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A B S T R A C T

Community-scale power infrastructure may be the only electrification option for tens of millions households
that remain out of reach from centralized power grids. The responsiveness of household electricity demand
to price is a crucial design input for off-grid systems. While the price elasticity of electricity demand of grid-
connected consumers has been abundantly studied, few studies focus on off-grid communities where substantial
econometric challenges arise, including the absence of metered consumption data and electricity prices that are
simultaneously determined by cost and demand considerations. This study attempts to address these challenges
for the case of off-grid micro hydropower consumers. It makes two core contributions: First, we propose the
surface area of the contributing hydrologic catchment as a new instrumental variable to estimate elasticity using
a cross sectional dataset of existing micro hydropower infrastructure. Second, we provide a first price-elasticity
estimate (−0.15) for off-grid electricity demand in Nepal. We surmise that the small (in absolute value) elasticity
value found in this study arises from the low levels of consumption observed off-the-grid. We use a Monte
Carlo analysis to show that failing to account for this disparity can lead to substantial financial losses caused by
suboptimal power infrastructure design.

1. Introduction

The critical role of electricity as a driver of economic development is
widely recognized (e.g., Dinkelman, 2011; Rud, 2012) and recent large-
scale investments allowed 222 million people worldwide to gain access
to electricity between 2010 and 2012 (International Energy Agency
(IEA) and The World Bank, 2015). Yet 1.3 billion people, mostly in rural
areas (International Energy Agency, 2013) remain unconnected, 620
million of whom will likely remain out of reach of national power grids
due to remoteness, low population densities and prohibitive grid exten-
sion costs (International Energy Agency (IEA) and The World Bank,
2015). In this context, local power systems that are not connected
to the national grids, but generate electricity near the point of con-
sumption are a promising alternative for rural electrification (Narula
et al., 2012). Such community-scale off-grid systems may be the only
means of accessing electricity in the foreseeable future in many remote
regions, notably in mountainous areas, where grid extension costs are
compounded by accessibility challenges.

In contrast to large power grids, where electricity is generated at
cost-optimal sites and transported to demand centers through high volt-
age transmission lines, off-grid systems can neither store nor export
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excess energy. Power generation in off-grid systems therefore has to
match household electricity demand at the local level, meaning that
the economic viability of the system is constrained by the total electric-
ity demand of the community. In that context, the optimal capacity of
a power system is jointly determined by the cost (i.e. the rate at which
the unit cost of infrastructure [$ per kW] decreases with capacity) and
demand curves. The slope of the demand curve is particularly criti-
cal and determined by the price-elasticity of energy demand, i.e. how
responsive household level electricity consumption will be to changes
in the electricity price. Without this information, designers are likely to
either over or underestimate the optimal plant capacity, resulting either
in capital costs that cannot be recovered by the local sale of electricity,
or in forfeited income if a plant fails to supply local demand. Either
situation can contribute to a lack of financial sustainability of designed
local power supplies. The price elasticity of electricity demand, 𝛾p, is
formally defined as the ratio of relative change in electricity demand
kW to the corresponding relative change in price P:

𝛾p = dkW∕kW
dP∕P

(1)

𝛾p is typically negative (decreasing marginal utility of consumption)
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and, in the case of electricity, has an absolute value smaller than
one, meaning that electricity demand is price-inelastic (e.g., Espey and
Espey, 2004).

Determining the causal effect of price changes on electricity demand
is an arduous task, particularly in the context of rural electrification in
developing countries. The direct approach of simply asking community
members (e.g., through dedicated techniques like contingent valuation
(Thomas and Syme, 1988) is prone to hypothetical biases because the
surveyed households have likely never experienced the level of electric-
ity service they are asked to value. To date, there is no general theory
of respondent behavior to characterize and control hypothetical bias
(Loomis, 2011). An alternative set of methodologies, revealed prefer-
ences approaches, use observed behavior (as opposed to stated pref-
erences) to determine elasticity. Recent efforts to privatize electricity
markets worldwide increased research interest in assessing how house-
holds adapt their electricity consumption in response to price policies
(see e.g., (Espey and Espey, 2004; Hondroyiannis, 2004), for a review).
Numerous studies use residential power consumption data monitored
by utilities to evaluate demand elasticity. However, few (if any) studies
have been devoted to off-grid power generation in developing coun-
tries. This setting differs from centralized grids in two important ways.

First, because of their local scale, the capacity of off-grid power
systems is tailored to local electricity consumption: household demand
affects the size of the infrastructure, which, in turn, affects the unit cost
of the produced electricity through economies of scale. It follows that
price is simultaneously determined by demand and supply considera-
tions in off-grid power systems. In that situation, price is endogenous,1
and the effect of price on electricity demand is challenging to disen-
tangle from the effect of infrastructure size, itself driven by electricity
demand, on electricity costs. In developing countries, these difficulties
are often compounded by data constraints: in this study, our inability
to observe electricity price, income and electricity consumption at the
household level (Section 2.3) may give rise to omitted variables and
measurement errors2 that add onto existing endogeneity concerns. In
contrast, grid-connected consumers typically have a limited influence
on electricity tariffs, which are exogenously imposed by large power
utilities. While electricity prices can become endogenous if block tar-
iffs are implemented 3 (Reiss and White, 2005), this effect appears
to be marginal for grid-connected household consumption in develop-
ing countries and is largely ignored by previous studies (e.g., (Bose
and Shukla, 1999; Tiwari, 2000; Chattopadhyay, 2004; Filippini and
Pachauri, 2004).

Second, costs and operational challenges often prevent the instal-
lation of household connection meters (Rosa et al., 2012; Casillas and
Kammen, 2011). While substantial recent progress has been made in
the installation of household metering devices (Lee et al., 2016; Pueyo,
2015), many off-grid power systems remain unmetered. In Nepal, off-
grid micro-hydropower schemes are typically operated on capacity-
based tariffs (Fulford et al., 2000; Ghale et al., 2000), whereby house-
holds pay a fixed fee per unit of electric capacity (e.g. 70 Nepalese
Rupees per month for a 100W inlet (Joshi and Amatya, 1996). With-
out connection meters, household electricity consumption cannot be
monitored in many off-grid power supply schemes. This causes a funda-
mental data problem and requires proxy variables to assess electricity
consumption. Another important consequence is that households can-
not be billed on their energy consumption, but pay a fixed fee deter-
mined by the capacity of their connection (Baral et al., 2012). Electric-
ity consumption choices therefore represent long-term decisions, driven
by the ownership of electrical appliances and limited by the connection
capacity, usually enforced via sealed current limiting devices installed

1 An independent variable of a regression model is endogenous if it is correlated to the
error term.

2 For instance, price and consumptions are mismeasured in our study if costs are not
completely recovered or if the infrastructure is not used at its full capacity.

