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Increasing the complexity of

computational protein modeling

methodologies for functional

applications in biology

Kyle Barlow

While the native states of proteins usually correspond to their free energy minimum,

and can often be found with experimental techniques, predicting the folded native state of

a protein computationally remains a major challenge. This is partly due to the immense

conformational space a single protein sequence could potentially fold into, a space that is even

larger if the protein sequence is unknown, as in the case of design. In this thesis, I evaluate

the performance of current state-of-the-art computational protein structure prediction and

design methods (as implemented in the Rosetta macromolecular modeling software suite) on

the following commonly encountered modeling problems: estimation of energetic effects of

mutations (protein stability (∆∆G) and change in protein-protein interface binding energy

post-mutation); (2) protein design predictions (native sequence recovery, evolutionary profile

recovery, sequence covariation recovery, and prediction of recognition specificity); and (3)

protein structure prediction (loop modeling). I assemble curated benchmark data for each

of these prediction problems that can be used for future evaluation of method performance
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on a common data set.

As the prior state-of-the-art methods for prediction of change in protein-protein interface

binding energy post-mutation were not very effective for predicting mutations to side chains

other than alanine, I created a new, more general Rosetta method for prediction of these

cases. This “flex ddG” method generates and utilizes ensembles of diverse protein confor-

mational states (generated with “backrub” sampling) to predict interface ∆∆G values. Flex

ddG is effective for prediction of change in binding free energy post-mutation for mutations

to all amino acids, including mutations to alanine, and is particularly effective (when com-

pared to prior methods) for cases of small side chain to large side chain mutations. I show

that the method succeeds in these cases due to increased sampling of diverse conformational

states, as performance improves (to a threshold) as more diverse states are sampled.
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Chapter 1

Introduction

Proteins are essential to and found in all extant life on Earth. They function as enzymes,

performing factory-like transformations of chemicals, provide structural support and function

as machines that can move organisms, are integral to transportation and communication

within and between cells, and are the basis of the ability of our immune systems to detect

antigens. In fact, proteins are so important for the function of life that their blueprints are

written in our DNA2 using a near-universal code3,4, providing evidence for Darwin’s theory

that all life on Earth shares common ancestry5.

Understanding how proteins work can be undertaken using a variety of strategies, includ-

ing genetic analysis6, but one of the most informative has been to determine the structure

of proteins, as knowing what a machine looks like provides insight into its functionality. We

have been able to determine the structures of proteins at a high resolution since the first pub-

lished crystal structures of myoglobin and hemoglobin7,8. Still, there are many more known

protein sequences in the universe of life than exist known structures in available databases

of experimentally determined structures (88,032,926 unique sequences vs. 123,153 known

structures, as of Aug. 12, 20179,10).

Obtaining models of structures where no experimental data exists would help provide

insight into the vast space of unknown protein functionality. In these cases, we can turn to
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the power of computation to help determine unknown structures. Developing computational

protocols for protein structure prediction provides a few advantages, including the fact that

a method capable of accurately predicting protein structure can also be adapted to design

entirely new protein functionalities. This ability to design proteins enables the creation of

protein therapeutics potentially capable of treating currently untreatable diseases, as well as

enzymes that could be able to make chemicals and fuels in a more environmentally friendly

fashion.

The value of computational methods for protein structure prediction goes beyond their

potential applications in design. By attempting to create a framework in which we can

accurately represent, sample, and score and compare models of protein structures, we gain

insight into the inner workings of the biophysics that underlie the functionality of proteins

in all life.

1.1 Computational protein structure prediction and de-

sign

Protein structure prediction can operate on the “primary”, “secondary”, “tertiary”, or “qua-

ternary” levels (??). While modern protein secondary structure prediction methods can

achieve relatively high accuracy (of about 80%11), protein structure prediction of more de-

tailed models remains a major challenge.

The difficulty of computational protein structure prediction can be thought of as three

complementary challenges: the “sampling” problem, the “scoring” problem, and the question

of “representation”.

Representation Choosing a manner in which to represent protein structures within the

overall computational framework that fits the desired application is an oft-overlooked, but

essential step in modeling. For example, software that attempted to internally represent
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proteins as a collection of subatomic components such as protons, neutrons, or even quarks,

would be a far more detailed representation than is required for simulating biologically

relevant processes such as protein-protein interactions. Computational time would be wasted

simulating the interactions of subatomic particles if the desired output can be obtained by

simulating the system at a coarser level of detail. On the other hand, representing proteins

as individual spheres that interact and bounce off each other like billiard balls would be

too simplistic for many applications, and would not be able to simulate at the level of

detail required for predicting the specificity and strength of binding interactions. In the

end, a balance must be struck, and full-atom representations of protein structures are now

commonly used in modeling.

Scoring Scoring refers to the ability of a prediction/design method to successfully rank

and sort generated models of proteins (in whichever representation they are generated) in

terms of stability or other desired biophysical attributes. Again, as with representation, an

appropriately detailed score function should be chosen to fit the problem at hand. Score

functions used in protein modeling and design have taken a variety of approaches, including

modeling atomic interactions with solvent (water) both explicitly12,13 or implicitly14, repul-

sive and attractive terms15, and knowledge-based terms calibrated based on the propensity

of protein substructures to occupy various states16. If a score function is to be used in

protein design, it must be fast enough to evaluate the many potential combinations and

permutations of amino acids that could come together to form the entire modeled protein.

Sampling Many, many structural models can represent a protein sequence for even the

simplest representations of protein structure17,18. The sampling problem refers to the diffi-

culty of generating protein structural models out of this near-infinite universe of potential

states. As only a finite number of models can be scored, decoy models must be gener-

ated efficiently. Sampling methods that have proven to be effective include modifying a

known protein structure for new activity19,20, designing a protein backbone to fit a desired
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topology21, defining “moves” that are likely to jump between stable structures22–24, and

a divide-and-conquer approach that breaks proteins into “fragments” that can be sampled

individually25.

1.2 Ways forward to improve computational protein

modeling

Figure 1.1: Knowledge of the primary amino
acid sequence is a common input for compu-
tational structure prediction programs, which
then can produce possible models of the
protein’s secondary, tertiary, and quaternary
structure. Figure produced by: U.S. National
Institutes of Health (public domain).

Although proteins tend to “fold” into energy

minima centered on the globally most sta-

ble conformation26, life takes place at non-

frozen, biological temperatures. In cells,

proteins are dynamic and sample an ensem-

ble of conformations centered around free-

energy minima27. Protein modeling and

design software might therefore obtain im-

proved predictions from representing pro-

teins more complexly, allowing for confor-

mational flexibility.

In my graduate research, I set out to

develop and test sampling and representa-

tion methods that allowed for more realistic

models of proteins, enabling design of new

protein functions and predictions of protein

structures that could better explain the in-

ner functionality of biological systems. I

have developed these methods within the

Rosetta macromolecular modeling suite, which is developed by researchers around the world,
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allowing access to improved score function and sampling methods as they are developed by

others.

Since the problem of scoring is inextricably linked to the problem of sampling, I needed

to rigorously test the performance of new score functions on rationally created benchmark

datasets, providing a foundation of known performance to build up to these more complex

representations (??). I then developed a method capable of predicting the change in strength

of protein-protein interactions after mutation that utilizes ensemble-based representations of

protein structure (??). As I, in collaboration with my cohort of iPQB graduate students, have

already shown the ability of Rosetta to provide insight into the mechanisms of how changes

in strength in protein-protein interactions affect fitness in yeast28,29, I hope and expect that

these developments in computational protein modeling methodology will continue to prove

useful in the future for biological applications.
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Chapter 2

A web resource for standardized

benchmark datasets, metrics, and

Rosetta protocols for macromolecular

modeling and design

2.1 Abstract

The development and validation of computational macromolecular modeling and design

methods depend on suitable benchmark datasets and informative metrics for comparing

protocols. In addition, if a method is intended to be adopted broadly in diverse biologi-

cal applications, there needs to be information on appropriate parameters for each proto-

col, as well as metrics describing the expected accuracy compared to experimental data.

In certain disciplines, there exist established benchmarks and public resources where ex-

perts in a particular methodology are encouraged to supply their most efficient imple-

mentation of each particular benchmark. We aim to provide such a resource for proto-

cols in macromolecular modeling and design. We present a freely accessible web resource
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(https://kortemmelab.ucsf.edu/benchmarks) to guide the development of protocols for pro-

tein modeling and design. The site provides benchmark datasets and metrics to compare the

performance of a variety of modeling protocols using different computational sampling meth-

ods and energy functions, providing a “best practice” set of parameters for each method.

Each benchmark has an associated downloadable benchmark capture archive containing the

input files, analysis scripts, and tutorials for running the benchmark. The captures may be

run with any suitable modeling method; we supply command lines for running the bench-

marks using the Rosetta software suite. We have compiled initial benchmarks for the resource

spanning three key areas: prediction of energetic effects of mutations, protein design, and

protein structure prediction, each with associated state-of-the-art modeling protocols. With

the help of the wider macromolecular modeling community, we hope to expand the variety

of benchmarks included on the website and continue to evaluate new iterations of current

methods as they become available.

2.2 Introduction

Structure-based modeling and design of biological macromolecules have become rich areas

of computational research and method development13,30–33. The accuracy of these modeling

protocols on diverse applications can be assessed via use of increasingly available, high quality

curated experimental datasets9,34–37. Demonstration of the utility of a new prediction or

design method requires, at the very least, a proof-of-concept case that exhibits initial success.

Further widespread adoption of the method requires more extensive validation: demonstrated

success and careful evaluation of key limitations on multiple, diverse, test cases. This general

utility can be shown through the use of a suitable benchmark set.

Even though the compilation of these benchmarks is often essential to the creation of

novel computational methods, the successful application of a method can often overshadow

the critical role of benchmarking during its development. Furthermore, the associated pub-

7



lication of a new method may not contain a description of the dataset or statistical analysis

in a format that is readily usable for developers of alternate methods, creating additional

obstacles for a direct comparison. Organizations such as CASP38 and CAPRI39 create blind

prediction tests for problems in protein structure prediction, protein-protein docking, and

other applications, but many questions in the field of macromolecular modeling and design

could also benefit from canonical benchmarks such as those that exist for protein-protein

docking37–40. To facilitate rapid, iterative development, it is convenient to make bench-

marks available for retrospective testing (although it is essential to pay attention to issues

of overfitting to a particular target problem, even for large and diverse datasets).

