UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
A neural network model of hierarchical category development

Permalink
https://escholarship.org/uc/item/64d3p4vy

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 38(0)

Authors

Gorman, Chris
Knott, Alistair

Publication Date
2016

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/64d3p4vv
https://escholarship.org
http://www.cdlib.org/

A neural network model of hierarchical category development

Chris Gorman (cgorman@cs.otago.ac.nz)

Alistair Knott (alik @cs.otago.ac.nz)
Department of Computer Science, 133 Union St East
Dunedin, 9016 New Zealand

Abstract

Object recognition and categorization is a fundamental aspect
of cognition in humans and animals. Models have been imple-
mented around the idea that categories are sets of frequently
co-occurring features. Out of these models a question has been
raised, namely what is the mechanism by which we learn a hi-
erarchically organized set of categories, including types and
subtypes? In this paper we introduce such a model, the Domi-
nant Property Assembly Network (DPAN). DPAN uses an un-
supervised neural network to model an agent which develops
a hierarchy of object categories based on highly correlated ob-
ject features. Initially, the network generates representations of
high-level object types by identifying commonly co-occurring
sets of features. Over time, the network will start to use an
inhibition of return (IOR) operation to examine the features
of a categorized object that make it unusual as an instance of
its identified category. The result is a network which, early
in training, represents classes of objects using coarse-grained
categories and recognizes objects as members of these general
classes, but eventually is able to recognize subtle differences
between subtypes of objects within the broad classes, and rep-
resent objects using these more fine-grained categories.

Keywords: categorization; computational modeling; proto-
type theory

Introduction

Humans and animals begin developing classifications of ob-
jects starting from very soon after birth (Quinn, Slater,
Brown, & Hayes, 2001) and throughout the rest of our lives.
We are able recognize tens of thousands of different ob-
jects (Biederman, 1987; Brady, Konkle, & Alvarez, 2011),
which is an extremely important evolutionary tool. It allows
us to rapidly determine whether a token object is, for exam-
ple, edible, dangerous, friendly, and so on (DiCarlo, Zoc-
colan, & Rust, 2012). It is embedded in so many aspects
of our lives that we often don’t give it a second thought. It
provides us a way to compress as much information as pos-
sible with as little cognitive effort as possible (Rosch, 1999).
Humans and animals learn to represent token objects as in-
stances of object categories. The structure of categories has
been explored extensively in cognitive science (see e.g. Rak-
ison & Yermolayeva, 2010). Categories reflect several types
of structures. A central idea is that categories represent cor-
relations between the features of objects. We recognize that,
for example, a token object is a “dog” because it has features
shared with other things we call dogs. But another key idea is
that categories emerge to represent types of objects that have
distinctive properties. Exactly how these two apparently con-
flicting criteria coexist is the subject of much debate (Tyler
& Moss, 2001). In the current paper we will propose a novel
architecture that reconciles them.

342

This category system is hierarchically organized. Basic
level categories like “chair” or “dog” afford the agent a
cognitively efficient representation of the object (Mervis &
Rosch, 1981). Above the basic level we have superordinate
categories. Superordinate categories, like “furniture” or “an-
imal,” are difficult for agents to visualize and they contain
several intra-category differences. For example, a car and a
boat can both be considered in the “vehicles” superordinate
category, but they have far fewer shared properties. In addi-
tion, the important correlations may be determined as much
by culture as by the objects themselves (Liu, Golinkoff, &
Sak, 2001). Below the basic level we have subordinate cat-
egories. This level contains categories which may not con-
tain many functionally actionable differences when compared
against their basic level category, such as “computer chair”
or “pug,” but rather simply provide more detailed informa-
tion. Developmentally, subordinate categories are learned
after basic-level categories (Rosch, Mervis, Gray, Johnson,
& Boyes-Braem, 1976). Finally, beneath the subordinate
level we have the level of token individuals which is able to
differentiate particular, unique instances of categories from
one-another, such as differentiating “a dog” from “my dog,
Charles Barkley.” This level includes spatiotemporal infor-
mation in conjunction with other sensory input and is beyond
the scope of this work. This paper focuses on the subordinate
level of categorization and, to a lesser degree, the basic level.

