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ABSTRACT OF THE THESIS

Numerical Study of Current Driven Instabilities

and Anomalous Electron Transport in Hall-effect Thrusters

by

Jonathan Tran

Master of Science in Aerospace Engineering

University of California, Los Angeles, 2017

Professor Ann R. Karagozian, Chair

Plasma turbulence and the resulting anomalous electron transport due to azimuthal current

driven instabilities in Hall-effect thrusters is a promising candidate for developing predictive

models for the observed anomalous transport. A theory for anomalous electron transport and

current driven instabilities has been recently studied by [Lafluer et al., 2016a]. Due to the

extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simula-

tions utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle

workhorse methodology for Hall-effect thruster modeling. Using a reduced dimension par-

ticle in cell simulation implemented in the Thermophysics Universal Research Framework

developed by the Air Force Research Lab, we show collective electron-wave scattering due

to large amplitude azimuthal fluctuations of the electric field and the plasma density. These

high-frequency and short wavelength fluctuations can lead to an effective cross-field mobility

many orders of magnitude larger than what is expected from classical electron-neutral mo-

mentum collisions in the low neutral density regime. We further adapt the previous study

by [Lampe et al., 1971] and [Stringer, 1964] for related current driven instabilities to electric

propulsion relevant mass ratios and conditions. Finally, we conduct a preliminary study of

resolving this instability with a modified hybrid simulation with the hope of integration with

established hybrid Hall-effect thruster simulations.
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electron drift velocity and direction of the fluctuating electric field is then in
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the ẑ direction. The electron velocity distribution is Maxwellian and spacial

distribution function is uniform in the ẑ direction. On the right ion phase
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CHAPTER 1

Introduction

Spacecraft electric propulsion is a type of propulsion technology which relies on producing

thrust by propelling a plasma with an external applied electric and magnetic field. The

emergence of Hall-effect thrusters as the leading electric propulsion technology and a history

of electric propulsion in general is described in reference [Choueiri, 2004]. As with all forms

of electric propulsion, Hall-effect thrusters are characterized as a low thrust device, typically

in the range of 40 − 600mN , with relatively high efficiency and specific impulse (approxi-

mately 45−60 percent and 1000−10000 seconds, respectively), thus making it an attractive

alternative to chemical thrusters for station-keeping and deep-space scientific applications.

The Hall-effect thruster has become a well-established plasma technology for a broad range

of spacecraft classes, particularly geosynchronous equatorial orbit communications satellites.

A Hall-effect thruster utilizes a cross-field (perpendicular electric and magnetic fields)

discharge described by the Hall effect from which this device has earned its name. A neutral

gas propellant is injected at the device anode where it undergoes collisions with electrons

trapped within a magnetic field. Xenon propellant is often used due to its high atomic weight,

low ionization potential and non-hazardous properties though Hall-effect thrusters have been

operated with a variety of propellants, typically heavy gases, most notably Krypton, Argon,

Bismuth and Iodine. These collisions ionize the propellant and these ions are accelerated

through the truster channel by the electric field. The ions are then neutralized within

the plume region with electrons emitted from the cathode. A radial magnetic field with

a peak strength of about 100-300 G (0.01-0.03 T) is used to confine the electrons, where

the combination of the radial magnetic field and axial electric field cause the electrons to

drift in azimuthal direction, thus forming the Hall current. This magnetic field however, is
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insufficient for magnetizing the much heavier ions which have a large Larmor-radius (with

respect to the length of the Hall-effect thruster channel). Thus, the ions effectively only feel

the influence of an electric potential which can have a range of 150-800 volts between the

anode and cathode. Because of the azimuthal rotation of the electrons along magnetic field

lines, the majority of electrons spend a significant amount of time orbiting a region of high

radial magnetic field near the thruster exit plane and a large relative drift velocity between

the electrons and ions forms in the azimuthal direction. Collisions with the thruster channel

walls and with other species within the plasma, as well as plasma instabilities driven by

the azimuthal current can cause the electrons to be freed from the magnetic field and drift

towards the anode. This is often referred to as the cross-field electron mobility. Because

these electron do not ionize propellent and produce thrust, they are a key factor in limiting

the total efficiency of the thruster. The contribution to mobility due to electron particle

collisions is well understood and described by [Chen, F. F., 1984] and [Lieberman, M., 1994],

however there is an ongoing discussion on the impact of instability driven transport and

collisions with the Hall-effect thruster channel walls.

Plasmas with moderate values of the magnetic field such that the ions are weakly magne-

tized or unmagnetized have distinctly different properties from strongly magnetized plasmas

such as those found in fusion applications. Despite the long history of observations, the

understanding of Hall plasma turbulence, instabilities and resulting anomalous transport is

poor and is lagging behind the progress demonstrated in fusion plasmas. Basic questions

of dominant instabilities and dominant range of spatial and temporal scales of fluctuations

responsible for the observed level of anomalous electron current and (possibly) heating in

Hall devices remains unanswered at a quantitative level. A great deal of research in Hall-

effect thrusters is still focused on understanding the anomalous component of the cross-field

electron mobility and developing predictive Hall-effect thruster simulations. A considerable

effort continues to be made by the community to develop these thruster simulations utilizing

a wide range of plasma simulation tools; however, these are typically either (1) multi-fluid or

hybrid plasma simulations utilizing kinetic ions and equilibrium fluid electrons which do not

accurately capture kinetic effects, (2) reduced dimensional and discount the importance of
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azimuthal effects due to geometric symmetry, or (3) do not resolve the time and length scales

necessary for a current driven instability. Some notable implementations in the past have

been published by [Ahedo and Martinez-Sanchez, 1998], [Boeuf and Garrigues, 1998], and

[Barral et al., 2003]. It should be noted that some attempts to simulate Hall-effect thrusters

with kinetic methods have been made by [Adam et al., 2004] and [Gildea et al., 2009] how-

ever, these attemps continue to struggle with the issues mentioned previously. A com-

monly used code, HPHall, is a two dimensional (axial and radial), hybrid model developed

by [Fife et al., 1997] and has more recently been improved by including sheath effects and

channel erosion. Despite this, HPHall and similar simulations continue to struggle with an

accurate electron transport model. The shortcomings of these simulations is typically ac-

counted for with an enhanced electron collision rate which is tuned to match experimental

measurements, thereby diminishing the predictive capabilities.

We present an initial attempt to further understand the growth and saturation regimes of

current driven instabilities and the resultant electron cross-field mobility within a Hall-effect

thruster using a simple full kinetic particle in cell simulation. Insights gained from these

simulations will direct the focus of the many different numerical implementations in pursuit

of a predictive reduced order model of a Hall-effect thruster.
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CHAPTER 2

Plasma Theory and Instabilities

Electrostatic plasma instabilities driven by relative electrons and ions drift velocities perpen-

dicular to a magnetic field have been studied by numerous authors across a variety of plasma

applications. This cross-field current may be the result of gradients in density, temperature,

or in the case of Hall-effect thrusters, the E×B drift. The unmagnetized electron-ion two-

stream instability presented by [Buneman, 1963], was one of the first of its kind to be studied

and will be investigated in more detail in Section 2.2. The two-stream instability has a large

growth rate associated with the wave, on the order of the electron plasma frequency close to

the upper hybrid wave, with a weak dependence on mass ratio me/mi. However, the wave is

heavily Landau damped if the relative drift velocity vd is not much larger than the electron

thermal velocity vTe . As a result, the electrons are quickly heated to vTe ∼ vd. In reference

[Sagdeev, 1966], it was shown, however, that the system may undergo a mode transition

to a low-frequency ion acoustic-like instability driven by density gradients which continue

to heat the electrons to vTe ≥ vd. The density gradients can then produce large electric

fields, which in turn have numerous consequences on the dynamics of the system. The wave

properties and growth rate of the unmagnetized ion acoustic instability are determined from

the dispersion relation in Section 2.3. These modified ion acoustic waves can continue to

grow until ion temperatures become large enough for ion landau damping to occur. The

conditions for this mode transition will be looked at in greater detail in Section 2.5. A

recent publication by [Lafleur et al., 2016a] has studied the ion acoustic wave in the context

of electron transport within the channel and near-plume of a Hall-effect thruster. This work

is of great relevance to the present study. In this chapter we discuss the theory of the linear

and nonlinear development of drift instabilities and the impact on the electron dynamics
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including quasilinear diffusion, turbulent resonance broadening, and heating, in addition, we

will discuss saturation mechanism such as ion trapping and Landau damping.