Even in cases where an effective benchmark has been defined and the efficacy of a model-

ing protocol has been measured and published, it may be difficult to reproduce similar results

post-publication as the method evolves. Protocols in large, complex software suites, such

as Rosetta, are highly dependent on core functionality. For example, a sampling algorithm

may yield varying results as changes are made to its accompanying score function. Regular

benchmarking to track changes in performance is desirable both when core functionality is

altered and when the specific protocol has been modified directly. To determine what con-

stitutes the best practice, a user needs access to current benchmarking results, or at the very

least, clear instructions on how to benchmark against the latest version of the protocol.

Here we present a web resource (https://kortemmelab.ucsf.edu/benchmarks) to address

some of the aforementioned difficulties associated with informative benchmarking. We define

the following criteria for a benchmark set in this resource: First, the scientific question or

modeling problem posed by the benchmark must be clearly defined. Second, the input

dataset should contain numerous, varied test cases that cover a broad range of possible

inputs a user might use in a protocol. Success is easier to find when only a small subset

of potential test cases is employed; a more general set indicates a correspondingly more

generally useful method, and ameliorates issues with over-fitting a method to perform well

on a specific test case. To be suitable for comparison against predictions, this input data
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set should be made up of experimentally validated data (we will refer to predicted data as

“predictions” and experimentally determined data as “experiments”). Third, instructions

on how to run each computational method should be provided with enough detail and clarity

such that researchers other than the developers of a given method are able to use the resource.

Finally, each benchmark set should be accompanied both by an appropriate set of defined

metrics to quantify how successfully the method addresses the modeling problem and by a

set of analysis tools which, given input in a defined format, computes these metrics.

We have used these guidelines to collect benchmark sets for commonly encountered prob-

lems in the following three areas (??): (1) estimation of energetic effects of mutations (pro-

tein stability (∆∆G) and computational alanine scanning); (2) protein design predictions

(native sequence recovery, evolutionary profile recovery, sequence covariation recovery, and

prediction of recognition specificity); and (3) protein structure prediction (loop modeling).

We also present corresponding state-of-the-art Rosetta protocols, parameters and command

lines applicable to each problem. Each benchmark capture can be downloaded from the web

resource either as a self-contained zip file/bundle or as a version-controlled repository. Each

bundle contains the input data and documentation describing the given modeling problem,

explains how the accompanying methods solve that problem, lists the metrics we use to mea-

sure success, includes the Rosetta protocol, and provides analysis scripts to generate these

metrics from output data. In the sequel, we describe the technical details of the website we

have created for open access and dissemination of benchmarking results.

(A) ∆∆G / Alanine scanning – predicting the energetic effect of point mutations on

folding or binding. REU: Rosetta energy units. The dashed line represents the best lin-

ear fit model (y = 0.93x + 0.43). (B) Native sequence recovery – measuring the similarity

between designed and native sequences for a given structure. Boxplots compare fixed to

flexible backbone design performance, and designed residues that are identical to the native

sequence are highlighted in yellow. (C) Sequence profile recovery – measuring the similar-

ity between designed and natural sequence profiles of protein families. Boxplots compare

9



fixed to flexible backbone design performance in recovering the natural sequence profile. (D)

Amino acid covariation – predicting pairs of naturally covarying residues in protein families.

Boxplots compare fixed to flexible backbone design performance, and covarying pairs in the

multiple sequence alignment are highlighted in green and magenta. (E) Recognition speci-

ficity – predicting the tolerated sequence space in a protein-protein interface. The sequence

logos41 visualize the similarities and differences between the predicted and experimentally

determined sequence profiles. (F) Loop reconstruction – predicting the backbone conforma-

tion of loops in protein structures. Here the scatterplot shows a minimum in the Rosetta

energy landscape for the given loop, with the five lowest energy models shown in yellow and

the one closest to the experimentally determined (native) structure highlighted in red.

10



Figure 2.1: Types of benchmarks and protocols currently included in the web resource. Tests
estimating energetic effects of mutation (orange, A), design tests (purple, B-E) and structure
prediction tests (green, F).

11



2.3 Benchmarks (Methods)

The web resource currently contains benchmark captures, Rosetta protocols, and perfor-

mance information for five different benchmarks, which we have grouped below in three

different areas (??): (1) tests estimating energetic effects of mutations, (2) design tests, and

(3) structure prediction tests. Each subsection describes, for each benchmark, its purpose

(the modeling problem addressed), the benchmark dataset, a Rosetta protocol addressing

the modeling problem, metrics of success, key results, and notes on limitations and caveats.

2.3.1 Tests estimating energetic effects of mutation

Protein stability (∆∆G)

Purpose of this test The purpose of this benchmark is to predict the change in stability

(∆∆G) of a monomeric protein caused by single point mutations (??A). The predicted

stability change is given as the difference in predicted energy between the modeled wild-type

and mutant structures. The benchmark compares the predicted energy differences against

experimentally measured ∆∆G values in kcal/mol.

Benchmark dataset In previous studies, protein stability prediction methods have been

benchmarked against multiple curated datasets: a set of 1030 mutants collected by Guerois

et al.42; a set of 2156 mutants collected by Potapov et al.43; a set of 1210 mutants collected

by Kellogg et al.44; and a set of 582 mutants collected by Benedix et al.45. The records in

these datasets mainly originate from the ProTherm database34 - a large, manually curated

collection of thermostability data from the literature - and are mostly single point mutations.

Our benchmark capture collects the Guerois, Potapov, and Kellogg datasets together and

adds a fourth dataset of 2971 point mutants from ProTherm. This last dataset is lightly

curated; it contains most of the single point mutations available in ProTherm excepting

records where: (i) there is no corresponding structure determined via X-ray crystallography

12



with a resolution of at least 2.5Å; (ii) there are multiple experimental ∆∆G values for an

individual mutation that differ by more than 2.5 kcal/mol in the experimental values; or (iii)

the mutated protein is a transmembrane protein.

ProTherm contains details of the publications from which the thermodynamic data orig-

inated. These explicit references were omitted in the previously published datasets men-

tioned above but we have determined the source of the mutations for each record in the

benchmark capture and reformatted the datasets into a standardized format. This refac-

toring has allowed us to determine the overlap between the datasets in terms of mutations

and experimental assays to a large degree. These refactored datasets are included in the

benchmark capture.

Rosetta protocol The benchmark capture currently includes scripts that can be used

to run the best-performing protocol described by Kellogg et al. as protocol 16 (see row

16 in Table 1 in reference44). This protocol combines a soft-repulsive potential for confor-

mational sampling of side-chains with a standard hard-repulsive potential for minimization

to achieve higher prediction accuracy, following the observation that predictive methods are

more accurate when the resolution of the force field is matched to the granularity of the sam-

pling method. There are two steps in the protocol. First, the input structure is minimized.

Next, fifty pairs of wild-type and mutant structural models are generated using the sam-

pling strategy described above. The ∆∆G value is calculated as the difference between the

three best-scoring wild-type structural models and the three best-scoring mutant structural

models as measured in Rosetta energy units (REU).

Performance metrics Three metrics are used for measuring the accuracy of the compu-

tational methods, each with a separate focus.

Pearson’s correlation coefficient measures the linear correlation between experimentally

determined ∆∆G values and their corresponding computationally predicted values. The

coefficient is invariant to the scale of the predicted values.

13



The mean absolute error (MAE) is defined as the mean of the absolute differences between

experimental and predicted ∆∆G values. MAE is sensitive to the scale of the predicted values

and is an important metric for protein design; high error reduces confidence in the predicted

stability of individual cases.

Finally, the stability classification accuracy or fraction correct metric measures whether a

mutation is correctly predicted to be (de)stabilizing or neutral, for a given definition of what

constitutes a neutral mutation. Depending on this definition, it is possible to get a relatively

high value for this metric with a set of random predicted values. Therefore this metric,

while a useful metric for reporting whether a method can correctly classify the stability of a

mutant, should be considered alongside the correlation and MAE.

Key results It has been previously reported that a recent Rosetta score function (Talaris)

improves the performance of the Rosetta ∆∆G protocol on the Kellogg dataset compared to

the older score function, termed Score1246. We have tested the protocol on the three other

curated datasets and found that Talaris improves the correlation with comparable MAE

values for these datasets as well, compared to Score12. However, the performance measured

by the same metric differs significantly between the different datasets, suggesting that the

datasets represent different levels of prediction difficulty. These data are presented on the

website.

Notes (i) We have made some modifications to the datasets from the original publications,

such as updating deprecated PDB identifiers and correcting PDB IDs, PDB residue IDs, and

∆∆G values based on cross-referencing to the respective publications. We now attribute each

record of a dataset with publications from which the ∆∆G values originate. This information

was not present in some of the published datasets. (ii) Neutral experimental ∆∆G values

are defined as values within +/-1 kcal/mol, as used by Kellogg et al. We define neutral

predicted ∆∆G values as values within +/-1 score unit which differs from their definition

(see44 supporting information; neutral predicted is defined to be in the range [-3, 1.1]).

14



Alanine scanning

Purpose of this test A frequent application of modeling methods is the prediction of

energetically important interactions (“hotspots”) in protein-protein interfaces. By system-

atically mutating protein interface residues to alanine (“alanine scanning”) and measuring

the effect on binding, Wells and coworkers47 showed that not all residues with interface con-

tacts, but only a smaller subset of ‘hotspot’ residues contribute significantly to the binding

free energy of human growth hormone to its receptor. Subsequent studies suggested that

such hotspots may be a general characteristic of many protein-protein interfaces48–50. This

benchmark tests the ability of computational alanine scanning protocols to recapitulate the

results of measurements of changes in binding affinity (∆∆G values) produced by experi-

mental alanine scanning. A computational protocol performing well on this test set can then

be used for additional applications, for instance, as a design tool to disrupt protein-protein

interactions by mutations or through targeting small molecules to hotspots, or to analyze

the effect of disease mutations.

Benchmark dataset The protocol has been benchmarked on a previously published set

of the energetic effects of 233 mutations to alanine in 19 different protein-protein interfaces

with known crystal structures51.

Rosetta protocol We have re-implemented a previously published alanine scanning pro-

tocol51,52 in the current version of Rosetta to determine the current performance of this

method. Unlike the generalized ∆∆G protocol described above, which performs side chain

optimization and side chain and backbone minimization over the entire protein structure,

the alanine scanning protocol does not model perturbation of the backbone or side chains

other than the side chain of the residue replaced with alanine. The ∆∆G of binding upon

mutation to alanine is calculated using the following equation, in which Rosetta total energy
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is used to estimate the ∆G of folding of each of the six terms:

∆∆Gbind = ∆GMUT
bind −∆GWT

bind

= (∆GMUT
complex −∆GMUT

partnerA −∆GMUT
partnerB)

− (∆GWT
complex −∆GWT

partnerA −∆GWT
partnerB)

(2.1)

Alanine scanning uses a version of Rosetta’s Talaris energy function with modified weights

intended for scoring mutations to alanine within interfaces, where the score term representing

repulsive electrostatic interactions is down-weighted.

