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ABSTRACT
We explore the degrees of freedom required to jointly fit projected and redshift-space clustering of

galaxies selected in three bins of stellar mass from the Sloan Digital Sky Survey Main Galaxy Sample
(SDSS MGS) using a subhalo abundance matching (SHAM) model. We employ emulators for relevant
clustering statistics in order to facilitate our analysis, leading to large speed gains with minimal loss of
accuracy. We are able to simultaneously fit the projected and redshift-space clustering of the two most
massive galaxy samples that we consider with just two free parameters: scatter in stellar mass at fixed
SHAM proxy and the dependence of the SHAM proxy on dark matter halo concentration. We find
some evidence for models that include velocity bias, but including orphan galaxies improves our fits
to the lower mass samples significantly. We also model the clustering signals of specific star formation
rate (SSFR) selected samples using conditional abundance matching (CAM). We obtain acceptable
fits to projected and redshift-space clustering as a function of SSFR and stellar mass using two CAM
variants, although the fits are worse than for stellar mass selected samples alone. By incorporating
non-unity correlations between the CAM proxy and SSFR we are able to resolve previously identified
discrepancies between CAM predictions and SDSS observations of the environmental dependence of
quenching for isolated central galaxies.

Keywords: cosmology:theory — galaxies:halos — galaxies:evolution — large-scale structure of the
universe — dark matter — simulations

1. INTRODUCTION

Our theoretical understanding of galaxy formation has
advanced significantly with the advent of high resolution
N -body simulations that are capable of resolving sub-
structure within dark matter halos. Shortly after the the
first such simulations were possible, so called subhalo
abundance matching (SHAM) models were devised to
take advantage of this newfound ability (Kravtsov et al.
2004; Vale & Ostriker 2004; Conroy et al. 2006). These
models place simulated galaxies directly on resolved sub-
structure, and posit that the stellar mass or luminosity
of a galaxy is approximately monotonically related to
the mass or velocity of the dark matter (sub)halo host-
ing that galaxy. Despite their simplicity, SHAM mod-
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els are able to reproduce a broad range of galaxy spa-
tial statistics, including projected two-point clustering,
conditional luminosity functions, and radial profiles of
galaxies within halos (Reddick et al. 2013; Hearin et al.
2013; Saito et al. 2016; Lehmann et al. 2017). In this
work, we demonstrate that SHAM models can also fit
redshift-space clustering measurements.
Empirical models such as SHAM now form the basis

of many wide-field galaxy survey simulations because
of their ability to predict clustering over a broad range
of scales and redshifts for a variety of galaxy samples
(DeRose et al. 2019; Korytov et al. 2019). The SHAM
approach also holds promise as a forward model for cos-
mological analyses that employ galaxy clustering statis-
tics. Other simulation-based models such as halo occu-
pation distribution (HOD) models (Seljak 2000; Berlind
& Weinberg 2002; Bullock et al. 2002) must assume an-

ar
X

iv
:2

10
5.

12
10

4v
1 

 [
as

tr
o-

ph
.C

O
] 

 2
5 

M
ay

 2
02

1

http://orcid.org/0000-0002-0728-0960
http://orcid.org/0000-0001-7774-2246
http://orcid.org/0000-0003-2229-011X


2 DeRose et al.

alytic models for the number of galaxies in a halo, N , as
a function that halo’s mass, P (N |M), and a phase-space
distribution of galaxies within halos, P (x,v|M, c), that
again depends on the host halo’s mass, M , as well as
its concentration, c. Such models are able to fit galaxy
projected and redshift-space clustering into the one-halo
regime (Reid et al. 2014; Zhai et al. 2019; Lange et al.
2021), but usually use five to ten parameters in doing
so, making SHAM a potentially more efficient parame-
terization.
While SHAM has been touted as a highly predictive

model for galaxy clustering, questions remain about its
ability to fit observables at the statistical precision af-
forded by modern galaxy surveys. The highest signal-
to-noise galaxy clustering measurements currently avail-
able come from galaxy spectroscopic redshift surveys;
to make predictions for the observables from such sur-
veys, models must account for both galaxy positions and
line-of-sight velocities. A number of investigations have
been conducted into the ability of SHAM to fit redshift-
space galaxy clustering measurements from these sur-
veys. Saito et al. (2016) showed that SHAM combined
with a model for stellar mass incompleteness as a func-
tion of galaxy color could fit projected clustering mea-
surements from the BOSS CMASS sample. Yamamoto
et al. (2015) compared the predictions of a SHAM model
using subhalo maximum circular velocity as a proxy
for galaxy absolute magnitude to redshift-space clus-
tering statistics measured from the Sloan Digital Sky
Survey Main Galaxy Sample (SDSS MGS), and found
reasonable agreement, but no quantitative goodness-of-
fit statistics were provided. Guo et al. (2016) performed
a more quantitative comparison, investigating the abil-
ity of SHAM and HOD models to fit redshift-space
distortion (RSD) measurements. They concluded that
SHAM models with a single free parameter governing
scatter between the SHAM proxy and galaxy absolute
magnitude were unable to simultaneously fit projected
and redshift-space clustering. Recently Contreras et al.
(2021a) found that a SHAMmodel with parameters gov-
erning subhalo artificial disruption and galaxy assem-
bly bias in addition to a parameter governing the scat-
ter between SHAM proxy and stellar mass were able to
fit RSD measurements in Illustris TNG (Springel et al.
2018; Nelson et al. 2018; Marinacci et al. 2018; Naiman
et al. 2018; Pillepich et al. 2018), and projected clus-
tering statistics from SDSS. In this work, we perform
an extensive study of SHAM’s ability to fit RSD mea-
surements from the SDSS MGS, applying quantitative
goodness-of-fit metrics and investigating how SHAM ex-
tensions such as orphan galaxies and velocity bias affect