2.1 Electrostatic Kinetic Equations

The Boltzmann equation is fundamental to kinetic plasma theory and describes the evolution

of the plasma distribution function f(r,v, t) for particles with velocity v at coordinates r

and time t; it is given as
∂f

∂t
+ v · ∇f +

F

m
· ∂f
∂v

=
(
∂f

∂t

)
c

(2.1)

where F = E+v×B is the Lorentz force acting on the particles, E and B are the electric and

magnetic fields. When describing plasma dynamics such as plasma waves and instabilities on

short time-scales (τcollective � τcollision), it is useful to assume (∂f/∂t)c = 0. Doing so gives

us the Vlasov equation. Perturbation analysis of the Vlasov equation and the electrostatic

Maxwell equations (B = 0) gives us a general expression for the Landau dielectric function

ε in terms of a complex frequency w = wR + iγ, where wR is the real oscillation frequency,

γ is the instability growth rate, and k is the wave number. ε then takes the form

ε(k, w) = 1 +
∑
α

q2α
k2ε0mα

∫
dv

k · ∂fα/∂v
w − k · v (2.2)

where ε0 is the vacuum permittivity and α is a sum over all the species. The equation for

the roots of the dielectric is called the dispersion relation. Defining the real and imaginary

parts, εR = Re ε(k, wR + iγ), εI = Im ε(k, wR + iγ), and assuming εR > εI and wR > γ, we

can use a Taylor-expansion for ε = εR + iεI = 0 for weak instabilities, so that the dispersion

relation can be extracted from

0 = εR(k, wR) + i
(
γ

∂

∂wR
εR(k, wR) + εI(k, γ)

)
... (2.3)

Making use of the limit

lim
γ→0

1

wR − k− vd + iγ
= P

1

wR − k− vd
− iπδ(wR − k− vd) (2.4)

5



where P is the Cauchy principal value, we can set the real and imaginary parts of Eq. (2.3)

to zero and have

εR(k, wR) = 1 +
∑
α

w2
pα

k2
P
∫
dv

k · ∂fα/∂v
wR − k/cdotv

(2.5)

εI(k, wR) = −γ ∂εR(k, wR)

∂wR
(2.6)

Now let us consider the electron and ion species to be a Maxwellian distribution with

a thermal velocity vTα =
√

2kbTα
mα

and a drift velocity of the electron relative to the ions vd.

The distribution function for electrons and ions respectively can thus be written as

fe =
ne

π3/2v3Te
e
− (v−vd)

2

v2
Te and fi =

ni
π3/2v3Ti

e
− v2

v2
Ti (2.7)

It is useful to rewrite the velocity integral term of the dielectric function using the plasma

dispersion function Z(ζα) and plasma frequency wpα =
√
q2αnα/ε0mα. Eq. (2.2) can then be

written as

ε(k, w) = 1 +
∑
α

2w2
pα

k2v2Tα

[
1 + ζαZ(ζα)

]
(2.8)

where

Z(ζα) =
1√
π

∫ ∞
−∞

e−s
2

s− ζα
ds (2.9)

ζα =
wR − k · vdα + iγ

kvTα
(2.10)

The plasma dispersion function has no exact analytical solution but for subsequent ap-

plications, the asymptotic expansions of Z(ζα) for large and small values of |ζα| become very

useful,

Z(ζα) = i
√
πe−ζ

2
α −


1
ζα

[
1 + 1

2ζ2α
+ 3

4ζ4α
. . .
]

ζα � 1

2ζα

[
1 + 2ζ2α

3
+ 4ζ4α

15
. . .
]

ζα � 1
(2.11)

Note that the ζα � 1 limit is a valid approximation in the cold-plasma limit, where vTα � 1

and minimal Landau damping is expected. As a result we typically neglect the imaginary

term in this limit. The equations in this section will be used as building blocks to investigate
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the wave and stability properties for drifting Maxwellian distribution is two regimes of prac-

tical interest, the drifting ion acoustic wave where vd ≤ vTe and the electron-ion two-stream

instability where vd � vTe .

2.2 Electron-Ion Two-Stream Instability

Following the analysis done by [Krall et al., 1974], Vlasov theory allows a direct calculation

of the linear growth of an unstable two-stream distribution. Consider a plasma in Cartesian

space where the initial equilibrium distribution for ions and electrons along the ŷ direction

can be described as two cold Maxwellian distributions drifting relative to one another. The

relative drift velocity in the ŷ direction between the two species is then vd and we apply a

constraint on the drift velocity vd � vTe .

Electrons

Ions

vp0 vd

.

.

/////// vy

f↵

Figure 2.1: Plot of the reduced electron and ion distribution functions
∫ ∫

dvxdvzfα(v) in

arbitrary units for strong electron-ion two-stream instability. The shaded region denoted by

vp indicates the range where the phase velocity gives positive growth γ > 0.

Because the two species are assumed cold, we can use the the first two terms of the

plasma dispersion function expansion in Eq. (2.11) for |ζe| � 1 and |ζi| � 1 to show

ε̃(k, w) = 1− w2
pe

(wR − kvd + iγ)2
− w2

pi

(wR + iγ)2
(2.12)

knowing k · vd ≈ kvd. This dielectric equation has four solutions when ε̃(k, w) = 0 for the
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complex oscillation frequency w. Two branches correspond to stable oscillations where γ = 0

and the other two solutions form conjugate pairs. It can be shown that the unstable branch

exhibits growth (γ > 0) for wavenumber k in the range

0 < |kvd| < wpe

[
1 + (w2

pi
/w2

pe)
1/3
]3/2

(2.13)

Solving Eq. 2.6 for γ and applying ∂γ/dk = 0, the wavelength corresponding to the

maximum growth rate can be approximately determined as

kmax ≈ wpe/vd (2.14)

and the dispersion relation can then be solved for the maximum wave frequency and growth

rate as

[wR]max ≈
1

2

( w2
pi

2w2
pe

)1/3

wpe (2.15)

γmax ≈
√

3
( w2

pi

2w2
pe

)1/3

w1/2
pe (2.16)

which has a linear growth rate with a weak dependence on the mass ratio of the plasma

species. The phase velocity of the wave is nearly the relative drift velocity of electrons

vp = wR/k ≈ vd. The Buneman instability, as it is sometimes referred to as, is a high

frequency mode which acts to heats the electrons to vTe ∼ vd on a time scale on the or-

der of τb = 2π/wI , which is significantly faster than any relevant ion time scale. The

wave energy (UE =
∑
k E

2
k/8π) also increases at a rate comparable to the electron heat-

ing. [Davidson, 1972] confirms these results and shows via numerical simulations a stage

of growth where electrons are trapped in an electrostatic wave. At saturation, after mul-

tiple τb, the electron-ion distribution appears multi-peaked but in actuality is stable i.e.

(f(v) = fe + (me/mi)fi is monotone-decreasing) and the electrostatic energy has stopped

increasing over time.