The previously published protocol51,52 is available via the Robetta webserver at http://robetta.bakerlab.org/alascansubmit.jsp,

which has provided more than 20,000 predictions to date. The implementation described

here will allow users to run predictions off-line and on large datasets, and implement and

test modifications to the protocol.

Performance metrics Performance can be measured using the same metrics as in the

generalized case of the ∆∆G protocol described above, including the Pearson’s correlation

of predicted ∆∆G values to experimental ∆∆G values, mean absolute error (MAE), and

fraction correct (see previous section for descriptions of these metrics).

Key results Alanine scanning performance has not shown improvement when used with

modern Rosetta score functions and aggressive side chain/backbone minimization methods;

performance of the protocol described here is comparable to that shown in earlier publica-

tions51,52 and available on the Robetta server.

Notes/Limitations (i) As the alanine scanning protocol does not perturb the protein

backbone or side chains (other than the mutant residue), this protocol is not suitable for use

on mutations outside of the interface. A mutation outside of the interface will not change

the predicted interaction energy without the use of a more intensive sampling protocol. (ii)
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As the backbone structure of the wild-type crystal structure is assumed to be a close ap-

proximation of the backbone structure of the mutant, this protocol is not useful in situations

where this assumption does not hold. This includes testing of many simultaneous mutations

that may result in larger structural rearrangements.

2.3.2 Design tests

Protein design methods are difficult to test rigorously because an ideal benchmark set would

contain both successful and unsuccessful designs, however, the number of cases where both

have been characterized functionally and structurally is small and not yet diverse enough.

Until the amount of available data of this nature greatly increases, other datasets, in par-

ticular the diversity of sequences present in naturally evolved protein families or selected in

large-scale experimental screens, can provide informative benchmarks that have been used

in the past to assess and compare design methods53,54. In the following sections, we first

focus on design tests using evolutionary information, and then describe a benchmark testing

prediction of protein recognition specificity using data from comprehensive phage display

experiments. In each case, we compare designed and evolutionary or experimentally selected

sequences using metrics comparing not individual sequences (as the number of possible se-

quences is large and hence the chance of an exact match at all sequence positions extremely

small), but instead predicted and observed amino acid distributions.

2.3.3 Using evolutionary information

Purpose of this test Evolutionary pressures on protein structure and function have

shaped the amino acid sequences of today’s naturally occurring proteins55. Consequently,

the sequences of natural proteins are nearly optimal for their structures56. Natural protein

sequences therefore provide valuable information for evaluating the accuracy of computa-

tional protein design in predicting sequences consistent with a given protein structure and

function. We expect that an ideal computational protein design method should be able to
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recapitulate properties of naturally occurring proteins, including amino acid sequence pref-

erences (“sequence profiles”) and patterns of amino acid covariation. In particular the latter

tests whether computational protein design methods are capable of recapitulating the precise

details of specific residue-residue interactions in proteins.

Benchmark dataset To evaluate to what extent protein design methods can recapitulate

properties of naturally evolved proteins, we first characterized amino acid sequence profiles

and amino acid covariation in 40 diverse protein domain families. Protein domains for this

benchmark were selected from Pfam57 based on the following criteria: (i) there is at least one

crystal structure of the domain available from the PDB; (ii) there were at least 500 sequences

of the domain family available from Pfam; and (iii) the domain had 150 or fewer amino acids.

We selected 40 structurally diverse domains that satisfied these criteria. Sequence profiles

were calculated by determining the amino acid distribution at each position and amino acid

covariation was calculated for all pairs of amino acids using a mutual information based

metric58.

Rosetta protocol We designed 500 sequences for each domain using a variety of protein

design methods that used the same energy function but differed in how they modeled protein

backbone flexibility. As a baseline, we performed fixed backbone protein design, which does

not allow the backbone to be moved. Flexible backbone design simulations were performed

multiple times using different temperatures and different types of backbone moves to assess

how the magnitude and mechanism of backbone variation affects the recapitulation of natural

sequence properties. The different types of backbone moves included Backrub, Kinematic

Closure (KIC), small phi/psi moves and all atom minimization (Relax). We also tested fixed

backbone design using a soft-repulsive energy function. Additional details on the different

methods are described in53 and Rosetta command lines are provided on the web resource,

along with a performance comparison.

18



Notes/Limitations This benchmark makes the assumption that naturally occurring pro-

teins are optimized for stability given their particular three-dimensional structures used as

input. However, there certainly exist cases where proteins trade stability for function, such

as hydrophobic patches that act as protein-protein binding interfaces or charged residues

in the protein core used for catalyzing chemical reactions. We therefore expect to observe

some differences between naturally occurring sequences and sequences predicted by an accu-

rate protein design method (even if it were perfect). The benchmark assumes that methods

that predict more “native-like” sequences overall are more accurate and thus more useful

for experimental design applications56. In these applications, functional constraints, such

as binding and catalysis, are usually explicitly represented by including functional binding

partners or specifying certain key catalytic groups and their conformations.

Native sequence recovery

Performance metrics Native sequence recovery56 measures the ability of computational

protein design to predict the amino acid sequence of a protein given its backbone conforma-

tion (??B). This is simply calculated as the percent identity between the native sequence

and a designed sequence.

Key results We found that adding a small degree of backbone flexibility prior to design

increased sequence recovery on average, however, further increasing the amount of backbone

flexibility led to worse sequence recovery scores. A possible explanation for this decrease

in recovery is that allowing more backbone flexibility resulted in sequences with a greater

diversity in their amino acid sequences and consequently greater divergence from the native

sequence. To confirm this, we calculated sequence entropy for the designed sequences and

found that structural variation is positively correlated with sequence diversity. These results

highlight a caveat with using native sequence recovery as a test of protein design accuracy,

which is that protein sequences can be very different from each other but still be consistent
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with the same protein fold59, and it is this sequence divergence that can be utilized to evolve

existing proteins for new functions.

Sequence profile recovery of protein families

Performance metrics Sequence profiles represent the distribution of amino acids at each

position in a multiple sequence alignment of a protein family (??C). To compare natural and

designed sequence profiles, we computed the divergence between the amino acid distributions

at corresponding positions in the natural and designed sequences, as described in59. Briefly,

profile similarity is the product of two scores: (i) the estimated probability that two amino

acid distributions represent the same source distribution; and (ii) the a priori probability of

the source distribution. It is defined as:

Profile Similarity(p, q) =
1

2
(1−DJS[p||q])(1 +DJS[r||P0]) (2.2)

where p and q are amino acid probability distributions at corresponding positions in natu-

ral and designed sequences, r is the average of p and q, P0 is the background distribution, and

DJS is the Jensen-Shannon divergence. Using this metric, positions in designed sequences

receive high profile similarity scores if both: (i) their amino acid distribution is similar to

the amino acid distribution at the corresponding position in the natural alignment; and (ii)

their amino acid distribution is different than the background amino acid distribution.

Key results We observed that backbone flexibility improved our ability to recapitulate

sequence profiles of naturally occurring protein families relative to fixed backbone design,

and that there exists an optimal magnitude of backbone flexibility (using Rosetta kT = 0.9 in

“backrub” simulations,53) given that low or high temperature simulations performed worse

than medium temperature simulations. This analysis also revealed an important pathology in

the designed sequences, which showed an unrealistically high percentage of designed buried

polar residues when compared to the natural sequences. To overcome this problem, we
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repeated the benchmark using a newer Rosetta energy function, Talaris46 that has stricter

definitions for hydrogen-bonding geometries. We found that this decreased the percentage

of buried polar residues, including serine, threonine and histidine, although it remained

higher than in the natural sequences (?? and ??). These results can be quite sensitive to

the reference energies in the applied energy function (which allow energetic evaluation of

mutations). Existing automated tools60 that reweight reference energy terms can be used to

develop alternative energy functions. Future improvements to sampling and scoring will be

required to further reduce the percentage of buried polar groups to levels found in naturally

occurring proteins.

Figure 2.2: Comparison of occurrences of different amino acid residue types observed
at buried positions between natural sequences and sequences designed with two different
Rosetta energy functions. Barplot showing the percent occurrence of each type of amino
acid found at buried positions in natural and designed sequences across 40 diverse protein
families. Buried positions are defined as positions with greater than 14 neighboring posi-
tions, where neighboring positions have C-β atoms within 8Å of the C-β atom of the residue
of interest. The X-axis is sorted by the magnitude of improvement of the Talaris energy
function relative to the previous Score12 energy function with respect to the similarity to
the natural percent occurrences.
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Amino acid covariation

Performance metrics To evaluate how well a given protein design method could recapit-

ulate natural amino acid covariation, we designed 500 sequences for each protein domain in

the benchmark and calculated the covariation between all pairs of positions in the designed

sequences (??D). Covariation is calculated based on a mutual-information based metric de-

scribed in58. The mutual information (MI) between each pair of columns in a multiple

sequence alignment, i and j, was calculated as the difference between individual entropies

(Hi, Hj) and the joint entropy (Hi,j):

MIi,j = Hi +Hj −Hi,j (2.3)

The background mutual information due to random noise and shared ancestry is then

subtracted to obtain the product corrected mutual information (MIp)61:

MIpi,j = MIi,j −
MI i ×MIj

MI
(2.4)

where MIj is the mean MI of position i with all other positions and MI is the overall

mean value. Next this value is converted to two Z-scores, one for each column, which are

then multiplied together:

Zi×y =
MIpi,j −MIpi

σ(MIpi)
× MIpi,j −MIpj

σ(MIpi)
(2.5)

The final covariation score, called Zpx, is calculated as the square root of the absolute

value of Zi×y. (If Zi×y is negative, then Zpx is multiplied by -1.) This normalization was

previously shown to reduce sensitivity to potential misaligned regions in multiple sequence

alignments, which otherwise result in artificially high MI scores58. Similarity between nat-

ural and designed covariation was calculated as the percent overlap between the highly

covarying pairs in the natural sequences and in the designed sequences. We considered pairs
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with covariation scores greater than two standard deviations from the mean to be highly

covarying53.

Key results We used this metric for quantifying the similarity of natural and designed

covariation in order to compare different flexible backbone protein design methods that var-

ied in either the magnitude or mechanism of backbone flexibility. As with sequence profile

recovery, we observed that backbone flexibility improved our ability to recapitulate naturally

occurring amino acid covariation relative to fixed backbone design, and that there exists an

optimal magnitude of backbone flexibility (in the range of kT = 0.6 to kT = 0.9 in Rosetta

simulations). We also found that flexible backbone design methods which incorporate back-

bone flexibility via iteratively applying local backbone moves (e.g. Backrub62 or Kinematic

Closure23) performed better than Rosetta methods that globally alter the backbone of the

entire protein (e.g. Relax or AbInitioRelax)53.

