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Abstract

Liquid crystal elastomers (LCEs) are elastomeric networks with anisotropic mono-
mers that reorient in response to applied loads, and in particular, thermomechanical
loads. LCE complex microstructures translate into complex behaviors, such as soft elas-
ticity, rate-dependency, and hysteresis. In this work, we developed a three-dimensional
finite element implementation for monodomain LCEs, with the material modeled as
a finite deformation viscoelastic network with a viscous director. The formulation is
designed so that the director field can be modeled as an internal variable. Unique to
this class of materials is that their deformation response function depends on the full
deformation gradient and not just the right-stretch tensor. This results in the material
tangent losing its ‘usual’ symmetry properties. Accordingly, this makes the use of a
first Piola-Kirchhoff finite element formulation advantageous. We utilize this frame-
work to examine a number of nuances associated with the simulation and design of
LCE based systems. In particular, we investigate in some detail the importance of a
careful characterization of an LCE’s initial director field. Via simulations of separate
tension and compression experiments, we highlight the possibility of incorrect predic-
tions when even small perturbations to initial conditions occur. The simulations are
also used to illustrate the goodness of the model in replicating simple and complex ex-
perimental results, including the first-of-their-kind buckling-like column compression
and thick-walled balloon inflation simulations.
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†beijunshen@jhu.edu
‡chris.yakacki@ucdenver.edu
§vicky.nguyen@jhu.edu
¶Corresponding author, s g@berkeley.edu

1



1 Introduction

Nematic liquid crystal elastomers (LCEs) are materials that exhibit a mixture of polymeric
behavior and liquid crystalline behavior. They are crosslinked polymeric networks where
the individual polymer chains are formed of stiff nematic liquid crystalline molecules. At
low temperatures, the liquid crystal molecules align due to energetic effects, causing their
corresponding chains to align in a dominant orientation called the director, resulting in an
oriented macroscopic behavior. At higher temperatures, entropic effects dominate and the
liquid crystal molecules randomly orient themselves, leading to random chain orientations
and an overall isotropic state. Other types of liquid crystal ordering are possible (see e.g.
Sonnet and Virga, 2012) but herein we only consider nematic LCEs. Furthermore, depend-
ing on whether the material was aligned during synthesis, the nematic network can form
monodomain or polydomain microstructures. For this work, we focus on monodomain LCEs
where the molecule/chain orientation at a continuum point can be represented by a single
unit vector, i.e. the director.

The behavior described above is not too dissimilar from what is seen in strain-crystallizing
elastomers (see e.g., Gent, 1954; Gaylord, 1976; Gaylord and Lohse, 1976; Toki et al., 2005;
Mistry and Govindjee, 2014). However, LCEs also display the unique ability to re-orient
the director at constant order. This leads to the defining mechanical feature of LCEs,
which is without a doubt, soft elasticity. This phenomenon occurs when the material is
subjected to stretching perpendicular to a uniform director field while localized shear strains
are also kinematically permissible. In this setting, which occurs in simple uniaxial tension
experiments, the material stretches with near-zero force as the director field rotates to align
with the stretching direction. Only after the director field fully aligns with the load does
the stress appreciably increase. The physics behind this phenomenon has been explained
and well modelled using the so-called neo-classical free energy, first proposed by Bladon
et al. (1993). Further developments in the elastic regime include the mathematical analysis
papers of DeSimone and Dolzmann (2002) and Conti et al. (2002) who introduced the all-
important quasi-convex relaxation of the neo-classical model; see also Warner and Terentjev
(2003), Fried and Sellers (2004), and Agostiniani and DeSimone (2012), among others, for
additional extensions of these models.

From a computational point of view for finite deformations, there are some works that
investigate the thermomechanical properties of LCEs using finite elements – likely the first
being the work of Conti et al. (2002) who applied the quasi-convexified version of the neo-
classical model coupled with a stabilizing neo-Hookean energy within a finite element setting;
it should be noted that this framework treats the material director in a non-explicit effective
way. More recently, Zhang et al. (2019) formulated the governing equations for monodomain
LCE boundary value problems using a Rayleigh dissipation function to account for viscous
director and network evolution, similar to Sonnet and Virga (2012), and solved the governing
equations using plane stress finite elements. We note, however, that LCEs possess viscoelastic
behavior; they are not fluids (see Azoug et al., 2016; Linares et al., 2020). Though our focus is
monodomain materials, we note that for polydomain materials, Lee et al. (2023) has recently
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proposed a model with a viscously evolving microstructure coupled to a Kelvin-Voigt stress
response, along with a finite element implementation for solving boundary value problems.

Astonishingly, aside from the torsion and bi-axial stretching examples in Lee et al. (2023),
most of LCE finite element literature only simulates the tension of LCE samples (whose
results can be predicted using simple material point calculations). Other works linearize
the free energy models and are thus not applicable at the large deformations seen in experi-
ments and applications. Further, most simulation works appear to use explicit time-stepping
schemes (useful only for transient wave propagation situations) or do not use consistent al-
gorithmic tangents, thus losing the quadratic convergence property of Newton’s method,
which is very desirable for quasi-static situations or those involving only structural level dy-
namics. Our aim here is to present in some detail a general-purpose monodomain viscoelas-
tic LCE model and its finite element implementation for the purposes of solving complex
three-dimensional boundary-value problems. Furthermore, our finite element formulation is
aimed at implicit time integration and/or quasi-static problems and the proper attainment
of quadratic convergence for computational efficiency. The choice of the stress measure and
the frame over which the boundary value problem is formulated will also play an important
role with respect to efficiency. In particular, we highlight the fact that it is more efficient
to utilize an element formulated in the first Piola-Kirchhoff form when working with LCE
material models.

We first present the theoretical framework and the continuum equations to be solved, closely
following Wang et al. (2022). It is noted that this model incorporates viscous director rota-
tion as well as viscoelastic network response and is built upon the equilibrium neo-classical
concept and its generalization as developed in DeSimone and Teresi (2009). We detail the
finite element formulation most well suited to these models and discuss the nuances of solving
for the local stress updates. We then use our finite element implementation to study intricate
issues associated with solving boundary value problems for LCE systems. In particular, we
take up the fact that the pointwise initial director field can not be fully specified experimen-
tally. Thus it must be interpreted as a stochastic field and this has paramount bearing on
whether or not simulations produce physically representative responses. This is done for the
common tension case, where we also consider the unloading process – something which is not
normally seen in the literature. We follow this by considering what occurs in compression,
again a case that is not often seen in the literature. Here we also consider comparisons to ex-
perimental data and conjecture the need for a nonlinear dependency of director viscosity on
deformation. Our final example is the inflation of a cylindrical LCE balloon, an experiment
conducted by He et al. (2020). The experiment demonstrates anomalous inflation behavior
and the ability of the model and numerical algorithm to reproduce these behaviors.

2 Problem Statement

Monodomain nematic LCEs are materials that can be described by two global kinematic
degrees of freedom. The first is the classical displacement field u, while the second is a
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director field d describing the microstructure of the material. However, for the class of
problems we are interested in, the director may be treated as an internal variable as long
as no director-conjugate actions are applied and director-gradient effects are omitted (see
Wang et al. (2022) for technical details on these assumptions).

2.1 Governing equations

Given a macroscopic continuum body with reference configuration B, its boundary ∂B may
be split into two parts ∂uB and ∂TB where displacement boundary conditions and traction
boundary conditions are specified respectively. The actions applied on the body consist of
a body force (per unit mass) B in B, a surface traction (per unit reference area) T on ∂TB,
and an imposed motion φ̄ on ∂uB; see Fig. 1. The strong form of the governing equation,
balance of linear momentum, reads

Div[P] +B = ρ0ü , (1)

where P is the first Piola-Kirchhoff stress, Div is the referential divergence operator, ρ0 is
the material density per unit reference volume, and u is the material displacement.