When a person has minimal experience with a type of ob-
ject!, they tend to focus on the major features shared between
members of that type before investigating the differences. For
example, a child may categorize any animal with four legs as
“dog” (Rakison & Yermolayeva, 2010). A young child can
recognize categories, such as “dog” and “cat,” from a series
of commonly occurring features. Within these categories, the
child is able to pick up on more frequently occurring, albeit
more subtle, combinations of features, such as those shared
by pugs. They also notice other sets of subtle, frequently oc-
curring features within the same category, like those shared
by spaniels. Due to the subtle nature of these regularities, they
weren’t noticed until after the basic-level category was solid-
ified. If we assume that the mechanism which learns basic-
level categories does so by identifying the strongest correla-
tions among object features, then by definition we must seek
a different explanation for the emergence of subordinate-level
categories.

IFor the remainder of the paper we refer to a category or type as
an internal representation of commonly co-occurring features and a
token object as a particular instance of a category.

Most modern work on computational object categorization
has focused on the basic and individual levels (Riesenhuber &
Poggio, 2000; Winn, Criminisi, & Minka, 2005; Galleguillos,
Rabinovich, & Belongie, 2008). However, in recent years, a
significant amount of work has been done in an attempt to
recognize subordinate categories as well (Zhang, Gao, Xia,
Dai, & Li, 2015; Farrell, Oza, Morariu, Darrell, & Davis,
2011; Yang, Bo, Wang, & Shapiro, 2012; Chai, Lempitsky,
& Zisserman, 2013). Most of these models recognise sub-
ordinate categories by analysing the sub-parts of objects and
discovering regularities in the identity and configuration of
these sub-parts. However, the models do not pay so much
attention to the question of when an agent begins to learn
subordinate-level categories within a given basic-level cate-
gory - that is, to the developmental trajectory of subcategory
learning. We propose that there are particular circumstances
which lead to an agent starting to learn subcategories, and that
the process of learning subcategories is implemented through
overtly scheduled cognitive operations that have correlates in
surface language.

Our model of subcategory learning is implemented within
a network called the dominant property assembly network
(DPAN). DPAN is presented with the visual features of a se-
ries of token objects and begins learning internal represen-
tations of those objects’ basic-level categories by identifying
the strongest correlations amongst these features. This might
lead to the emergence of categories “dog” and “cat”, for ex-
ample. However, in order to learn more subtle correlations
identifying subordinate-level categories, we propose that the
strongest correlations should be actively inhibited. We ac-
complish this through a cognitive operation that is a type of
inhibition of return (IOR).

When presented with a token object, DPAN first classifies
the object to activate an internal representation of its cate-
gory. This internal representation is associated with a cer-
tain collection of features which identify dogs, for example.
Having activated this representation, DPAN then inhibits the
associated features, allowing it to focus on what makes this
particular token object different or unusual. This idea of “in-
hibiting the winner” is found in several neural circuits and
is often referred to as “inhibition of return.” It was origi-
nally shown in spatial attention (Posner, Rafal, Choate, &
Vaughan, 2007), where agents were shown to “inhibit ori-
enting towards visual locations which have been previously
attended”. DPAN, however, operates on the domain of prop-
erties rather than spatial locations. The IOR operation can be
understood as an operation that identifies a property of the
currently attended object. The process of identifying proper-
ties is one that is readily reported in language, in predicative
sentences. For instance, in the sentence “The dog is brown”,
the dog is predicated as having the property brown. It is in-
teresting that object categories can feature both referentially
and as predicates: for instance, in the sentence “The dog is
a pug”, “The dog” is a referential expression, but “a pug” is
simply a property that is predicated of the dog (Partee, 1987).

The difference between referential nominals and predicating
nominals is still a matter of debate for linguists; our model
of IOR in category learning will make a suggestion about
this difference. Once training is completed, the network will
have developed representations of object classes as well as
subtypes of those classes. In our example, it would contain
category representations of “dog” alongside “pug,” “beagle,”
“spaniel,” and “corgi.”