2.3.4 Using large-scale experimental data

Recognition specificity

Purpose of this test “Sequence tolerance” refers to the concept that a certain profile of

allowed residues can accommodate the evolved structure and function of a protein (??E).

The computational sequence tolerance protocol attempts to predict the allowed sequence

profile in protein-protein interfaces. The predictions are tested for their ability to reca-

pitulate the sequence specificity preferences of protein recognition domains that have been

determined by comprehensive phage display experiments. In contrast to the comparison to

sequences of evolutionary families in the previous section, the experimentally determined

profiles were selected primarily based on the same criterion (most stable binding) as in the

design simulations.
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Benchmark dataset The experimental data used for comparison in this benchmark set

come from phage display specificity profiles for naturally occurring PDZ domains63, as well

as phage display profiles for peptide interactions with synthetic variants of the Erbin PDZ

domain63,64, comprising over 8000 peptide sequences tested against 169 natural and synthetic

PDZ domains total.

Rosetta protocol There are two main computational steps: (i) the Rosetta Backrub

application62 uses Monte Carlo sampling starting from a single input structure to create an

ensemble of near-native conformations; (ii) the sequence tolerance application65,66 then uses

a genetic algorithm to sample and score a large number of sequences for each member of the

ensemble. An input file defines the sequence positions to be designed, and interactions within

and between different parts of the structure can be individually reweighted, depending on

the desired objective.

Performance metrics The analysis scripts use Boltzmann weighting to generate a pre-

dicted position weight matrix (PWM) for the specified sequence positions. This predicted

PWM can be compared to known sequence profiles via these metrics described in the previous

sequence tolerance publications65,66: (i) AAD, average absolute deviation, defined as:

1

N

N∑
i=1

|Ei − Pi| (2.6)

and (ii) Frobenius distance, defined as:

√√√√ N∑
i=1

(Ei − Pi)
2 (2.7)

where E is the vector of experimentally determined amino acid frequencies and P is

the corresponding vector of predictions. (iii) AUC, or area under the receiver operator

characteristic curve, measures the ability of the predictions to match the experimental values

on a known scale, where 0.5 indicates random predictions and 1.0 is perfect. (iv) “Rank top”
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measures the predicted rank of the most frequent experimentally determined amino acid.

Key results Recognition specificity performance with Talaris is comparable to the origi-

nally published performance of the protocol with Score1265,66.

Notes/Limitations (i) Although the sequence tolerance protocol is capable of generat-

ing backbone flexibility, which improves performance, it still relies on known input starting

structures. Mutations can be made to these starting structures in order to predict the

recognition specificity of experimentally characterized mutated proteins, but the additional

mutation step might reduce the overall performance of the protocol. (ii) The backrub phase

of the protocol must be run at a reasonable temperature (see protocol capture) to generate

an appropriately matching amount of backbone flexibility in the sequence tolerance step.

(iii) Due to limitations in the sequence space sampled by the genetic algorithm, it is not

recommended to try and sample more than about 4-6 design positions simultaneously. (iv)

Sequence profiles produced by this method may accurately predict the most frequently ob-

served amino acid at a design position without containing enough total variation at that

same position. (v) The performance metrics described above ignore potential co-variation in

predicted or experimentally selected sequences.

2.3.5 Structure prediction tests

Loop reconstruction

Purpose of this test Being able to correctly model loop conformations (??F) is crucial be-

cause of their functional importance in many proteins, such as in forming the complementarity-

determining regions in antibodies or in controlling substrate access and product release in

enzyme active sites. However, since many loops in protein structures are flexible, loop mod-

eling is computationally hard, because the many backbone degrees of freedom (depending

on the length of the loop) result in a vast conformational search space. The purpose of this
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test is to reconstruct known native loop conformations, as observed in crystal structures, in

non-redundant benchmark sets of different loop lengths.

Benchmark dataset The Rosetta loop modeling benchmark23,63–67 tests the ability of a

protocol to reconstruct the backbone conformation of 12-residue loop segments in protein

structures. The benchmark set consists of 45 non-redundant protein segments without regu-

lar secondary structure, curated from two previously described datasets68–73 In each case, the

given segment is deleted from the protein structure and then reconstructed de novo, given

a fixed backbone environment for the rest of the protein. All segment side chains and those

within 10Å of the segment are modeled based on a side chain rotamer library74 that does not

include the native side chain conformations. The long loops benchmark67 analogously tests

whether protocols are able to reconstruct loop segments of 14-17 residues. This benchmark

set consists of 27 non-redundant long loops, extracted and manually curated from the dataset

described in75, by requiring at most five residues within 6Å of symmetry mates in the crystal

lattice to minimize the potential impact of crystal contacts on loop conformations. De novo

loop reconstruction and side chain optimization are performed as described above for the

standard loop modeling benchmark.

Rosetta protocol Several protocols have previously been developed to reconstruct or

predict the backbone conformation of loops in protein structures. The CCD protocol in

Rosetta69 uses insertion of fragments from proteins of known structure to sample the loop

backbone degrees of freedom, followed by torsion angle adjustments via cyclic coordinate

descent (CCD) to close the resulting chain break76. The kinematic closure (KIC) protocol23

samples all but six loop backbone degrees of freedom probabilistically from Ramachandran

space. These remaining three pairs of φ/ψ torsion angles are then solved analytically through

kinematic closure to close the chain break77. Next-generation KIC (NGK)67 adds four ad-

ditional sampling strategies to the standard KIC protocol: (i) the selection of pairs of φ/ψ

torsions from neighbor-dependent Ramachandran distributions; (ii) sampling of ω degrees
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of freedom; as well as annealing methods that gradually ramp the weights of (iii) the repul-

sive terms; and (iv) the Ramachandran terms of the Rosetta energy function to overcome

energy barriers. All three loop modeling protocols use Monte-Carlo simulated annealing for

rotamer-based side-chain optimization (“repacking”) of the loop residues and those within

10 Å of the loop, followed by gradient-based minimization.

Performance metrics With each loop modeling protocol, hundreds of models are gen-

erated per benchmark case. Each model is then superposed onto the native structure (ex-

cluding the reconstructed loop), followed by calculating the loop backbone heavy-atom root

mean square deviation (RMSD) of the model to the native loop conformation. The overall

benchmark performance of each protocol is then evaluated using two different metrics across

the entire benchmark set: (i) the median loop backbone RMSD of the lowest-energy model

to the native structure (or median lowest loop backbone RMSD of the 5 lowest-energy mod-

els, which is less susceptible to stochastic fluctuations60); and (ii) the median percentage of

models generated that have a loop backbone RMSD below 1Å (sub-angstrom predictions).

Key results With the Rosetta Score12 energy function (the standard before the switch

to the Talaris2013 energy function in revision 55274), only the KIC23 and NGK67 protocols

successfully sampled sub-angstrom loop conformations in many cases, achieving a median

RMSD across the entire 12-residue loop benchmark set of ¡1Å. NGK significantly outper-

formed standard KIC in the sampling of sub-Å loop conformations, with NGK reaching a

median of 16.3% sub-Å models compared to 4.3% for standard KIC67. Since the advent of

the Talaris2013 score function46–60, the CCD protocol now also achieves a median RMSD

< 1Å on the 12-residue loop dataset. The median percentage of models with sub-Å RMSD

is still significantly higher for NGK (13.4%) than for standard KIC (6.4%) and CCD (1.8%).

For the more difficult sampling problem in the long loops benchmark, the sub-Å sampling

performance of NGK improved from Score12 (0.53%) to Talaris2013 (1.0%).
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Notes/Limitations (i) Flexible loops are often better described by a conformational en-

semble rather than a single conformation, and some simulations indeed reveal several clusters

of different low-energy conformations. (ii) Crystal contacts can influence loop conformations,

and the absence of those contacts during modeling can result in predictions differing from the

crystallographic conformation. (iii) There are similar considerations for the presence of water

molecules, ions or other small molecules, which might influence loop conformations. (iv) For

the KIC and NGK protocols, the start and end points of loops are assumed fixed during the

simulations; this simplifies the sampling problem in the context of “native” loop endpoints

(i.e. taken from a crystal structure), but complicates the situation when the conformation

of loop endpoints may not be known exactly, e.g. when building loops in homology models.

In these cases, protocols that sample the positions of the endpoints or apply KIC moves

over several overlapping regions may be more suitable. (v) Modeling long loops is difficult

for current protocols, due to the large conformational search space, which is apparent from

the considerably lower fraction of sub-angstrom models in the 14-17 residues loop bench-

mark. (vi) The KIC and NGK protocols do not preserve protein secondary structure, due

to probabilistic sampling of φ/ψ torsions from Ramachandran space. Additional sampling

constraints could be included to preserve secondary structure.

2.3.6 Website description

The benchmark captures are collected and presented online at https://kortemmelab.ucsf.edu/benchmarks.

The purposes of the website are to: (i) describe specific and well-defined problems in com-

putational modeling; (ii) describe and provide benchmarks which can be used to measure

the success of methods designed to address these problems; (iii) publish the performance of

methods using parameters provided by experienced users; and (iv) act as a unified portal for

downloading the benchmark captures.

On the main benchmark page (??A), we describe each benchmark - its purpose, applica-

tion, and the currently considered datasets - and publish results of benchmark runs so that
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users can quickly gauge the performance of different methods. Relevant command lines are

provided to promote best practice for each method when using the Rosetta software suite.

Figure 2.3: Benchmark and protocols capture website. Left: The website presents an
overview of each benchmark and publishes the performance of different methods using a
set of standardized metrics. Parameters important to the protocol performance are also pro-
vided. Right: Each benchmark capture is stored in a documented version-controlled archive.
The most recent version can be downloaded directly from the website.

Each capture has been compiled as a version-controlled, publicly-accessible, open-source

archive (currently hosted on GitHub), containing both the associated benchmark datasets

and scripts to analyze benchmark output in a specific format. Execution scripts to run the

benchmark using at least one computational method are provided. Both the analysis and
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execution scripts are documented in detail within the capture, and this documentation can

be viewed online on GitHub. For convenience, these captures are available for download

directly from the web resource (??B).

As our intention is to provide a dynamic resource, it may be appropriate to refine or

expand certain datasets as new data become available in the future. Version control allows

us to update the contents while allowing users to track changes in the datasets or analysis

metrics. Major changes to repositories will be tagged and referred to in the website text.

Following the philosophy of the computer language benchmark projects78,79, the parameters

used for each method should reflect the best practice. For this reason, they should be ideally

contributed by a developer or experienced user, and we encourage users to submit their

methods, parameters, and results for inclusion on the website.