B

X

n
T

B

d0

∂  

∂ Bu

TB
Mesogen

Figure 1: Reference body with imposed tractions and body forces. Material points are
described by an initial director field d0 which represents the expected local orientation of
liquid crystal mesogens (cyan lines) connected by flexible spacers (black curves).

We wish to solve the mechanical problem whose weak form statement is:

Find φ ∈ S = {φ(X) | φ(X) = φ̄(X) for X ∈ ∂uB} such that∫
B
[P : Grad δφ+ ρ0ü · δφ] dV =

∫
B
ρ0B · δφ dV +

∫
∂TB

T · δφ dA ∀ δφ ∈ V , (2)

where δφ is a function in the set of admissible variations V = {δφ(X) | δφ(X) = 0 for X ∈
∂uB}. All functions in V and S are assumed to be properly weakly differentiable in B.
The weak form (2) will be used to compute the incremental solutions in a time/load stepping
procedure. Due to the peculiarities of LCE models, we present a finite element formulation
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directly in first Piola-Kirchhoff form, as it presents some simplifying advantages – espe-
cially considering that LCE free energies can not be strictly written in terms of symmetric
deformation measures, such as the right and left Cauchy-Green deformation tensors. The
first Piola-Kirchhoff form is also noted to be necessary for the case of LCE models that
incorporate director gradient effects (something that we do not explicitly consider in this
work).

2.2 The Constitutive Equations

In the model of Wang et al. (2022), which we use here, the viscoelasticity of the network is
introduced by the Sidoroff (1974) multiplicative kinematic split of the deformation gradient
into an elastic part and a viscous part:

F = Fe(k)Fv(k) k = 1, . . . , N , (3)

where one can allow for multiple (N) viscoelastic relaxation mechanisms. In what follows,
we consider only the single relaxation case to keep the presentation as simple as possible,
and thus we drop the superscript (k) without loss of generality.

Accompanying (3) is the additive split of the free energy into an equilibrium part and a
non-equilibrium part (similar to a standard linear solid):

Ψ (F,Fe,d) = Ψeq (F,d) + Ψneq (F
e,d) . (4)

The evolution of the internal state is governed by a set of coupled ordinary differential
equations:

Ḟv =
1

ηN
(Fe)⊤

∂Ψneq

∂Fe
(Fe,d)Fv , (5)

ḋ = Wd− 1

ηD
(1− d⊗ d)

∂Ψ

∂d
(F,Fe,d) , (6)

where ηN > 0 and ηD > 0 are the network and director viscosities respectively, and W is
the skew part of the spatial velocity gradient. Note that (5) and (6) satisfy the physical
requirements of frame invariance and non-negative entropy production. The first Piola-
Kirchhoff stress in this model is given by the relation

P = sym

(
∂Ψeq

∂F
(F,d)F⊤ +

∂Ψneq

∂Fe
(Fe,d) (Fe)⊤

)
F−⊤ . (7)

Remark 1. The concrete forms that we will later use for Ψeq and Ψneq are the neo-classical

ΨNC (F,d) = µΨ1 (IN)− µ log J + ΛU (J) (8)

and neo-Gent
ΨNG (F,d) = µΨ2 (IN ; Jm)− µ log J + ΛU (J) . (9)
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models. Here,

Ψ1 (I) =
1

2
I , (10)

Ψ2 (I; Jm) = −Jm
2

log

(
1− I − 3

Jm

)
, (11)

the (small deformation) shear and Lamé moduli are µ and Λ, respectively, J = detF, Jm
is the Gent locking parameter, U(J) = (J2 − 1− 2 log J) /4, IN = tr

(
Fl0F

⊤l−1
)
, and the

so-called step-length tensors are

l0 = 1+ (r − 1)d0 ⊗ d0 (12)

and

l−1 = 1+

(
1

r
− 1

)
d⊗ d . (13)

In (12) and (13), the initial and current directors are d0 and d respectively and r is the
anisotropy ratio that defines the degree of the orientation of the chains.

Remark 2. Considering only the equilibrium energies, it is noted that the dependence in the
neo-classical or neo-Gent models upon their arguments is via the mixed invariants

tr(F⊤F), d · bd, d0 ·Cd0, and d · Fd0, (14)

where b and C are the left and right Cauchy-Green deformation tensors respectively. The
presence of the last invariant implies that the rotation of the polar decomposition does not
disappear as one sees in “ordinary” materials (e.g. hyperelastic materials).

Remark 3. It should be observed that d·Fd0 is frame invariant, since the director transforms
under changes of observer frame as d∗ = Qd and the deformation gradient as F∗ = QF for
a given rotation Q. However, the director field is independent of the deformation field and
thus all of F, not just the right-stretch, plays a role in the constitutive response.

3 Constitutive discretization

Given a solution to (2) at time tn, the classic question is to find the solution to the same
equation at time tn+1. Accordingly, we must compute Pn+1, the first Piola-Kirchhoff stress
at tn+1:

Pn+1 = sym

(
∂Ψeq

∂F
(Fn+1,dn+1)F

⊤
n+1 +

∂Ψneq

∂Fe

(
Fe

n+1,dn+1

) (
Fe

n+1

)⊤)
F−⊤

n+1 . (15)

In what follows, we omit discussion of the inertial term as its treatment is standard. Fur-
thermore, to avoid congesting this section with definitions, some of the notation and symbols
used are defined in Appendix A.
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3.1 Constitutive evaluation

In order to compute the stress (15) and its derivative with respect to the current deformation
gradient Fn+1, the internal variables must be computed. In the standard strain-driven finite
element setting, the current deformation gradient Fn+1 (and the prior history) is known and
the quantities of interest (at every Gauss point) are Pn+1, F

e
n+1, F

v
n+1, and dn+1. This is

done by applying a Backward Euler numerical scheme to (5) and (6):

Fv
n+1 − Fv

n −
∆tn
ηN

(
Fe

n+1

)⊤ ∂Ψneq

∂Fe

(
Fe

n+1,dn+1

)
Fv

n+1 = 0 , (16)

d̂n+1 − dn −∆tnWn+1dn+1 +
∆tn
ηD

(1− dn+1 ⊗ dn+1)
∂Ψ

∂d

(
Fn+1,F

e
n+1,dn+1

)
= 0 , (17)

d̂n+1 − dn+1

∥∥∥d̂n+1

∥∥∥ = 0 , (18)

where ∆tn is the nth time step size. Note that (6) is discretized into (17) where we have
introduced d̂n+1 as an intermediate un-normalized director to account for the fact that
d ∈ S2, the unit sphere. Accordingly, we introduce (18) as a projection back onto S2.
The equations for the internal variables are nonlinear and are therefore solved using a local
Newton-Raphson scheme at the Gauss point level.