The other key novelty in DPAN is the use of per-unit
learning rates. DPAN uses localist units to represent highly
correlated features. The method by which the network learns
these correlations is explained in detail in a later section.
Once a localist unit emerges which strongly and sufficiently
represents a token object’s category, the unit stops learning to
prevent further input from altering its encoded category. To
achieve this end, the network employs per-unit learning rates.
These learning rates are associated with a particular localist
unit, monotonically decreasing, and are based on a measure
of the rate of change of the connections for their respective
unit.

The use of a per-unit local learning rate is well established
in the field of neural networks (Thimm, Moerland, & Fiesler,
1996; Bengio, Simard, & Frasconi, 1994; Becker & Le Cun,
1988; Schiffmann & Geffers, 1993). The notion of a learning
rate which changes based on its objective performance is also
well established (Senior, Heigold, Ranzato, & Yang, 2013;
Renals, Morgan, Cohen, & Franco, 1992). Since the learning
rate is a monotonically decreasing function, it doesn’t cause
a feedback loop. For example, if the learning rate updated
as a function of the gradient of change, then it would simply
raise itself up or lower itself down because the learning rate
directly affects the weights’ gradient of change. By allowing
the weights to update using a constant value, we are able to
more accurately measure the amount of learning each unit is
accomplishing. Then, when the weight change gradient for
that unit is low, we can confidently say that it is because the
unit has completed its learning process and no longer needs
to be updated.

The remainder of this paper is organized as follows. First
we describe DPAN in detail, followed by an introduction to
our experiments and walk through of their results. In the final
section we present our conclusions.

Architecture

DPAN is effectively organized into three separate layers (Fig-
ure 1). The first layer is the rich property complex (RPC)
which contains the raw object properties provided by the sen-
sorimotor system. The next layer is the dominant property
assembly (DPA). The DPA essentially provides a workspace
for computations to be done on the RPC without permanent
modification. When the network is presented with a token ob-
ject, it first copies the information directly from the RPC into
the DPA. Above the DPA layer lies the conditional principal
component analysis (CPCA) units, introduced by O’Reilly
and Munakata (2000), which constitute the localist property

Localist Property Assembly

Dominant Property Assembly |

Rich Property Complex |

Figure 1: An overview of the DPAN architecture.

assembly (LPA) layer. The weights connect each feature in
the DPA layer with each unit in the LPA layer. CPCA pro-
vides the core learning mechanism for the network and is
explained in detail in the next section. The CPCA units in
the LPA layer represent the basic level and subordinate cate-
gories.

CPCA

As we stated previously, the core learning of DPAN is ac-
complished via CPCA. CPCA is an unsupervised artificial
neural network based on Hebbian learning which generates
an internal model of strongly correlated features. The algo-
rithm is explained in detail in (O’Reilly & Munakata, 2000),
but we present a brief overview here as our method differs
slightly from the original implementation. CPCA takes bi-
nary input and generates binary outputs using a competitive
winner-take-all approach. It uses one layer of neurons fully
connected to the input vector. The neurons produce output
by calculating the weighted sum of of their inputs, selecting
the one with the highest output, setting that value to 1 and the
rest to 0. The weights are updated using Equation 1 where
y; is the activity of the unit, x; is the input feature, w;; is the
weight between them, and o is a learning rate, between 0
and 1, of the unit. O’Reilly et al. provide a derivation proving
that w;j = P(y; = 1|x; = 1). In a practical sense, the weight
between a CPCA unit and an input vector increases when the
unit is active and the input is 1, or decreases when the neu-
ron is active and the input is 0. In DPAN, the weights are
connected to the dominant property assembly rather than to
the rich property complex. This allows us to manipulate the
CPCA’s input vector, during inhibition of return for example,
while maintaining a reference to the original input data.