3 Consumers can affect their marginal price by choosing their level of consumption.

by the utility. This delays the effect of exogenous shocks (e.g., climate,
prices and income) on the household’s decision to change their level of
consumption (Iimi, 2011), and renders short-term dynamic elasticities
irrelevant. It also means that existing identification strategies to address
price endogeneities in large power grids (i.e. panel adjustment tech-
niques (Alberini and Filippini, 2011) and instrumental variables based
on the enforced tariff structure (McFadden et al., 1977; Reiss and White,
2005) cannot be readily transferred to unmetered micro grids because
the required detailed information on individual household consumption
and pricing structure is generally unavailable.

These estimation challenges limit the use of existing econometric
approaches to determine 𝛾p for off-grid, unmetered households. Local
price elasticities are frequently overlooked by practical design manuals,
which assume that electricity prices are exogenous and constant (e.g.,
Junejo et al., 1999; Fraenkel et al., 1991; Junejo, 1997). This assump-
tion is valid for grid-connected plants benefitting from feed-in tariffs
(e.g., Basso and Botter, 2012), but may lead to over-designed infras-
tructure off-grid because it neglects the possibility that excess power
generation will saturate local demand, in which case prices will drop
substantially. Poor sizing is listed among the likely reasons explaining
the low sustainability (i.e. high failure rate) of off-grid infrastructure
in developing countries (e.g. Khennas and Barnett, 2000), for micro
hydropower).

To address this gap, we propose a method to estimate the price-
elasticity of off-grid, unmetered electricity demand. The study focuses
on Nepal and uses recorded information on the costs and salient fea-
tures of subsidized micro hydropower schemes to determine average,
community-level consumption (in connection capacity, kW) and price
(in $∕kW connection fee). Micro hydropower in Nepal is a good exam-
ple of scantly sustainable off-grid infrastructure despite very favorable
conditions. Thanks to the low level of technology of its components,
micro hydropower often emerges as the most cost effective rural electri-
fication option for mountainous regions globally (Müller et al., 2016).
Nepal has an enormous hydropower potential, a large rural popula-
tion without access to the power grid, substantial local hydropower
expertise, favorable institutions and 50 years of implementation experi-
ence. Nonetheless, about 30% of existing micro hydropower plants are
not in operation (Khennas and Barnett, 2000). We use an instrumental
variable approach to address endogenous pricing and base our identifi-
cation strategy on the fact that hydropower generation, and therefore
electricity price, is strongly affected by water availability, which itself
relates to upstream topography. We present evidence in Section 4.1 that
the considered instrument – the area of the contributing watershed – is
exogenous, i.e. it does not directly affect electricity demand, and is suf-
ficiently correlated to infrastructure costs to provide unbiased (though
noisy) estimates of 𝛾P. Although the relation between infrastructure
costs and upstream topography is specific to hydropower, which lim-
its the applicability of this particular method, the general approach of
leveraging supply-side environmental constraints as instrumental vari-
ables may be extended to characterize demand for other off-grid renew-
able sources.

We find that the estimated elasticity is significantly lower (in
absolute value) than long-run elasticities found elsewhere in the
literature. Three important differences come to mind immediately and
set this study aside from previous estimations of 𝛾p. First, isolated
micro grids are more prone to outages and voltage fluctuation than
larger grids because of their small size and undiversified power source
(Vaidya, 2015). Second, the absence of connection meters in the
Nepalese dataset sets the marginal cost of consumption (in terms
of appliance usage) to zero. Third, off-grid electrification primarily
concerns rural communities, which typically have much lower levels
of income, appliance ownership and electricity consumption than their
urban counterparts. We discuss these particularities and their possible
implications on demand elasticity that may explain its lower absolute
value (Section 4.2).
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The remainder of the paper sets out to estimate the price-elasticity of
off-grid electricity demand in rural Nepal. Section 2 describes key mod-
eling assumptions, our estimation approach and the available dataset.
Regression results are presented in Section 3, and Section 4 discusses
the validity of the empirical strategy (Section 4.1), interprets the
estimated elasticity in light of key differences with previous studies
(Section 4.2), and explores the practical consequences of approximating
off-grid elasticities with more typically estimated on-grid values during
design for the specific case of micro hydropower (Section 4.3).

2. Methods

2.1. Model

We represent off-grid power supply as a market, where households
pay an agreed-upon fee to a local power utility for a chosen electri-
cal capacity provided by an isolated micro grid. Household connections
are unmetered but power consumption is limited by a sealed current-
limiting device. Consequently, households do not pay for the average
power consumed, but rather decide on the ‘size’ of their connection and
pay for the option of continuously drawing the full amount of energy
allowed by their connection. The utility managing the local power
infrastructure is in a position of natural monopoly, but price is regulated
to ensure equitable access to electricity.4 This is consistent with anec-
dotal evidence suggesting that many off-grid electrification schemes in
Nepal are subject to some level of participative pricing and do not oper-
ate solely on a profit maximizing basis (Khennas and Barnett, 2000, p.
36). In fact, we assume that price is determined so as to allow electricity
revenues to exactly compensate infrastructure costs. This setup, where
locally owned power utility generate neither profits nor losses is recom-
mended by many local design manuals in Nepal (e.g., Junejo, 1997, p.
61), as a way to ensure full cost recovery while keeping the price low
enough to prevent the infrastructure from being underutilized (Apgar
and Brown, 1987). We assume that electricity price and connection size
are simultaneously determined at the design stage by households and
the utility. The utility optimizes the size of the infrastructure to exactly
meet the aggregated demand from households and recover costs. This
implies that price and connection size are held constant throughout
the service life of the infrastructure. It is possible that electricity access
increases household productivity and purchasing power, with an impact
on electricity demand. We take a reduced form approach and assume
that any such feedback effects are already accounted for in the demand
specification.

We model household electricity demand as:

ln kW = 𝛾P ln P +
∑

i
𝛾i ln Xi + 𝜖D (2)

where kW is the average capacity (in kW) of household connections
by community, and P is the connection fee per unit capacity faced by
households ($ per kW). Variations of kW between households within
communities are included in the error term 𝜖D, 𝛾P is the price-elasticity
of electricity demand and Xi are observable covariates. The log-log func-
tional form is routinely used to model household electricity demand
(e.g., Filippini and Pachauri, 2004; Silk and Joutz, 1997; Beenstock et
al., 1999) because of its empirical convenience. It is suitable for lin-
ear regressions, the estimated coefficients can be readily interpreted as
elasticities, i.e. ratios of relative changes in demand against relative
changes in a given covariate, and the related standard errors provide
measures of the variability of the estimated elasticities.

4 A price-inelastic demand implies negative marginal revenues for all levels of con-
sumption. Because no level of production would allow marginal revenues to reach (posi-
tive) marginal costs, a profit-maximizing monopolist will boundlessly increase price and
decrease output. In other words, unregulated electricity prices would cause the utility
owner to produce minimal electrical output that they will sell to households paying the
highest price.