3.1.1 Local nonlinear solution

Relations (16)-(18) together with the multiplicative split of the deformation gradient con-
stitute 2 tensorial and 2 vectorial relations that must be solved for Fe

n+1, F
v
n+1, dn+1, and

d̂n+1, given Fn+1 in a finite element setting. We collect these in a single residual g(x) of
dimension 24 using the following definitions:

G1 (F
v,Fe,d) = Fv − Fv

n −
∆tn
ηN

(Fe)⊤
∂Ψneq

∂Fe
(Fe,d)Fv , (19)

G2 (F
v,Fe;F) = F− FeFv , (20)

g3

(
Fe, d̂,d;F

)
= d̂− dn −∆tnWd+

∆tn
ηD

(1− d⊗ d)
∂Ψ

∂d
(F,Fe,d) , (21)

g4

(
d̂,d

)
= d̂− d

∥∥∥d̂∥∥∥ , (22)

where
∆tnW = skw

(
1− FnF

−1
)
, (23)

with the composite residual given as

g (x;F) =


(G1 (F

v,Fe,d))vec
(G2 (F

v,Fe;F))vec
g3

(
Fe, d̂,d;F

)
g4

(
d̂,d

)
 , (24)
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where x =
(
(Fv)⊤vec , (F

e)⊤vec , d̂
⊤
,d⊤

)⊤

∈ R24 collects all the internal variables in a single

vector; see Appendix A for how we map the components of tensors to vectors. The values of

the internal variables xn+1 =
(
(Fv

n+1)
⊤
vec, (F

e
n+1)

⊤
vec, d̂

⊤

n+1,d
⊤
n+1

)⊤

corresponding to Fn+1 are

the solution of
g (x;Fn+1) = 0 . (25)

Remark 4. Note that even though we can solve fewer equations if we use (20) to substitute
Fe = F (Fv)−1 into (19) and (21), we may run into trouble if one of the iterates for Fv is
singular. The augmented set of equations avoids this problem. A similar point can also
be made with respect to solving (22) for d and substituting into the other expressions; the
utility of not doing so comes in terms of substantial simplifications in computing derivatives
and robustness with respect to non-physical corner cases that can appear during nonlinear
iterations.

3.1.2 Local Newton-Raphson Tangent

To solve (25) for x, the derivative of g with respect to x is required for Newton-Raphson
iterations. Accordingly we require derivatives of the sub-residuals of g with respect to the
elements of x. We collect these in a 24× 24 matrix:

∂g

∂x
(x;Fn+1) =



(∂G1/∂F
v)9×9 (∂G1∂F

e)9×9 09×3 (∂G1/∂d)9×3

(∂G2/∂F
v)9×9 (∂G2/∂F

e)9×9 09×3 09×3

03×9 (∂g3/∂F
e)3×9 ∂g3/∂d̂ ∂g3/∂d

03×9 03×9 ∂g4/∂d̂ ∂g4/∂d


. (26)

The subscripts on the entries identify the sizes of the blocks under particular tensor-vector
mappings. The computation of the blocks is straight-forward but intricate and the detailed
expressions are listed in Appendix B.

Remark 5. Applying a Newton-Raphson method, we can solve (25) for the internal variables
xn+1 with local quadratic convergence. In our implementation, we augment the standard
Newton procedure with a simple line search that recursively bisects the search step should
the local residual grow more than 10% of the initial value. While this is not a guarantee of
local convergence, it provides substantial robustness to the local iterator.

3.2 Element Residual

Since the director is treated as an internal variable, we only have three displacement degrees
of freedom at each node in a three-dimensional problem. Employing standard finite element
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procedures, see e.g. Zienkiewicz et al. (2013, 2014), we express the displacement field for an
element e which occupies Ωe

0 ⊂ B with NEN nodes as

ue =
NEN∑
i=1

Niu
e
i =

[
N113×3 N213×3 . . . NNEN13×3

] 
ue

1

ue
2

. . .
ue

NEN

 = Nûe , (27)

where Ni is the shape function corresponding to node i, ue
i is the displacement of node i,

and 13×3 is the 3× 3 identity matrix. Applying the same approximation to the test function
in (2), we get

δφ = Nδφ̂ . (28)

Adopting the tensor-to-vector mapping from (46), the gradient of (28) is

(Grad δφ)vec =

δφ,1

δφ,2

δφ,3

 =

N,1δφ̂
N,2δφ̂
N,3δφ̂

 = Bδφ̂ , (29)

where the sparse 9× 3NEN gradient operator

B =
[
B1 B2 . . . BNEN

]
, (30)

within which

Bi =

Ni,113×3

Ni,213×3

Ni,313×3

 . (31)

Therefore, the integrand at time tn+1 in (2) may be computed as

Pn+1 : Grad δφ = (Pn+1)vec · (Grad δφ)vec = δφ̂⊤B⊤ (Pn+1)vec . (32)

Accordingly, the time tn+1 element residual is computed as:

re
n+1 =

∫
Ωe

0

B⊤ (Pn+1)vec dV . (33)

3.3 Element Tangent

To compute the element tangent, we must consider the directional derivative of (32) with
respect to the nodal displacements in the direction of an increment ∆u:

∆Pn+1 : Grad δφ = Grad δφ :

(
dPn+1

dFn+1

: Grad∆u

)
= (Grad δφ)vec ·

(
dPn+1

dFn+1

)
9×9

(Grad∆u)vec

= δφ̂⊤B⊤

(
dPn+1

dFn+1

)
9×9

B∆û .

(34)
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The total derivative of the first Piola-Kirchhoff stress with respect to the current deformation
gradient Fn+1 is composed of three terms, the last two of which account for the integration
of the internal variables:(

dPn+1

dFn+1

)
iAjB

=

(
∂Pn+1

∂Fn+1

)
iAjB

+

(
∂Pn+1

∂Fe
n+1

)
iApα

(
∂Fe

n+1

∂Fn+1

)
pαjB

+

(
∂Pn+1

∂dn+1

)
iAp

(
∂dn+1

∂Fn+1

)
pjB

.

(35)

The first term, the partial derivative of (15) with respect to Fn+1, is(
∂Pn+1

∂Fn+1

)
iAjB

= symik (AiDjB (Fn+1)kD +QiBδkj)
(
F−1

n+1

)
Ak

− (Pn+1)iB
(
F−1

n+1

)
Aj
, (36)

where we have made use of the symbols Q and A defined in (51) and (52) in Appendix B,
and the operator symik implies symmetrization with respect to the ik indices. Similarly, the
partial derivative of (15) with respect to Fe

n+1 is(
∂Pn+1

∂Fe
n+1

)
iApα

= symik

(
Ae

iβpα

(
Fe

n+1

)
kβ

+Qe
iαδkp

) (
F−1

n+1

)
Ak

. (37)

The symbols Qe and Ae are defined in (51) and (52) in Appendix B. And finally, the partial
derivative of (15) with respect to dn+1 is(

∂Pn+1

∂dn+1

)
iAj

= symik

(
MiDj (Fn+1)kD +Me

iαj

(
Fe

n+1

)
kα

) (
F−1

n+1

)
Ak

. (38)

The symbols M and Me are defined in (53) in Appendix B.

Lastly, to complete the computation of the total derivative of the stress with respect to the
current deformation gradient Fn+1, the derivatives of the internal variables dn+1 and Fe

n+1

with respect to Fn+1 are needed. This is computed by taking the total derivative of (25)
with respect to Fn+1 and applying the chain rule:(

∂xn+1

∂Fn+1

)
24×9

= −
(
∂g

∂x
(xn+1;Fn+1)

)−1(
∂g

∂F
(xn+1;Fn+1)

)
24×9

. (39)

From (39), one can extract the necessary terms to compute (35). Also note that the required
derivatives are known from the evaluation of the stress and thus no additional computations
are required.

Finally, the element tangent for non-linear iterations is

Ke
n+1 =

∫
Ωe

0

B⊤

(
dPn+1

dFn+1

)
9×9

B dV . (40)
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Remark 6. As is not always seen in the LCE literature, the necessary tangent operator
is computed with respect to the actual integration algorithm used to update the internal
variables and which ensures global (asymptotic) quadratic convergence.