Awij = oy (x;i —wij) M
The Training Algorithm

We start by defining a few terms. A training item is a com-
bination of feature values originally presented to the RPC. A
training episode encompasses all of the processing that is
done on a single training item. If IOR is invoked, the episode

may involve several iterations, i.e. an update of the network’s
weights. An epoch is a collection of training episodes such
that each training item has been presented to the network
once. The maximum number of epochs for each execution
is represented by A and the current epoch is represented by
t. Training typically consists of multiple epochs where the
list of training items has been shuffled each time. It’s also
worth mentioning that there should be at least enough CPCA
units to represent the number of basic level and subordinate
categories in the training data, but fewer than the number of
features in the input vectors. The network is initialized with
psuedorandom weights between 0.4 and 0.6. This allows each
CPCA unit to have a decent chance of learning each of the ob-
jects without any major bias initially. At this point, we also
initialize the learning rate for each unit. At the start of each
training iteration, the RPC is copied into the DPA and the net-
work calculates the activity of the CPCA units using Equa-
tion 2. The network then chooses the unit with the highest
output maxy, selects it as the winner, sets its output to 1 and
the output of all other units to 0. Once the winner is selected,
the weights for that unit w; are updated using equation 1. The
total change in weight is now measured to determine whether
or not to begin IOR and to disable further learning on this
unit. If the gradient of change is steeper than the threshold T,
the iteration is complete and the process begins again.

F= W'z)

To calculate the gradient of change of the weight vector
W at time ¢, DPAN allocates space for a temporary weight
vector, W I (t — 1), updates the weights as normal, and then
subtracts the current weight from the previous one, taking the
absolute values (equation 3). d is now summed up to produce
the scalar value of the total change the weight vector W; un-
derwent (equation 4). This sum is appended to a vector Q j
such that the contents of the vector are the total change in

. L S .
weight for each iteration. €; is calculated such that it con-

- =1
tains the gradient of Q ;. Finally, the last two elements of Q;
are subtracted from one another and if their difference is less
than T, we consider the gradient of change to be minimal.

d = |w;(t) —w;(t—1)| 3)
Wi
Y wi 4)
k=1

If the network determines that there was minimal change,
IOR begins. The DPA is now updated such that X = WY, es-
sentially copying the object prototype from the LPA into the
DPA. The RPC is now subtracted from the DPA in the in-
hibition step, X := 7 — X, and stored back into the DPA. At
this stage, the DPA to now contains the difference between
the prototype object and the actual token object. For exam-
ple, if the token object was “pug” and the winning unit was
“dog,” the DPA would now contain the properties that pugs
have which differentiate them from other dogs.

344

Since the IOR operation can run indefinitely, we must de-
fine stopping conditions. If, after the inhibition operation,
the DPA doesn’t contain anything “interesting,” IOR ceases
and no learning is done. That is, if there is minimal differ-
ence between the token object and the winning unit’s prop-
erty assembly, there is nothing for the network to learn, so it
stops. For example, if the winning unit near-perfectly repre-
sented the token object there would be very little difference
between the RPC and the prototype object. If there is some-
thing interesting left in the DPA, the network learns in the
same way as before: the activity of each unit is calculated, a
winner is selected, and that unit’s weights are updated. The
only differences this time are that the LPA layer performs
a self-inhibition operation which prevents previous winners
from this iteration to win again and that before the weights
are updated, the contents of the DPA are replaced with the
contents of the RPC; the network chooses a winner based
on the unique properties, but then trains on the entire prop-
erty complex. After the weights are updated, the gradient of
change for the new winning unit is calculated. If the change
was large, the inhibition loop finishes and the training itera-
tion for this input is complete. Otherwise, the loop repeats,
allowing more interesting features to bubble up.

The initial result of training (Stage 1) is that the coarse-
grained object categories are learned. At this stage, when
an object is presented to the network, the winning LPA unit
represents a supertype. Now the network starts to systemati-
cally inhibit the units representing coarse-grained types after
they are activated, allowing other units in the network to de-
velop representations of finer-grained subtypes. When these
are first learned (Stage 2), the network activates first a unit
representing a supertype, and then (after IOR) a unit repre-
senting a subtype. After even more training, the subtype units
learn better representations of the training objects than the su-
pertype units, and the network activates a subtype represen-
tation as its first response (Stage 3). In linguistic terms, the
response at Stage 1 could be rendered “that is a dog”, at Stage
2, “That dog is a pug”, and at Stage 3, “That is a pug”.