2.2. Estimation

Electricity price (P) and the capacity of household connections
(kW) are simultaneously determined by supply and demand considera-
tions. For instance, favorable site conditions or a highly price-inelastic
demand can simultaneously lead to large household connection capaci-
ties and low electricity prices. The ensuing correlation between P and
the error term 𝜖D introduces a bias in the ordinary least squares (OLS)
estimation of 𝛾P (e.g., Dubin et al., 1984).). We address this bias by
introducing an instrumental variable (or supply shifter): an observable
variable that is significantly correlated to electricity price while not
directly affecting electricity demand (i.e. being uncorrelated to 𝜖D). The
search for valid supply shifter (also known as instrumental variable) is
a significant challenge in applied econometrics, and places this study in
line with several recent papers evaluating the impact of electrification
and large water infrastructure on economic development (e.g., Dinkel-
man, 2011; Rud, 2012; Duflo and Pande, 2007). These studies faced a
similar identification challenge, namely that access to electricity may be
endogenous to household behavior. To overcome this challenge, they all
used topographic site conditions as instruments for infrastructure place-
ment. Dinkelman (Dinkelman (2011) used terrain slope and its effect on
the placement of transmission lines, Duflo and Pande (2007) exploited
non-monotonic relations between slope and dam placement and Rud
(Rud, 2012) used variations in groundwater availability and its effect on
required pumping energy. While easily obtainable using remote sensing
digital elevation models, these variables cannot be used to instrument
for off-grid micro hydropower.5 Instead, we use the area (A) of the
hydrologic catchment supplying water to each scheme, which drives
the volume of water available for hydropower production. Water avail-
ability has been repeatedly shown (see (Elbatran et al., 2015; Cavazzini
et al., 2016) to strongly affect the cost of hydro electricity, through its
effect on the type, size and efficiency of the turbine. A represents the
topographic layout of the hydrologic catchment upstream of the com-
munity, which we do not expect to affect the community’s electricity
demand (unlike, say, terrain slope within the community, which likely
affects local economic activities). The exogeneity and significance of A
as a supply-shifting instrument to identify 𝛾P are discussed in Section
4.1.

The estimated two-stage-least-squares (2SLS) and first stage specifi-
cations are given in Equations (3) and (4) respectively. Control vari-
ables include remoteness (R), the number of connected households
(HH) and annual precipitation (precip) as proxies for local income ,6
as well as temporal fixed effects through dummy variables for electrifi-
cation years.

ln kW = 𝛾0 + 𝛾P ln P̂ + 𝛾R ln R + 𝛾HH ln HH + 𝛾precip ln precip + 𝛾Yr𝛿Yr + 𝜖D

(3)

ln P = 𝛽0 + 𝛽A ln A + 𝛽R ln R + 𝛽HH ln HH + 𝛽precip ln precip+ 𝛽Yr𝛿Yr + u

(4)

P̂ represents predicted prices from the first stage (Equation (4)) using
the supply shifter A; 𝛾i and 𝛽i are regression coefficients and u and 𝜖D
are random error terms.

5 Micro hydropower does not involve significant water storage (as in Duflo and Pande,
2007) and is rarely used to power groundwater irrigation (as in (Rud, 2012). Further,
terrain slope (as in Dinkelman, 2011) cannot be used in rural mountainous areas because
local topography affects agricultural productivity and, in turn, power consumption, which
makes it endogeneous.

6 Our dataset unfortunately does not provide community-level income, but we control
for annual rainfall, remoteness and community size as proxies for agricultural output,
access to markets and population density. District-level income and regional fixed effects
(administrative zone) are controlled for as robustness check in a second specification.
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Fig. 1. Approximate location and accessibility of the sampled micro hydropower schemes
from the REDB dataset.

2.3. Data

Consumption and price data from off-grid power systems are chal-
lenging to obtain in Nepal. Little information is available on unsub-
sidized micro hydropower plants, which typically remain unmonitored
because there are no legal licensing requirements for hydropower plants
below 100 kW. Instead, we used a cross sectional dataset of subsidized
schemes compiled in a series of Renewable Energy Data Books (REDB)
published by the Alternative Energy Promotion Center, a governmental
agency in Nepal (Alternative Energy Promotion Centre (AEPC), 2009;
Alternative Energy Promotion Centre (AEPC), 2011). The considered
plants range between 1 and 100 kW and were built between 2008 and
2011. Among the 242 schemes in the dataset, 101 had information on
all considered attributes and were included in the analysis. Fig. 1 pro-
vides a map of the approximate location and accessibility of the consid-
ered micro hydropower plants.

Data on plant capacity (PC), total construction costs (C), construc-
tion subsidies (S) and the number of supplied households (HH) were
transcribed from the REDB. Costs and subsidies are given in Nepalese
Rupees (1USD ≈ 100NRp) and currency fluctuations are controlled for
by including temporal fixed effects for the construction year of the
infrastructure in all regressions. After geocoding each scheme at the
ward level, we estimated remoteness (R) as the distance along known
footpaths to the nearest motorable road recorded in the gROADS dataset

(NASA Socioeconomic Data and Applications Center (SEDAC), 2012)
(see map in Fig. 1). The REDB dataset was merged with census data
(Central Bureau of Statistics, 2001; Central Bureau of Statistics, 2011)
to obtain district-level average incomes in 2011, used in the robust-
ness check. Mean annual rainfall over the contributing watersheds were
computed using bias-adjusted remote sensing precipitation data from
Müller and Thompson (2013).

The REDB dataset does not provide the locations of the infrastruc-
ture within the ward, which is necessary to obtain the area A of the
contributing watersheds. Instead, our instrument is constructed as fol-
lows. The probable location of streams within each ward was first
recovered from a digital elevation model (United States National Aero-
nautics and Space Administration (NASA) and Ministry of Economy,
Trade, and Industry (METI) of Japan (2011) using the AT topographic
search algorithm (Ehlschlaeger, 1989). Favorable locations for a micro
hydropower intake along the streams were then identified automati-
cally based on their elevation profiles (Fig. 2). In order to minimize
costs and friction losses, run-of-river hydropower equipment is prefer-
entially located along steep river slopes between concave and convex
sections of the stream’s elevation profile. Our algorithm uses local cur-
vature extrema to partition the stream and identify the segment with
the highest average slope as a likely location for the micro hydropower
plant. The instrument A was then obtained as the upstream-most flow
accumulation value along that segment and represents the area of the
contributing catchment.