Remark 7. Formulating (33) and (40) in first Piola-Kirchhoff format reduces the necessary
computations. If one uses the more traditional forms that operate on the Kirchhoff stress
and its variation, one is faced with numerous extra computational steps. In particular, to
compute the Kirchhoff stress and its variation, we must compute the first Piola-Kirchhoff
stress and its variation first. Then these tensors must be “pushed forward” to the current
configuration. This extra work provides no downstream computational advantages – it is
completely unnecessary. Appendix C provides further details.

4 Numerical Examples

The results discussed below were obtained using an implementation of the theory just dis-
cussed in the general purpose code FEAP by Taylor and Govindjee (2020). All the simula-
tions’s time steps converge quadratically using Newton’s method with a line search. Visu-
alizations were generated within Paraview (Ahrens et al., 2005). Even though the material
is rather incompressible, we can utilize standard displacement based elements due to the
lack of material confinement in our examples. In general, however, the element formulation
should be adapted to employ F-bar or similar methods; see e.g. Zienkiewicz et al. (2014) and
references therein.

Remark 8. We are not guaranteed the existence of solutions prior to running the simulations.
In particular in the zero-viscosity limit, the neo-classical model upon which we base our
computations generates a variational minimization problem whose underlying energy density
is not quasiconvex – a necessary condition for the existence of minimizers (Dacorogna, 2008;
DeSimone and Dolzmann, 2002). Nonetheless, at finite viscosities we observe solutions that
are stable and show proper mesh convergence.

4.1 Extension and unloading of an LCE specimen

For our first example, we simulate the classic LCE tension experiment. This example involves
a material displaying soft elasticity and highlights unique issues that arise in boundary value
problems as compared to material point calculations.

4.1.1 Material

The material model for our tension test will be a neo-Gent model (9) for both the equilibrium
and non-equilibrium energies, and the material parameters are obtained from a parameter
fitting done by Wang et al. (2022) to the data of Linares et al. (2020). As reported by Wang
et al. (2022), the equilibrium shear modulus µeq = 0.25 MPa, the non-equilibrium shear
modulus µneq = 1.25 MPa, the Gent stiffening parameter Jm = 5.7 (for both energies), and
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Figure 2: Finite element mesh of the LCE specimen with the director shown as red arrows.

the anisotropy/step-length ratio r = 5.89. Furthermore, the initial director viscosity was
found to be ηD = 40 MPa · s and the network viscosity was found to be ηN = 800 MPa · s.
The director viscosity in Wang et al. (2022) was nonlinear and assumed a value of 16 MPa · s
during the rotational phase of the deformation. In our FEA simulations we will simply
use a constant value of ηD = 16 MPa · s. Additionally, the Lamé parameters used are
Λeq = 500 MPa and Λneq = 0 MPa.

4.1.2 Specimen geometry and boundary conditions

We assume the test specimen of Linares et al. (2020) of length 30 mm, width 6.1 mm, and
thickness 0.63 mm. The loading is imposed displacement in the longitudinal direction with
clamped conditions; i.e. on one end u = 0 (fixed) and on the other end uy = uz = 0 with an
imposed ux (see Fig. 2 for the axes orientation with respect to the specimen). The motion
is imposed at a constant displacement rate u̇x = 3 mm/s until ux = 100 mm, which is then
followed by unloading at the same displacement rate. The constant rate unloading continues
until the distance between the clamps reaches 30mm – the initial sample length. The initial
director field in the classical soft-elasticity experiment is assumed to be uniform d0(X) = ey

as shown in Fig. 2. The stretch in the FEA simulation is computed using a 18 mm gauge in
the center of the specimen.

4.1.3 Approximate stress point response

If one ignores end-effects the system is reasonably idealized as being in a homogeneous state of
uniaxial tension. As such, the stress response of the material in the boundary value problem
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can be computed as a material point computation. In Wang et al. (2022) this was done and
shown to produce physically realistic behavior in loading and unloading in comparison to
experimental data from Linares et al. (2020). A nuance of the computation however was
that the initial director value was perturbed using a small rotation Qz(ω) about the z-axis.
Without the perturbation, the director remains in an unstable equilibrium position as the
right-hand side of (6) will be zero. This produces unphysical results. The perturbation
avoids this problem in the material point computation. Note that the perturbation can be
either clockwise or counter-clockwise and not affect the stress response. As is well established
in the neo-classical elastic case (see e.g. Warner and Terentjev, 2003), there are two stable
equilibrium states for the director in the material point problem – a clockwise or counter-
clockwise rotation of the same magnitude about the z-axis. Both produce the same stress
response and one or a mixture of the two needs to be selected.

4.1.4 Boundary value problem with uniformly perturbed director field

When looking at boundary value problems, the same issue of unstable equilibria exists as
with material point computations. This is not too dissimilar from the case of compression of
a slender bar or necking of a rod. A perturbation is required to bias the system towards the
correct equilibrium configuration. As a first choice we consider a homogeneous perturbation
of all the directors by a rotation Qz(ω), where ω = −1.0◦.

Figure 3: (top) Homogeneously perturbed director field specimen at an average stretch
λx = 1.46 during loading and (bottom) at λx = 2.17 during the unloading process from a
maximum average stretch of λx = 4.6.

As the sample is stretched, the director rotates to align with the loading direction, during
which the stress reaches a plateau. After director alignment, the network chains are stretched
and an increase in stress is observed. Upon unloading the rotated directors remain rotated
and the sample retracts viscoelastically. The unloading protocol continues until the distance
between the ends reaches the initial length. There are three principal observations:

1. The force-displacement/stress-strain response largely matches that seen in a material
point computation. See Fig. 4 where the gold curve is the constant director viscosity
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FEA computation and the red curve is the nonlinear viscosity material point compu-
tation from Wang et al. (2022); the experimental data is shown in blue. The primary
difference between the FEA and the material point result is that the FEA boundary
value problem avoids the sharp over-shoot peak seen in the material point compu-
tation. This is likely due to the inhomogeneous region near the clamps promoting
director rotation.

2. The deformation pattern upon extension demonstrates significant shear. In particular,
Fig. 3 (top) shows the specimen at an extension of 44 mm (average stretch λx = 1.47)
early in the extension process. One observes a strong shearing throughout (due to
director rotation) and a strong anti-symmetric pattern near the ends. This macroscopic
shear behavior can occur experimentally, depending on strain rate and the degree of
mesogen alignment Linares et al. (2020).

3. Upon unloading, Fig. 3 (bottom) shows that the specimen has buckled nonphysically
about the strong-axis, something not seen experimentally Linares et al. (2020).

One can largely conclude that the use of a homogeneously perturbed director field is inappro-
priate in the solution of boundary value problems using LCE models of the class presented
even though that is effective in a material point computation.

Figure 4: Comparison between the experimental, nonlinear viscosity material point calcula-
tion from Wang et al. (2022), and the constant viscosity FEA computations with homoge-
neous and inhomogeneous initial director fields.
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4.1.5 Boundary value problem with an inhomogeneously perturbed director
field

We note that in the fully elastic case, there are two stable equilibiria during extension
(Warner and Terentjev, 2003). If one assumes a maximum entropy response of the system,
then one should expect to see directors rotating clockwise and counter-clockwise with equal
probability. In fact this has been observed in experiments by Kundler and Finkelmann
(1995) via the presence of alternating strips of material displaying plus/minus shears in the
xy-plane. To test this, consider an inhomogeneous initial director field d0(X) that is selected
such that 50% of the directors are perturbed by Qz(ω) and 50% are perturbed by Qz(−ω),
where ω = 1◦. The precise spatial pattern we use is one where the perturbation alternates
as one moves from one row of elements to the next in the y-direction; put another way, the
director perturbation changes algebraic sign every 0.5 mm in the y-direction and is uniform
in the x- and z-directions.