Finally, the dielectric equation in Eq. 2.12 neglects any Landau damping effects by the

plasma ions. The wave properties corresponding to the maximum growth rate are valid

approximations provided the ions are sufficiently cold such that

vd
vTi
�
(
me

2mi

)1/3

(2.17)
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2.3 Ion Acoustic Instability

In this section, we consider the electrostatic stability properties for electrons drifting through

background plasma ion where the relative streaming velocity is small or on the order of the

thermal velocity. Similar to the analysis done before, the equilibrium distribution functions

can be represented as a Maxwellian, however in the present analysis, Te � Ti. Previous

studies of the ion acoustic wave by [Fried and Conte, 1961] has shown that, in the absence

of drift, the ion acoustic wave is damped and stable. We now wish to investigate whether

the presence of an electron-ion drift (which is associated with a net current flowing in the

plasma) can destabilize the mode.

Electrons

Ions

0 vdvp

.

.

///////////////// vy

f↵

Figure 2.2: Plot of the reduced electron and ion distribution functions
∫ ∫

dvxdvzfα(v) in

arbitrary units for the ion acoustic instability. The shaded region denoted by vp indicates

the range where the phase velocity gives positive growth γ > 0.

The assumptions made on the ion’s plasma dispersion function remain the same, i.e.

ζi � 1, however for the ion acoustic wave, ζe � 1. The dielectric function in Eq. (2.8) in

terms of the expanded plasma dispersion functions for |γ/wR| � 1 is then

ε(k, wR + iγ) = 1 +
1

k2λ2
− w2

pi

(wR + iγ)2
+ i

2πw2
pe

kvTe

(
wR − kvd + iγ

kvTe

)
e
−

(
wR−kvd+iγ

kvTe

)
(2.18)

and

εR(k, wR + iγ) = 1 +
1

k2λ2
− w2

pi

w2
R

(2.19)
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where λ = vTe/wpe =
√
ε0Te/qene is the electron Debye length and the phase velocity lies

within the range |wR/k| � vTi and |wR/k − vd| � vTe . Solving εR(k, wR) = 0 for the wave

frequency, we obtain

w2
R =

k2c2s
1 + k2λ2

(2.20)

where cs = wpiλd =
√
kbTe/mi is the ion sound speed. To evaluate the growth rate γ, we

make use of Eq. 2.6 and 2.19.
∂εR
∂wR

= −2w2
pi

w3
R

(2.21)

εI(k, wR) = −π
∑
α

w2
pα

k2

∫
d3v δ(wR − kvd)k

∂

∂v
fα(v) (2.22)

γ =
(
π

8

)1/2 |wR|
(1 + k2λ2d)

3/2

[(
me

mi

)1/2(kvd
wR
− 1

)
−
(
Te
Ti

)3/2

e
− Te

2Ti(1+k
2λ2
d
)

]
(2.23)

It should be said that the contribution of the ion temperature to the growth rate always

corresponds to damping of the instability, that is, when Te/Ti � 1, ion Landau damping is

exponentially small. As Te/Ti approaches order unity the assumption ζi � 1 is no longer

valid and the ion acoustic wave is heavily damped. The value of Te/Ti at which the instability

ceases to grow is more nuanced and will be discussed in the following section. The electron

contribution to the growth rate corresponds to growth or damping depending on the sign of

kvd/wR − 1.

If we assume Te/Ti � 1 and vd = 0, we have the well known solution for weakly damped

ion waves. This damping is due to interactions of ions moving with velocities close to the

phase velocity, with a rate shown by many authors to be

γ = −
(
πme

8mi

)1/2 |k|cs
(1 + k2λ2)2

(2.24)

Allowing a drift velocity larger than the phase velocity, i.e. |vd| > wR/k, predicts growth of

the instability (γ > 0). The growth rate can be approximated as

γ =
(
πme

8mi

)1/2 |wR|
(1 + k2λ2)3/2

(
kvd
wR
− 1

)
(2.25)

Using an analysis similar to Section 2.2, from ∂γ/∂k = 0 we can approximate the wave

number, wave frequency, and growth rate corresponding to the maximum growth rate from
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Eq. (2.25) as

kmax ≈
1√
2λ
, [wR]max ≈

wpi√
3
, and γmax ≈

√
πme

54mi

vd
λ

(2.26)

where the phase velocity can be estimated to be vp =
√

2
3
cs.

The ion acoustic wave is thus a low frequency longitudinal oscillation similar to an acous-

tic wave traveling in a neutral gas. However, since the waves propagate through positively

charged ion density perturbations, the waves interact with electromagnetic fields, thereby

coupling to the electrons. This coupling allows the wave to exist in the absence of collisions.

The electric field produced by the density fluctuations of the ion acoustic wave also have a

significant impact on the dynamics of the electrons.
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2.4 Beam Cyclotron Instability

If we now consider a moderate magnetic field B capable of magnetizing the electron while

the ions remain unmagnetized, the electron drift relative to ions across magnetic field lines

is vd = |E|/|B|. The electron-ion two stream instability and the ion acoustic wave discussed

in the previous two sections continue to persist in addition to new collective instabilities due

to resonant coupling of the ion mode and an electron cyclotron mode due to the magnetic

field. The dispersion relation for a plasma in a magnetic field has been previously derived

by [Lampe et al., 1971] and [Tsikata et al., 2014], who commonly refer to the instability as

a beam cyclotron instability. In these works, the authors show the effect of the magnetic

field is to quantize the dispersion relation with discrete wave frequencies and growth rates

in k space. These bands are centered on the cyclotron harmonics, wR = nΩe, k = nΩe/[vd−
cs(1 +k2λ2)1/2] with bandwidths given by δw ' 2γ and δk ' 2δw/vd for integer n. However,

this discrete nature only becomes significant when the wave number parallel to the magnetic

field is very small. The work presented here assumes this parallel wave number is, in fact,

negligible and the high frequency behavior and wave properties can then be approximated

using the electron-ion two-stream instability equations. For larger wave numbers, the time

scales of interest are significantly larger than the cyclotron frequency. As a result, the

dispersion relation simplifies to the ion acoustic type relation also discussed in Section (2.3).

The appendix of [Lafleur et al., 2016a] confirms that this assumption is valid.
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2.5 Mode Transition and Condition for Instability

We can see there is a very close relationship between the electron-ion two stream instability

and the ion acoustic wave. From the previous sections we show that when both plasma

species are cold and the electrons stream relative to ions (similar to Fig 2.1) due to a

moderate magnetic field, two distinct stages of quasilinear development are possible: the

beam cyclotron instability for low levels of turbulence, and the ion acoustic instability.

When the drift velocity is larger than the electron thermal velocity, we first encounter

a beam cyclotron instability with a growth rate proportional to γ ∝ (mi/me)
1/3w1/2

pe . From

[Dum, 1970] the beam cyclotron instability creates turbulent electric fields perpendicular to

B and parallel to the drifting electrons. Due to these turbulent azimuthal electric fields,

the electrons no longer have a well-defined gyro-orbit. Instead, there is additional cross field

spatial diffusion where the diffusion coefficient D is proportional to the electrostatic field

energy 〈E2〉. As a result, the electron gyroresonances are broadened by a frequency ∆w =

k2D and the electrons are heated to vTe ∼ vd. When the turbulent fields become so large that

electrons diffuse a distance of the order of a wavelength in a gyrotime 1/Ωe, nonlinear analysis

by [Lampe et al., 1971] show that the electron cyclotron instability becomes an ordinary ion

sound instability. This transition happens approximately when the electric potential satisfies

the equation

eφ/Te ≈ 2(2/π)3/4(Ωe/we)
[(
kvd
Ωe

)1/2

(kλ)
]−1

(2.27)

and occurs on a time scale typically much faster than any relevant ion time scale as we will

see in our simulation.