We have aimed to provide rich, user-friendly datasets. For example, the protein stability

datasets are provided in both JSON and CSV formats. The former is readily integrated with

multiple programming languages and web frameworks whereas the latter is human-readable

and easily imported into spreadsheet applications. In both of these datasets, each record

is now associated with experimental values taken from the literature - which we were able

to determine using the rich source of data provided by the ProTherm database34 - so that

outliers in the predicted set can be investigated using the original experimental data.

2.4 Discussion

We have presented our implementation of a benchmarking and protocol capture web resource

which currently describes five diverse benchmarks and their expected performance when

tested using a known best-practice methods from the Rosetta software suite. The web site

functions as an openly accessible, online, and version-controlled collection of a variety of

benchmarks and macromolecular modeling and design protocols, providing a summary of

the evolution of the protocols and indicating their expected performance on the associated
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benchmarks.

The web resource was motivated by previous work78,79 which has fostered, and continues

to foster, competition and innovation in computer language development through the open

communication of standardized benchmarks which allow for direct and fair comparison be-

tween competing computer languages. In those projects, knowledge of the performance of

each language for the particular problem and the open communication of the most efficient

code is important for both software developers when choosing which language to use for a

particular project and for the language developers so that they can identify parts of the lan-

guage for optimization. By providing both curated diverse datasets for benchmarking and

analysis scripts to generate a set of appropriate metrics, we hope that we can help develop-

ers to evaluate new methods in informative ways, which is critically needed for continued

progress in many areas of structure-based modeling and design.
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2.6 Supporting Information

Figure 2.4: Comparison of occurrences of different amino acid residues (by po-
larity) observed at buried and exposed positions. Each barplot shows the percent
occurrence of each polarity category of amino acid found in natural and designed sequences
across 40 diverse protein families. Yellow bars show the percent occurrence in natural se-
quences, red the percent occurrence in sequences designed using Rosetta’s Score12 energy
function, and blue the percent occurrence when designing with Rosetta’s Talaris energy func-
tion. Neighboring positions are defined as any position with a C-β atom within 8Å of the
position being investigated. For the purposes of this figure, nonpolar amino acids are defined
as: CGAVLIMFWP, polar: STYNQ, charged: HRKDE. (A) Exposed positions are defined
as positions with between 0 and 8 neighboring positions. (B) Buried positions are defined
as positions with greater than 14 neighboring positions. Using the Talaris energy function
reduces the percentage of charged residues placed in buried positions by 43% (from 10.5%
to 6.2%), bringing the predictions closer to the native sequence properties.
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Chapter 3

Flex ddG: Ensemble-based prediction

of interface binding free energy upon

mutation

3.1 Introduction

Protein-protein interactions underlie many biological processes, including signal transduction

and antibody-antigen recognition. In fact, mutations at protein-protein interfaces are over-

represented within disease-causing mutations80, indicating the central importance of these

interactions to biology and impications to human health. A computational method capable

of predicting mutations that strengthen or weaken known protein-protein interactions would

not only serve as a useful experimental tool to improve our understanding of biology, but

would also enhance our ability to create protein drugs with new modes of actions, and

additionally enhance engineering applications such as design of protein-based sensors and

materials.

Several prior methods have attempted to predict changes in binding free energies us-

ing different approaches to scoring and sampling, including weighted energy functions that
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seek to describe physical interactions underlying protein-protein interactions42,81, statistical

and contact potentials82? –84, a combination of these approaches85, graph-based represen-

tations86, and methods that attempt to sample backbone structure space locally around

mutations87.

We set out to develop and assess methods for prediction of change in binding free energy

after mutation (interface ∆∆G) within the Rosetta macromolecular modeling suite. Rosetta

is freely available for academic usage, allowing future combination of these predictions with

Rosetta’s powerful protein design capabilities, which has proven successful in a variety of

applications88. Prior projects have applied Rosetta predictions to dissect determinants of

binding specificity and promiscuity89,90 enhance protein-protein binding affinities91,92, and

to design modified52,93 and new interactions94,95, but no prior benchmarking effort has stud-

ied the performance of predicting changes in binding free energy in Rosetta on a large,

diverse benchmark data set, in part because such a dataset has only become available more

recently. The current state-of-the-art Rosetta ∆∆G method, ddg monomer44, has proven

effective at predicting changes in stability in monomeric proteins after mutation, but had not

yet been tested at predicting change of binding free energies in protein-protein complexes.

Prior “computational alanine scanning” ∆∆G methods were benchmarked on mutations in

protein-protein interfaces, focusing on mutations to alanine1,51,52. The original alanine scan-

ning method sampled only side chain degrees of freedom, which is a fair approximation for

mutations to alanine (which are not expected to cause large backbone perturbations96), but

a less probable assumption for mutations to larger side chains which might require some

degree of backbone rearrangement to accommodate the change. Adaptation of the alanine

scanning method to recent score function and sampling method developments in Rosetta has

not shown improvement in benchmarking1, indicating a need to more thoroughly develop

and test a method that attempts to more aggressively sample conformational space.

We sought to create a method that would take into account the natural conformational

flexibility of proteins by representing structures as an ensemble of individual full-atom mod-
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els, generating sufficient microstate-like models to effectively explore the biologically rele-

vant and accessible portions of conformational space close to the native structure. Ensemble

representations have proven their effectiveness to predict change in protein stabilities after

mutation45 and to improve ∆Gbinding calculations between kinases and their inhibitors97.

We chose to sample conformational diversity through use of the “backrub” protocol im-

plemented in Rosetta. The backrub method samples using local, coupled, side chain and

backbone motions, similar to those observed in high-resolution crystal structures22. Back-

rub ensembles appear to recapitulate properties of proteins that have been experimentally

determined, such as side chain NMR order parameters24, sequence profiles at protein-protein

interfaces98, sequence profiles of protein-peptide binding specificity65,66, and can sample the

conformational variability between protein homologs99. Backrub has also proved effective in

design applications, such as for the redesign of protein-protein interfaces93 and recapitulation

of mutations that alter ligand-binding specificity100. When Davey and Chica compared back-

rub ensembles to ensembles generated via molecular dynamics simulations or PertMin101,

backrub ensembles were shown in certain cases to be the only generated ensembles with a

higher diversity (as measured with RMSD) from each other than from the original input crys-

tal structure, indicating that backrub is uniquely suited to produce diverse ensembles that

stay in the local conformational space of the input structure.101 We hypothesized that this

property of backrub ensembles would translate into these ensembles serving as an effective

structural representation to use when predicting interface ∆∆G values.

3.2 Methods

Developing and assessing the accuracy of a new method to predict changes in binding free

energy after mutation requires a large and diverse benchmark set covering single mutations

to all amino acid types, multiple mutations, and mutations across a variety of protein-protein

interfaces. To facilitate comparisons to other methods and to avoid biases specific to our
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n Name

1240 Complete dataset
748 Single mutation to alanine
273 Multiple mutations
130 Small-To-Large Mutation(s)

Table 3.1: ZEMu dataset subset definition and composition

approach, we chose to use an existing benchmark dataset created by Dourado and Flores87

during the creation of their ZEMu (Zone Equilibration of Mutants) method. The ZEMu

dataset was curated from the larger SKEMPI database36 and was filtered to avoid a bias

towards complexes in which a single position is repeatedly mutated, experimental data that

is not peer-reviewed, redundancy, mutations outside of interfaces, mutations involved in

crystal contacts, and experimental ∆∆G values for which wild-type and mutant conditions

(such as pH) varied. Confidence in the “known” experimental ∆∆G values is important,

as it has been shown that the experimental methodology used can have a strong effect on

the performance of predictors of changes in binding free energy102. The ZEMu dataset was

also curated to include a wide range of both stabilizing and destabilizing mutants, small

side chain to large side chain mutations, single and multiple mutations, and a diversity of

complexes (??).

After a review of the literature from which the known experimental ∆∆G values origi-

nated, we removed one data point from the 1254 point ZEMu set that we could not match to

the originally published reported affinity value. We also removed 5 mutations we determined

to be duplicates, along with 8 mutations that were reverse mutations of other data points,

leaving us with a test set of 1240 mutations. We defined which complexes that contained at

least one antibody binding partner by comparison of PDB identifiers with SAbDab103.

Our protocol, called “flex ddG”, is implemented within the RosettaScripts scripting in-

terface to the Rosetta macromolecular modeling software suite104, which makes the protocol

easily adaptable to future improvements and energy function development. We utilized

Rosetta’s Talaris60,74,105 energy function. Version numbers of tested software are available
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in ??.

Flex ddG method steps are outlined in ?? (full Rosetta Scripts XML available in ??).

Step 1: The protocol begins with an initial minimization (on backbone φ/ψ and side chain χ

torsional degrees of freedom, using the “lbfgs armijo nonmonotone” minimization algorithm

option) of the input model using the Rosetta energy function. This (and later) minimizations

are performed with constraints that harmonically restrain pairwise atom distance to their

values in the input crystal structure. Minimization is run until convergence into a local energy

well. Step 2: Starting from the minimized input structure, the backrub method in Rosetta is

used to create an ensemble of models. In brief, each backrub move is undertaken on a three-

residue stretch of protein, chosen randomly from the set of residues within 8 Å of any mutant

position. All atoms in the three-residue stretch of structure are rotated locally about an axis

defined as the vector between the endpoint c-α atoms. Bond angles involving the endpoint

atoms are then minimized. Backrub is run at a temperature of 1.2, for up to 60,000 backrub

Monte Carlo trials. 50 output structures are generated. Step 3A: For each of the 50 structure

models in the ensemble (output by backrub), the Rosetta “packer” is used to optimize side

chain conformations for the wild-type sequence using discete rotameric conformations74. The

packer is run with no extra options to the multi-cool annealer106. Step 3B: Independently

and in parallel to step 3A, side chain conformations for the mutant sequence are optimized

on all 50 models. Step 4A: Each of the 50 wild-type structures is minimized, again adding

pairwise atom-atom constraints to the input structure. Minimization is run with the same

parameters as in step 1; the coordinate constraints used in this step are taken from the

coordinates of the Step 3A structure. Step 4B: As step 3B but for each of the 50 mutant

models. Step 5A: Each of the 50 minimized wild-type structures are scored in complex, and

the individual complex components are scored individually. The scores of the split, unbound

complex components are obtained simply by splitting the complex halves away from each

other. No further minimization or side chain optimization is performed on the unbound

states before scoring. Step 5B: In the same fashion as Step 5A, each of the 50 minimized
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Wild-Type Mutant

 Step 0 
Input starting structure 

 Step 1 - Minimize 
Global minimization (to convergence) of backbone and side chain torsions