Figure 5: (top) Inhomogeneously perturbed director field specimen at an average stretch
λx = 1.46 during loading and (bottom) at λx = 2.17 during the unloading process from a
maximum average stretch of λx = 4.6.

The result of the use of this inhomogeneous initial director field yields the results seen in Fig.
5; cf. Fig. 3 where a homogeneous initial director field was used. The following observations
can be made:

1. The force-displacement/stress-strain response during loading matches that seen in the
homogeneously perturbed director case; see the purple line in Fig. 4. For the inhomoge-
neous and homogenous case, the stress-strain curves agree well with experiments, and
the sharp over-shoot in the stress response of the material point calculation is avoided.
The stress response of the homogeneous and inhomogeneous case differs slightly dur-
ing mesogen rotation, where the stress decays from the peak to a semi-soft plateau.
The semi-soft plateau is lower than for the material point calculation, which used a
nonlinear viscoelastic model to fit the plateau stress to experiments. As expected, the
initial and large deformation viscoelastic network behavior are identical.

2. The extensional behavior seen in Fig. 5 (top) does not show pronounced macroscopic
shear. A close examination of the deformed mesh shows that the alternate rows of
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elements are shearing plus/minus and thus on average give zero net shear – a point
that is consistent with the standard explanation of soft-elasticity Warner and Terentjev
(2003). This deformation behavior is also observed in experiments, depending on
loading rate and the degree of mesogen alignment Linares et al. (2020).

3. At the average stretch λx = 2.17 during the unloading, the specimen does not display
nonphysical buckling as was seen in the homogeneously perturbed case.

4. If the specimen is unloaded all the way back to an average stretch λx = 1, then it
does buckle (see Fig. 6), but now in the physically correct way about the weak axis –
something that is compatible with experimental observations.

5. The observed behavior of the directors in this example where they rotate alternately in
clockwise and counter-clockwise directions in reminiscent of the formation of fine-scale
microstructure. A natural question that arises in such situations is whether the model
is well posed with respect to refinements in microstructure. Shown in Fig. 7 is the load
displacement response during the loading phase up to an average stretch of λx = 3.33
at 4 mesh refinement levels. Note that as the mesh is refined, the initial director field
is also refined such that the oscillations in the perturbation become finer and finer.
Thus the initial director field is converging in measure to a distribution defined by two
equally weighted Dirac masses in this process. While we can not mathematically prove
convergence, we do claim that this computation shows stable convergence behavior
based on Fig. 7.

Figure 6: Weak axis bucking of the inhomogeneously perturbed specimen. End separation
is 30 mm.
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Figure 7: Convergence of load-displacement response as the mesh size decreases while refining
the initial director field.

4.2 Compression of a Cylinder

Figure 8: Finite element mesh of the LCE cylinder with the initial directors shown as red
arrows.
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The tension of LCE materials is well studied experimentally and theoretically. On the other
hand, less is known about the compression of LCEs, and thus we consider the uniaxial
compression of an LCE cylinder. Below we first describe a qualitative compression test,
followed by a quantitative experiment.

4.2.1 Methods and materials

Monodomain cylinders were provided by Impressio (Denver, CO, USA). Pillars were de-
signed to match the chemical, mechanical, and morphological behavior of previous studies
(Yakacki et al., 2015; Saed et al., 2017) These studies utilized a two-stage thiol-acrylate
Michael addition reaction followed by mechanical alignment and a photopolymerization re-
action to program main-chain monodomain samples. In general, samples are made from 2,2′-
(Ethylenedioxy)diethanethiol (EDDET), Pentaerythritol tetrakis(3-mercaptopropionate)
(PETMP), and 1,4-Bis-[4-(3-acryloyloxypropyloxy) benzoyloxy]-2-methylbenzene (RM257).
Specific catalysts, initiators, and processing conditions are, however, proprietary to Impres-
sio. The director is nominally homogeneously aligned in the z-direction and the anisotropy/step-
length ratio r = 5.5, which corresponds to a scalar order parameter Q = 0.6.

The quantitative experiment conducted was a quasi-static uniaxial compression test under
displacement control in an MTS Insight 5 equipped with a 500 N load cell (Eden Prairie,
MN, USA). The monodomain LCE cylinder measured d = 10.01 mm in diameter and h =
15.29 mm in height as depicted in Fig. 8, which also shows the finite element mesh used in
our computations. The LCE cylinders were placed on the bottom compression platen lined
with sandpaper to increase friction. The upper compression platen was lowered manually
onto the specimen until the force reached 0.06 N to ensure full contact with the specimen.
The 0.06 N force threshold was determined from the maximum fluctuations of the 500 N
load cell reading at zero load. The load cell was then zeroed to start the compression test.
The rate of compression was u̇z = 7.7× 10−3 mm/s and the specimen was compressed to a
stretch of λz = 0.58. In all the computations reported below, the boundary conditions on
the top and bottom were stick, so ur = uθ = 0 with an imposed value of uz, where z is the
axial coordinate of the cylinder.

4.2.2 Qualitative experimental behavior

Figure 9 shows two compression experiments on two different specimen. On the left, the
we see a specimen after being compressed and then unloaded. On the right we see a sec-
ond specimen in the loaded state with λz = 0.5. The first experiment shows significant
preferential bulging and shearing in one direction in the cylinder. In contrast, the second
experiment does not show any significant shearing as the sample is compressed, but instead
shows relatively uniform rippling and wrinkling in the specimen. Both experiments show an
anisotropic change in the circular cross section to an elliptical cross section. This suggests
director rotation into the plane normal to the cylinder axis, with the rotation occurring in
the plane defined by the axis of the cylinder and the major axis of the ellipse.
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Figure 9: Snapshot of the deformed LCE cylinders in two compression experiments. The
(left) experiment shows bulging to one side after loading and unloading. The (right) exper-
iment shows rippled bulging in all directions at a compressed stretch of λz = 0.5.

4.2.3 Choice of initial director field and qualitative response

We explored several choices for the initial director field to qualitatively understand the
experimental observations. In particular, we were interested to understand if the initial
director field was responsible for the different behaviors seen in compression. Figure 10 shows
the result of this exploration. On the left one sees a compression simulation which utilizes
a homogeneous initial director field that is perturbed by a rotation Qx(ω), where ω = −1◦;
i.e. the initial director field, d0(X) = Qx(ω)ez, is a one-degree rotation about a fixed
axis orthogonal to the lateral surface of the cylinder. On the right one sees a compression
simulation which utilizes an inhomogeneous initial director field. Here the perturbation is
formed from an alternating pattern (in the z-direction) of plus/minus rotations about the
fixed x-axis – i.e. a 50-50 mixture of clockwise and counter-clockwise 1◦ perturbations as
one moves up the cylinder. We make the following observations:

1. The qualitative deformation patterns are qualitatively well reproduced via the selection
of different initial director fields.

2. Both initial director fields represent nominally z-oriented homogeneous initial director
fields. However the response of LCE materials, depending on the character of the
load, can be quite sensitive to the details of the initial director field. This presents a
challenge to designing mechanical systems utilizing these materials.
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Figure 10: Snapshot of the deformed LCE cylinders in the two simulations as they are
compressed. The first simulation (left) has a homogeneous initial director field while the
second (right) has an inhomogeneous initial director field.

