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Abstract 

Prospect Theory has been highly influential; however its 

experimental paradigm lacks higher orders of uncertainty. To 

introduce this, participants are asked to imagine themselves 

facing a choice between two bags containing 100,000 blue or 

red balls in unknown proportions. A red ball wins £500. 

Participants are shown samples from each bag; e.g., 5 balls 

from Bag 1 (3 red) and 100 balls from Bag 2 (55 red). The bags 

can be represented by distributions with Bag 1 having a higher 

mean probability estimate (60% vs 55%), but more variance 

(second order uncertainty) in that estimate. By varying 

observed frequencies and gain vs loss formats, we seek to 

determine if classic findings remain when higher order 

uncertainties are present. Results consistent with the four-fold 

pattern are seen for gains (uncertainty seeking at low 

probability values, uncertainty aversion at high probability 

values) but for losses, uncertainty aversion is seen at all values. 

Keywords: Prospect Theory; Second Order Uncertainty; 
Ambiguity; Probability; Risk 

Introduction 

In one of the classic gambling experiments upon 

which prospect theory (Kahneman & Tversky, 1979) was 

based, a participant might be asked to choose between the 

following: 

A. 50% chance to win £1,000 (50% chance to win nothing) 

B. £450 for sure 

While the expected utility for A (0.5*£1000 = £500) 

is higher than B, a typical finding is that a majority of 

participants prefer B, and generally, tend to be risk averse in 

such situations (we will discuss the more nuanced results 

from this line of research shortly). 

While the psychological dynamics revealed by 

prospect theory have been highly influential, the 

experimental paradigm it is based upon depicts the highly 

unusual situation where we know the first order probability 

(hereafter ‘FOP’) of each possible outcome of our decision 

precisely. In reality this almost never happens outside of the 

contrived casino-like world of coin flips and die rolls. 

Instead, humans inhabit an environment in which we have 

uncertainty about uncertainty, also known as second-order 

uncertainty (Dewitt et al., 2023; Hykeln, 2014; Lipshitz & 

Strauss, 1997; Klein, 1998; Mousavi & Gigerenzer, 2014, 

2017). At the extreme ‘Knightian’ (Knight, 1921) level of 

uncertainty, we have no easily quantifiable information at all 

about the choices we face, such as when choosing a life 

partner. 

We can take a step closer to approximating a more 

realistic version of the problem by including second order 

uncertainty (e.g., Kleiter, 2018). If we introduce this into the 

prospect theory gambles, we would not know for certain the 

probability of the outcomes for either A or B. For example, 

imagine you are in the final round of a gameshow, having so 

far won £1000. In this final round, the host shows you two 

bags. Each bag contains 100,000 small balls, each of which 

are blue or red. You are told that if you pick a red ball, you 

will take home a further £500. If you pick a blue ball, you just 

take home your original £1000. You only get to pick once, 

from one bag. 

 

 
Figure 1. The image of two bags with accompanying figures 

shown to participants 

 

You do not know the proportion of balls in either bag; 

however, the host has shown you a number of ‘picks’ from 

each bag (Figure 1), replacing the balls and shaking the bag 

after each. The host has shown you five balls from Bag 1, 

three of which were red. They have shown you 100 balls from 

Bag 2, 55 of which were red. Which bag do you choose to 

pick from? 

These numbers provide a classical frequentist FOP 

estimate of picking a red ball of 0.6 for Bag 1 and 0.55 for 

Bag 2. However, this estimate is less firm, or has more 

variance, for Bag 1 (standard deviation = 0.2) than Bag 2 

(0.05). Our estimates for the two bags therefore are better 

represented as distributions than point estimates (unlike in the 

classic gamble), as can be seen in Figure 2. 
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Figure 2. Density distributions of the probability of drawing 

a red ball for Bag 1 (purple) and Bag 2 (green) as beta 

distributions. Dotted vertical lines indicate the mean 

estimate for each bag. 