Experimental Setup
Input Data

DPAN was trained on a set of binary input vectors, each rep-
resenting a token object containing 36 features. Each element
of the vector encodes a distinct, abstract property of the token
object. When a bit is set to 1 it indicates the presence of a
property and when it is set to 0 it indicates the absence of that
property. Each input vector represents one of four cat or four
dog breeds. Figure 2 describes the layout of the input bits and
provide examples of token individuals. All four breeds of dog
shared the same set of “generic dog” properties and all four
breeds of cat shared the same set of “generic cat” properties.
There is an overlap of three bits between these two sets rep-
resenting properties shared between all dogs and cats. The
next 16 bits represent breed-specific properties, e.g. a wrin-
kled face and short snout for a pug. Each breed is identified

0 6 9 15 23 31

Dog Shared | Cat Dog Breed Cat Breed Idiosyncratic

(a) A token pug

0 6 9 15 23 31

Dog Shared | Cat Dog Breed Cat Breed Idiosyncratic

(b) A token tabby

Figure 2: Two vectors representing token individuals. Red
indicates a value of 1 and blue a value of 0.

by which two of those bits are active, so there are eight bits for
the dog breeds (pug, beagle, spaniel, and corgi) and eight bits
for the cat breeds (tabby, maine coon, siamese, and persian).
Finally, there is a set of five idiosyncratic property bits which
are each uniformly randomly set to O or 1 for each token in-
dividual. These bits represent weak, uncorrelated properties,
a unique color or a marking of some kind for example.

Training Runs

DPAN was trained on a set of 5000 input vectors. Each of the
eight breeds were equally distributed in the training set. The
network was trained using the following input parameters:

e |y:=25

e 0;:=0.02vVjcy
e 7:=0.000001

e A:=500

These parameters were selected based on empirical evidence
showing they provide the best results for this particular
dataset. The network produces output at arbitrary epoch and
input intervals. The output of the network is a heat-map of
the weight matrix, again where red indicates a value of 1 and
blue a value of 0. The column vectors of the weight matrix
represent the CPCA units and the row vectors represent the
input features.

Results

We present the results of the execution by examining three
key stages of training. Early in training, DPAN learns local-
ist representations of the basic-level categories for dog and
cat, as shown in Figure 3a where units 23 and 16 repre-
sent dog and cat respectively. The basic-level units repre-
sent the highly correlated properties found in the dog and cat
breeds while also maintaining the weak correlations of each
subordinate-level category. For example, the network’s lo-
calist dog unit encapsulates the common features associated
with each dog it has been exposed to, but also maintains weak
connections to the subtle correlations for each dog breed it
has seen. At this stage of training, DPAN’s each dog or cat
it sees will activate its corresponding basic-level localist unit
and reinforce these connections.

Weights Weights

10

(b)

15 20

10

(a)

15 20

Weights Weights

10

15

20

25

30

35

10

()

15 20

10

(d)

15 20

Figure 3: DPAN results: (a) aDPAN weight matrix during the first stage of training when basc-level categories are formed. (b)
bDPAN weight matrix during the second stage of training. Subordinate-level units are beginning to emerge as a result of the
IOR operation. (c) cDPAN weight matrix after the final stage of training. Each subordinate-level and basic-level category is
well represented by at least one unit in the LPA layer. (d) dModified DPAN without IOR operation after 100 epochs.

The next stage of training occurs after learning in the dog’
and ’cat’ units stabilizes. At this point, whenever a cat or dog
is presented, DPAN executes an IOR operation and chooses
another unit to represent the 'unusual’ features of the cat or
dog that has just been classified. The results of this stage of
training are illustrated in Figure 3b. At this point, there are
CPCA units that represent subtypes of dogs and subtypes of
cats. For example, unit 23 still represents the *dog’ category
while unit 17 represents the ’corgi’ subcategory.

Finally, after each subordinate-level unit has been exposed
to enough token objects, DPAN reaches its last stage of train-
ing. During this stage, when the network is exposed to a token
object it will simply activate the corresponding subordinate-
level localist unit. Note as well that the basic-level units re-
main intact. If a new subordinate-level category is presented
to the network at this point, i.e. one which has no localist rep-
resentation, the basic-level unit will still activate.