Pairwise atom constraints from Step 0 

 1x

 Step 2 - Backrub 
Local sampling of backbone and side chain degrees of freedom of pivot residues,

defined as those with neighbor atoms within 8Å of mutation positions

 1x

Step 3a - Pack
Optimize side chains globally

on wild-type structure 

 50x

 Step 3b- Mutate and Pack 
Optimize side chains globally

on mutant structure
(using the mutant sequence) 

 50x

Step 4a - Minimize
Global minimization (to convergence)
of backbone and side chains torsions

Pairwise atom constraints from Step 3a 

 50x

Step 4b - Minimize
Global minimization (to convergence)
of backbone and side chains torsions

Pairwise atom constraints from Step 3b

 50x

Step 5a - Score
Score wild type complex and unbound partners

using Rosetta's all-atom energy function

 50x

Step 5b - Score
Score mutant complex and unbound partners

using Rosetta's all-atom energy function

 50x

 Step 6 
Calculate interface ΔΔG score

 50x  50x

Figure 3.1: Schematic of the flex ddG protocol method.
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mutant structures are scored in complex, and the individual complex components are scored

individually. Step 6: The interface ddG score is produced via Eq. ??:

∆∆Gbind = ∆GMUT
bind −∆GWT

bind

= (∆GMUT
complex −∆GMUT

partnerA −∆GMUT
partnerB)

− (∆GWT
complex −∆GWT

partnerA −∆GWT
partnerB)

(3.1)

We evaluate performance of the protocol by comparing predicted ddG scores to known

experimental values, using Pearson’s correlation R, Mean Absolute Error (MAE), and Frac-

tion Correct (FC). Fraction Correct is defined as the number of mutations categorized as

stabilizing, neutral, or destabilizing correctly, divided by the total number of mutations in

the benchmark set. Stabilizing mutations are defined as those with a ∆∆G <= -1.0 kcal/mol,

neutral as those with -1.0 kcal/mol < ∆∆G < 1.0 kcal/mol, and destabilizing as those with

∆∆G >= 1.0 kcal/mol.

MAE (Mean Absolute Error) is defined in Eq. ?? as:

MAE =
1

n

n∑
i=1

|yi − xi| =
1

n

n∑
i=1

|ei| (3.2)

where yi are the predicted ∆∆G values, xi are the known, experimentally determined

values, and ei is the prediction error.

3.3 Results and discussion

The overall performance of the protocol is summarized in ??. We compare 4 prediction

methods: (a) our flex ddG backrub ensemble method, (b) the prior state-of-the-art Rosetta

methodology, ddg monomer44, (c) a control version of our flex ddG protocol which omits the

backrub ensemble generation step, leaving only the minimization and packing steps, and (d)

the ZEMu (zone equilibration of mutants) method87.
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Mutation Category Prediction Method N R MAE FC

Complete dataset

flex ddG

1240

0.63 0.93 0.76
ddG monomer (hard-rep) 0.51 1.04 0.70
no backrub control 0.57 1.00 0.74
ZEMu paper 0.61 0.96 0.75

Small-To-Large Mutation(s)

flex ddG

130

0.64 0.87 0.75
ddG monomer (hard-rep) 0.31 1.10 0.65
no backrub control 0.42 1.01 0.70
ZEMu paper 0.48 1.03 0.64

Single mutation to alanine

flex ddG

748

0.50 0.72 0.75
ddG monomer (hard-rep) 0.36 0.81 0.70
no backrub control 0.44 0.78 0.75
ZEMu paper 0.45 0.76 0.75

Multiple mutations

flex ddG

273

0.62 1.51 0.77
ddG monomer (hard-rep) 0.50 1.69 0.66
no backrub control 0.58 1.60 0.71
ZEMu paper 0.64 1.46 0.78

Table 3.2: Main results table. R = Pearson’s R. MAE = Mean Absolute Error. FC =
Fraction Correct. flex ddG steps = 35000.

Our flex ddG method outperforms the comparison methods on the complete dataset in

each of the correlation, MAE, and fraction correct metrics. On the small-to-large subset

of mutations where we expect to see the largest performance gains from using a backbone

ensemble method, we see a substantial improvement in performance as compared to the

alternative methods. Performance of the flex ddG on the subset of single mutations to alanine

is also competitive or outperforms the alternative methods. As we do not expect single

mutations to alanine to require intensive backbone sampling, our method’s effectiveness on

this subset shows that it is fairly robust to the mutation type. This observation could be

explained by the fact that we undertake backrub sampling prior to making the mutation to

sample underlying, relevant flexibility of the input crystal structure instead of distorting the

local structure around a mutation to resolve a clash or poor interaction with a mutant side

chain. Finally, our method shows improved performance compared to the control method

and ddg monomer on the subset of multiple mutations, but for this set does not match the

performance of the ZEMu method. This could indicate that further refinement to the backrub
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sampling parameters are required in the case of multiple mutations, since as there are more

mutation sites, there will be more surrounding backrub pivot residue sites. However, flex

ddG outperforms ZEMu on multiple mutations if none of the mutations are to alanine (??).

The underlying scatterplots for the flex ddG and control methods on the complete dataset

and small-to-large subsets are shown in ??.

3.3.1 Effect of averaging more structures

In order to measure the degree to which averaging ∆∆G values across an ensemble of models

improves performance, we evaluated the performance of flex ddG as we average across an

increasing number of structures (from 1 to 50). ?? shows the effect on performance as

predictions from an increasing number of wild type and mutant structures are averaged. The

structures used are first sorted by the score of the corresponding repacked and minimized wild

type model, such that producing a ∆∆G with 1 model will only use the lowest (best) scoring

model, 2 models will use the 2 lowest scoring models, and so forth. ??(a) shows perfomance

on the complete dataset. As more structures, of increasingly high wild type complex score,

are averaged, correlation with known experimental values increases. Conversely, performance

for the no backrub control method (shown in light blue) decreases as more structures are

averaged. This result indicates that sampling with backrub adds information that improves

∆∆G calculation, despite the additional structures being averaged having higher scores

??. These higher-scoring models which would traditionally be thought to be less likely to

represent the folded global free-energy minimum, and therefore less predictive for ∆∆G

calculation.

Performance of the ddg monomer method is also improved as more output structures

are averaged (??). This is somewhat unexpected, as our no-backrub control method is

conceptually similar to the ddg monomer method. The difference may arise from the fact

that ddg monomer ramps the repulsive term of the energy function during minimization,

which is likely to improve results by sampling conformational space more broadly than
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(c) Backrub - Small-To-Large Mutation(s)
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(d) Control - Small-To-Large Mutation(s)

Figure 3.2: Experimentally determined ∆∆G values (y-axis) vs. Rosetta predictions. (a)
Flex ddg method (32500 backrub steps); Complete dataset mutation set (n=1240). (b) No
backrub control; Complete dataset mutation set (n=1240). (c) Flex ddg method (32500
backrub steps); Small-to-large mutation(s) mutation set (n=130). (d) No backrub control;
Small-to-large mutation(s) mutation set (n=130).
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Figure 3.3: Correlation (Pearson’s R) and MAE (Mean Absolute Error) vs. number of
averaged structures, on the complete ZEMu set, and subsets. Dark color lines represent
“flex ddG” run. Light color lines represent “no backrub control” run. (a) Complete dataset
(n = 1240, backrub step = 32500) (b) Small-to-large mutation(s) (n = 130, backrub step =
37500) (c) Multiple, none alanine (n = 45, backrub step = 40000) (d) Single mutation to
alanine (n = 748, backrub step = 50000)
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minimization with a fully weighted repulsive term.

Our observation that correlation with experimental ∆∆G values improves as more struc-

tures are averaged is seen to an even greater degree ??(b) for the subset of small-to-large

mutations. However, the subset of multiple mutations (where none are mutations to alanine)

shown in ??(c) does not see monotonically increasing performance as more structures are

averaged, indicating that more parameterization of the backrub method might be necessary

for multiple mutations.

Averaging across increasing structures also improves correlation ??(d) for the subset of

single mutations to alanines, a subset where it is not expected that increased sampling is

necessary, indicating that increased sampling, in the very least, is not harmful for this case.

From a practical standpoint, simply generating 20-30 structures should constitute suffi-

cient sampling for most use cases, as the performance when selecting the best scoring 20 out

of 50 models is not significantly improved over the results in ?? (where there is no sorting

of structures by score).

3.3.2 Effect of changing backrub sampling steps

Sampling can also be controlled by changing the length of the backrub simulation, as mea-

sured in the number of Monte Carlo sampling steps. ?? shows the effect on performance

of increasing backrub simulation length (while averaging all 50 structures at each output

step). ∆∆G scores are calculated every 2,500 backrub steps (shown in circles for correlation

and in squares for MAE). A “X” marks the performance with zero backrub steps (control

minimization and side chain packing only method).

As we observed when averaging over more structures, increased performance is also seen

in both correlation with experimental data and MAE as backrub simulation length increases

for the subsets of small-to-large mutations (panel b) and multiple mutations, none to alanine

(panel c). Performance reaches a maximum at 30,000 backrub steps, after which is levels off.

Performance improves for the first step of 2500 backrub steps on the complete dataset and
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for single mutations to alanine, but remains relatively flat afterwards.

The increased performance seen is not simply a result of scores decreasing as the simula-

tion progresses, as the score of the minimized wild type complex does not decrease uniformly

across the sampled ensemble as the simulation progresses (??). ?? shows that pairwise back-

rub ensemble RMSDs continue to increase throughout the backrub simulation for all subsets,

indicating that diminishing returns at 30,000+ steps is not a result of failure to sample new

states, but rather might indicate that no additional sampling is needed to capture the degree

of local change in structure that occurs post-mutation in this benchmark set. ?? also shows

that the starting pairwise ensemble RMSDs vary for each different subset, reflecting the fact

that different subsets are composed of different wild-type complexes with different inherent

flexibility (as sampled by backrub). This different inherent flexibility should be kept in mind

when comparing results across subsets.

Unlike when increasing the number of averaged structures, we see continual improved

performance with additional sampling (from longer backrub simulations) on the subset of

multiple mutations (not to alanine). This indicates that sampling cannot be simply “in-

creased” by tuning either the length of the backrub simulation or the number of models

generated.

3.3.3 Score analysis

As the sampling/scoring problems of protein modeling are inextricably linked, it is often the

case that improving one enables further improvements on the other. For example, increased

sampling can exposed score function problems. We sought to analyze underlying errors of the

Rosetta score function (when applied to interface ∆∆G) by reweighting the generally param-

eterized energy function for this specific application. Additionally, analyzing a reweighted

energy function on a score term by score term basis could provide insight into which terms

might benefit from future developments.

