol

Nadolol Propranolol BB non-cardioselective

Amlodipine Nicardipine Dihydropyridine CCB (dCCB) Calcium Channel Blockers (CCB)

Felodipine Nifedipine

Isradipine Nisoldipine

Diltiazem Verapamil Nondihydropyridine CCB (ndCCB)

Hydralazine Minoxidil Direct vasodilators Direct vasodilators

Eplerenone Spironolactone Aldosterone antagonist diuretics Diuretics

Bumetanide Torsemide Loop diuretics

Furosemide

Amiloride Triamterene Potassium sparing diuretics

Chlorthalidone Indapamide Thiazide or thiazide-like diuretics (THZ)

Hydrochlorothiazide Metolazone

Aliskiren Guanfacine

Clonidine Methyldopa

Abbreviations: ACE, angiotensin converting enzyme; BB, beta blocker; CCB, Calcium Channel Blockers; dCCB, Dihydropyridine CCB; ndCCB, Nondihydro-

pyridine CCB; THZ, thiazide.

Table 2. Health outcomes of interest

Abdominal pain Dementia Ischemic stroke

Abnormal weight gain Depression Malignant neoplasm

Abnormal weight loss Diarrhea Measured renal dysfunction

Acute myocardial infarction End stage renal disease Nausea

Acute pancreatitis Fall Neutropenia or agranulocytosis

Acute renal failure Gastrointestinal bleeding Rash

All-cause mortality Gout Rhabdomyolysis

Anaphylactoid reaction Headache Stroke

Anemia Heart failure Sudden cardiac death

Angioedema Hemorrhagic stroke Syncope

Anxiety Hepatic failure Thrombocytopenia

Bradycardia Hospitalization with heart failure Transient ischemic attack

Cardiac arrhythmia Hospitalization with preinfarction syndrome Type 2 diabetes mellitus

Cardiovascular event Hyperkalemia Vasculitis

Cardiovascular-related mortality Hypokalemia Venous thromboembolic events

Chest pain or angina Hypomagnesemia Vertigo

Chronic kidney disease Hyponatremia Vomiting

Cough Hypotension

Decreased libido Impotence
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of hypertension recorded on or before the day of treatment initiation

and no prior outcome O. We use 2 time-at-risk definitions: The on-

treatment definition considers risk to start on the day after treatment

initiation and end at treatment end, allowing for a maximum gap of

30 days between prescriptions. The intent-to-treat definition starts

on the day after treatment initiation and stops at the end of

observation. For each comparison, the study is restricted to the cal-

endar time period when both treatments are observed in the

database so that we compare drugs only during times when both are

on the market.

We conduct our cohort study using the open-source OHDSI

CohortMethod R package,14 whose large-scale analytics are

achieved through the Cyclops R package.15 To account for the fact

that treatment assignment is not random, resulting in imbalance be-

tween the target and comparator cohorts, we employ large-scale reg-

ularized regression to fit propensity models16 using tens of

thousands of baseline covariates.7 These covariates include demo-

graphics, all prior drugs, conditions, procedures, etc. Hazard ratios

are computed using Cox proportional hazards models conditioned

on the propensity score-matched or stratified sets and are combined

using meta-analysis for random effects. In addition, diagnostics on

patient characteristic balance (ie, is every covariate in the propensity

model balanced between the cohorts) and empirical clinical equi-

poise between exposure cohorts (is there sufficient overlap between

the cohorts that an adjustment is possible, quantified using a prefer-

ence score derived from the propensity score16,17) are generated.

Empirically evaluate through the use of control

research questions
To diagnose and correct for residual confounding, we use control

questions. Control questions are questions where the answer is

known. We distinguish between negative controls, where the true

hazard ratio is assumed to be 1, and positive controls with a known

effect size greater than 1. We identify 76 negative controls—out-

comes that are not believed to be caused by any hypertension treat-

ment—through a data-rich algorithm18 based on the literature, drug

product labels, spontaneous reports, drug knowledge bases, and

manual review (see the protocol in the Supplementary Materials).