The average capacity kW of household connections for each scheme
was computed as the capacity of the plant (PCap) normalized by the
size of the supplied community (HH):

kW = PCap
HH

Full cost recovery (Section 2.1) implies that power infrastructure is
sized such that unit prices collected by the utility are exactly equivalent
to the unit costs of supplying electricity. The unit price of electricity
faced by the households were obtained by normalizing total construc-
tion costs (TC) by the capacity of the infrastructure and accounting for
construction subsidies (S):

P = TC − S
PCap

Note that P denotes the present value household payments. Fees typ-
ically paid by the households on a monthly basis can be retrieved from

Fig. 2. Illustration of the GIS algorithm to construct the instrument A. Algorithm steps, illustrated for a village Dhading District (map in panel C), are as follows: (i) Streams (blue
lines in panel A) draining catchment areas larger than 3.5km3 are obtained from a high resolution digital elevation model (DEM, displayed as colored background in panel A) using the
r.watershed function in GRASS (Ehlschlaeger, 1989). (ii) Elevation profiles (blue lines in panel B) are obtained by assessing the altitude of regularly spaced points along the streams. The
pixel size of the DEM (30 m), which determines the minimum distance between two adjacent points in the elevation profile, determines the minimum penstock length assumed for the
micro hydropower plants. (iv) Points with local maximum and minimum curvatures are identified from the derivatives of elevation along the profiles. (v) The minimum curvature point
(black dot on panel B) associated with the largest average slope to the nearest downstream maximum curvature point (black cross on panel B) was identified as the most appropriate
location for the infrastructure. Once the location of interest is identified (black dot on panels A and B), the area A of the contributing catchment (white contour panel A) is obtained.
The location of the actual micro-hydropower plant (white dot on panel A) is also affected by non-topographic factors, here the location of the village (white diamond on panel A) and
road. The mismatch between the observed and modeled plant locations leads to a measurement error on A represented as the difference between the white and dashed contours on the
map on panel A. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Table 1
Summary statistics of the sampled wards by dataset/electricity source (columns are labeled REDB and NLSS for micro hydro- and
grid-connected users respectively), and the full micro-hydropower (REDB) dataset. The table provides median values with the interquartile
ranges in parentheses. The electricity price P faced by households is given in annual unit costs (per Watt, see Appendix A) for grid connected
households. For households supplied by micro hydropower, P corresponds to unit costs over the entire service life of the infrastructure:
approximate annual costs can be retrieved, for instance, by dividing P by 50, if a service life of 30 years and a discount rate of 3% are
assumed. Variable A is the area (in km2) the catchment upstream of the most promising micro hydropower site, as identified by the algorithm
in Fig. 2.

REDB (Micro hydro) NLSS (Grid) REDB (Micro hydro)
Sample Counterfactual Full dataset

N = 101 N = 79 N = 252

Power consumption [W/HH] kW 103 (92, 114) 329 (277, 413) 100 (88,112)
Electricity price [NRp/W] P 102 (80, 137) 3.8 (3.3, 4.6) 141 (83,195)
Connected households HH 130 (49, 231) 113 (72, 210) 180 (83, 289)
Remoteness [km to nearest road] R 45 (18, 71) 3 (1, 7)
Annual Income [1000USD] Y 1.0 (0.9, 1.3) 4.3 (2.0, 6.8)
Area of contributing catchment [km2] A 30 (19, 119) 28 (22, 102)
Capacity of micro hydro plant [kW] PCap 13 (5, 27) 17 (6, 30)
Total cost of micro hydro plant [1000NRp] TC 2558 (815, 4585) 5367 (1252, 9300)
Construction subsidies [1000NRp] S 1007 (327, 2037) 1840 (487, 4941)

P by accounting for the interest rate and the service life of the infras-
tructure. This distinction does not affect our estimation of the price elas-
ticity of demand because the proportionality factor relating the present
value to monthly annuities is absorbed in the intercept when regressing
on log-transformed values.

Lastly, we rely on the 2010 Nepal Living Standards Measurement
(NLSS (Central Bureau of Statistics, 2012) to assess the validity of the
estimation approach. We consider a subset of 79 grid-connected rural
communities that were matched to the REDB dataset based on popula-
tion size (HH), upstream topography (A), remoteness (R) and adminis-
trative district through genetic matching (Sekhon, 2011). This dataset
is representative of a counterfactual situation, where the price of elec-
tricity, which is exogenously determined by the national power utility,
is not affected by the local suitability for micro-hydropower infrastruc-
ture. This property will be used to assess the exogeneity of the supply
shifting instrument A. The NLSS is a household expenditure survey that
does not provide specific information on household electricity demand.
Instead, unit price indices and electricity consumptions were derived
from annual power expenditures and appliance ownership as described
in Appendix A.

Table 1 provides comparative summary statistics suggesting that (i)
the 101 micro hydropower plants sampled for the analysis are repre-
sentative (if slightly smaller) of the full dataset and (ii) the sample of
79 grid-connected communities used to establish the exogeneity of A
(Section 4.1) is comparable to our corresponding sample of 101 off-grid
communities. Table 1 also shows that the considered micro hydropower
communities are substantially more remote than their grid-connected
counterpart, despite R being used as a matching criterion. This discrep-
ancy arises from a strong association between physical accessibility and
grid access, as power grids co-evolve with transportation networks (Lip-
scomb et al., 2013).

3. Results

The estimated 2SLS regression coefficients are shown in Table 2.
Columns (1) and (3) are the preferred 2SLS and first stage specifica-
tions. Regional fixed effects and district-level income obtained from
census data are added to the regressions in columns (2) and (4) to
further control for (unobserved) local income. Adding these control
parameters decreases (in absolute value) our elasticity estimate. How-
ever, it also affects the strength of the first stage (the partial F statistic
decreased from 8.2 to 5.3), which may suggest that this discrepancy
arises from a weak instrument bias in the second specification (columns
(2) and (4)).

In both specifications, price-elasticity of demand has the expected
negative sign but is not statistically significant, likely because of mea-
surement errors on A, as discussed in Section 4.1. In the context of this
study, however, the relevant test to consider is arguably not whether
𝛾P is different from zero (though obtaining a negative estimate is an
important reality check), but rather whether the obtained off-grid elas-
ticity is significantly different from values measured on the grid. Anec-
dotally, the estimated value of −0.15 is lower (in absolute value) than
previously estimated elasticities in neighboring India based on macro-
(−0.63) (Bose and Shukla, 1999) and micro-data (−0.29 during the dry
season) (Filippini and Pachauri, 2004), although the difference with the
micro-data estimate (−0.29) is not statistically significant due to large
standard errors on our estimate.

At a global level, estimates from both specifications (−0.15 and
−0.10) are significantly smaller (at the 95% confidence level) than the
mean value (−0.58) of a set of 101 elasticities found in the literature for
grid-connected residential users7 (Table 3). Our estimates also reject the
median of previous elasticity estimates (−0.39) at the 90% level, and
confidence level increases to 95% comparing our estimate to the subset
of 43 studies that specifically considered long-run elasticities (mean:
−0.96, median: −0.74), which are conceptually closer to the unmetered
context as discussed in Section 1.

4. Discussion

4.1. Is the estimated elasticity reliable?

We propose a new instrumental variable, the area A of the contribut-
ing hydrologic catchment, to estimate the price elasticity of demand
using on a cross-sectional dataset of existing micro hydropower infras-
tructure. The approach can reliably predict elasticity if three key cri-
teria are satisfied: (i) Household power consumption and electricity
prices are accurately determined using observed infrastructure charac-
teristics; (ii) the instrumental variable has a strong first stage (i.e. A is
strongly related to P) and (iii) the exclusion restriction holds (i.e. A does
not directly affect kW). This section presents arguments supporting the
validity of each criterion.

4.1.1. Measurement of P and kW
Direct observations of electricity prices and household connections

are difficult to obtain off-grid, unless a dedicated field survey is con-

7 Elasticity values from the literature cover 7 countries (US, Israel, Australia, Paraguay,
Canada, Switzerland and India) and were obtained in Bohi and Zimmerman (1984), Fan
and Hyndman (2011), Filippini (1999, 2011).