We chose to reweight the energy function using a non-linear reweighting scheme similar to
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Generalized Additive Models (GAMs)107. In this reweighting method, we use Monte Carlo

sampling to fit either a linear transformation or a sigmoid function to the individual distri-

butions of score terms, with the objective function of reducing the absolute error between

our predictions and known experimental values over the entire dataset.

As we do not modify our models of the unbound state, any effects on stability of the

complex partners will cancel out, as the ∆G of folding score of the unbound partners is

subtracted from the total score of the complex (??). Not modeling conformational change

in the unbound models might be effective because to modeling any such fluctuation might

produce more noise than signal when the scores for the bound and unbound states are

subtracted. This is supported by the prior observation that the mobility of amino acids at

dimeric interfaces is generally lower than for other amino acids at the protein surface exposed

to solvent108.

The terms in the Rosetta Talaris energy function that cancel out to zero are: yhh planarity,

pro close, hbond sr bb, ref, fa dun, fa intra rep, omega, p aa pp, and rama. Seven score

terms are left; combined they become the final interface ∆∆G score: fa sol, hbond sc,

hbond bb sc, fa rep, fa elec, hbond lr bb and fa atr.

The fit sigmoid and linear functions are shown in ??. The effect on the distribution of

predictions is shown in ??.

3.4 Conclusions

We have shown that our new “flex ddG” method for estimating change in binding affinity

after mutation in protein-protein interfaces is more effective than previous methods on a

large, curated benchmark dataset. Particular improvement in performance is seen on the

subset of small-to-large mutations, indicating that modeling backbone flexibility does im-

prove performance in the case where backbone rearrangements are expected to be more

common.
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We have also shown more accurate predictions can be obtaining by averaging the scores

across a generated ensemble of backrub microstates, and that the number of required states

is relatively low (20-30). Prior methods that attempted to produce ∆∆G predictions by av-

eraging an ensemble of models required on the order of thousands of structures45, indicating

that backrub sampling can efficiently sample the local conformational landscape around a

wild-type structures that is relevant for interface ∆∆G prediction.

By creating a method that uses backrub to sample conformational space more broadly

than minimization alone can sample, while still staying close in conformational space to the

known wild-type input structure, we have also generated data that should prove useful for

future energy function improvements. In particular, performance with Rosetta’s newest REF

energy function109 is currently not better in our method than performance with the prior

Talaris energy function (??), indicating that the backrub sampling parameters might require

further benchmarking and adaption to the REF energy function. Our error analysis via

GAM-like reweighting also indicates potential score function improvement could be obtained

via non-linear score term reweighting, and that examination of the weights we obtained for

interface ∆∆G prediction might provide insight into why the current energy function fails

on certain cases in our dataset. Further improvements might also be obtained by more

explicitly including the effects of entropy, including the potential to use our ensembles to

calculate change in conformational entropy after mutation.
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Chapter 4

Conclusion

In my thesis research, I have evaluated the performance of current state-of-the-art computa-

tional protein structure prediction and design methods that estimate the energetic effects of

mutations, design protein sequences, and predict the structure of protein loops. The curated

benchmark data that I assembled to evaluate each of these methods will also be of use for

future benchmarking of Rosetta and non-Rosetta protocols.

I have advanced the ability of the Rosetta computational protein structure prediction and

design software to more accurately represent proteins with conformational flexibility using

ensemble-based approaches. This ensemble-based sampling approach has enabled improved

performance in calculations of change in binding free energy post-mutation, particularly for

cases of small-to-large mutations that were difficult to model with previous methods.

I look forward to the continued application of these new methods to the advancement of

our knowledge of biology. I hope that my contribution to science will now join the greater

body of work generated by countless others around the world, enabling science to continue

to advance the health and well-being of humanity.
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Chapter 5

Appendix

Mutation Category Prediction Method N R MAE FC

Multiple mutations
flex ddG

273
0.62 1.51 0.77

ZEMu paper 0.64 1.46 0.78

Multiple, all alanine
flex ddG

191
0.47 1.55 0.85

ZEMu paper 0.55 1.44 0.85

Multiple, none alanine
flex ddG

45
0.67 1.57 0.53

ZEMu paper 0.53 1.79 0.51

Mutation(s) to alanine
flex ddG

939
0.61 0.89 0.77

ZEMu paper 0.62 0.90 0.77

Table 5.1: Multiple mutations results. R = Pearson’s R. MAE = Mean Absolute Error. FC
= Fraction Correct. flex ddG steps = 35000.
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Figure 5.1: Correlation (Pearson’s R) and MAE (Mean Absolute Error) vs. number of
backrub steps, on the complete ZEMu set, and subsets. “X” markers represent performace
of control run (zero backrub steps). (a) Complete dataset (n=1240) (b) Small-to-large mu-
tation(s) (n=130) (c) Multiple, none alanine (n=45) (d) Single mutation to alanine (n=748)

Git SHA1 Protocol

69aa5266f0d5 flex ddG
0c91ecd5bde5 no backrub control
3b2aa5cc3798 ddG monomer

Table 5.2: SHA1 Git version of Rosetta used for benchmarking
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Mutation Category Prediction Method N R MAE FC

Complete dataset
flex ddG

1240
0.64 0.92 0.76

ddG monomer (hard-rep) 0.62 0.94 0.77
ZEMu paper 0.61 0.96 0.75

Antibodies
flex ddG

355
0.62 0.88 0.75

ddG monomer (hard-rep) 0.58 0.90 0.77
ZEMu paper 0.54 0.96 0.74

Table 5.3: Performance of the Rosetta flex ddG method on the subset of complexes containing
an antibody binding partner. R = Pearson’s R. MAE = Mean Absolute Error. FC = Fraction
Correct. flex ddG steps = 32500.

Mutation Category Prediction Method N R MAE FC

Complete dataset
flex ddG

1240
0.63 0.93 0.76

flex ddG (REF energy) 0.63 0.93 0.76

Small-To-Large Mutation(s)
flex ddG

130
0.64 0.87 0.75

flex ddG (REF energy) 0.57 0.92 0.72

Single mutation to alanine
flex ddG

748
0.50 0.72 0.75

flex ddG (REF energy) 0.49 0.73 0.76

Multiple mutations
flex ddG

273
0.62 1.51 0.77

flex ddG (REF energy) 0.59 1.57 0.75

Res. ¡= 1.5 Ang.
flex ddG

52
0.46 0.85 0.75

flex ddG (REF energy) 0.65 0.74 0.77

Res. ¿= 2.5 Ang.
flex ddG

457
0.50 0.74 0.74

flex ddG (REF energy) 0.48 0.75 0.76

Table 5.4: REF results. R = Pearson’s R. MAE = Mean Absolute Error. FC = Fraction
Correct. flex ddG steps = 35000. flex ddG (REF energy) steps = 35000.

51



0 10 20 30 40 50
Number of Structures

0.30

0.40

0.50

0.60

0.70

Pe
ar

so
n'

s 
R

(a) - Complete dataset

0.80

1.00

1.20

1.40

1.60

M
AE

0 10 20 30 40 50
Number of Structures

0.30

0.40

0.50

0.60

0.70

Pe
ar

so
n'

s 
R

(b) - Small-To-Large Mutation(s)

0.80

1.00

1.20

1.40

1.60

M
AE

0 10 20 30 40 50
Number of Structures

0.30

0.40

0.50

0.60

0.70

Pe
ar

so
n'

s 
R

(c) - Multiple, none alanine

0.80

1.00

1.20

1.40

1.60

M
AE

0 10 20 30 40 50
Number of Structures

0.30

0.40

0.50

0.60

0.70

Pe
ar

so
n'

s 
R

(d) - Single mutation to alanine

0.80

1.00

1.20

1.40

1.60

M
AE

Number of Structures Performance
(no sorting of structures)

Figure 5.2: Correlation (Pearson’s R) and MAE (Mean Absolute Error) vs. number of
averaged structures, on the complete ZEMu set, and subsets. Dark color lines represent
“flex ddG” run. Light color lines represent “no backrub control” run. (a) Complete dataset
(n = 1240, backrub step = 30000) (b) Small-to-large mutation(s) (n = 130, backrub step =
40000) (c) Multiple, none alanine (n = 45, backrub step = 60000) (d) Single mutation to
alanine (n = 748, backrub step = 57500)
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Figure 5.3: Correlation (Pearson’s R) and MAE (Mean Absolute Error) vs. number of
averaged structures, on the complete ZEMu set, and subsets. Dark color lines represent
“ddG monomer” run. Light color lines represent “no backrub control” run. (a) Complete
dataset (n = 1240) (b) Small-to-large mutation(s) (n = 130) (c) Multiple, none alanine (n
= 45) (d) Single mutation to alanine (n = 748)
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Figure 5.5: Mean backrub ensemble RMSD vs. backrub steps.

0 20000 40000 60000 80000
Backrub Step

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Sp
ea

rm
an

 C
or

re
la

tio
n

Spearman correlation of (backrub - Mean) pairwise ensemble RMSD with ddG error

MutType
ala (n=926)
complete (n=1216)
mult_mut (n=261)
res_gt15_lt25 (n=725)
res_gte25 (n=440)
res_lte15 (n=51)
s2l (n=129)
sing_mut (n=955)

Figure 5.6: Scatter plot showing the average Spearman correlation of ddG prediction error
v. mean pairwise backrub ensemble RMSD, v. backrub steps. As mean backrub ensemble
RMSD increases (??), we don’t see any significant change in correlation between mean
ensemble RMSD and ddG error. This demonstrates that mean pairwise backrub ensemble
RMSD is not an effective metric to measure the degree to which we have sampled “enough”.
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Figure 5.7: Rosetta interface ∆∆G score function terms fit on interface ∆∆G predictions
via a sigmoid git Generalized Additive Model. (Figure courtesy Markus Heinonen)
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Figure 5.8: Left: standard, non-fitted predictions vs. experimental ∆∆G values. Right:
Fit predictions vs. experimental data. Top: Control (no backrub) predictions. Middle:
Backrub/talaris. Bottom: Backrub/REF. (Figure courtesy Markus Heinonen)
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Listing 5.1: Flex ddg Rosetta Script implementation