We use these to additionally generate 3*76¼228 synthetic positive

controls with effect sizes 1.5, 2, and 4 by inserting simulated events

into real data based on a prognostic model.8 We estimate effect sizes

for these control outcomes in each treatment comparison using the

same evidence generation process as used for the research questions

of interest. This allows us to evaluate the operating characteristics of

our process (eg, how often the 95% CI contains the true effect size),

and these characteristics are used to subsequently calibrate our CIs8

and P values.9

Generate the evidence for all questions across a

network of databases
We executed the LEGEND Hypertension study across the OHDSI

research network1 and included 9 databases covering 4 countries.

Six databases contain administrative claims: IBM MarketScan Com-

mercial Claims and Encounters, IBM MarketScan Medicare Supple-

mental Beneficiaries, IBM MarketScan Multi-state Medicaid,

Optum ClinFormatics, Japan Medical Data Center, and the Korea

National Health Insurance Service National Sample Cohort. Three

databases contain electronic health records (EHRs): Optum deiden-

tified Electronic Health Record Dataset (PanTher), Columbia Uni-

versity Medical Center, and QuintilesIMS Disease Analyzer

Germany. In addition to the per-database effect size estimates, we

also report summary estimates across databases using meta-analysis

for random effects.19 We compute the I2 heterogeneity metric to as-

sess between-database consistency.20 An I2 of zero means no

between-database heterogeneity is observed.

Disseminate the generated evidence
We support open dissemination of generated evidence. Access to the

database server containing the full results is available from the

authors upon request. We have developed 2 web applications that

connect to the database for exploring the results: The LEGEND Ba-

sic Viewer and LEGENDMed Central. The protocol and analytic

code are posted publicly (https://github.com/OHDSI/Legend).

Internal validity
To assess internal validity, we examine the following properties.

Balance of the covariates demonstrates whether propensity score

adjustment successfully creates comparison groups with similar

characteristics. Our very strict goal is to achieve a standardized dif-

ference of the mean of 0.1 or less for every 1 of the thousands of

measured covariates. Negative and positive controls allow us to as-

sess residual confounding and calibrate CIs so that calibrated 95%

CIs actually contains the true effect size 95% of the time. We report

measured coverage of the calibrated CIs,21 aiming for 95%.

The quantity I2 is often used to test whether there is consistency

among studies in a meta-analysis.20 It is the percentage of total vari-

ation across studies that is due to heterogeneity rather than chance.

We report between-database consistency as the proportion of hy-

potheses, after calibration, for which I2 is below 0.25. We also graph

the studies so that readers can inspect the overlap among estimates

and among CIs.

We report transitivity as the proportion of studies for which su-

periority of 1 drug over a second, and that second drug over a third

is accompanied by the finding that the first is superior to the third.

We assess whether balancing on a large number of covariates

can improve balance on an unmeasured confounder using baseline

blood pressure as an example. Blood pressure is not captured ade-

quately in most of the databases included in LEGEND, except for

the PanTher database. Using this database, we report covariate bal-

ance and the difference in effect size estimates with and without

baseline blood pressure in the propensity model.

External validity
We compare the results of a meta-analysis across our databases to

the direct meta-analysis of all RCTs included in the recent system-

atic review.10 For each comparison, we compute the P value against

the null hypothesis of no difference using:

z ¼ log HRRCTð Þ � logðHRLEGENDÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SERCT

2 þ SELEGEND
2

p

p ¼ 2�Uð�jzjÞ

Where HRRCT and HRLEGEND denote the hazard ratios of the

RCT and LEGEND meta-analyses, respectively. SERCT and

SELEGEND denote the standard errors of the RCT and LEGEND

meta-analyses, respectively, and Uð�Þ denotes the cumulative distri-

bution function of the standard normal distribution. We report con-

cordance between our results and those of the RCT meta-analysis as

the number of comparisons where P � :05. We also inspect the sta-

tistical significance and direction of the results.
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RESULTS

In total, we analyze data from 21.6 million unique antihypertensive

new users (the union of all unique patients entered in at least 1 Cox

regression) to generate 6 076 775 effect size estimates answering

699 872 research questions, each including full diagnostics and all

additional validity checks.