 

Bag 1 therefore has similarities with choice A as the 

more uncertain option. However, this comes from greater 

second order uncertainty rather than the use of a non-100% 

FOP. Where choice A offered a higher possible pay off, but 

with lower FOP (0.5 rather than 1) than choice B, Bag 1 offers 

higher FOP than Bag 2 (0.6 vs 0.55) but also greater second 

order uncertainty. Unlike the classic gamble, the payoff 

remains constant. When considering Bag 1, participants may 

be drawn by the possibility that the true proportion of red 

balls is actually very high (e.g. 0.8) or may be put off by the 

possibility that it is actually very low (e.g. 0.4). Participants 

may prefer to take that gamble or may prefer to stick with a 

relatively well-known proportion (Bag 2). 

 

Table 1. A representation of the ‘fourfold’ pattern of 

Prospect Theory. 

 Gains Losses 

High probability 

e.g., 95% vs 100% 

(Certainty effect) 

 

Risk Averse 

(Seek the 

certain gain) 

Risk Seeking 

(Avoid the 

certain loss) 

Low probability 

e.g., 0% vs 5% 

(Possibility effect) 

Risk Seeking 

(Seek the 

possible gain) 

Risk Averse 

(Avoid the 

possible loss) 

 

We are interested in whether classic prospect theory 

findings translate to this second order realm. In Table 1 the 

‘fourfold’ pattern of Prospect Theory can be seen. Our aim is 

to present participants with pairs of bags which vary along a 

number of dimensions. First, in terms of the FOP distance 

(FOP-d) between the two bags. For example, Bag 1 = 0.6 vs. 

Bag 2 = 0.55 (FOP-d = 0.05) compared to Bag 1 = 0.6 vs. 

Bag 2 = 0.5 (FOP-d = 0.1). This will answer the most basic 

question of how much worse an FOP participants will be 

willing to accept for the greater second order uncertainty 

afforded by Bag 2. Second, in the value of both bags across 

the probability spectrum. For example, Bag 1 = 0.6 vs Bag 2 

= 0.55 compared with Bag 1 = 0.15 vs. Bag 2 = 0.1 (FOP-d 

still = 0.05, but both bags are at low probabilities in the latter). 

Finally, in terms of loss vs. gain (a red either gains you £500 

or loses you £500). 

Regarding manipulations two and three, if we see 

similar results to the fourfold pattern in the second order 

realm, for gains we will expect more Bag 2 choice 

(uncertainty aversion) at the higher end of the FOP spectrum 

and more Bag 1 choice (uncertainty seeking) at the lower end 

of the FOP spectrum. Conversely, for losses, we will expect 

more Bag 1 choice (uncertainty seeking) at the higher end of 

the FOP spectrum and more Bag 2 choice (uncertainty 

aversion) at the lower end of the FOP spectrum. 

Beyond prospect theory, the large literature related to 

ambiguity and the Ellsberg paradox (1961) are highly 

relevant to this study. In Ellsberg’s ‘Two Urn’ problem, 

participants were asked to choose from two urns, one (A) 

with a known 50:50 ratio of red to black balls, but with no 

information on urn B at all (it has some unknown mix of 100 

red and/or black balls). Participants tend to choose urn A 

(Curley and Yates, 1989; Einhorn & Hogarth, 1986; Fellner, 

1961; Ho et al., 2002; Hogarth & Kunreuther, 1989; 

MacCrimmon, 1968; Maffioletti & Santori, 2005; Slovic & 

Tversky, 1974; Viscusi & Chesson, 1999), and this is 

typically taken as evidence for ambiguity aversion. Ellsberg 

defined ‘ambiguity’ as: 

 

“…the nature of one’s information concerning the relative 

likelihood of events...  a quality depending on the amount, 

type, reliability and ‘unanimity’ of information, and giving 

rise to one’s degree of ‘confidence’ in an estimation of 

relative likelihoods.” (Ellsbury, 1961, p.657”) 

 

While Ellsberg’s ambiguity is therefore a broader 

concept than second order uncertainty, our manipulation 

varies the ‘amount’ of information (for Bag 2 we have more 

information), and due to this, the ‘confidence’ in an 

estimation of relative likelihoods (we have more confidence 

in the estimate for Bag 2). 

The term ‘ambiguity’ has been redefined in a number 

of ways since Ellsberg’s broad definition. For Savage 

(1954), situations where the distribution was known would 

not count as ambiguous, and so would not include our 

paradigm. However, Becker and Brownson (1964) 

conversely stated that “…for us, ambiguity is defined by 

any distribution of probabilities other than a point estimate”. 