The ion acoustic instability is a resonant particle instability which is driven by the elec-

trons and has a growth rate γ proportional to (mi/me)
1/2(vd/cs)w

1/2
pi

. This transition is

extremely important, as we will show later, because the ion acoustic wave can continue to

heat electron well beyond vTe ∼ vd and cause bunching of the ions leading to large fluctua-

tions in electric fields perpendicular to B. However, as we have shown before, the ion acoustic

wave becomes ion Landau damped when Ti/Te is large and the beam cyclotron modes will

stabilize at or before the time scale in Eq. (2.27). If Ti/Te is small, Eq. (2.27) represents a
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mode transition to an ion acoustic wave where a second period of exponential wave growth

ensues at the ion sound growth rate which is smaller than the beam cyclotron growth rate.

The criterion for this transition is much more nuanced and described in much more detail

by [Stringer, 1964]. For the work done here, an approximate criterion for stability is

Ti
Te
≥ vd
vTe

(2.28)

When the fluctuations in electric field become large enough to trap ions, the ion acoustic in-

stability saturates and the ion distribution fluctuates between growth and Landau damping.

According to [Lafleur et al., 2016b] this occurs roughly at

δφ ≈ 1

2

mi

qi
v2p (2.29)

To summarize the kinetic analysis of drifting plasmas, in both stages, energy is extracted

from the drifting motion, which causes the electron temperature, ion temperature, and elec-

trostatic energy to all grow exponentially at different rates. The difference here is that the

growth rates of the electron-ion instability are considerably larger than those for the ion

acoustic as we have previously shown. [Lampe et al., 1971] describe three different methods

by which a drifting plasma may achieve stability: (1) Linearly, where the drift velocity is

insufficient to produce exponential growth in the electron-ion instability, the wave growth

and electron heating will cease; (2) Resonance Broadening, where Ti/Te is too large given

by Eq (2.28), and a transition to a stable ion acoustic wave ends the instability; and (3)

Ion Trapping, where the ion acoustic instability grows, a tail is developed in the ion velocity

distribution function due to ion trapping and is no longer Maxwellian. The distribution tail

then resonates with the phase velocity and the plasma is Landau damped.
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2.6 Electron Mobility

An understanding of the impact of drift instabilities allows us to discuss the effects on electron

mobility in the context of a Hall-effect thruster. To obtain the equations for mobility, we

return to the Boltzmann equation in Section 2.1. The observable parameters in our plasma

can be obtained by taking moments of our plasma distribution function f(r,v, t):

n(r, t) =
∫
f(r,v, t)dv

v̄(r, t) =
∫
vf(r,v, t)dv

v̄2(r, t) =
∫
v2f(r,v, t)dv

Similarly, the moments of our Boltzmann equation are used to derive the plasma fluid equa-

tions. These equations are useful for modeling plasmas near equilibrium where the distribu-

tion function can be approximated as Maxwellian. The continuity and momentum equations

are given as
∂n

∂t
+∇ · (nv̄) = 0 (2.30)

∂

∂t
(mnv) +∇ · (mnvv) = qnF−∇ · Π + Pij (2.31)

Consider the momentum conservation equation for electrons where the stress tensor Pij

reduces to the momentum exchange interaction between electrons and neutrals with a colli-

sion frequency of νen

∂

∂t
(meneve) +∇ · (meneveve) = qene(E + v ×B)−∇ · Π−meνenneve (2.32)

We can neglect the inertial and pressure terms and from the Hall-effect thruster geometry

in Fig 2.3, we reduce the magnetic field to zeroth order by ignoring fluctuations due to current

densities. The magnetic field becomes B→ Bx and the momentum equation in component

form becomes

0 = qeneEx −meνennevx

0 = qeneEy − qenevzBx −meνennevy

0 = qeneEz − qenevyBx −meνennevz
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ŷ

x̂

ẑ

Lch

Ly

Figure 2.3: Schematic of a Hall-effect thruster showing the relevant field and simulation

directions and the simplified y − z simulation plane. A uniform magnetic field B0 is in the

x̂ direction and a uniform electric field E0 in the ẑ direction. The electron drift velocity and

direction of the fluctuating electric field is then in the ŷ direction.

We can perform a similar treatment to the electric field as the magnetic field and reduce it

to only the applied electric field in the axial direction E → Ez. Doing so, we can solve for

the classical cross field mobility in terms of the axial electron flux Γz = nevz

µ⊥ =
Γz
Ez

=

|qe|
mνen

1 + w2
ce

ν2en

(2.33)

If we do not neglect the fluctuations in electric field and electron density in the azimuthal

direction and instead consider an average of these two quantities < neEy >, the y-component

of the momentum equation becomes

0 = qe〈neEy〉 − qenevzBx −meνennevy

and we can solve for an effective cross field mobility

µ〈neEy〉 = µ⊥

[
1− wce

νen

〈neEy〉
neEz

]
(2.34)
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In the limit νen → 0, we have µ⊥ → 0 from Eq. (2.33). With the modified mobility in Eq.

(2.34), we now have µeff → −<neEy>
neEzBx

which puts a floor on the mobility for low neutral

pressures where the collision frequency in negligible (the correlation term 〈neEy〉 is negative

and associated with electron wave scattering). The spatiotemporal averaging of fluctuating

quantities can be interpreted as

〈g(r, t)〉 =
∫ L

0

dr

L

∫ T

0

dt

T
g(r, t) (2.35)

Ongoing discussion with Prof. Kentaro Hara has led to another method of approximating

the electron mobility due to these azimuthal waves. Considering the differential form of

Gauss’ Law, ∇·E = |qe|
ε0

(ni−ne), we can rewrite the averaged electron density and azimuthal

electric field as

〈neEy〉 = 〈niEy〉 −
ε0

2|qe|
〈 ∂
∂y
E2
y〉 (2.36)

If we then interpret the second term on the right hand side and apply the spacial averaging

integral over a periodic space, we find this quantity is conserved. As a result

〈neEy〉 = 〈niEy〉 (2.37)

µ〈niEy〉 = µ⊥

[
1− wce

νen

〈niEy〉
neEz

]
(2.38)

It is important to note that the effective mobility calculated with either 〈neEy〉 or 〈niEy〉 is

only true when the averaging is done over a wave period and wavelength which is periodic.

When averaging over small regions in space, one will need to consider the gradient of the wave

energy density. Lastly, an additional method of empirically obtaining effective mobility from

simulation data can be acquired by averaging the axial velocity vz and using the expression

µ(vz/Ez) =
〈vz〉
E0

(2.39)
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CHAPTER 3

Description of Simulations

3.1 Thermophysics Universal Research Framework

As mentioned in previous chapters, this study is done in collaboration with the In-Space

Propulsion Branch (RQRS) at Edwards Air Force Research Laboratory (AFRL). The pri-

mary research focus of RQRS is electric propulsion devices and a great deal of effort is put

into Hall-effect thruster and plasma plume simulations. These plasma plume simulations

are particularly useful for investigating plume/spacecraft interaction including sputtering,

charging, and redeposition of material on the spacecraft components and have been an inte-

gral part of the modeling and simulation group. Through collaboration among AFRL and a

number of authors including [Fife and Martinez-Sanchez, 1998] and [Brieda, 2005], DRACO

was developed in 2003 as a major component of the legacy COLISEUM plasma simulation

package, with the goal of simulating plume-spacecraft interactions. Until recently, DRACO

has been the primary tool used to investigate plume simulations. RQRS is currently in

development of the Thermophysics Universal Research Framework (TURF) which will be

capable of simulating plasmas in a wide range of conditions, length scales and time scales

utilizing both kinetic and fluid methods. While still being in the early stages of development,

the first implementation of TURF facilitated a direct replacement for the plume simulation

code DRACO and supporting it’s critical functionality. Reference [Araki et al., 2016] has

obtained good agreement between the two codes. With the framework set in place, the

developers of TURF are currently in the process of expanding its capabilities.