Exemplar research question: The effect of lisinopril

compared to amlodipine on the risk of angioedema
For illustration, we highlight just 1 of the 699 872 research ques-

tions: the effect of lisinopril compared to amlodipine on the risk of

angioedema. Table 3 reports the numbers of patients initiating treat-

ment of 1 of these drugs (monotherapy) in each database and

includes the number of angioedema events observed during the on-

treatment time-at-risk. We furthermore report the number of covari-

ates constructed in each database for these patients, and the maxi-

mum absolute standardized difference of the mean across covariates

before and after propensity score matching. As shown, all of the

thousands of covariates had an absolute standardized difference of

the mean smaller than 0.1, indicating good balance. Note that some

databases do not have sufficient exposure to both drugs and are

therefore omitted.

Figure 2 reports the estimated hazard ratios for the risk of

angioedema with lisinopril compared to amlodipine, for each data-

base separately as well as a summary estimate. This same procedure

is used not only for angioedema, but also for the 304 control out-

comes. Using the estimates for these control questions, we fit a sys-

tematic error model and use it to compute the empirically calibrated

estimates reported in Figure 2.

The results above use the on-treatment time-at-risk window and

propensity score matching, producing a calibrated hazard ratio of

3.11 (2.36–4.48). When using an intent-to-treat window instead,

the calibrated summary hazard ratio is 1.92 (1.57–2.40). Using pro-

pensity score stratification, the calibrated summary hazard ratio is

2.52 (1.95–3.32) and 1.59 (1.31–1.95) for the on-treatment and

intent-to-treat window, respectively.

Internal validity across all research questions
We now report the internal and external validity checks across all

research questions examined in this LEGEND hypertension study.

Balance
When using propensity score matching, we achieve balance (stan-

dardized difference of the means < 0.1 on every 1 of the thousands

of included covariates) for 75% of the 1 665 176 effect size esti-

mates. When using propensity score stratification this is 19% of

2 280 73 estimates. Note that we can compute fewer estimates when

using matching compared to stratification because matching may

lead to removal of subjects for which no match could be found.

Empirical evaluation and calibration
Of the 13 699 875 control estimates, 79.9% contain the true effect

size within the 95% CI before calibration. That is, according to our

negative and positive controls, when we calculate a 95% CI, that in-

terval includes the true value only 79.9% of the time, implying more

than an expected number of false-positive results would be reported.

After our empirical calibration the coverage becomes 95.7% (nomi-

nal ¼ 95%).

Between-database consistency
We identify 37 953 target-comparator-outcome triplets having suffi-

cient data in at least 4 databases to compute an estimate for the

analysis specifying an on-treatment time-at-risk using propensity

score matching. Across databases, 78% of calibrated estimates have

an I2 below 0.25, corresponding to low heterogeneity.20 That is, in

78% of our eligible comparisons, the databases were consistent with

each other under the most conservative threshold (ie, 0.25). In con-

trast, only 64% of the estimates have an I2 below 0.25 when no cali-

bration is applied. The I2 score is computed and available for all

meta-analyses in the results database. In this manuscript, we report

all meta-analysis estimates irrespective of I2.

Transitivity
If treatment A has a statistically significant higher risk than treat-

ment B for a particular outcome, and treatment B has a statistically

significant higher risk than C for that same outcome, we expect A to

have a statistically significant higher risk than C. In total, we iden-

tify 653 595 such A-B-C combinations in the calibrated meta-

analyses results, of which for 554 268 triplets (84.8%) the transitiv-

ity property holds.