16



M.F. Müller et al. Development Engineering 3 (2018) 12–22

Table 2
First Stage and Two-Stage Least Squares Estimations. Instrument A has a partial F stat of 8.2 for the first stage in the preferred
specification (1 and 3). The price-elasticity of demand as defined by the slope of the linear fit to log-log data is −0.148, but with a large
standard error of 0.138. This estimate is somewhat decreased (in absolute value) when adding district-level income and administrative
zone fixed effects to control for income (2). However, these controls are imprecise proxies of (unobserved) household income. This leads
to a weak first stage (4) and likely biases the elasticity estimate in (2). To evaluate the exclusion restriction, electricity consumption is
regressed against the instrument A for a counterfactual sample of grid-connected communities (5 and 6). In these specifications, there is
no significant relation between the instrumental variable A and electricity consumption (kW) for communities that are not supplied by
micro -hydropower electricity, which suggests that the exclusion restriction holds, i.e. A is exogenous. The area of the contributing
catchment A was constructed using the identical topographic optimization algorithm applied for the main analysis. Intercepts are included
in all specifications (coefficient not displayed).

2SLS First Stage Reduced FormCounterfactual

log(kW) log(kW) log(P) log(P) log(kW) log(kW)
(1) (2) (3) (4) (5) (6)

log(P) −0.148
(0.138)

−0.101
(0.179)

log(A) 0.053∗∗

(0.018)
0.042∗

(0.019)
−0.005
(0.007)

−0.010
(0.008)

log(R) −0.045∗∗∗

(0.019)
−0.042∗

(0.024)
−0.023
(0.049)

0.014
(0.058)

−0.074∗∗∗

(0.015)
−0.064∗∗∗

(0.016)
log(HH) 0.035

(0.027)
0.044
(0.030)

−0.085
(0.060)

−0.051
(0.066)

0.112∗∗∗

(0.038)
0.094∗∗

(0.040)
log(Precip) 0.020

(0.054)
−0.042
(0.075)

0.113
(0.133)

0.097
(0.188)

0.022
(0.056)

−0.112∗

(0.062)
log(YDistrict) 0.249

(0.157)
0.025(0.131) 0.058∗∗∗

(0.020)

Year Fixed Effects Y Y Y Y NA NA
Zone Fixed Effects N Y N Y N Y
Observations 101 101 101 101 79 79
Partial F on log(A) 8.2 5.3

Note: *p<0.1; **p < 0.05; ***p < 0.01. Standard Errors are in parentheses.

Table 3
Estimates and Student-t confidence interval bounds of the price elasticity of off-grid electricity demand estimated in this study (columns (1) and (2), compared to samples
of elasticities previously estimated in the literature for grid connected residential consumers (columns (3) and (4). Our estimates for off-grid elasticity (90%CI:
[−0.37,0.08]) are significantly smaller (in absolute value) than the mean (−0.39) and median (−0.58) of previous estimates. The confidence level increases to 95%
(95%CI: [−0.42,0.13]) when compared to the subset of existing estimates for long range elasticity (mean: −0.96, median: −0.74), which is conceptually closer to off-grid
unmetered elasticity.

Quantile Off-Grid Grid-connected

This Study (Bohi and Zimmerman, 1984; Fan and Hyndman, 2011; Filippini, 1999; Filippini, 2011)

Preferred Specification Additional Income Controls All EstimationsN = 101 Long Range OnlyN = 43
(1) (2) (3)

2.5% −0.42 −0.46 −2.20 −2.26
5% −0.37 −0.39 −1.65 −2.20
Mean (Median) −0.15 −0.10 −0.58 (−0.39) −0.96 (−0.74)
95% 0.08 0.20 −0.07 −0.18
97.5% 0.13 0.25 −0.03 −0.06

ducted. Here we leverage existing data on the cost and size of power
infrastructure to estimate these parameters. It is important to note that
these estimates are not directly based on community demand character-
istics other than the number of connected households in the community.
Rather, they are constructed from observed infrastructure characteris-
tics, assuming that their capacity and cost was optimized to allow for
electricity revenues to exactly compensate costs (Section 2.1). While
anecdotal evidence suggests that a large number of micro-hydropower
plants are not financially sustainable, often precisely due to the chal-
lenge of estimating local demand (e.g., (Dhungel, 2009), all schemes
recorded in the REDB dataset benefitted from subsidies and private
loans, which entails some level of due diligence. In Nepal, local util-
ities are required to show evidence supporting a positive net present
value of the infrastructure over 15 years (assuming a 4% discount rate)
to be eligible for subsidies (Chitrakar, 2004). Under these conditions, it
is reasonable to assume that REDB infrastructure is designed to cover
peak household consumption while recovery costs. We note, however,
that departure from these assumptions will not affect the resulting elas-
ticity estimate, as long as the introduced relative profit and/or capacity
margin remain constant over their support (e.g., the utility retains a
profit of, say, 20% on the unit price of electricity and/or the infras-
tructure has a reserve extra capacity of 20%). These margins would be

absorbed in the intercept term of Equation (2).

4.1.2. First stage specification
Although a partial F-statistic of 8.2 signals a fairly weak first stage,

we expect the 2SLS estimator to be median unbiased, even at these rel-
atively low levels of significance, because the system is just-identified
(i.e. there are as many instruments as endogenous variables) ((Angrist
and Pischke, 2008), p. 209). We tested the robustness of our estimates
to decreasing sample sizes by applying 2SLS to 1000 random subsam-
ples of the original dataset. We found that mean elasticity estimates
remain unaffected by decreasing sample sizes when up to 50% of the
original observations are discarded8 (Table 4). This indicates that the
estimated elasticity is unlikely subject to small-sample biases emerging
from a weak instrument. However, weak instruments can also have a
strong effect on the precision of 2SLS estimates (Angrist and Pischke,
2008). Although our results allowed to reject an elasticity of −0.39 (the

8 A potential weakness of the resampling analysis can arise if observations are very
similar to each other, in which case an estimation based on random subsamples will likely
produce similar results to that with the whole dataset. To evaluate this issue, coefficients
of variation across subsamples are displayed in Table 4, and suggest that electricity price
varies noticeably across subsamples.
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Table 4
Sensitivity of elasticity estimates to small sample sizes. Mean and standard
deviation elasticity estimates (N = 1000, no replacement) are given by
sampling ratio. Expected 2SLS elasticity estimates remain almost identical
to the full sample estimate (i.e �̂�P = −0.15) if 50% or more of the original
observations are included. Columns 4 and 5 show coefficient of variations
(across samples) of the (within sample) mean value of electricity demand
and price. Results show that, while electricity demand (outcome) is fairly
homogeneous (CV𝜇kW

≤ 2%), price (cause) varies noticeably
(CV𝜇P ≈ 10 − 15%) across samples for sampling ratios of 50–70%. This
suggests that the stability of mean elasticity estimates for decreasing
sample sizes is unlikely an artifact of the homogeneity of the original
dataset.