1 <ROSETTASCRIPTS>

2 <SCOREFXNS>

3 <ScoreFunction name="fa_talaris2013" weights="talaris2013"/>

4 <ScoreFunction name="fa_talaris2014" weights="talaris2014"/>

5 <ScoreFunction name="fa_talaris2014_cst" weights="talaris2014">

6 <Reweight scoretype="atom_pair_constraint" weight="1.0"/>

7 <Set fa_max_dis="9.0"/>

8 </ScoreFunction>

9 </SCOREFXNS>

10

11 <!-- #### All residues must be set to be NATAA packable at top of

resfile ### -->↪→

12 <TASKOPERATIONS>

13 <ReadResfile name="res_mutate" filename="%%mutate_resfile_relpath%%"/>

14 </TASKOPERATIONS>

15

16 <RESIDUE_SELECTORS>

17 <Task name="resselector" fixed="0" packable="0" designable="1"

task_operations="res_mutate"/>↪→

18 <Neighborhood name="bubble" selector="resselector" distance="8.0"/>

19 <ResidueName name="isgly" residue_name3="GLY"/>

20 <Not name="notgly" selector="isgly"/>

21 <And name="bubble_notgly" selectors="bubble,notgly"/>

22 <PrimarySequenceNeighborhood name="bubble_notgly_adjacent"

selector="bubble_notgly" lower="1" upper="1"/>↪→

58



23 <StoredResidueSubset name="restore_neighbor_shell"

subset_name="neighbor_shell"/>↪→

24 <Not name="everythingelse" selector="restore_neighbor_shell"/>

25 </RESIDUE_SELECTORS>

26 <TASKOPERATIONS>

27 <OperateOnResidueSubset name="repackonly"

selector="restore_neighbor_shell">↪→

28 <RestrictToRepackingRLT/>

29 </OperateOnResidueSubset>

30 <OperateOnResidueSubset name="norepack" selector="everythingelse">

31 <PreventRepackingRLT/>

32 </OperateOnResidueSubset>

33 <UseMultiCoolAnnealer name="multicool" states="6"/>

34 <ExtraChiCutoff name="extrachizero" extrachi_cutoff="0"/>

35 <InitializeFromCommandline name="commandline_init"/>

36 <RestrictToRepacking name="restrict_to_repacking"/>

37 </TASKOPERATIONS>

38

39 <FILTERS>

40 </FILTERS>

41

42 <MOVERS>

43 <StoreResidueSubset name="neighbor_shell_storer"

subset_name="neighbor_shell"

residue_selector="bubble_notgly_adjacent" />

↪→

↪→

44
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45 <AddConstraintsToCurrentConformationMover name="addcst"

use_distance_cst="1" coord_dev="0.5" min_seq_sep="0"

max_distance="9" CA_only="1" bound_width="0.0" cst_weight="0.0"/>

↪→

↪→

46 <ClearConstraintsMover name="clearcst"/>

47 <MinMover name="minimize" scorefxn="fa_talaris2014_cst" chi="1" bb="1"

type="lbfgs_armijo_nonmonotone" tolerance="0.000001" max_iter="5000"

abs_score_convergence_threshold="1.0"/>

↪→

↪→

48

49 <PackRotamersMover name="repack" scorefxn="fa_talaris2014"

task_operations="commandline_init,repackonly,norepack,multicool"/>↪→

50 <PackRotamersMover name="mutate" scorefxn="fa_talaris2014"

task_operations="commandline_init,res_mutate,norepack,multicool"/>↪→

51

52 <ReportToDB name="dbreport" batch_description="interface_ddG"

database_name="ddG.db3">↪→

53 <PdbDataFeatures/>

54 <ScoreTypeFeatures/>

55 <ScoreFunctionFeatures scorefxn="fa_talaris2013"/>

56 <StructureScoresFeatures scorefxn="fa_talaris2013"/>

57 <ResidueFeatures/>

58 <ResidueScoresFeatures scorefxn="fa_talaris2013"/>

59 <PoseConformationFeatures/>

60 <ResidueConformationFeatures/>

61 <ProteinResidueConformationFeatures/>

62 <PairFeatures/>

63 <AtomAtomPairFeatures/>

64 <ProteinBondGeometryFeatures/>
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65 <ProteinBackboneTorsionAngleFeatures/>

66 <RotamerFeatures/>

67 </ReportToDB>

68

69 <SavePoseMover name="save_wt_bound_pose" restore_pose="0"

reference_name="wt_bound_pose"/>↪→

70 <SavePoseMover name="save_backrub_pose" restore_pose="0"

reference_name="backrubpdb"/>↪→

71 <SavePoseMover name="restore_backrub_pose" restore_pose="1"

reference_name="backrubpdb"/>↪→

72

73 <BackrubProtocol name="backrub" mc_kt="1.2" ntrials="20000"

pivot_residue_selector="restore_neighbor_shell"

task_operations="restrict_to_repacking,commandline_init,extrachizero"

recover_low="0"/>

↪→

↪→

↪→

74

75 <InterfaceDdGMover name="int_ddG_mover"

wt_ref_savepose_mover="save_wt_bound_pose" db_reporter="dbreport"

scorefxn="fa_talaris2013"/>

↪→

↪→

76

77 <ScoreMover name="apply_score" scorefxn="fa_talaris2014_cst"

verbose="0"/>↪→

78

79 </MOVERS>

80 <APPLY_TO_POSE>

81 </APPLY_TO_POSE>

82 <PROTOCOLS>
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83 <Add mover_name="addcst"/>

84 <Add mover_name="apply_score"/> <!-- Necessary to initialize neighbor

graph -->↪→

85 <Add mover_name="neighbor_shell_storer"/>

86

87 <Add mover_name="minimize"/>

88 <Add mover_name="clearcst"/>

89

90 <Add mover_name="backrub"/>

91 <Add mover_name="save_backrub_pose"/>

92

93 <Add mover_name="repack"/>

94

95 <Add mover_name="addcst"/>

96 <Add mover_name="minimize"/>

97 <Add mover_name="clearcst"/>

98

99 <Add mover_name="save_wt_bound_pose"/>

100 <Add mover_name="restore_backrub_pose"/>

101

102 <Add mover_name="mutate"/>

103

104 <Add mover_name="addcst"/>

105 <Add mover_name="minimize"/>

106 <Add mover_name="clearcst"/>

107

108 <Add mover_name="int_ddG_mover"/>
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109 </PROTOCOLS>

110 <OUTPUT />

111 </ROSETTASCRIPTS>
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[1] Shane Ó Conchúir, Kyle A. Barlow, Roland A. Pache, Noah Ollikainen, Kale Kun-

dert, Matthew J. O’Meara, Colin A. Smith, and Tanja Kortemme. A Web Resource

for Standardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macro-

molecular Modeling and Design. PLOS ONE, 10(9):e0130433, September 2015. ISSN

1932-6203. doi: 10.1371/journal.pone.0130433. URL http://journals.plos.org/

plosone/article?id=10.1371/journal.pone.0130433. iii, 34

[2] Oswald T. Avery, Colin M. MacLeod, and Maclyn McCarty. Studies on the Chemical

Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction

of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus

Type Iii. Journal of Experimental Medicine, 79(2):137–158, February 1944. ISSN

0022-1007, 1540-9538. doi: 10.1084/jem.79.2.137. URL http://jem.rupress.org/

content/79/2/137. 1

[3] F. H. C. Crick. The origin of the genetic code. Journal of Molecular Biology, 38(3):

367–379, December 1968. ISSN 0022-2836. doi: 10.1016/0022-2836(68)90392-6. URL

http://www.sciencedirect.com/science/article/pii/0022283668903926. 1

[4] R. T. Hinegardner and J. Engelberg. RATIONALE FOR A UNIVERSAL GENETIC

CODE. Science (New York, N.Y.), 142(3595):1083–1085, November 1963. ISSN 0036-

8075. 1

[5] CR Darwin. On the Origin of Species. London: John Murray, 1859. 1

64

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130433
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130433
http://jem.rupress.org/content/79/2/137
http://jem.rupress.org/content/79/2/137
http://www.sciencedirect.com/science/article/pii/0022283668903926


[6] Eric S. Lander, Lauren M. Linton, Bruce Birren, Chad Nusbaum, Michael C. Zody,

Jennifer Baldwin, Keri Devon, Ken Dewar, Michael Doyle, William FitzHugh, Roel

Funke, Diane Gage, Katrina Harris, Andrew Heaford, John Howland, Lisa Kann, Jes-

sica Lehoczky, Rosie LeVine, Paul McEwan, Kevin McKernan, James Meldrim, Jill P.

Mesirov, Cher Miranda, William Morris, Jerome Naylor, Christina Raymond, Mark

Rosetti, Ralph Santos, Andrew Sheridan, Carrie Sougnez, Nicole Stange-Thomann,

Nikola Stojanovic, Aravind Subramanian, Dudley Wyman, Jane Rogers, John Sul-

ston, Rachael Ainscough, Stephan Beck, David Bentley, John Burton, Christopher

Clee, Nigel Carter, Alan Coulson, Rebecca Deadman, Panos Deloukas, Andrew Dun-

ham, Ian Dunham, Richard Durbin, Lisa French, Darren Grafham, Simon Gregory,

Tim Hubbard, Sean Humphray, Adrienne Hunt, Matthew Jones, Christine Lloyd,

Amanda McMurray, Lucy Matthews, Simon Mercer, Sarah Milne, James C. Mul-

likin, Andrew Mungall, Robert Plumb, Mark Ross, Ratna Shownkeen, Sarah Sims,

Robert H. Waterston, Richard K. Wilson, LaDeana W. Hillier, John D. McPherson,

Marco A. Marra, Elaine R. Mardis, Lucinda A. Fulton, Asif T. Chinwalla, Kym-

berlie H. Pepin, Warren R. Gish, Stephanie L. Chissoe, Michael C. Wendl, Kim D.

Delehaunty, Tracie L. Miner, Andrew Delehaunty, Jason B. Kramer, Lisa L. Cook,

Robert S. Fulton, Douglas L. Johnson, Patrick J. Minx, Sandra W. Clifton, Trevor

Hawkins, Elbert Branscomb, Paul Predki, Paul Richardson, Sarah Wenning, Tom

Slezak, Norman Doggett, Jan-Fang Cheng, Anne Olsen, Susan Lucas, Christopher

Elkin, Edward Uberbacher, Marvin Frazier, Richard A. Gibbs, Donna M. Muzny,

Steven E. Scherer, John B. Bouck, Erica J. Sodergren, Kim C. Worley, Catherine M.

Rives, James H. Gorrell, Michael L. Metzker, Susan L. Naylor, Raju S. Kucherlapati,

David L. Nelson, George M. Weinstock, Yoshiyuki Sakaki, Asao Fujiyama, Masahira

Hattori, Tetsushi Yada, Atsushi Toyoda, Takehiko Itoh, Chiharu Kawagoe, Hidemi

Watanabe, Yasushi Totoki, Todd Taylor, Jean Weissenbach, Roland Heilig, William

Saurin, Francois Artiguenave, Philippe Brottier, Thomas Bruls, Eric Pelletier, Cather-

65
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