In an effort to study the numerous velocity space instabilities which may arise within the

channel region of the Hall-effect thruster, TURF functionality was augmented to facilitate
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modeling of magnetized kinetic electrons. We make use of the kinetic plasma simulation

technique, particle in cell (PIC) simulations described in [Birdsall and Langdon, 1991]. In

this method, individual particles are tracked discretely through phase space (Lagrangian),

whereas moments of the distribution such as densities and currents are computed simultane-

ously on spatially defined mesh points (Eulerian). Kinetic models such as these are generally

more computationally intensive than fluid models since hundreds of particles are needed per

cell to suppress numerical noise. Fully kinetic simulations of Hall-effect thrusters where both

the ions and electrons are modeled with PIC techniques are also particularly difficult to im-

plement due to the large difference in time scales between the electron and ion behavior at

Hall-effect thruster relevant densities, time, and length scales. Despite this, kinetic meth-

ods are the standard for studying velocity-space instabilities in collisionless plasmas which

we plan to investigate. While the current focus of TURF is hybrid simulations (fluid elec-

tron/kinetic ion) of spacecraft plume interactions, a number of validation and verification

cases have been benchmarked for full kinetic plasma simulations when B = 0 including the

collisionless electrostatic shock and glow discharge. All simulations in this body of work are

completed within the TURF framework. In the following sections we demonstrate extended

functionality through the implementations and modules recently developed within TURF

and its capability to perform kinetic simulations of magnetized electrostatic plasmas.

3.2 Anomalous Electron Transport Simulation

In order to study the effects of current driven instabilities on the cross field electron transport

within a Hall-effect thruster, we have implemented a simplified PIC simulation presented by

[Lafleur et al., 2016b] and [Boeuf, 2014]. The coordinate system is identical to Fig. (2.3),

where the cylindrical geometry of a HET is unraveled into periodic cartesian space. A

uniform magnetic field is imposed in the x̂ direction and a uniform electric field in the ẑ

direction. As a result, the azimuthal or ŷ direction corresponds to the E×B drift direction.

An azimuthal electric field component is then obtained by solving Poisson’s equation in

1D. For this cartesian approximation to be valid, the simulated azimuthal length Ly must be
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small when compared to the physical length around the channel. TURF is inherently a three

dimensional framework, and as a result, positions and velocities of both particle species are

then tracked in all three directions and are updated using the standard Boris push algorithm

outlined in [Birdsall and Langdon, 1991] which has been incorporated into TURF for these

simulations. The particles are then weighted onto a grid in the ŷ direction (regardless of

the position in the x̂ or ẑ) to determine charge densities for solving Poisson’s equation using

a finite difference, direct tri-diagonal solve. The plasma is assumed to be fully ionized in

that only electrons and singly charged xenon ions are modeled. Both electrons and ions are

advanced with Boris and the plasma is assumed to be collisionless (though TURF has the

capability to model electron-neutral elastic scattering, change exchange, Coulomb collisions

and ionization collisions).

3.2.1 Boundary Conditions

Periodic boundary conditions are used for both the particles and fields in the two directions

perpendicular to the electric field x̂ and ŷ and a stream boundary condition is used in the

direction of the electric field ẑ. The stream boundary condition on the particles acts to

maintain constant plasma density within the simulation. When a electron or ion exits the

simulation in either the positive or negative ẑ direction, it is reintroduced on the low or high

potential boundary respectively with a randomized position in x̂ and ŷ position. The velocity

is then sampled from a Maxwellian velocity distribution at a constant temperature and drift

velocity. The injection drift velocity is typically set to zero and the injection temperature

is set to the temperature of the initial condition for each species respectively. In reference

[Lafleur et al., 2016b], it was shown this boundary condition is sufficient for limiting the

growth on electron and ion energy in axial direction when a driving force E0 is applied.

Because the electrons undergo cyclotron motion, they are injected a small distance away from

the domain boundary to prevent immediate interaction with the same boundary. Though a

minor discrepancy, we are unsure if [Lafleur et al., 2016b] had accounted for this behavior.

It was incorporated in the model since we observed numerous simulations showing filtering of

hot electrons by the boundary condition. As a result, the actual injection temperature was
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significantly smaller than intended and electrons would remain trapped near the boundary.

We expect the offset of the injection region for electrons should have no impact on the field

calculation of simulation due to the Poisson equation not being solved in the axial direction.

3.2.2 Initial Conditions

Modifications to the approach in [Lafleur et al., 2016b] have also been made to the initial

conditions. The initial electrons are distributed uniformly throughout the simulation domain

with a constant temperature. When the ions are distributed uniformly in space like the

electrons, we observe a surging of ions in the axial direction as they develop towards a

parabolic spacial profile but interact with the axial boundary condition. Though this is

not significant for the field calculation, we detect large non-physical fluctuations in ion

temperature corresponding to the convection time of the ions. Since we wish to investigate

the evolution of ion thermal energy, the initial ions are distributed with a parabolic density

and velocity distribution (in addition to a Maxwellian thermal velocity) in the axial direction

under the force of the applied electric field. This is done by sampling a random time between

0 < tr < τg where τg is the time for the ions to be convected away (leave the simulation). The

position and velocity for each particle in the ẑ is then determined with the simple equation

z =
qi

2m
E0t

2
r and vz = E0tr + vs (3.1)

where vs is the velocity sampled from the thermal distribution. The position in the x̂ and

ŷ directions remain uniform and the velocities remain Maxwellian. It is important to note

this initial condition only considers ions in an unmagnetized configuration. This is only a

minor issue because the Larmour radius is large compared to the axial channel length, i.e.

rL � Lch.

We have found this is a sufficient way to reduce the surging of ions though the axial

boundary condition. Phase space in the ŷ and ẑ directions of the initial electron and ion

distributions are plotted in Figure 3.1 and 3.2 for clarity. Phase space in the radial direction

x̂ is identical to Figure 3.2 when normalized in space by Lx.
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3.3 Operating Conditions

The normal operating conditions for our simulations are consistent with [Lafleur et al., 2016b]

and are presented in Table 3.1. From the given plasma parameters, the drift velocity

vd = E0/B0 = 1.0e6 m/s is much larger then either the electron or ion thermal veloc-

ity. As a result, the tabulated plasma conditions are sufficient for instigating the initial

beam cyclotron instability. The moderate strength of the magnetic field also produces an

ion gyroradius rg = miv⊥/qiB which is significantly large when compared to the length of

the channel.

The numerical operating conditions used ensure resolution of both the Debye length (in

the azimuthal direction) and the electron plasma frequency. The grid size is set such that

the CFL condition is met even at saturation when electron temperatures are much higher.

In the x̂ and ẑ directions the domain acts as a single cell. The length of the domain must

satisfy the constraint of being larger than the quantized wave numbers discussed in Section

(2.4). Unless otherwise stated, parameters outlined in this section and shown in Table 3.1

will serve as the baseline operating conditions for our results.

22



Plasma Parameter Description Value

n0 (# m−3) Plasma Density 1.0e17

B0 (T ) Applied Magnetic Field 2.0e-2

E0 (V m−1) Applied Electric Field 2.0e4

Te0 (eV ) Initial Electron Temperature 2.0

Ti0 (eV ) Initial Ion Temperature 0.1

Numerical Parameter Description Value

δt (s) Timestep 5.0e-12

Lx (m) Radial Length 2.5e-5

Ly (m) Azimuthal Length 0.5e-2

Lch (m) Channel (Axial) Length 1.0e-2

NG Grid Points 200

N/NG Computational Particles per Cell 500

Table 3.1: The standard plasma parameters and numerical constraints are consistent with

[Lafleur et al., 2016b] and [Boeuf, 2014].