In order to illustrate the importance of the IOR operation,
an experiment was carried out wherein IOR was disabled dur-
ing execution. The results of this experiment are presented in
Figure 3d. As anticipated, after 100 epochs the network is
still only able to learn the basic-level categories. Without the
inhibition of return operation, the network is unable to learn
the subtle differences that define the subordinate-level cate-
gories.

A Possible Account of the Difference Between
Referential and Predicative Nominals

While describing the execution of DPAN, we separated it
into three distinct stages. As discussed previously, these
three stages of training model a human acquiring expertise
in a given category. In the first stage, the network corre-
sponds to referential uses of basic-level categories: “dog” and

346

3

cat.” Stage 2 corresponds to predicative sentences, featur-
ing subordinate-level categories as predicates: “The dog is a
pug.” We also posit that the use of the word “is” represents
the inhibition operation that allows DPAN to learn these fine
grained categories. That is, when describing the token ob-
ject, a person first activates their internal representation of
the object’s basic level category (“The dog...”), then inhibits
that (“..is a...”) to focus on the subtle correlations of the
subordinate-level category (““...pug.”). Stage 3 corresponds
to referential uses of subordinate categories. The agent no
longer actively inhibits the basic-level category and instead
initially activates its internal representation of the token ob-
ject’s subordinate-level category (“The pug.”).

Conclusions and Future Work

Members of basic-level categories contain many highly-
correlated features. After enough experience we can in-
hibit these more obvious connections, allowing us to hone
in on more subtle correlations and to create finer-grained
subordinate-level categories. The dominant property assem-
bly network is able to learn basic-level and subordinate-level
categories in the same manner. DPAN learns the strong cor-
relations that exist in the data to create a representations
of basic-level categories. Once these have been encoded,
DPAN then uses its inhibition of return operation to learn the
dataset’s weaker correlations, generating new representations
of subordinate-level categories. After enough experience,
the subordinate-level categories win out over their basic-level
counterparts, mimicking human categorization.

The next step for DPAN is to integrate it into a compu-
tational vision system, allowing it to train on real-world im-
age data. DPAN would also benefit from an additional su-

pervised network to assign names to its category representa-
tions. DPAN could potentially be used in a large-scale image
recognition system to create categories and subcategories of
any number of objects.

References

Becker, S., & Le Cun, Y. (1988). Improving the convergence
of back-propagation learning with second order methods.
In Proceedings of the 1988 connectionist models summer
school (pp. 29-37).

Bengio, Y., Simard, P., & Frasconi, P. (1994, January). Learn-
ing long-term dependencies with gradient descent is diffi-
cult. IEEE Transactions on Neural Networks, 5(2), 157-66.
doi: 10.1109/72.279181

Biederman, I. (1987). Recognition-by-components: a the-
ory of human image understanding. Psychological Review,
94(2), 115.

Brady, T., Konkle, T., & Alvarez, G. (2011). A review of
visual memory capacity: Beyond individual items and to-
ward structured representations. Journal of Vision, 11(5),
1-34.

Chai, Y., Lempitsky, V., & Zisserman, A. (2013, Decem-
ber). Symbiotic Segmentation and Part Localization for
Fine-Grained Categorization. In Iccv 2013 (pp. 321-328).
IEEE. doi: 10.1109/ICCV.2013.47

DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012, February).
How does the brain solve visual object recognition? Neu-
ron, 73(3), 415-34. doi: 10.1016/j.neuron.2012.01.010

Farrell, R., Oza, O., Morariu, V. 1., Darrell, T., & Davis,
L. S. (2011, November). Birdlets: Subordinate catego-
rization using volumetric primitives and pose-normalized
appearance. In Iccv 2011 (pp. 161-168). IEEE. doi:
10.1109/ICCV.2011.6126238

Galleguillos, C., Rabinovich, A., & Belongie, S. (2008,
June). Object categorization using co-occurrence, loca-
tion and appearance. In Cvpr 2008 (pp. 1-8). IEEE. doi:
10.1109/CVPR.2008.4587799

Liu, J., Golinkoff, R. M., & Sak, K. (2001, January). One
cow does not an animal make: Young children can extend
novel words at the superordinate level. Child Development,
72(6), 1674-94.