(Becker & Brownson, 1964, pp. 64) which would include 

our paradigm. Kahn and Sarin (1988) also equated 

ambiguity with second-order uncertainty: 

 

“We define ambiguity operationally by second-order 

uncertainty or, in other words, by a probability distribution 

for the perceived frequencies” (Kahn & Sarin, 1988, pp. 

265). 

 

In the large literatures on both prospect theory and 

ambiguity, we are not aware of an experiment which has 

used differences in the sample sizes of observations to 

investigate how participants respond to differences in first 

order vs second order uncertainty. However, several studies 

have examined second order uncertainty by providing 
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participants with ranges. Becker & Brownson (1964) did 

this, presenting participants descriptively with the below 

range of chances of getting a (desirable) red ball: 

 

 
Figure 3. Figure taken from Becker and Brownson (1964) 

depicting the choices provided to participants 

 

 The authors generally found that their participants 

preferred the urn (II) with only first order uncertainty 

(guaranteed 0.5 chance) over those with second order 

uncertainty, preferring smaller ranges within these three 

(i.e., V > IV > III). They also preferred those over 

Ellsberg’s ‘ambiguous’ urn (I), suggesting a general 

preference for less second order uncertainty. 

Budescu et al. (2002) also presented participants with 

ranges for probabilities, and separately, ranges for 

outcomes, and examined both gains and losses, and across 

the probability spectrum. They gave participants a range of 

choices between gambles including, for example, a 

probability range of 0.1-0.9 of getting $2, a fixed 0.1 

probability of getting between $2-18 dollars or a certain 

return of $1. For gain framing, they reported a preference 

for what they called ‘vagueness’, especially at low 

probability ranges, but a preference for precision for loss 

framing. 

Moving from second order uncertainty up to 

ambiguity, Abdellaoui et al. (2016) adapted Ellsberg’s two 

urns problem to study whether prospect theory applied for 

gain and loss framing and found support for the classic 

concave value function for gains and convex value function 

for losses but did not test for the presence of the fourfold 

pattern. Kocher et al. (2017) varied the number of colors of 

balls in Ellsberg’s ambiguous urn (from 10 [0.1 chance] to 2 

[0.5 chance]) to study responses to ambiguity across the 

probability spectrum and found ambiguity aversion for 

moderate likelihood gains but ambiguity neutrality or seeking 

behaviour for low likelihood gains and for losses. 

Each of these suggests that the classic four-fold 

pattern of prospect theory may well translate to levels of 

uncertainty further up than first order. However, a large 

amount of research translating prospect theory to higher 

levels of uncertainty has leapt straight from first order only, 

all the way to full Ellsbergian ambiguity. There is limited 

research studying how participants respond to degrees of 

second order uncertainty, and those which do exist (e.g., 

Becker & Brownson, 1964, Budescu et al., 2002, and 

Johnson, 2002) have used described ranges, and we can’t be 

sure that participant response to ranges apply to 

distributions (Dieckmann et al., 2015). Both the latter also 

used very small (~30) sample sizes of university students. 

Our paradigm provides a simple and neat way of varying the 

degree of first and second order uncertainty in a more 

natural way: rather than simply providing participants with a 

range with no explanation as to the mechanism behind it, 

our mechanism is transparent and similar to what could be 

encountered in any real-life situation where one observes a 

number of trials to estimate the efficacy of something (e.g., 

a drug or vaccine). It therefore sits in a grey area between 

descriptive and experiential approaches (Hertwig et al. 

2018), and could be adapted into an experiential paradigm. 

Method 

Participants 

Nine hundred and forty-six participants were recruited 

from Prolific Academic. Ages ranged from 18 to 74 (M=30.7, 

SD=10.2), with 51.4% reporting their gender as female, 

48.0% as male, and 6 individuals as ‘other’. Generally, the 

Prolific Academic population has good representation across 

a range of European countries (39% UK, ~20% other 

European countries) and the US (31%), but has little 

representation from Asia, Africa, or South America. 