3.4 Electron Resampling

Historically, due to the computational cost of full kinetic simulations, the Hall-effect thruster

community has typically utilized either hybrid or multi-fluid methods when modeling the

channel of the thruster. [Fife and Martinez-Sanchez, 1998], [Koo and Boyd, 2006], and [Mikellides and Katz, 2012]

have presented some of the many different implementations of Hall-effect thruster simula-

tions. While still utilizing the full kinetic simulation description we have implemented, we

hope to investigate whether the azimuthal instabilities can be resolved when retaining only

the first moments of the electron velocity distribution function. By resampling the electron

velocity distribution function every iteration after the Boris push (using the electron temper-

ature and drift velocity calculated within the cell) we hope to remove any kinetic information

and treat the electrons as fluid-like. The electron positions are not updated in this process,

keeping any density fluctuations which may arise due to the instabilities. We would like to

23



note that, as one would expect, this procedure makes the simulations more computationally

intensive and is meant only as a proof of concept.

Early implementations of this model revealed that numerical heating and error accumu-

lation in the mean velocity posed a significant issue. As illustrated in Figure 3.3, resampling

with small populations of electrons can cause a random walk of the mean velocity and stan-

dard deviation, especially over a large number of resampling ns, as shown in Figure 3.4. In

order to conserve momentum and energy during the resampling, we rescale the velocity of

each particle after resampling using the equation

v∗e =

√
T ∗e
Te

(ve − v̄e) + v̄∗e (3.2)

where ∗ indicates the expected value.

The addition of this procedure, which we will call the moment method, to our baseline

simulation will hopefully give insight to the possibility of resolving the beam cyclotron and

ion acoustic instability with a hybrid fluid electron kinetic ion method.
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Figure 3.3: Illustration of numerical error in temperature and drift velocity accrued by re-

sampling a Maxwellian distribution. From an initial normalized Maxwellian velocity distri-

bution function with an initial temperature of 2 eV (blue), 500 discrete particles are sampled

from the velocity distribution function (histogram). A new Maxwellian velocity distribution

function is fit to the discrete particle distribution (orange).
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Figure 3.4: Change in the (right) electron temperature normalized by the initial temperature

and (left) drift velocity as a function of number of times resampled ns. The blue and red

curve curves corresponds to the unmodified resampled distribution and distribution corrected

by Eq. (3.2) respectively. The red curve is still subject to numerical precision fluctuations

not visible on this scale.

28



CHAPTER 4

Simulation Results

Confirming the results of reference [Lafleur et al., 2016b], a strong instability is observed

in our simulations when the plasma parameters in Table 3.1 are used to be qualitatively

consistent with a Hall-effect thruster conditions. The baseline thruster conditions are ade-

quate for inducing an initial beam cyclotron instability which undergoes a mode transition

to an ion acoustic wave as discussed in Section 2.5. This transition occurs at approximately

0.1 µs, when the condition set by Eq. (2.27) is met. The ion acoustic wave then saturates

at a quasi steady-state approximately at 2.0 µs, characterized by the trapping of ions in

the electrostatic wave. The plasma then exhibits low frequency (on the order of MHz) and

short wavelength (on the order of mm) fluctuations in density for each species and electric

field. Even at steady state, the system is highly dynamic. The simulations show significant

changes in observable quantities such as species temperatures and electrostatic wave energy

(on the order of KHz).

In Section 4.1, we show the beam cyclotron instability is insufficient for producing the

anomalous transport measured in experiments. The transition to the ion acoustic wave is,

however, important for correctly modeling the electron cross magnetic field transport and

can provide orders of magnitude additional mobility, particularly in the limit of low neutral

pressures. In Section 4.2, we discuss the linear and nonlinear regimes of instability growth,

modifications to the initial ion temperature and drift velocity from the baseline operating con-

ditions and the effects on the transition to an ion acoustic wave. Evidence is then presented

for a low frequency ionization fluctuations due to Landau damping oscillations in Section

4.3 which may provide an explanation for azimuthal spoke modes observed experimentally.

Lastly, preliminary results for the moment method described in Section 3.4 are presented
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and the possibility of resolving these instability with a fluid description is discussed.

4.1 Anomalous Mobility

In order to make use of Eq. (2.34) for calculating the anomalous mobility, we must determine

the averaging quantity 〈neEy〉 from our simulations. From Eq. (2.35), this averaging should

be done over at least a wave period and wavelength. In Figure 4.1 and 4.2 we present the

spacial-temporal variation of the normalized electron density ne and the azimuthal electric

field Ey. Immediately we may notice large fluctuations in both density (70% of n0) and

electric field (1000% of E0). Though difficult to determine qualitatively, the fluctuations in

ne and Ey are not completely out of phase. Instead, they are correlated and the product

of the two quantities is shown in Figure 4.3. The anomalous mobility can be determined

from Figure 4.3 and Eq. (2.35) by averaging in space over Ly and in time from 2 − 8µs.

Similarly, the mobility determined from the ion density in Figure 4.4, 4.5 and Eq. (2.37)

can be calculated, averaging over the same region of space and time. Lastly, the mobility

is also determined using Eq. (2.39) by averaging the axial velocity for all particles. These

measurements of anomalous mobility are presented in Table 4.1.

From Figure 4.6, we can extrapolate the contribution of the wave to the total cross field

electron transport using expressions for electron-neutral momentum exchange cross sections

given in [Goebel and Katz, 2008]. In regions of low neutral density similar to that of a the

Hall-effect thruster the wave behavior can have a significant contribution to the total cross

field electron transport. As the neutral density increases, the classical mobility given by

Eq. (2.33) increases as well and the mobility becomes collision dominated. We should note

that this approximation does not include the damping of the wave due to collisions. We

would expect the mobility given by Eq. (2.34) to decrease proportionally to the neutral

collision rate due to this damping. In Figure 4.7 we present the electron mobility averaged

in space and plotted as a function of time using each of the three methods. The mobility

determined using 〈neEy〉 and 〈niEy〉 are nearly identical while the mobility determined from

Eq. (2.39) has comparable behavior while fluctuating significantly more. This discrepancy is
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also made obvious in Table 4.1 where the average mobility µ(vz/Ez) is noticeably larger then

either µ〈neEy〉 or µ〈niEy〉. The electron stream boundary condition in the axial direction may

provide an explanation. Near the cathode, electrons can only complete up to half a cyclotron

orbit before interacting with the boundary condition, at which point the electron is then

reintroduced at the anode. In Figure 4.8, we can see a preferentially negative vz and positive

vy for the electrons near the z = 0 boundary which we expect is a contributing factor to the

discrepancy. A solution to this behavior has not been implemented, however, we propose

for the future a streaming boundary condition which acts on the electrons when the guiding

center interacts with the boundary condition, thereby retaining the full cyclotron behavior

of the electron near the boundary. We also expect the different methods to converge when

increasing the channel length Lch. As a whole, the results we have obtained for the mobility

and field configurations at steady state are consistent with reference [Lafleur et al., 2016b].
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Figure 4.1: Contour plots of the spatial-temporal variation of the electron density ne nor-

malized by the initial plasma density used in the initial condition (n0 = 1e17). The electron

density begins to exhibits high-frequency (of the order of MHz) and short-wavelength (of

the order of mm) fluctuations at approximately 2.0 µs. The estimated the wave parameters

show good agreement with analytical values for the ion acoustic wave.
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Figure 4.2: Contour plots of the spatial-temporal variation of the azimuthal electric field Ey

normalized by the imposed electric field along the channel (E0 = 20000 V ). The electric

field begins to exhibits high-frequency (of the order of MHz) and short-wavelength (of the

order of mm) fluctuations at approximately 2.0 µs. The estimate of the wave parameters

show good agreement with analytical values for the ion acoustic wave.
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Figure 4.3: Contour plots of the spatial-temporal variation of the electron density multiplied

by the azimuthal electric field ne(y, t)Ey(y, t).