Sampling Ratio 𝜇𝛾P 𝜎𝛾P CV𝜇kW
CV𝜇P

90% −0.15 0.05 0.01 0.06
70% −0.15 0.11 0.02 0.11
50% −0.16 1.29 0.02 0.14
40% −0.21 1.68 0.02 0.17
20% −0.04 7.04 0.04 0.24

median of 101 elasticity values from the literature) at the 90% con-
fidence level, our estimate of 𝛾P was too imprecise to be significantly
different from zero and fails the Wu-Hausman endogeneity test (Green
William, 2000), meaning that the 2SLS estimate is too noisy to be sta-
tistically different from an OLS estimate. Such errors in elasticity esti-
mates can have dire practical consequences, as discussed in Section 4.3.
Nonetheless, we argue that first stage uncertainties in this study do not
arise from a lack of correlation between streamflow (proxied by A) and
infrastructure costs: a power-law relation between these variables is
well-established and reported by numerous empirical engineering stud-
ies in a variety of settings (see (Elbatran et al., 2015; Cavazzini et al.,
2016). Rather, uncertainties arise from measurement errors on A, in
which case they can be avoided in other settings with more precise
information on the location of the infrastructure. Indeed, a fundamen-
tal weakness of our estimation is that we do not observe the exact posi-
tion of micro hydropower schemes, which is necessary to measure A,
the area of the contributing watershed. Instead we have to rely on a
basic topographic optimization algorithm to estimate the likely loca-
tion of the plant. We showed in Müller et al. (2016). that similar topo-
graphic algorithms are able to identify the region of the ward that is
most likely to contain micro hydropower plants. This provides a good
approximation of A, as seen in the case described in Fig. 2, because
distances between predicted and actual plant locations are typically
much smaller than the length scale of the contributing catchment. In
other words, neighboring schemes likely collect water from the same
stream and so are associated with very similar contributing catchments,
no matter their exact layout. However, this approach fails to account
for important factors, other than topography, affecting site selection
at the local level (e.g., land ownership, relative placement with other
infrastructure, accessibility). As a result, it is improbable that the infras-
tructure layout predicted by the algorithm exactly corresponds to the
actual placement of existing infrastructure (Fig. 2), producing measure-
ment uncertainties on the instrument A. This suggests that accuracy of
the method can be substantially improved in situations, where accurate
information on the location of micro hydropower infrastructure can be
obtained.

4.1.3. Exclusion restriction
In addition to being strongly associated with the endogenous vari-

able, a valid instrument must be truly exogenous, meaning that it
should not be directly correlated to the dependent (left hand side) vari-
able in the original equation. This so-called exclusion restriction cannot
be directly tested because a good instrument is by definition strongly
correlated to its endogenous variable, which is itself correlated to the
dependent variable. An important concern in using local topography-
based instruments (e.g., Dinkelman, 2011; Duflo and Pande, 2007) is

that terrain steepness in and around the community is likely correlated
to economic activity in a rural setting. This, in turn, affects electric-
ity consumption and violates the exclusion restriction. Unlike previ-
ous instruments, A is an aggregate measure of catchment topography
upstream of the community.9 The spatial disconnect between economic
activities in the vicinity of the community and the location of upstream
crests and mountain ranges that determine the boundary of the water-
shed ensures that local electricity prices are not affected by A.

To support this claim, we constructed a counterfactual dataset of
grid-connected communities by sampling 79 communities from the
Nepal Living Standard Measurement Survey to match the considered
dataset of micro-hydropower - connected communities (Section 2.3).
For each counterfactual community, A was determined using the iden-
tical topographic search algorithm applied in the main analysis (Fig. 2)
to determine the most likely location of a fictitious micro hydropower
plant that would have supplied electricity if these communities were
not connected to the grid. The counterfactual dataset was analyzed
to determine whether electricity consumption is affected by A in com-
munities, where electricity is not supplied by local micro-hydropower.
Results (Table 2, Columns (5) and (6) show no significant correlation
between A and kW. If the matched NLSS sample is representative of
the micro-hydropower-connected communities included in analysis (see
Table 1), this shows that local site conditions only affect electricity
demand through their effect on infrastructure costs.

4.2. Why is the estimated elasticity different from previous studies?

Our results suggest that household demand for unmetered electricity
in rural Nepal is little sensitive to price. These findings are in line with
Lee et al. (2016), who found that the demand of unconnected house-
holds for electricity access is little affected by the level of subsidies
offered on the connection costs. We here discuss three key character-
istics of off-grid electricity systems that distinguish them from large
power grids and may give rise to the observed price-inelastic demand.

First, power supply in developing countries is often intermittent, and
likely more so in decentralized systems because of their small size and
undiversified power source (Vaidya, 2015). Power outages may atten-
uate long-run price-elasticities through their effect on appliance pur-
chase decisions. If households have to rely extensively on an alternate
source of energy because electricity is intermittent, appliance purchase
decisions (and therefore peak electricity consumption) will be driven
by the price of the alternate energy, rather then electricity. It follows
that changes in electricity prices will not dramatically affect appliance
ownership, because households would have to compare the full cost of
a new appliance to the utility it can produce during the short fraction
of time, when electricity is available. In other words, price-elasticity
will likely decrease for increasingly intermittent power supply. Yet in
the context of Nepal, it is unclear that power supply is more reliable
for grid-connected users. Load shedding and blackouts are common on
the national grid, and the NLSS dataset suggests that there is no sta-
tistically significant difference in power intermittency between micro-
hydropower- and grid-connected households10.

Second, consumers are generally billed according to the size of the
connection (Watts), rather than based on actual consumption (kWh).
In such an unmetered setup, households are effectively billed accord-
ing to their peak consumption, rather than their monthly average. This
will affect demand elasticities in so far that there is some source of
unforeseen variation in the underlying primitives (e.g., electricity price

9 While a geomorphologic relation exists between the average slope and catchment
area (e.g., Willgoose, 1994), this relation is unlikely to emerge at scales where runoff
accumulation is small enough for micro-hydropower to be feasible.

10 Two-sample t-tests comparing the power availability (in average hours per day) of
grid-connected and micro-hydro households fail to reject the null at the 90% level.
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or consumption utility).11 Metered households will hedge price uncer-
tainty by purchasing excess appliances that will allow them to consume
more, whenever the instantaneous price of electricity is low. As a result,
they do not use their full stock of appliances continuously and can
adjust their consumption with electricity price. In contrast, unmetered
households have weaker incentives to conserve electricity than their
metered counterparts. Under these conditions, unmetered households
will use their electrical appliances more intensively, have a smaller
spare capacity at their disposal to adjust their consumption and, conse-
quently, a more inelastic (i.e. less sensitive to price) electricity demand
than metered users. However, we surmise that this effect is unlikely
to dominate in Nepal, where electricity prices are typically predictable
because heavily regulated by publicly managed power utilities (Baral et
al., 2012).