Design 

The total data set of 946 participants comprises three 

parallel studies with the same research question conducted as 

student projects by authors two, three and four and supervised 

by the first author at the same time. Participants were 

assigned to a loss or gain condition, and within these were 

assigned to a range of conditions which varied the total picks 

for Bag 1, and the number of reds shown for both bags. Total 

picks for Bag 2 was always 100. Bag 1 totals studied included 

three, five, seven and nine. Number of reds in each bag was 

varied within these totals to study a large range of probability 

values, producing a large number of different trials. More 

details about all the exact values studied, as well as materials 

and data can be found at the online repository 

(https://osf.io/qfdzu/?view_only=d2a4ca4f0e714f308e2c471

4523ad0ae) 

Materials & Procedure 

Participants first consented to take part in the study 

and provided demographic details. They were then presented 

with an image like Figure 1, along with the same 

accompanying explanation that they are in the final round of 

a gameshow, and have so far won £1000, the number of and 

results of the picks for each bag, and that they must choose to 

pick from one of the two bags. Participants were either 

assigned to a gain condition (Red wins them an extra £500, 

blue gains nothing) or loss (Red loses them an extra £500, 

blue loses nothing) and showed the number of picks and 

number of reds for each bag. They were then asked to 

provide, across four sliders with values from 0% to 100% 

their (1) estimate of the proportion of reds and (2) confidence 
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in that estimate, for each bag. On the next page the key 

information was repeated, including the image of the bags 

and participants were asked to choose which bag they wished 

to pick from and then to explain their reasoning for that 

choice in an open text box. Following this they were 

debriefed and redirected to the survey site for payment. 

Results 

Preliminary results 

Participants’ estimates of first order probability (FOP) 

were highly related to their correct classical frequentist value 

for Bag 1 estimates (r = .728, p<.001) and for Bag 2 estimates 

(r = .803, p<.001). 

Participants’ confidence that their FOP estimate was 

equal to the true value of the bag was lower for Bag 1 

(M=51.0, SE=1.0) than Bag 2 (M=63.0, SE=2.1), confirmed 

by a paired samples t-test: t(1, 945) = -13.5, p<.001. There 

was also a correlation between participant’s confidence in 

Bag 1 and Bag 2 (r = .55, p<.001) suggesting an individual 

component. 

For the following analyses, we computed a variable 

called FOP-d (first order probability difference) which is 

calculated by subtracting Bag 1 FOP from Bag 2 FOP i.e., if 

Bag 2 FOP is 0.6 (e.g. 60/100), and Bag 1 FOP is 0.5 (e.g. 

3/6), FOP-d would be +0.1. 

Quantitative Results 

Gain vs loss framing. We see a clear distinction in 

bag choice between gain and loss framing. Using binary 

logistic regression, we find participants were more likely to 

choose Bag 2 in the loss condition (n=499, 66.5%, SE=2.1%), 

than in the gain condition (n=447, 38.7%, SE=2.3%) (OR 

=.32, Wald = 71.4, p < .001). To control for differences in the 

values used for loss vs gain, we examined instances where 

‘FOP-d’ = 0 (i.e., where Bag 1 and Bag 2 have the same 

FOP): the same pattern remained with more Bag 2 choice for 

loss framing (n=81, 75.3%, SE=4.8%) than gain framing 

(n=78, 56.4%, SE=5.7%) (OR=.42, Wald = 6.2, p=.013). 

Gain framing. In the following analysis we wished to 

check whether both the first and second order uncertainty 

differences between the two bags were affecting participant 

choices. As can be seen in Figure 4, as FOP-d becomes more 

negative (i.e., where Bag 2’s FOP becomes increasingly less 

than Bag 1, making it a poorer choice) we see greater Bag 1 

choice. At FOP-d = 0.0 we see roughly equal choice of Bag 

1 vs Bag 2 (56.4% choosing Bag 2, SE=5.7%) while at FOP-

d = -0.15, we see only 25.4% (SE=5.4%) choosing Bag 2. A 

binary logistic regression was used to test the effect of FOP-

d on Bag 2 choice (OR=1.06, Wald = 8.3, p=.004), showing 

fewer individuals choosing Bag 2 as its FOP of getting a red 

(i.e., winning £500) becomes lower compared to Bag 1. 

 

 
Figure 4. The percentage of participants in the gain framing 

choosing Bag 2 for a range of FOP-d values (i.e. the 

difference in FOP between Bag 2 and Bag 1). Error bars 

indicate one standard error. 