Mervis, C. B., & Rosch, E. (1981, January). Categorization
of Natural Objects. Annual Review of Psychology, 32(1),
89-115. doi: 10.1146/annurev.ps.32.020181.000513

O’Reilly, R. C., & Munakata, Y. (2000). Computational Ex-
plorations in Cognitive Neuroscience: Understanding the
Mind by Simulating the Brain. MIT Press.

Partee, B. (1987). Noun phrase interpretation and type-
shifting principles. Studies in discourse representation the-
ory and the theory of generalized quantifiers, 8, 115-143.

Posner, M. 1., Rafal, R. D., Choate, L. S., & Vaughan, J.
(2007, August). Inhibition of return: Neural basis and
function. Cognitive Neuropsychology, 2(3), 211-228. doi:
10.1080/02643298508252866

347

Quinn, P. C., Slater, A. M., Brown, E., & Hayes, R. A. (2001,
June). Developmental change in form categorization in
early infancy. British Journal of Developmental Psychol-
ogy, 19(2), 207-218. doi: 10.1348/026151001166038

Rakison, D. H., & Yermolayeva, Y. (2010, November). Infant
categorization. Wiley Interdisciplinary Reviews: Cognitive
Science, 1(6), 894-905. doi: 10.1002/wcs.81

Renals, S., Morgan, N., Cohen, M., & Franco, H. (1992).
Connectionist probability estimation in the DECIPHER
speech recognition system. In Icassp-92 (Vol. 1, pp. 601—
604 vol.1). IEEE. doi: 10.1109/ICASSP.1992.225837

Riesenhuber, M., & Poggio, T. (2000, November). Models
of object recognition. Nature neuroscience, 3 Suppl, 1199—
204. doi: 10.1038/81479

Rosch, E. (1999). Principles of categorization. Concepts:
Core Readings, 189-206.

Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., &
Boyes-Braem, P. (1976, July). Basic objects in natural
categories. Cognitive Psychology, 8(3), 382-439. doi:
10.1016/0010-0285(76)90013-X

Schiffmann, W. H., & Geffers, H. W. (1993, January).
Adaptive control of dynamic systems by back propaga-
tion networks. Neural Networks, 6(4), 517-524. doi:
10.1016/S0893-6080(05)80055-3

Senior, A., Heigold, G., Ranzato, M., & Yang, K. (2013). An
empirical study of learning rates in deep neural networks
for speech recognition. In Icassp 2013 (pp. 6724-6728).

Thimm, G., Moerland, P., & Fiesler, E. (1996, February).
The Interchangeability of Learning Rate and Gain in Back-
propagation Neural Networks. Neural Computation, 8(2),
451-460. doi: 10.1162/neco.1996.8.2.451

Tyler, L., & Moss, H. (2001, June). Towards a dis-
tributed account of conceptual knowledge. Trends in Cog-
nitive Sciences, 5(6), 244-252. doi: 10.1016/S1364-
6613(00)01651-X

Winn, J., Criminisi, A., & Minka, T. (2005). Object catego-
rization by learned universal visual dictionary. In Iccv’05
volume 1 (Vol. 2, pp. 1800-1807 Vol. 2). IEEE. doi:
10.1109/ICCV.2005.171

Yang, S., Bo, L., Wang, J., & Shapiro, L. G. (2012).
Unsupervised Template Learning for Fine-Grained Object
Recognition. In F. Pereira, C. J. C. Burges, L. Bottou,
& K. Q. Weinberger (Eds.), Advances in neural informa-
tion processing systems 25 (pp. 3122-3130). Curran Asso-
ciates, Inc.

Zhang, L., Gao, Y., Xia, Y., Dai, Q., & Li, X. (2015,
January). A fine-grained image categorization system by
cellet-encoded spatial pyramid modeling. [EEE Trans-
actions on Industrial Electronics, 62(1), 564-571. doi:
10.1109/TIE.2014.2327558