Lastly, off-grid systems are generally found in rural settings where
income, appliance ownership and power consumption are low. Credit
constraints can have a substantial effect on household electricity
demand (Lee et al., 2016). Our data suggest that off-grid communi-
ties in Nepal are poorer and less accessible (in terms of remoteness and
community size) than their grid-connected counterparts, they are also
less likely to own advanced electric appliances (Table 5) and their peak
electricity consumption is lower (Table 1). Thus, a possible effect on
elasticity is that households may respond differently to price at different
levels of consumption due to varying costs of substitution. Intuitively,
if households can only consume a limited amount of electricity (e.g.,

11 Otherwise, both metered and unmetered households will adjust their stock of appli-
ances so as to constantly use them at their full capacity. In that case, peak consumption
becomes equivalent to average consumption and connection meters will not affect long
term consumption decisions.

Table 5
Average number of appliances owned per household for the subset of
communities of the NLSS data set that are supplied by off-grid micro
hydropower schemes (NLSS Micro Hydro), and the subset of grid-connected
communities that were matched to the REDB sample used in the main
analysis.

NHouseholds NLSS(Grid)800 NLSS (Micro Hydro)237

Phone 1.014 0.565
Radio 0.620 0.620
TV 0.560 0.211
Fan 0.600 0.084
Fridge 0.030 0.013
Computer 0.028 0.000
Elect. Heat 0.027 0.000
Washing Machine 0.001 0.000

because of budget constraints), they will first use it for services that are
expensive to substitute. For instance, budget-constrained households
will first invest in phones, radios and TVs, which are challenging to
substitute, before investing in fans and electric heat, which can be sub-
stituted by labor and combustion (Table 5). It follows that at low levels
of consumption, electricity is more expensive to substitute and there-
fore more price-inelastic, akin to a vital good. In the extreme, price and
income will have little effect on households’ demand for the marginal
amount of energy required to provide basic, non substitutable services
(e.g., kerosene for lighting (Adkins et al., 2010).

This argument is formally investigated in Appendix B, where we
show that electricity demand becomes more inelastic at low levels of
consumption because the relative price of its substitute increases. The
available data do not allow this hypothesis to be empirically tested, but

Fig. 3. Relative design error (a and c) on micro
hydro infrastructure and related economic losses
(b and d) caused by an over-estimation (a and
b) or under-estimation (c and d) of price elas-
ticity of demand |𝛾P|. Median values over 1000
Monte Carlo runs are shown, with inter-quartile
distances as error-bars. In all panels, 𝛼kW is the
exponent of the power-law function describing
micro hydropower total costs (TC = 𝛼0 · kW𝛼kW ),
and a negative value indicates economies of scale
(Müller et al., 2016).
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Fig. 4. Effect of the price-elasticity of demand on micro hydropower design. Electricity
price and micro hydropower capacity are determined by equating average costs (AC)
and average demand (D0), in order for electricity revenue to recover infrastructure costs.
Over-estimating the elasticity of demand (e.g., by taking values from grid-connected sys-
tem found in previous studies) under-estimates the slope of the demand curve (D1 and
D2). If the resulting infrastructure is under-designed (kW1), household demand remains
unfulfilled (i.e. households would purchase an additional capacity of ΔkW1 at price P1).
If the infrastructure is over-designed (kW2), it produces excess electricity (i.e. households
only purchase a capacity of kW2 − ΔkW2 at price P2). An over-designed infrastructure is
financially unsustainable because the willingness to pay of households for the amount
of electricity produced (WTP2) is insufficient to recover its costs (P2). We quantify the
economic loss related to design error by using cost-recovery prices (P1 and P2) to com-
pute the value of the unfulfilled demand or excess production (i.e. the areas of the grey
rectangles on the Figure). WTP2 represents households’ willingness to pay for.

similar dependencies between price-elasticity and power consumption
were also observed empirically in previous studies (Reiss and White,
2005) and may explain the low absolute value found for off-grid elas-
ticity in Nepal.

4.3. What are the practical consequences of using a wrong elasticity value
when designing an off-grid power supply?

We used a Monte Carlo analysis to evaluate the effect of a misesti-
mated demand elasticity on the design of off-grid micro hydropower
plants. Flow, costs and demand conditions were randomly sam-
pled from observational data. The power capacity allowing micro
hydropower infrastructure to achieve full cost recovery was then deter-
mined by using ‘true’ (i.e. |𝛾P| = 0.15) and ‘wrong’ (i.e. |𝛾P| ≠ 0.15) elas-
ticity values successively .12 The procedure was repeated 1000 times
and the relative design error on the determined capacity was recorded
at each run. In order to assign a monetary value to the design error,
we assumed that the infrastructure was designed (and the price of elec-
tricity determined) by the power utility based on the ‘wrong’ elastic-
ity value. If the infrastructure is under-designed, household demand is
unfulfilled. Households could consume more electricity than provided
by the infrastructure, until reaching the consumption level dictated by
their actual demand curve at that price. Conversely, if the infrastructure
is over-designed, excess electricity is generated. Households will only

12 Empirical flow duration curves were constructed using streamflow observation from
25 gauges in Nepal, as described in Müller and Thompson (2016). Costs and demand
conditions were (independently) sampled from the REDB dataset described in Section
2.3. Scale coefficients of the cost and demand functions were computed as a = y

xb , where
x and y are randomly selected observations of electricity prices and capacities and b the
(given) elasticities. Micro hydropower capacity was determined so as to allow full-cost
recovery, as described in Müller et al. (2016). We assumed a nominal head of 100 meters
and a single turbine with a constant efficiency of 0.55 and a cutoff flow ratio of 0.2 (Basso
and Botter, 2012; Müller et al., 2016).

consume the produced electricity up to the point, where they reach
their demand curve for the encountered electricity price (Fig. 4). We
quantify the consequences of design errors at each run by using (cost-
recovery) electricity price to assign a monetary value to these deficits or
excesses of production. While this allows to assign a monetary value to
accurate elasticity information, it does not properly convey the serious
implications of over-design on infrastructure sustainability. Households’
willingness to pay for the electricity produced in excess will fall below
average generation costs (Fig. 4). It follows that an (even slightly) over-
designed power supply infrastructure will not recover its costs. This
has potentially disastrous consequences for off-grid micro-hydropower
plants that are over-designed and lack the cross-financing capabilities
of large public utilities.