Effect of not explicitly adjusting for baseline blood

pressure
Supplementary Table S1 evaluates the balance on blood pressure be-

fore and after propensity score matching for a select number of

treatment comparisons in the PanTher database. Before matching,

there is an absolute standardized difference of means greater than

0.1 for almost all comparisons, suggesting the treatment groups

have different baseline blood pressure. After matching on propensity

scores using the original set of covariates—which excludes blood

Table 3. Counts and maximum standardized difference per database. T ¼ lisinopril, C ¼ amlodipine, Outcome ¼ angioedema, Max std. diff.

¼Maximum absolute standardized difference of means between T and C

Subjects Patient years Outcomes

Covariate count

Max std. diff.

Source T C T C T C Before After

CCAE 647 212 183 776 465 516 126 173 671 97 9765 0.407 0.029

MDCD 59 897 26 525 29 464 11 187 150 26 12 703 0.526 0.048

MDCR 73 821 32 375 61 864 28 107 99 18 11 217 0.363 0.029

Optum 447 905 143 079 340 148 107 631 475 88 11 903 0.432 0.028

PanTher 651 707 201 527 243 121 71 438 236 44 10 548 0.425 0.022

Total 1 884 874 590 945 1 146 421 348 158 1646 279

Abbreviations: CCAE, Commercial Claims and Encounters; MDCD, Multi-state Medicaid; MDCR, Medicare Supplemental Beneficiaries; Optum, Optum

ClinFormatics; PanTher, Optum deidentified Electronic Health Record Dataset.
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pressure—we see a reduced imbalance in blood pressure, but a few

comparisons cross our predefined threshold of 0.1. To evaluate

whether these residual imbalances should cause bias, we repeat our

analysis including blood pressure in the propensity model. Supple-

mentary Table S1 shows that after matching on these propensity

scores, baseline blood pressure is nearly perfectly balanced. Supple-

mentary Figure S1 shows that use of the 2 different propensity scores

has little to no impact on the hazard ratio estimates produced.

External validity
We evaluate external validity by comparing the LEGEND results to

meta-analyses of randomized controlled trials (RCTs). All RCTs in-

cluded in the recently published systematic review cover the 40

head-to-head comparisons of drugs shown in the left of Figure 3.10

In contrast, LEGEND analyzes 12 946 treatment comparisons for

each outcome. The mono-ingredient versus mono-ingredient com-

parisons performed are shown in the right of Figure 3. The sample

size (subjects) for comparisons in published RCTs varied from 102

to 33 000,10 with a median of 1148. In contrast, the sample size for

comparisons in LEGEND (excluding meta-analyses) varied from

692 to 1.2 million, with a median of 33 771.

Concordance
Of the 40 comparisons reported in the systematic review, 30 over-

lapped with research questions addressed in LEGEND. Of these 30

comparisons, 28 (93%) show no statistical difference in estimates,

Figure 2. Hazard ratio (HR) estimates (and 95% CIs) before and after empirical calibration for lisinopril compared to amlodipine for the risk of angioedema, when

using propensity score matching and an on-treatment time-at-risk window.

Figure 3. Comparisons of single-drug hypertension treatments in randomized controlled trials (left) and in LEGEND (right). Each circle represents an ingredient.

Color groupings indicate drug classes. A line between circles indicates the 2 drugs are compared in at least 1 study.
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and 2 (7%) have a nominal P value < .05 indicating different esti-

mates. Note that these numbers do not correct for multiple testing,

so 5% are expected to have P<0.05 when no real differences exist.

Figure 4 shows, for 3 effectiveness outcomes, the concordance be-

tween results from LEGEND and direct meta-analyses of RCTs.10

Of the 30 comparisons, 16 agreed on the significance and direction

of the result (both not significant or both significant in the same di-

rection), 1 was significant in the systematic review but not signifi-

cant in LEGEND, and 13 were significant in LEGEND but not in

the systematic review. The interpretation of this is in the Discussion.