34



Figure 4.4: Contour plots of the spatial-temporal variation of the ion density ni normalized

by the initial plasma density used in the initial condition (n0 = 1e17). The ion density

begins to exhibits high-frequency (of the order of MHz) and short-wavelength (of the order

of mm) fluctuations at approximately 2.0 µs. The estimate of the wave parameters show

good agreement with analytical values for the ion acoustic wave.
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Figure 4.5: Contour plots of the spatial-temporal variation of the ion density multiplied by

the azimuthal electric field ni(y, t)Ey(y, t).
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Instability Property (Full Kinetic) Value

µ〈neEy〉 (m2V −1s−1) 3.7225

µ〈niEy〉 (m2V −1s−1) 3.6950

µ(vz/Ez) (m2V −1s−1) 4.2590

Table 4.1: Averaged cross field mobility due to the ion acoustic wave calculated with three

different methods for simulation using baseline operating conditions between 2− 8 µs.
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Figure 4.6: Utilizing electron-neutral momentum exchange cross sections presented in

[Goebel and Katz, 2008], a total electron cross field mobility is approximated using µ〈neEy〉

from Table 4.1 in the presence of collisions as a function of neutral number density nn.
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methods outlined in Section 2.6.
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Figure 4.8: Electron phase space with (top) azimuthal and (bottom) axial velocity normalized

by the sound speed as a function of axial position normalized by the channel length Lch at

t = 2.5µs.
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4.2 Instability Formation and Steady-State Behavior

In order to integrate a theory for the anomalous cross field electron mobility with Hall-effect

thruster simulations, an understanding of the nonlinear instability evolution is essential.

In Figure (4.9) we show the azimuthal temperature for both species and the electrostatic

wave energy as a function of time for the baseline operating conditions. It is important to

note that the distribution functions for both species can be non-Maxwellian, in which case,

the temperature simply acts as a method of measuring the standard deviation in velocity.

To illustrate this, we also show phase space, and distribution functions for each species at

different points of interest labeled with (a), (b), (c), (d), and (e) in Figure 4.10, 4.11, 4.12,

4.13, and 4.14 respectively.

Upon inspection of Figure 4.9 we see an initial growth within 0.1 µs of the simulation.

This region of linear growth is the beam cyclotron instability and occurs on a time scale much

shorter than the ions. In Figure 4.10 we see electron trapping and resonance broadening

analogous to what is presented by [Davidson, 1972]. The centroid of the electron phase

space loops can be used to approximate the phase velocity of the beam cyclotron instability

vp ≈ vd. This is consistent with our analysis in Section 2.2. The electrons are then heated

to approximately 10 eV with a corresponding thermal velocity of vTe ≈ vd. This represents

a knee in the instability growth and the beam cyclotron instability saturates due to electron

Landau damping. This knee, given by Eq. (2.27), occurs at a critical amplitude of the

turbulent fields. [Lampe et al., 1971] argues that due to the presence of magnetic fields,

longtime trapping of electrons in a large amplitude coherent wave does not occur, instead

the electron distribution relaxes to a state resembling a Maxwellian distribution soon after.

Simultaneously, the ions start to partake in the instability and the development of an

ion acoustic wave begins. The electrons are heated to vTe � vd as predicted in reference

[Lampe et al., 1971] and the electrostatic field energy increases as the ion density gradients

grow. It is in Figure 4.11 where we begin to see the onset of ion trapping (the mechanism

which the ion acoustic wave will saturate) and a thermalized electron distribution function

which is approximately Maxwellian. When the ion temperatures reach a peak at approx-
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imately t = 2.5 µs, the ion acoustic wave is considered saturated. Figure 4.12 shows the

ion distribution as very non-Maxwellian with significant amount of ion phase space trap-

ping. The ion velocity distribution function resembles that of a bump-on-tail discussed in

[Krall et al., 1974]. We have determined it is at approximately this time when it is appro-

priate to begin sampling the steady state mobility properties discussed in Section 4.1. As

predicted in Section 2.2 and 2.3, the growth rate of the beam cyclotron instability is signifi-

cantly larger than the ion acoustic wave and similar to the analysis done in Section 2.2 and

2.3. The centroid of the ion phase space loops in Figure 4.12 can also be used to approximate

the phase velocity of the ion acoustic wave, vp ≈
√

2
3
cs.

From Figure 4.9 it is obvious there are large fluctuations in species temperature and

wave energy even at saturation. When the ion temperature is large enough for a significant

portion of the ion velocity distribution function to interact with the wave at a phase velocity

vp and the stability criterion, approximated by Eq. (2.28), is easily met, the ion acoustic

wave becomes ion Landau damped. This damping is significant enough to decrease the

temperature of both species and wave energy until the criteria for stability is no longer

met. The ion velocity distribution function then undergo periodic behavior of growth and

damping as shown in Figure 4.13 and 4.14. This periodic behavior is also made obvious

in the magnitude of waves shown in Figure 4.3 and the electron mobility in Figure 4.7

which all oscillate at approximately the same frequency on the order of KHz. As a result,

the ion acoustic wave is highly dynamic even at saturation and averaging of the mobility

should be made over multiple periods of this Landau oscillation to be statistically significant.

Further work should be performed to verify whether the results presented in this work for

the anomalous mobility are averaged over a large enough region in time.
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Figure 4.9: (Top) Spatially average azimuthal temperature as a function of time for both

electrons and ions in electron volts. The time positions (a), (b), (c), (d), and (e) correspond

to phase space in the following plots. (Bottom) Spatially averaged electrostatic wave energy

as a function of time. Similar behavior can be seen between the electron thermal energy and

electrostatic wave energy. Both figures are for baseline operating conditions.
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4.2.1 Condition for Mode Transition to Ion Acoustic Wave

A brief parametric study is also conducted comparing temperature and velocity ratios similar

to the work presented in [Lampe et al., 1971]. In the context of a Hall-effect thruster, we

show the same stability criteria apply to the velocity and temperature ratios. In Figure 4.15,

we show the stability criterion Eq. (2.28) is sufficient for determining whether a transition to

an ion acoustic wave will occur. Modifications of the initial temperature ratio and velocity

ratio are performed by adjusting the ion temperature and the externally applied magnetic

field in Table 3.1 respectively. When the stability criterion is met, the plasma saturates after

the beam cyclotron instability and no mode transition occurs. In previous sections we have

argued that the beam cyclotron instability is insufficient in producing enough anomalous

cross field electron transport and that the ion acoustic wave is necessary. Simulations of

Hall-effect thruster channels using HPHall have shown the region most likely to produce

this anomalous mobility is near the channel exit where the external fields have the highest

magnitude and the neutral density (and electron neutral collisions) are the least significant.

Future work is suggested to confirm this result and investigate the effect of ion acoustic

wave in the plume region of a Hall-effect thruster where a significant amount of anomalous

electron transport is required.

43



4.2.2 Frozen Ion Distribution Function

For the purpose of investigating the possibilities of a reduced order simulation, a numerical

experiment is conducted where the ion distribution is frozen in time at point (c) of Figure 4.9.

In Figure 4.12, we observe large density perturbations in the ion spatial distribution function.

As expected, when the electrons are allowed to evolve in time with a frozen ion distribution,

the electron mobility remains constant. The average electron mobility is determined to be

µ〈neEy〉 = 6.4720 m2V −1s−1 with a standard deviation of σµ = 1.0180 m2V −1s−1, consistent

with Figure 4.7. The mobility produced with the frozen ion distribution function is shown

in Figure 4.16. Furthermore, retaining the ion distribution function and initializing the

electrons as a cold Maxwellian and uniform in position (identical to the initial condition

given in Table 3.1) produces the same mobility after the brief beam-cyclotron instability

transition shown in Figure 4.17. When a similar procedure is conducted at the simulation

times denoted by (d) and (e) in Figure 4.9, we observe consistent behavior. Assuming we

can accurately predict the wavelength and amplitude corresponding to the ion acoustic wave

for a given Hall-effect thruster state, an approximation of the ion density oscillations may be

useful for quickly determining the anomalous electron mobility on time scales shorter than

the ion landau damping oscillations.
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4.3 Low Frequency Ionization Fluctuations

Observations of an azimuthally rotating oscillation with an angular frequency in the tens

to hundreds of kHz band has been recently published by a number of authors includ-

ing [McDonald and Gallimore, 2011], [Sekerak et al., 2013], and [Cunningham et al., 2016].