4.2.4 Quantitative comparison to experiments

We also make an assessment of the quantitative quality of our finite element simulations. In
particular, we examine the degree to which the load-deflection response can be replicated for
an experiment where an inhomogeneous initial director field was the most appropriate. The
load-deflection data for this particular cylinder is shown in Fig. 11 by the blue curve. As
previously mentioned, the rate of compression was u̇z = 7.7× 10−3 mm/s and the specimen
was compressed to a stretch of λz = 0.58.

In Wang et al. (2022), it was shown that network viscoelasticity plays a role mainly after the
soft region in tension, when the largest stretch exceeds

√
r. For compression, the soft region

theoretically extends down to a stretch of λ = 1/
√
r which corresponds to a displacement

of around 8.6 mm. Conjecturing that the viscoelastic behavior is the same in compression
as in tension, we choose to ignore the viscoelasticity in our computations as the maximum
displacement in the experiments was 6.36 mm; director viscosity, however, is not ignored.
Note we did test this conjecture by also running a handful of computations with viscoelas-
ticity and seeing that viscoelasticity did not alter the load-deflection behavior in the range
of the experiments. We also note that at these levels of deformation, we are well away from
the chain locking-stretch for the material. For this reason we choose to use a neo-classical
energy function for the equilibrium free energy for the material.

Shown in Fig. 11 are a series of load-displacement curves at varying mesh densities. As in
the tension case the initial inhomogeneous director field is also refined as the mesh is refined.
For the computations the shear modulus µeq = 0.2 MPa was chosen so that the initial slope
of the loading curves matched the experimental curve. From the results, we verify that the
computations do converge. The Lamé parameter was Λeq = 100 MPa.

We also find in this computation, that the agreement with the data shown requires the use
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of a nonlinear director viscosity. We find that a constant director viscosity results in large
overshooting of the data in the early part of the deformation, if one requires matching the
later part of the deformation. A similar situation was reported in Wang et al. (2022) where
a nonlinear viscosity was found necessary in the matching to experimental tensile data. The
nonlinear viscosity which we found effective here is

ηD =
9.0

π
arctan

[
300.0

(
∥F̃∥ − 1.74

)]
+ 5.5 (MPa · s) , (41)

where ∥F̃∥ is the norm of the isochoric part of the deformation gradient. In particular,
the viscosity rises upon increasing compression and then saturates. The increasing viscosity
function dramatically reduces the stress overshoot, but does not remove the softening behav-
ior entirely. This phenomenological function is likely not generalizable to other deformation
modes but does suggest the required behavior in compression.

Figure 11: Experimental and computed force-deflection response of a cylinder with an inho-
mogeneous initial director field at different levels of mesh refinement and a nonlinear director
viscosity.
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4.3 Inflation of an LCE Balloon

As a last example we consider the interesting experiment of He et al. (2020) on the inflation
of an LCE balloon. These authors consider a monodomain thick-walled balloon with inner
radius 4 mm, outer radius 5 mm, and length of 120 mm. The initial director is aligned with
the tube axis. The balloon has an acrylic rod glued into one end, while an acrylic tube is
glued into the other end. Inflation pressure is applied to the inside of the tube with a custom-
built controller. During inflation, the balloon first responds in a stiff manner, then suddenly
contracts axially while expanding radially, then the balloon grows in size radially and axially,
followed by a pressure instability (limit load), jumping to a new stable equilibrium at a much
greater size.

120 mm 10 mm10 mm
z

8 mm

10 mm

Figure 12: Finite element mesh and cross-section with dimensions.

The balloon material’s properties are partially characterized in the paper, giving an initial
shear modulus of 0.8 MPa and an anisotropy/step-length ratio r = 1/0.19 = 5.26; the
characterization is performed via uniaxial extension at a strain rate of 5× 10−4 sec−1. The
balloon’s material is stated to have a weak rate dependence but the director viscosity and
network viscosity were not explicitly reported. Thus here we do not attempt a precise fit
to the experiments and in fact we use a relatively coarse mesh, leading to a somewhat stiff
response.

To simulate the experiment, we construct a mesh for the central section of the tube of length
120 mm using 50 elements axially, 4 elements through the thickness, and 24 elements along
the hoop direction; see Fig. 12. The tube is extended 10 mm at both ends. At one end
the tube is filled within the extension with a material with moduli that are 1000 times that
of the main tube, effectively rendering the material rigid, thereby modeling the acrylic rod.
Within the other extension, the nodes on the inner radius are fixed from moving in all three
coordinate directions to mimic the glued-in acrylic tube. The inner surfaces of the central
section and the bottom plug are subjected to follower-type pressure loads.

For the simulation we use an equilibrium shear modulus of µeq = 0.8 MPa (as measured), and
an anisotropy/step-length ratio r = 5.26 (as measured), and bulk modulus Λeq = 200 MPa.
The non-equilibrium moduli are taken as µneq = 0.4 MPa and Λneq = 0 MPa for illustrative
purposes. For our numerical experiment, we consider the neo-Gent model for the equilibrium
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response (9) and a neo-classical model (8) for the non-equilibrium response. Our network
viscosity is taken as ηN = 0.1 MPa · s, our baseline director viscosity is taken as ηD =
0.01 MPa · s, our Gent parameter is taken as Jm = 30, and our pressure loading is linear in
time, p(t) = ṗ t, where ṗ = 4.0 kPa · sec−1. Again, all these parameters are for illustration
since they were not reported in the original paper. Further we assume a mass density
ρ = 1.1× 10−9 Mg/mm3.

Numerous experimental variations, including those lifting weights, are shown in He et al.
(2020) along with the response of a simple model that assumes the balloon to be thin-
walled, infinitely long, and characterized by the neo-classical model in the form presented by
Conti et al. (2002). Here we focus on the experiment where no weights are hung from the
balloon. Our goals are (1) to demonstrate our numerical implementation on a complex initial
boundary value problem and (2) to further elucidate the behavior seen in the experiment.

As in He et al. (2020), we focus on the pressure-stretch response for an average axial stretch
and a select hoop stretch. In particular, two pointsX(1) andX(2) located on the outer surface
at z = 90.2 mm and z = 19.8 mm, respectively, are used to define an average axial stretch
for the tube λ̄z = (uz(X

(1))− uz(X
(2)))/(z(1) − z(2)). The location z = 0 mm corresponds to

the start of the central part of the LCE balloon. A point X(3) located on the outer surface
at z = 55.0 mm is used to define a representative hoop stretch λ̄θ = r(X(3))/R0, where
R0 = 5 mm and r(·) is the evolving distance of a material point from the central axis.1 For
convenience in what follow, we refer to these quantities as the axial and hoop stretch, and
we drop the over-bars.

4.3.1 Discussion of LCE balloon results

The computations were run dynamically using Newmark’s method with β = 1/4, γ = 1/2
(second-order accurate in time with no numerical dissipation). Time-step size was dynam-
ically controlled such that director rotation was targeted to be 0.7 degrees per time step
using the algorithm of Weber et al. (1990). This is important for both reasonable accuracy
but more importantly for stability of the non-linear iterations over the full computation.
Helpful for these purposes is the fact that we have implemented the algorithmic tangent for
or model’s time integration, thereby providing for quadratic convergence of the global finite
element problem at each time step.

Experimental data Shown in Fig. 13 by light colored markers are the experimental results
of He et al. (2020), light blue for λθ versus pressure and light orange for λz versus pressure.
Seen is an initial stiff response, λz and λθ ∼ 1, followed by a sudden jump of λθ to roughly
r1/2 and λz to roughly r−1/2. With increasing pressure the balloon expands radially, while
its length remains largely constant. Then at a critical pressure the balloon dramatically
extends, from λz ∼ 0.45 to λz ∼ 1.12, along with a jump in λθ from about 3.9 to roughly 5.