DISCUSSION

In this study we apply the LEGEND principles to systematically

compare all pharmaceutical therapies indicated for hypertension

treatment, considering a wide range of effectiveness and safety out-

comes. We find that these LEGEND results have high internal valid-

ity and are statistically congruent with available meta-analyses of

RCTs, although with its greater sample size, LEGEND often found

statistical significance where the meta-analyses did not.

For internal validity, we find that propensity score matching

achieves balance on every 1 of the thousands of covariates for 75%

of effect size estimates, despite our very stringent criterion (absolute

standardized difference < 0.1), which is normally used in studies

with only a handful of covariates.22 Even without empirical calibra-

tion, coverage of the 95% CIs remained relatively high at 79.9%

compared to the 6%–88% observed in prior research.8 After cali-

bration, this coverage became almost identical to the nominal 95%.

High consistency between databases, as expressed in low I2 scores,

suggests the results are robust and not due to database idiosyncra-

sies. This is even more remarkable when considering the heterogene-

ity of the populations across the OHDSI research network, which

included EHR and administrative claims data from 4 countries. We

observe a transitivity of 84.8%, but this number is hard to interpret.

To our knowledge, no one has ever attempted to quantify transitiv-

ity in scientific results before. We would not expect a transitivity of

100% because of varying standard errors in our meta-analytic esti-

Figure 4. Concordance between LEGEND meta-analysis results (using propensity score matching with an on-treatment risk window as well as empirical calibra-

tion) and the results from meta-analyses of randomized controlled trials. ACE ¼ ACE inhibitors, ARB ¼ Angiotensin receptor blockers, BB ¼ Beta-blockers, CCB ¼
Calcium channel blockers, THZ ¼ Thiazide or thiazide-like diuretics. Hazard ratios greater than 1 indicate greater risk for the drug class at the left.
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mates (which assume random effects), and because for each compar-

ison we restrict to the calendar time when both drugs are on the

market.

For external validity, we compare the LEGEND results to a set

of direct meta-analyses of RCTs, which were used to generate recent

hypertension treatment guidelines. LEGEND results showed high

concordance with the meta-analysis (Figure 4), showing a statisti-

cally significant difference from the meta-analysis at about the rate

one would expect based on random error alone, if no real differences

exist (7% observed, 5% expected). Because of the larger sample

size, LEGEND results tend to have narrower CIs. In some cases, the

LEGEND point estimate can be on the opposite side of 1 from the

RCTs point estimate, and still be concordant if their CIs overlap suf-

ficiently. We emphasize that when a meta-analysis CI includes 1, the

formal conclusion is not “no effect” but instead insufficient evidence

to conclude an effect. Therefore, even if LEGEND shows a statisti-

cally significant effect where the RCT meta-analysis demonstrates

no effect (eg, beta blockers compared to thiazides for all 3 out-

comes), they may still be consistent. In fact, this is 1 of the goals of

LEGEND, to use its larger sample size to more precisely measure

effects and to uncover effects masked by the RCTs’ small sample

sizes. Therefore, while we do not know the underlying true effect

sizes and cannot credit LEGEND for getting a better estimate than

the meta-analysis, similarly we cannot count it against LEGEND

that it had a narrower interval and apparently uncovered an effect.

The best we can say is that the meta-analysis and LEGEND over-

lapped sufficiently (ie, sufficiently that they could have been drawn

from the same theoretical population of studies). Of the 2 hypothe-

ses that were statistically significant in the meta-analysis, LEGEND

was statistically consistent with both (ie, the CIs were overlapping

enough) but in 1 of the 2, LEGEND was not statistically significant.

Here again, in theory, the meta-analysis and LEGEND could have

been drawn from the same theoretical population of studies, just as

RCTs for the same comparison sometimes differ in statistical signifi-

cance. We recognize that merely guessing no effect with a wide CI

would have captured all the RCT meta-analysis results, producing

even better concordance, but LEGEND did not in fact do that and

instead produced narrower intervals that overlapped the meta-

analysis results.