 

In the next analysis, we wished to check whether bag 

choice varied as the value of the two bags moved along the 

probability spectrum. Bag 1 FOP can be used as a proxy for 

this as Bag 2 FOP always ‘trailed’ Bag 1 FOP. Each ‘Bag 1 

FOP’ point shown in Figure 5 combines trials where FOP-d 

varied from 0.0 to -0.15. Therefore, this analysis ignores 

FOP-d and focuses on the effect of the position of both bags 

along the FOP spectrum on bag choice. A binary logistic 

regression predicting bag choice from Bag 1 FOP was run 

(OR=1.02, Wald = 17.4, p<.001), showing more individuals 

choosing Bag 2 as Bag 1 FOP increases. This analysis 

suggests more uncertainty seeking behaviour (Bag 1 choice) 

at the lower end of the FOP spectrum (<20% of individuals 

choosing Bag 2 when Bag 1 FOP = 0.14), and more 

uncertainty averse behaviour (Bag 2 choice) at the higher end 

of the FOP spectrum (>50% of individuals choosing Bag 2 

when Bag 1 FOP = 0.86). 

 

 
Figure 5. The percentage of participants in the gain framing 

choosing Bag 2 for a range of Bag 1 FOP values. Error bars 

indicate one standard error.  

 

To test for both these effects on bag choice simultaneously, 

a binary logistic regression was run predicting bag choice 

from both FOP-d (OR=1.07, Wald=10.0, p=.002) and Bag 1 

FOP (OR=1.02, Wald=19.0, p<.001). In a model additionally 

adding an interaction term between the two, no interaction 

was seen (OR=1.0, Wald = .21, p=.650). 

 

Loss framing. In the following we run the same 

analyses as the gain condition, in the same order. Within the 
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loss framing conditions, we ran a binary logistic regression to 

determine the effect of FOP-d on bag choice (OR=.98, Wald 

= 5.0, p=.028), with more individuals choosing Bag 2 as its 

FOP-d becomes more negative compared to Bag 1 (desirable 

in the loss condition). However, as can also be seen compared 

to gains, mean bag choice values for the loss condition do not 

get below 50%: over 50% of participants still choose Bag 2 

even when the FOP estimate of getting a red ball (and 

therefore losing £500) for Bag 2 is 0.15 higher than Bag 1. 

 

 
Figure 6. Percentage of participants in the loss framing 

choosing Bag 2 for a range of FOP-d values (i.e. the 

difference in FOP between Bag 2 and Bag 1). Error bars 

indicate one standard error. 

 

Furthermore, we ran a binary logistic regression 

predicting bag choice from Bag 1 FOP (OR=1.0, Wald = 1.4, 

p=.248). We then ran a multiple binary logistic regression 

model predicting bag choice from both FOP-d (OR=.98, 

Wald = 3.6, p= .059) and Bag 1 FOP (OR=1.0, Wald = .07, 

p=.798). In a model adding an interaction between the two, 

the interaction term showed no effect (OR=1.0, Wald = 2.5, 

p=.111). Again, as can be seen in Figure 7 there is a majority 

of individuals choosing Bag 2 at all FOP values. 

 

 
Figure 7. Percentage of participants in the loss framing 

choosing Bag 2 for a range of Bag 1 FOP values. Error bars 

indicate one standard error. 

 

Qualitative data. Following their bag choice, participants 

were asked to explain their choice in an open text box. While 

there is not enough space in this paper to present a full 

qualitative analysis, we think it may be illustrative here to at 

least see some participants demonstrating the classic thinking 

of the ‘fourfold’ pattern with second order uncertainty, all in 

the gain condition. First here are P113 and P568 showing 

second order uncertainty seeking behaviour at low 

probabilities: 

 

 P113 “I choose Bag 1 because I am quite certain that in 

Bag 2 there is approximately 31% of taking out the red ball. 

However, in Bag 1, since there is such a small sample (7 of 

100,000 balls), I don't know if the percentage of red balls is 

higher or lower than in Bag 2, so I take a chance with this 

bag waiting for it to have a higher percentage” 

 

P568 “I am pretty confident that the proportion of red 

balls in Bag 2 is close to 20% while I have no certainty 

regarding Bag 1. Given that 20% is a low chance to win, so 

versus this certainty to lose I prefer to try my luck with Bag 

1” 

 

We can see here that both participants reference their 

greater confidence in the (low) FOP of Bag 2, and explicitly 

say they therefore want to gamble on Bag 1 as it may have a 

much higher true FOP. Next, here are P64 and P763 

showing second order uncertainty averse behaviour at 

higher probabilities: 

 

P64: “Seems to be roughly 50 50 in each but there’s a 

bigger sample from bag two which I think means it’s more 

likely to be 50 50, bag one might have worse odds.” 