Our analysis suggests that over- (under) estimating the price-
elasticity of demand generally leads to significantly under- (over-)
designed infrastructure (Fig. 3(a) and (c). This points towards sup-
pressed (or unfulfilled) household electricity demand, as observed by
Bose and Shukla (1999) for grid-connected Indian households. Cau-
tion must be used in interpreting the direction of design errors because
the micro hydropower schemes considered in the REDB dataset are
subsidized. It follows that the observed consumption and price data
(i.e. where the ‘true’ and ‘wrong’ demand curves intersect) are gener-
ally located at lower prices and higher consumption levels than would
typically occur if costs were fully recovered. Under these conditions,
overestimating price-elasticity results in under-designed infrastructure
because a more elastic (i.e. flatter) demand curve requires a lower plant
capacity to recover its costs. Nonetheless, the magnitude of the design
errors (Fig. 3(a) and (c) and of the related economic losses (Fig. 3(b)
and (d), particularly when |𝛾P| is over-estimated, indicates the impor-
tance of using an appropriate elasticity value. This can be seen as a cau-
tionary tale against the danger of using estimates from grid-connected
users. Assuming a price-elasticity of −0.3 (e.g., Filippini and Pachauri,
2004, in India) leads to a relative design error of 10% and economic
losses of about 15% of infrastructure costs.13 Economic losses increase
to 20%, when considering the median (−0.4) of previously estimated
values from the literature (Bohi and Zimmerman, 1984; Fan and Hyn-
dman, 2011; Filippini, 1999, 2011), and reach 50% when specifically
considering the subset of long-run elasticities (median: −0.75). These
effects are amplified if the design infrastructure allows economies of
scale (i.e. 𝛼kW < 0, see Fig. 3).

5. Conclusion

The price-elasticity of electricity demand is a crucial input for the
design of financially sustainable rural electrification infrastructure and
must be estimated at the local level. Our empirical findings suggest that
household electricity demand in rural Nepal (−0.15) is more inelastic
than the residential demand observed for grid-connected users in pre-
vious studies. We posit that this difference arises from the much lower
level of power consumption observed off the grid in rural Nepalese com-
munities. Regardless of its cause, this discrepancy suggests that specific
methods are needed to estimate the price-elasticity of off-grid electric-
ity demand. Compared to grid-connected systems, estimating elastici-
ties in an off-grid context involves substantial econometric complica-
tions, including the absence of metered consumption data and simulta-
neously determined electricity prices. We use an instrumental variable
approach to address these challenges in Nepal. The approach, which
uses commonly available salient features of existing infrastructure and
a topography-based instrument derived from remote sensing is particu-
larly applicable to developing countries, where household level obser-
vation data are scarce. We surmise that the method provides an unbi-
ased, though noisy, estimate of the price elasticity of off-grid electricity

13 Average costs of Micro hydropower infrastructure in Nepal are approximately 2100
USD/kW, according to the REDB dataset.
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demand in Nepal.
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Appendix A. Obtaining price and demand from NLSS data

The NLSS dataset does not include direct data on electricity con-
sumption and unit price, but provides household level estimates of
monthly electricity expenditure, the number of appliances owned by
category (e.g., telephone, fan, TV, fridge and computer) and the num-
ber of rooms in the dwelling, which is related to the energy required
for electric lighting. The relation between annual electricity expendi-
ture (Exp) and appliance ownership can be modeled as

Expiv = 𝜋v
∑

a
𝜙anai + 𝜖iv,

where 𝜋v is the unit price per unit of power capacity enforced in village
v, 𝜙a the average wattage of appliance type a and nai the number of
these appliances owned by household i; 𝜖iv ∼  (0, 𝜎2

i ) is a normally
distributed error at the household level. We assume that 𝜙a is con-
stant across households and villages, and that 𝜋v is independent and
identically distributed across villages (but constant within the villages).
We wish to estimate 𝜙a. These assumptions allow the expression to be
rewritten as:

Expiv = (uv + 𝜋)
∑

a
𝜙anai + 𝜖iv =

∑
a

𝜓anai + u′v + 𝜖iv

with 𝜋 = E
[
𝜋v
]

and 𝜓a = 𝜋𝜙a, and where u′v = uv
∑

a𝜙anai ∼  (0, 𝜎2
v ) is

a village level error that we assume to be orthogonal to 𝜖iv. We can esti-
mate 𝜓i using village-level random effects (e.g., through Reduced Maxi-
mum Likelihood estimation) and obtain the total wattage of the electri-
cal appliances owned by the households (i.e. peak electricity demand):

D̂i =

∑
a

nai�̂�a

𝜋
,

Similarly, price can be estimated using the estimated random effects ũ,
which represent local (community level) relative variations in electric-
ity prices.

P̂v = 𝜋
(
1 + ũ

)
The (unknown) average unit price of electricity 𝜋 can be approxi-
mated by assuming specific values for the wattage of particular appli-
ances. In Table 1, we assumed 𝜙TV = 60 W for a cathode ray tube
television (CRT TV) (Lawrence Berkeley National Laboratory) and used
𝜋 ≈ 𝜓TV∕𝜙TV = 4.1 [NRp∕W] per year. Nonetheless, because 𝜋 is a con-
stant proportionality factor for both D̂i and P̂v, it is absorbed in the
intercept when regressing, and the specific value assumed for 𝜋 does
not affect the estimated coefficients.

Appendix B. Effect of substitute goods on demand elasticity

We use a simple model to investigate the effect of substitute goods
on the price-elasticity of electricity demand. We consider two utility-
relevant inputs: Electrically powered appliances E and substitute goods
S. Electrical appliances are purchased and operated on a per-unit elec-
tricity cost pE, and substitute goods are obtained at a marginal cost pS.

Both prices are constant and known to the households. In this reduced
form approach, the term ‘substitute goods’ stands for anything that can
replace an electrical appliance, ranging from alternate sources of light-
ing or heating (such as kerosene or gas) over different ways of food
procuration (such as dining out) down to various forms of information
and entertainment (in replacement for a TV). To avoid trivial substitu-
tion effects based on the level of consumption, we employ a CES (con-
stant elasticity of substitution) utility function:

u(E, S) = 1
𝛼

ln (E𝛼 + S𝛼) .

As its name suggests, this class of functions has the property that the
relative ratio of inputs is independent of wealth or the absolute mag-
nitude of consumption14. The parameter 𝛼 ∈ (−∞, 1]∖{0} measures the
substitutability of the goods, with 𝛼 = 1 and 𝛼 → −∞ representing the
case of perfect substitutes and complements respectively.

In these conditions, households decide on their electricity consump-
tion by solving the utility maximization problem:

max
{E,S}

{
u(E, S) − pEE − pSS

}
We use first order conditions (u′(S) = pS and u′(E) = pE) to obtain the
demand curve for electricity:

E∗ = 1
pE

1

1 +
(

pS
pE

)− 𝛼
1−𝛼

,

which we use to derive its own-price elasticity:

𝛾P = 𝜕E
E

/
𝜕pE
pE

= 1
𝛼 − 1

[
1 − 𝛼

1 + r
𝛼

𝛼−1

]
.

Here r = pS
pE

≥ 0 is the relative price of the substitute with respect to
electricity price. We expect r to increase at low level of electricity con-
sumption because budget-constrained households will allocate the con-
sumed electricity in priority to appliances that are hard (expensive) to
substitute. Lastly, taking the derivative of 𝛾P with respect to r, we have

𝜕𝛾P
𝜕r

= 𝛼2

(𝛼 − 1)2
r

1
𝛼−1(

1 + r
𝛼

𝛼−1
)2 ≥ 0,

Thus, electricity becomes more inelastic (i.e. 𝛾P increases and becomes
closer to zero) as the relative price of its substitute increases, which
itself occurs for decreasing levels of consumption.
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