The reason for the discordance between LEGEND and the meta-

analysis on beta-blockers versus angiotensin-converting enzyme

inhibitors and versus angiotensin receptor blockers remains unclear.

It could be chance, residual bias in the observational study, or a dif-

ference in populations (RCTs tend to be run on sicker patients with

a history of hypertension treatment, sometimes on several drugs,

whereas this LEGEND study was focused on first-time use of an an-

tihypertensive drug).

The LEGEND meta-analyses provide estimates for 699 872

unique research questions and can thus help inform clinical

decision-making when other information is not available. Reviewing

all these other results goes beyond what can be discussed in this arti-

cle. We are in the process of writing several clinical papers on spe-

cific questions likely to be of high interest, and have already

published a paper based on these LEGEND results comparing first-

line hypertension treatments at the class level.13 This article demon-

strates that even though the current guidelines11 do not distinguish

between a wide set of drugs as the recommended choice for first-line

treatment, there are differences in the effectiveness and safety of

these drugs that warrant consideration. Clinical researchers and ap-

propriately trained clinicians can consult the web apps themselves to

seek answers for specific questions they have. Each LEGEND result

comes with full diagnostics, including a description of the study pop-

ulation, key characteristics, propensity score distribution, covariate

balance, bias distribution as estimated using negative and positive

controls, and Kaplan–Meier plots. We invite others to develop other

apps or to help interpret these results in other ways.

LEGEND answers each question using best practices, including

advanced methods for adjusting for confounding, producing study

diagnostics, and replication across a network of databases. For these

reasons, we believe the evidence LEGEND generates, in this case for

treatments of hypertension, is of high quality, and can inform medi-

cal decision-making where evidence is currently lacking.

LEGEND uses large-scale propensity scores as the primary

means to adjust for confounding. The technique has shown promise7

and, in this experiment, demonstrated that it adjusted for an impor-

tant potential confounder, baseline blood pressure, without includ-

ing it in the model. Other methods are also possible, such as use of a

more traditional (ie, not large-scale) propensity score, but incorpo-

rating a prognostic score23 to produce an approach that may be dou-

bly robust. Comparing these techniques is out of scope for this

article, but further research in this area is warranted.

Limitations
Like all observational research, LEGEND is still vulnerable to resid-

ual bias due to confounding and measurement error. However, in

contrast to the vast majority of published observational studies,

LEGEND provides a rich set of diagnostics to evaluate whether we

can trust the results, including covariate balance and estimates for

control questions. Any systematic error observed through the con-

trol questions is incorporated in calibrated CIs and P values, thus

conveying the limits of what can be learned from these data.

One limitation of using existing healthcare data for research pur-

poses is that some variables of interest may not be recorded system-

atically. In this study, the most prominent example is blood

pressure, which ideally would have been included in the propensity

score, but is not available in all databases. Our sensitivity analysis in

PanTher indicates that access to these data does not meaningfully

change the effect size estimates, suggesting that baseline blood pres-

sure is either not an important confounder or, more likely, is already

sufficiently adjusted for by the large-scale propensity scores through

observed proxy variables. Similarly, postintervention blood pressure

could have been included as an outcome, but, because of its unavail-

ability in the databases, we did not use it.

We purposely do not correct for multiple hypotheses in our

results because that can only be done once researchers choose a spe-

cific hypothesis or set of hypotheses. As when using results from the

literature, it is important to consider false positives when faced with

multiple testing, and our results readily allow for adjustment for

multiple testing because we disseminate all results.

CONCLUSION

We find that the LEGEND results have high internal validity and

are congruent with direct meta-analyses of RCTs. Even though

many RCTs inform on the effects of hypertension treatments, much

uncertainty remains. By following the LEGEND guiding principles

that address study bias, p-hacking, and publication bias, LEGEND

seeks to augment existing knowledge by generating reliable evidence

from existing healthcare data, answering hundreds of thousands of

research questions simultaneously using a transparent, reproducible,

and systematic approach.
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