 

 P763 “For Bag 1, although there are only 3 balls and 2 

have been blue, I prefer to choose the bag number 2 because 

it is where the matched amount of blue and red balls has 

been demonstrated, in which it could have about 50% of 

choosing blue, instead in Bag 1, nobody knows if only 10% 

contain blue balls or even less and that 2 blue balls have 

been taken out luckily.” 

 

Here we see the participants again reference their greater 

confidence in the bag two value, but see this as a positive 

out of concern that Bag 1’s true FOP may be much lower. 

Discussion 

In the present study we have adapted the classic 

prospect theory style gambles to the second order uncertainty 

realm and have investigated whether key principles such as 

differing choice behaviour between gain and loss framing, 

and across the probability spectrum, transfer to this realm. 

Generally, we have found that they do, but with some key 

differences. Most notably, gain framing seems to mirror 

classic prospect theory results, with more (second order) 

uncertainty seeking behaviour at lower probabilities, and 

(second order) uncertainty aversion at higher probabilities. 

However, within loss framing we see a more blanket (second 

order) uncertainty aversion akin to that seen in the ambiguity 

aversion literature. This ‘mixed’ result is interesting given 

that second order uncertainty sits somewhere ‘between’ the 

FOP only paradigm of Prospect Theory and the full 

ambiguity paradigm of Ellsberg. 

We have also introduced a new paradigm to the 

literature and have only scratched the surface of the space that 

could be mapped, but participants seem to show good 
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understanding. For both losses and gains, participant 

estimates of FOP for both bags were fairly accurate. 

Participants also recognized that the estimate for Bag 2 was 

more reliable than for Bag 1, as indicated by their higher 

confidence ratings in their estimates of the Bag 2 FOP. 

Participants also responded in a sensible manner to 

differences in the first order probability between the two bags 

(FOP-d). For gains, where a higher FOP is desirable, 

participants chose Bag 1 and Bag 2 in roughly equal 

proportions at FOP-d = 0 but increasingly chose Bag 1 as the 

FOP-d became more negative (Bag 2’s FOP became less 

desirable compared to Bag 1’s FOP). For losses, where a 

lower FOP is desirable, participants were generally more 

inclined to choose Bag 2 at all values, including when FOP-

d = 0, but chose Bag 2 in higher numbers as FOP for Bag 2 

became more negative (more desirable). Generally, these 

results suggest that many of our participants were sensitive to 

both first and second order uncertainty, making their decision 

based on a balancing of these two factors as well as whether 

they were in a gain or loss situation. 

Participant choices also varied across the probability 

spectrum for gain framing, with more participants choosing 

Bag 1 at the lower end of the probability spectrum. This result 

echoes the ‘possibility’ and ‘certainty’ effects of prospect 

theory, at least for gains (Kahneman & Tversky, 1979). At 

the lower end of the FOP spectrum, participants may see Bag 

1 as offering the possibility of a higher true FOP. However, 

at the higher end of the FOP spectrum, more participants 

seem to want the higher certainty provided by Bag 2 (i.e., 

may become averse to the possibility of a lower true FOP that 

Bag 1 presents). We tentatively demonstrate this in the 

qualitative data also, illustrating at least that some 

participants did report thinking in this way. 

Even at the highest end of our FOP spectrum for gains, 

we still only see roughly equal choice between Bag 1 and Bag 

2, which is not entirely consistent with the ‘certainty’ effect, 

and we see considerable individual differences in preferences 

in our sample. However, it is important to note that due to 

having to use small amounts of ‘picks’ for Bag 1 we were not 

able to study values very close to either 0% or 100% (e.g., 

even for 6/7, our most extreme Bag 1 value, FOP = 85.7%). 