This is frequently referred to as a spoke mode by the experimental community and has been

characterized by high speed imaging, emissive probe measurements, and magnetic sensing

of Hall current. Figure 4.9 has shown that at saturation, our simulation undergoes large

fluctuations of electron and ion temperature on the order of 10− 20 eV . Cross sections for

collisions between electrons and ground state Xe presented by Chung et al. (2005) show

an expected 10% increase in ionization due to the electron temperature oscillations alone.

Though we could not find ionization rates for collisions between Xe+ and ground state Xe,

we do not expect the oscillations in ion temperature to be negligible either. A similar analy-

sis will show significant fluctuation in the Xe radiative power rates due to the same Landau

oscillations. With this information, an indirect comparison can be made between the work

presented here and visible plasma emission due to azimuthal spokes presented in Cunning-

ham et al. (2016). Video light intensity measurements at a single azimuthal position in the

Hall-effect thruster demonstrate a breathing mode oscillation with a period of approximately

70 µs and a spoke mode with a period of 5 µs. A comparison can not be made between the

ion acoustic wave frequency (on the order of MHz) in these experimental measurements due

to the temporal resolution of the cameras, however, a comparison between the spoke mode

frequency and Landau damping oscillation frequency shows they are in good agreement.

These Landau damping fluctuations provide a reasonable order of magnitude explanation

for the spoke modes observed experimentally and further investigation is suggested.
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4.4 Electron Moment Method

To complete this chapter, we present a preliminary study of electron moment method im-

plemented with our baseline simulation operating conditions. As expected, the electron

cyclotron beam instability is no longer resolved due to the inability to capture kinetic effects

(i.e. trapping) of the electrons. Instead, the electrons are immediately heated to approx-

imately 100 eV within the first 0.1 µs and little variation in the temperature is seen over

time. This is of course, inconsistent with our full kinetic simulations. The ion acoustic wave

growth rates are smaller than the full kinetic cases shown previously, however, in Figure

4.18, 4.19, and 4.20 we still observe the characteristic density and electric field fluctuations

approximately 3.5 µs into the moment method simulations. The electron cross field mobility

are determined and compared to the full kinetic simulations with baseline operating condi-

tions and presented in Table 4.2. When averaging over a region of time where the electron

moment method ion acoustic wave is saturated, the electron mobility is significantly reduced

compared to the full kinetic simulations. Despite producing waves with features qualitatively

comparable to the full kinetic simulations, upon closer inspection, the plasma appears to be

heavily damped numerically and the measurable quantities of the plasma disagree with the

electron mobility in our baseline cases shown in Table 4.1. This suggest further investigation

of the impact of finite collisionality may be useful.

Instability Property (Electron Moment Method) Value

µ〈neEy〉 (m2V −1s−1) 0.8255

µ〈niEy〉 (m2V −1s−1) 0.8385

µ(vz/Ez) (m2V −1s−1) 0.7565

Table 4.2: Averaged cross field mobility due to the ion acoustic wave calculated with three

different methods for simulation using baseline operating conditions and the electron moment

method.
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Figure 4.15: Electron temperature (top) and electrostatic wave energy (bottom) plotted as a

function of time for the velocity ratio vde/vTe = 0.5930 and different temperature ratios Ti/Te

at t = 0. Conditions where Eq. (2.28) is met do not exhibit a second phase of exponential

growth (corresponding to the ion acoustic wave) after the beam cyclotron instability. Baseline

operating conditions are Ti/Te = 0.05.
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Figure 4.16: Spatially averaged mobility plotted as a function of time with frozen ion position

distribution function.
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Figure 4.17: Spatially averaged mobility plotted as a function of time with frozen ion position

distribution function. Electrons are initialized as a uniform cold Maxwellian.
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Figure 4.18: Contour plots of the spatial-temporal variation of the electron density ne nor-

malized by the initial plasma density used in the initial condition (n0 = 1e17) for the moment

electron simulations. The electron density begins to exhibits high-frequency (of the order of

MHz) and short-wavelength (of the order of mm) fluctuations at approximately 3.5 µs.
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Figure 4.19: Contour plots of the spatial-temporal variation of the azimuthal electric field Ey

normalized by the imposed electric field along the channel (E0 = 20000 V ) for the moment

electron simulations. The electric field begins to exhibits high-frequency (of the order of

MHz) and short-wavelength (of the order of mm) fluctuations at approximately 3.5 µs.
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Figure 4.20: Contour plots of the spatial-temporal variation of the electron density multiplied

by the azimuthal electric field ne(y, t)Ey(y, t) for the moment electron simulations.
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Figure 4.21: Contour plots of the spatial-temporal variation of the ion density ni normalized

by the initial plasma density used in the initial condition (n0 = 1e17) for the moment electron

simulations. The ion density begins to exhibits high-frequency (of the order of MHz) and

short-wavelength (of the order of mm) fluctuations at approximately 3.5 µs.
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Figure 4.22: Contour plots of the spatial-temporal variation of the ion density multiplied by

the azimuthal electric field ni(y, t)Ey(y, t) for the moment electron simulations.
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CHAPTER 5

Conclusions and Future Directions

We have presented a numerical study of current driven instabilities and anomalous electron

transport in the context of Hall-effect thrusters making use of the Thermophysics Universal

Research Framework developed by the Air Force Research Lab. With the exception of a few

modifications, the simulations are similar to the work presented by [Lafleur et al., 2016a]

in the collisionless limit and have shown a direct correlation between a cross-field electron

transport and the presence of azimuthal electrostatic instabilities. The instability proper-

ties are in good agreement with the analytical and numerical results of the past, and the

anomalous electron mobility provides reasonable agreement with experimental measurements

conducted. In addition to confirming the results of [Lafleur et al., 2016a], a number of nu-

merical experiments are conducted in order to assess different possibilities for a reduced

order electron mobility model. Below we outline the major shortcomings of the simulations

and provide a short discussion on the future direction of this investigation.

In the short term, the implementation of electron-neutral collisions is an obvious direction

for improvement of our simulations. The addition of a standard Monte Carlo Collision

algorithm for electrons presented by [Okhrimovskyy et al., 2002] will allow us to investigate

the behavior of the instability when damped by classical collisions as well as the electron

mobility predicted classically due to momentum transfer collisions. Used in conjunction with

ionization and excitation collision rates, a more robust investigation of Landau damping

oscillations can be conducted and compared to experimental measurements of a spoke mode.

Simulations where Poisson’s equation is solved only in the azimuthal direction assume the

radial and axial wave numbers are negligible. Doing so, ignores any fluctuations in electric

field which may occur in either of the two remaining directions. Though improvements to
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the initial condition and the particle boundary conditions have been made, the convection

of the instability cannot be accurately simulated without the solving of Poisson’s equation

in both the azimuthal ŷ and axial ẑ directions. Because the framework implemented al-

ready requires a three dimensional tracking of positions and velocities, the modification to

Poisson’s equation, is in theory, simple within our framework. The issue remains that to

simulate the ion acoustic wave in two dimensions for multiple Landau oscillation frequencies

is computationally expensive. As mentioned in the introductory remarks, many authors

including [Ahedo et al., 2003] and [Raitses et al., 2005] have argued the importance of wall

sheath physics in the Hall-effect thruster channel playing a significant role in the anomalous

mobility. If the electron interaction with the channel walls are not negligible, three dimen-

sional, full kinetic simulation would likely be required to conduct predictive, non empirical

simulations of a Hall-effect thruster. Despite the work still required, the simple azimuthal

current driven instability simulations presented here has provided insight into the importance

of wave induced transport and significant progress has been made towards the development

of a predictive electron transport model.
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