1Radial distance r should not be confused with the anisotropy/step-length ratio r that is commonly used
in the LCE literature. Context should make the distinction clear and thus we do not introduce additional
notation in this context.
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Figure 13: Pressure stretch response of LCE balloon. Measured data is given by the light
colored markers, the dotted lines are the result of an idealized hand computation, the FEA
computation is shown with solid lines. Blue correspond to the hoop response and Orange
corresponds to the axial response.
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Simple model Shown by the dotted lines in Fig. 13 is the prediction of a simple hand
computation that assumes the balloon to be thin-walled, infinitely long, and governed by an
incompressible non-viscous neo-Gent material. As a function of the hoop stretch one has
that the hoop and axial Cauchy stresses are given by

σθ =

0 for λθ ∈ [0,
√
r]

Jmµeq
λ2θr

−1 − (λzλθ)
−2

3 + Jm − (λzλθ)−2 − λ2θr
−1 − λ2zr

for λθ >
√
r ,

(42)

σz =

0 for λθ ∈ [0,
√
r]

Jmµeq
λ2zr − (λzλθ)

−2

3 + Jm − (λzλθ)−2 − λ2θr
−1 − λ2zr

for λθ >
√
r ,

(43)

where the axial stretch in terms of the hoop stretch, for λθ >
√
r, is given by

λz =
1

2r

√
λ2θ +

√
λ−2
θ (λ6θ + 8r3) . (44)

The inflation pressure, P , can be found by noting

P =
T0σθ
R̄λ2θλz

, (45)

where T0 = 1 mm is the initial thickness and R̄ = 4.5 mm is the mean initial radius.

In the simple model, there is first a radial jump at zero pressure due to a zero energy cost
continuous director rotation from the axial direction to the tangential (hoop) direction. At
each point along the jump the director rotates either ± some amount until the director
orientations are fully in the tangential direction. At the same time there is an axial jump
also due to the director rotations.

At higher pressures a limit point phenomena is seen just as is in balloon modeled with
finite elasticity; see, e.g., Anand and Govindjee (2020a, §31.3) and Anand and Govindjee
(2020b, §12.10). For continuously increasing pressure, the balloon would suddenly expand
and lengthen at the limit point, something that is seen in the data. He et al. (2020) provide
a similar solution using a neo-classical model. In that computation, increasing pressure
“above” the limit point results in unbounded expansion of the balloon. With the neo-Gent
model the material stiffens sufficiently to allow for increases above the limit point after a
dynamic expansion process.

Neo-Gent ψeq FEA model Shown in Fig. 13 with solid lines is the prediction from
our FEA model of the thick-walled finite length balloon. The model is noted to have a
viscous director and a viscous network. Considering the coarse mesh and the lack of material
parameter knowledge, the agreement with the data is quite good. We make the following
observations:
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1. The simulation picks up the initial very stiff balloon response seen in the experiment.
The controlling element of the model here is the director viscosity which prevents the
director from rotating instantly. The pressure at which the director rotation acceler-
ates decreases with decreasing director viscosity and/or decreasing rate of change of
pressure. If the pressure time history was known, this point could be used to determine
the unknown director viscosity.

2. In the experiment, just above 60 kPa, a limit point was reached. Upon the next
increase in the pressure, the balloon rapidly extended, going from a λz well below 1
to one of λz > 1. The FEA model is able to capture this feature due to the inclusion
of inertia in the model. Barring the inclusion of dynamics, one would have to try
to follow the quasi-static response seen in the simple non-viscous model. In a finite
element computation, this would usually be achieved via the use of arc-length methods
(see e.g., Wriggers, 2008, Chap. 5). However, for rate dependent models arc-length
methods are not well established as one needs to control the “rate of loading” to have
a specified value while simultaneously controlling the arc-length step size. The use of
a dynamic computation allows us to avoid this complication at little computational
cost. Note the Newmark time-stepping scheme we use is implicit and is greatly aided
by our consistent tangent.

3. The rate of change of the pressure plays an important roll in the response. As noted
already, it controls the pressure at which the director rotation begins to accelerate.
But it also has an influence on the effective stiffness of the balloon. However, for the
rates chosen in our example, this influence is not large.

4. It should be noted that in the computation, the initial director field is perturbed ±1
degree from perfect alignment with the axis of the balloon. The plus/minus values
alternate as one moves along the axis of the balloon. The result of this can be seen in
Fig. 14 where the directors can be seen to stripe as the loading progresses. Without
this type of perturbation it is possible for the directors to all rotate in the same di-
rection. The resulting shears would induce gross rotation and twisting of the balloon.
The alternating initial pattern allows for plus/minus cancellation of the cross-sectional
rotations and provides for a basic model of microstructural striping in the balloon.
This is consistent with the experiment (He et al., 2020, Figure 1) which showed the
transparent balloon becoming opaque upon initial contraction (seen as alternating in-
complete director rotations in our model), and then with further pressure becoming
transparent (alignment in the tangential direction in our model). The evolution of this
process from our model is seen by the director fields in Figs. 14-16.

5. As a last point we note that the data seems to indicate either that the value of r is
actually greater than 5.26 and/or the equilibrium shear modulus of the material is less
than 0.8 MPa at the start of the deformation. This follows from the fact that the data
points lie outside of the (r−1/2, r1/2) interval. The finite length of the balloon and the
possibility of viscous effects compound this issue. This points to the need for a more
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sophisticated ψeq and, likely, ψneq.
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Figure 14: Snapshots of the (unscaled deformation) of the LCE balloon with director field
and contours of axial motion at pressures of 0, 10, 20, 30, 40 kPa, top to bottom.
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Figure 15: Snapshots of the (unscaled deformation) of the LCE balloon with director field
and contours of axial motion at pressures of 50, 60, 70 kPa, top to bottom.
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Figure 16: Snapshot of the (unscaled deformation) of the LCE balloon with director field
and contours of axial motion at 75 kPa

5 Conclusion

In this work, we presented a framework for the simulation LCE mechanical boundary-value
problems where the LCE is modeled as a viscoelastic media with a viscous director. We have
detailed the best way to formulate the element residual and tangent, as well as the internal
variables, for such models – including giving explicit expressions for the consistent tangent
needed to achieve full quadratic convergence in nonlinear Newton iterations. For this class of
materials, we also find that a first Piola-Kirchhoff implementation is most convenient since
such LCE models require the use of the full deformation gradient and not just the right-
stretch tensor. As such, a first Piola-Kirchhoff finite element implementation is the most
efficient.

The framework developed was applied to three simulations which revealed important con-
cepts with respect to the simulation of LCE systems. One concept is the importance of the
careful specification of the initial director field in a material. The response is quite sensitive
in certain situations and thus care must be exercised. The initial director field sensitivity
also makes it necessary to look at boundary value problems, not just material point com-
putations, since the initial director field (a feature that is unavailable when looking at a
material point alone) plays a big role in the experimental and theoretical response of these
materials. A secondary, related finding is that assumptions from material point computa-
tions can lead to incorrect results when boundary value problems are solved. Third, we find
that the proper modeling of LCEs appears to require the use of nonlinear (deformation/load
dependent) director viscosities in addition to network viscoelasticity for compression. How-
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ever, in tension we find that a constant director viscosity is adequate in contrast to what has
been inferred from material point computations in the past. The characterization of these
viscosity functions is an open question deserving of further study. Lastly, we have shown
using the balloon example of He et al. (2020) that the model of Wang et al. (2022) has the
ability to model quite complex LCE response.
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A Tensor vector-matrix maps

In solving for the incremental evolution of the internal variables, it is convenient to define a
tensor-to-vector operator:

(F)vec =



F11

F21

F31

F12

F22

F32

F13

F23

F33


. (46)

The internal variables to be solved for at Gauss points are rearranged into a vector x ∈ R24:

x =


(Fv)vec
(Fe)vec

d̂
d

 . (47)

When computing, we map 4th order tensors to 9× 9 matrices:

(A)9×9 =



A1111 A1121 A1131 A1112 A1122 A1132 A1113 A1123 A1133

A2111 A2121 A2131 A2112 A2122 A2132 A2113 A2123 A2133

A3111 A3121 A3131 A3112 A3122 A3132 A3113 A3123 A3133

A1211 A1221 A1231 A1212 A1222 A1232 A1213 A1223 A1233

A2211 A2221 A2231 A2212 A2222 A2232 A2213 A2223 A2233

A3211 A3221 A3231 A3212 A3222 A3232 A3213 A3223 A3233

A1311 A1321 A1331 A1312 A1322 A1332 A1313 A1323 A1333

A2311 A2321 A2331 A2312 A2322 A2332 A2313 A2323 A2333

A3311 A3321 A3331 A3312 A3322 A3332 A3313 A3323 A3333


, (48)

Third order tensors are mapped to 3× 9 and 9× 3 matrices depending upon if they appear
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as maps from vectors to tensors or vice-versa:

(M)9×3 =



M111 M112 M113

M211 M212 M213

M311 M312 M313

M121 M122 M123

M221 M222 M223

M321 M322 M323

M131 M132 M133

M231 M232 M233

M331 M332 M333


, (49)

(M)3×9 =

M111 M121 M131 M112 M122 M132 M113 M123 M133

M211 M221 M231 M212 M222 M232 M213 M223 M233

M311 M321 M331 M312 M322 M332 M313 M323 M333

 . (50)

Observe that these last two mappings are not transposes of each other.

B Tangent terms

B.1 Tangent terms for Gauss point iterations

The free energy derivatives used for the evolution of the internal variables and the residual
and tangent computations are written compactly as:

Q =
∂Ψeq

∂F
(Fn+1,dn+1) , Qe =

∂Ψneq

∂Fe
(Fe,d) , (51)

A =
∂2Ψeq

∂F⊗ ∂F
(Fn+1,dn+1) , Ae =

∂2Ψneq

∂Fe ⊗ ∂Fe
(Fe,d) , (52)

M =
∂2Ψeq

∂F⊗ ∂d
(Fn+1,dn+1) , Me =

∂2Ψneq

∂Fe ⊗ ∂d
(Fe,d) , (53)

h =
∂Ψ

∂d
(F,Fe,d) , D =

∂2Ψ

∂d⊗ ∂d
(F,Fe,d) . (54)

Using these definitions the entries of the local Gauss point tangent matrix are given by:[
∂G1 (F

v,Fe,d)

∂Fv

]
αAβB

=

[
1− ∆tn

ηN
(Fe)⊤ Qe

]
αβ

δAB , (55)[
∂G1 (F

v,Fe,d)

∂Fe

]
αAiβ

= −∆tn
ηN

(
δαβ [Q

eFv]iA + (Fe)kα (Ae)kγiβ (F
v)γA

)
, (56)[

∂G1 (F
v,Fe,d)

∂d

]
αAi

= −∆tn
ηN

(Fe)kα (Me)kγi (F
v)γA , (57)
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[
∂G2 (F

v,Fe;F)

∂Fv

]
iAβB

= − (Fe)iβ δAB , (58)[
∂G2 (F

v,Fe;F)

∂Fe

]
iAjβ

= −δij (Fv)βA , (59)

∂g3

(
Fe, d̂,d;F

)
∂Fe


ijα

=
∆tn
ηD

(1− d⊗ d)ik (Me)jαk , (60)

∂g3

(
Fe, d̂,d;F

)
∂d̂

= 1 , (61)

∂g3

(
Fe, d̂,d;F

)
∂d

= −∆tnW +
∆tn
ηD

[(1− d⊗ d)D − d⊗ h− (d · h)1] , (62)

∂g4

(
d̂,d

)
∂d̂

= 1− 1∥∥∥d̂∥∥∥d⊗ d̂ , (63)

∂g4

(
d̂,d

)
∂d


ij

= −
∥∥∥d̂∥∥∥1 . (64)

B.2 Expressions needed for element tangent

The computation of the element tangent requires the derivatives of the Gauss point residual
with respect to the deformation gradient:(

∂g

∂F

)
24×9

=

(
09×9,

(
∂G2

∂F 9×9

)⊤

,

(
∂g3

∂F 3×9

)⊤

, 0⊤
9×3

)⊤

. (65)

The partial derivatives in 65 are given as:[
∂G2 (F

v,Fe;F)

∂F

]
iAjB

= δijδAB , (66)∂g3

(
Fe, d̂,d;F

)
∂F


ijA

= −
[
∂∆tnW

∂F

]
ikjA

dk +
∆tn
ηD

(1− d⊗ d)ik (M)jαk , (67)

where [
∂∆tnW

∂F

]
ikjA

=
(
FnF

−1
)
ij

(
F−1

)
Ak

−
(
FnF

−1
)
kj

(
F−1

)
Ai
. (68)
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C Traditional Stress Divergence Forms

The weak form relations are often expressed in the current configuration and take advantage
of tensor symmetries, as well as underlying hyperelastic formulation foundations. In these
settings, the internal work contribution to the weak form, the first variation, is given as∫

B
PiAδφi,A dV , (69)

equivalently ∫
φ(B)

1

J
τijδφi,j dv , (70)

where we adopt the standard convention of upper and lower case indices to distinguish spatial
and referential derivatives and τ = PF⊤ is the Kirchhoff stress. Observe that to compute
τ for an LCE, one must first compute P. The computation of τ is simply unneeded extra
work.

The second variation when utilizing (69) is∫
B
δφi,AAiAjB∆φj,B dV , (71)

where the moduli AiAjB = [∆PiA]jB are the tangent moduli, the variation of the stress with
respect to the motion. When using (70) and following the traditional formulation one has
for the second variation ∫

φ(B)

1

J
δφi,j[δikτjl + cijkl]∆φk,l dv , (72)

where the first term is the geometric tangent and the second term is the consistent material
tangent. In the case of LCEs, to compute the material tangent term, on must first compute
AiAjB; it is not possible to directly compute cijkl as, say, in a conventional material, and
from there one must perform the extra computation

cijkl = −δijτjl +AiAkBFjAFlB . (73)

For the case of LCEs, this extra work provides no computational advantage since cijkl only
possesses minor symmetries. In particular, it does not possess major symmetries. These
observations hold for LCEs with or without viscous and/or viscoelastic properties.

37


	SEMM-Report-CoverPage
	main-orig
	Introduction
	Problem Statement
	Governing equations
	The Constitutive Equations

	Constitutive discretization
	Constitutive evaluation
	Local nonlinear solution
	Local Newton-Raphson Tangent

	Element Residual
	Element Tangent

	Numerical Examples
	Extension and unloading of an LCE specimen
	Material
	Specimen geometry and boundary conditions
	Approximate stress point response
	Boundary value problem with uniformly perturbed director field
	Boundary value problem with an inhomogeneously perturbed director field

	Compression of a Cylinder
	Methods and materials
	Qualitative experimental behavior
	Choice of initial director field and qualitative response
	Quantitative comparison to experiments

	Inflation of an LCE Balloon
	Discussion of LCE balloon results


	Conclusion
	Tensor vector-matrix maps
	Tangent terms
	Tangent terms for Gauss point iterations
	Expressions needed for element tangent

	Traditional Stress Divergence Forms