It seems likely, given the trend, that if we were able to get 

closer to 100%, we would observe even more choice for Bag 

2 at higher FOP values. However, this would require using a 

larger amount of ‘picks’ for Bag 1, reducing the differences 

in second order uncertainty between bags and undermining 

the very thing we want to study, and so it is difficult to see 

how this could be studied with the current paradigm. While 

mathematically larger sample sizes for Bag 1 e.g., 20 still 

produce considerably different second order uncertainty to 

Bag 2 (100), participants may not be sensitive enough to these 

differences in sample size (e.g. Tversky & Kahneman, 1971) 

to observe an effect (they may be confident enough in the Bag 

1 value with a sample size of 20 to offset any perceived value 

of Bag 2),  

In contrast to our results for gains, we observe a more 

blanket ‘uncertainty aversion’ effect for losses, which was 

consistent across the FOP spectrum (see Figure 7 where at 

each point, the percentage choosing Bag 2 is greater than 

50%). This is not obviously consistent with the ‘four-fold 

pattern’, which observes risk aversion for low FOP for losses, 

but risk seeking for high FOP. As well as the same caveat that 

we were not able to study extreme values with this paradigm, 

this may reflect an interesting interaction between the FOP 

only realm of the paradigm used to reveal the four-fold 

pattern and uncertainty / ambiguity aversion in general. As 

we have mentioned, our study sits somewhere between the 

pure first order probability realm of Prospect Theory, and the 

ambiguity realm of Ellsberg. While our results for gains seem 

fairly consistent with the four-fold pattern, it may be that for 

losses, general uncertainty / ambiguity aversion (Ellsberg, 

1961) is the more powerful effect. This is also actually 

consistent with other literature, even on risk, which while 

consistently finding the observed pattern for gains, has been 

much more mixed for losses (e.g., Bruhin et al., 2010). It does 

however contrast with the findings of Kocher et al. (2018) 

who found ambiguity seeking behaviour for losses at low 

probabilities. Their study used a modified version of 

Ellsberg’s urns. For low probabilities, participants were 

choosing between an urn with 10 different colors, and no 

information vs an urn with known proportions (10% desired 

color). In combination with our study, this continues the trend 

of more mixed / inconsistent findings for loss framing, 

compared to the relatively consistent findings for gain 

framing, and so more research is recommended here, perhaps 

providing participants with both our bags and various types 

of Ellsberg urns. 

In future research, other Bag 1 and 2 sample sizes 

should be studied to determine if the current findings translate 

as well as modifying the reward value to test the convex / 

concave function findings. Follow-up questions could also be 

included to determine if participants’ saw themselves as 

seeking or avoiding uncertainty rather than relying on them 

volunteering that information in an open text box, and the 

relative value they placed on the ratio of red:blue balls (FOP) 

as well as the sample size (second order uncertainty) in 

making their decision. On the whole, participants appear to 

understand this new paradigm and generally respond to both 

aspects of the manipulation. It may therefore serve as a useful 

platform to explore other questions related to first and second 

order uncertainty. We would be interested to see how 

participants would behave when faced with a choice between 

our Bag 2 (with a large number of picks) and option A from 

prospect theory-type choices (i.e., an FOP-only choice). 

Would they see Bag 2 as the more uncertain option and 

behave accordingly? Similarly, how would participants 

behave when faced with a choice between Bag 1 (with a small 

number of picks) and Ellsberg’s Urn B (no information). 

Would they see Bag 1 as the less uncertain option here? 

Generally, it would be interesting to have more studies 

comparing participant responses to choices at different levels 

all the way up the risk/uncertainty/ambiguity spectrum. 

 

890



References  

Abdellaoui, M., Bleichrodt, H., L’Haridon, O., & van Dolder, 

D. (2016). Measuring Loss Aversion under 

Ambiguity: A Method to Make prospect theory 

Completely Observable. Journal of Risk and 

Uncertainty, 52(1), 1–20. 

Becker, S. W., & Browson, F. O. (1964). What Price 

Ambiguity? or the Role of Ambiguity in Decision-

Making. The University of Chicago Press, 72(1), 62–

73. 

Bruhin, A., Fehr‐Duda, H., & Epper, T. (2010). Risk and 

rationality: Uncovering heterogeneity in probability 

distortion. Econometrica, 78(4), 1375-1412. 

Budescu, D. V., Kuhn, K. M., Kramer, K. M., & Johnson, T. 

R. (2002). Modeling certainty equivalents for 

imprecise gambles. Organizational Behavior and 

Human Decision Processes, 88(2), 748-768. 

Curley, S. P., & Yates, J. F. (1985). The center and range of 

the probability interval as factors affecting ambiguity 

preferences. Organizational behavior and human 

decision processes, 36(2), 273-287. 

Dewitt, S. H., Adler, N., Li, C., Stoilova, E., Fenton, N. E., & 

Lagnado, D. A. (2023). Categorical Updating in a 

Bayesian Propensity Problem. Cognitive 

Science, 47(7), e13313. 

Dieckmann, N. F., Peters, E., & Gregory, R. (2015). At Home 

on the Range? Lay Interpretations of Numerical 

Uncertainty Ranges. Risk Analysis, 35(7), 1281–

1295. 

Einhorn, H. J., & Hogarth, R. M. (1986). Decision Making 

Under Ambiguity. The University of Chicago Press, 

59(4), 225–250. 

Ellsberg, D. (1961). Risk, Ambiguity, and the Savage 

Axioms. Quarterly Journal of Economics, 75(4), 643–

669. 

Fellner, W. (1961). Distortion of subjective probabilities as a 

re- action to uncertainty. Quarterly Journal of 

Economics, 75, 670–689. 

Hertwig, R., Hogarth, R. M., & Lejarraga, T. (2018). 

Experience and Description: Exploring Two Paths to 

Knowledge. Current Directions in Psychological 

Science, 27(2), 123–128. 

Hogarth, R. M., & Kunreuther, H. (1989). Risk, ambiguity, 

and insurance. Journal of risk and uncertainty, 2(1), 5-

35. 

Hykeln, H. (2014). Towards a Bayesian Theory of Second-

Order Uncertainty: Lessons from Non- Standard 

Logics. (April), 0–34. 

Ho, J., Keller, L.R., Keltyka, P., 2002. Effects of outcome 

and probabilistic ambiguity on managerial choices. 

Journal of Risk and Uncertainty 24, 47–74. 

Kahn, B. E., & Sarin, R. K. (1988). Modeling Ambiguity in 

Decisions Under Uncertainty. Journal of Consumer 

Research, 15(2), 265. 

Kahneman, D., & Tversky, A. (1979). Prospect theory: an 

analysis of decision under risk. Econometrica, 47(2), 

263–292. 

Klein, G. (1998) Sources of power: How people make 

decisions. MIT Press. 

Kleiter, G. D. (2018). Imprecise Uncertain Reasoning: A 

Distributional Approach. 9(October), 1–16. 

Knight, F. (1921) "Risk, Uncertainty, and Profit" New York, 

Houghton Mifflin. 

Kocher, M. G., Lahno, A. M., & Trautmann, S. T. (2017). 

Ambiguity aversion is not universal. European 

Economic Review, 101, 268–283. 

Lipshitz, R., & Strauss, O. (1997). Coping with Uncertainty: 

A Naturalistic Decision-Making Analysis. 

Organizational Behavior and Human Decision 

Processes, 69(2), 149–163. 

MacCrimmon, K. R. (1968). Descriptive and normative 

implications of the decision-theory postulates. In Risk 

and uncertainty (pp. 3-32). Palgrave Macmillan, 

London. 

Maffioletti, A., Santori, M., 2005. Do trade union leaders 

violate subjective expected utility? Some insights 

from experimental data. Theory and Decision 59, 

207–253. 

Mousavi, S., & Gigerenzer, G. (2014). Risk, uncertainty, and 

heuristics. Journal of Business Research, 67(8), 1671–

1678. 

Mousavi, S., & Gigerenzer, G. (2017). Heuristics are Tools 

for Uncertainty. Homo Oeconomicus, 34(4), 361–

379. 

Slovic, P., & Tversky, A. (1974). Who accepts Savage's 

axioms? Behavioral science, 19(6), 368-373. 

Tversky, A., & Kahneman, D. (1971). Belief in the law of 

small numbers. Psychological bulletin, 76(2), 105. 

Viscusi, W. K., & Chesson, H. (1999). Hopes and fears: the 

conflicting effects of risk ambiguity. Theory and 

decision, 47(2), 157-184. 

 

891