these fits. The effect of orphan galaxies in SHAM was
also explored in Contreras et al. (2021b).
A major drawback of commonly used SHAM ap-

proaches are their inability to model galaxy samples
that are incomplete in galaxy luminosity or stellar mass.
Nearly all samples used for modern cosmology analyses
have this property. For example, the main sample used
for cosmological constraints in the Baryon Acoustic Os-
cillation Survey (BOSS) is the CMASS sample (Dawson
et al. 2013). CMASS, while approximately complete
in stellar mass, has incompleteness that is a function
of galaxy star formation rate (SFR) (Leauthaud et al.
2016; Saito et al. 2016). Galaxy clustering is highly de-
pendent on SFR (Zehavi et al. 2011), so SFR-dependent
incompleteness imparts a bias in the CMASS clustering
with respect to the clustering of a stellar-mass-complete
sample that simple implementations of SHAM cannot
model. Upcoming surveys will pose similar or even
more severe sample incompleteness problems as many
upcoming spectroscopic surveys are designed to target
galaxies with strong emission lines (DESI Collaboration
et al. 2016; Laureijs et al. 2011; Dore et al. 2019). Thus,
methods for incorporating such selections in the SHAM
framework must be developed if the approach is to be
used to model these samples.
Significant progress has been made in modeling the de-

pendence of galaxy clustering on SFR. Hearin & Watson
(2013) introduced an extension to SHAM, dubbed age
matching, that correlates galaxy z = 0.1-frame g − r

color at fixed r-band luminosity with dark matter sub-
halo formation time. They showed that age matching
reproduces the dependence of projected clustering on
galaxy luminosity and color at high accuracy with no
free parameters other than the choice of proxies used
for the SHAM and age-matching procedures. A similar
method was also put forth by Masaki et al. (2013) with
comparable results. Generalizations of these first mod-
els, now referred to as conditional abundance matching
(CAM) models (Hearin et al. 2014; Watson et al. 2015),
have been tested against SDSS galaxy-galaxy lensing as
well as group and galaxy cluster statistics with encour-
aging results.
CAM models have also been applied to RSD measure-

ments in the past with little success: Yamamoto et al.
(2015) constrained the models presented in Masaki et al.
(2013) against SDSS MGS redshift-space clustering find-
ing that none of their CAM models fit the data well
when considering chi-squared tests. In the second part
of this work we confront CAM with RSD measurements
for samples split by stellar mass and SSFR. We focus
on two new CAM models, one based on subhalo’s accre-
tion rate, and another that uses distance to the near-
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est host halo above a set mass threshold, examining the
goodness-of-fit of these models when used in conjunction
with a model for orphan galaxies.
The structure of this paper is as follows. In section 2

we describe the SDSS galaxy samples used in this work
and the methodology used to measure RSD statistics in-
cluding how we account for fiber collisions. In section 3
we describe the simulation employed in this work, which
was run at the best fit cosmology from Planck Collab-
oration et al. (2016). Section 4 introduces the details
of our SHAM and CAM models, including how these
models are implemented in our simulation. Section 5
presents the results of our SHAM fits to SDSS MGS
RSD data and how these fits are impacted by the inclu-
sion of orphan galaxies and velocity bias. In section 6 we
fit two CAM models to SDSS MGS RSD measurements
as a function of stellar mass and specific star formation
rate (SSFR), and use posterior predictive distributions
from these fits in order to perform a detailed compari-
son of these models. In section 7 we summarize our main
results and conclude by discussing future directions of
investigation.

2. OBSERVATIONAL DATA AND CLUSTERING
MEASUREMENTS

In this work we make use of the NYU Value Added
Galaxy Catalog (VAGC) (Blanton et al. 2005), which is
constructed from SDSS DR7 (Abazajian et al. 2009).
We consider three different volume limited samples:
109.8 ≤ M∗ < 1010.2, 1010.2 ≤ M∗ < 1010.6, 1010.6 ≤
M∗ < 1011.2, where the redshift limits of these samples
are given in table 1, and all stellar masses are quoted in
units of h−2M� . Although the redshift ranges have been
chosen to provide volume complete samples, we have re-
stricted the most massive sample’s upper redshift limit
to a lower value than otherwise would be possible so
that we do not need to account for redshift evolution of
the stellar mass function in our SHAM models. We also
subdivide these samples into star-forming and quenched
galaxies using measurements of their specific star for-
mation rate (SSFR), where we categorize galaxies with
SSFR < 10−11 yr−1 as quenched. In order to avoid com-
plications from the differences between the imaging used
for target selection in the north galactic cap (NGC) and
south galactic cap, we limit our analyses to the the NGC.
We measure three different clustering statistics for

each sample: projected clustering, wp(rp), and the
monopole and quadrupole moments of the redshift-space
clustering signal, ξ0(s) and ξ2(s). The projected corre-
lation function is given by:

log10 M
∗ zmin zmax Ngal NQ NSF

10.6 to 11.2 0.026 0.106 29879 12932 16947
10.2 to 10.6 0.026 0.106 76091 47502 28586
9.8 to 10.2 0.026 0.067 21925 18201 3723

Table 1. SDSS sample definitions used throughout this
work. The number of quenched and star forming galaxies
does sum to the total number of galaxies in each stellar mass
bin because some galaxies do not have good measurements
of SSFR.

wp(rp) = 2

∫ πmax

0

dπ ξ(rp, π), (1)

where π = s·l
|l| , r

2
p = s · s − π2, and s = s1 − s2, s1

and s2 are the redshift-space coordinates of two galax-
ies, and l = (s1 + s2)/2 (Davis & Peebles 1983; Fisher
et al. 1994). We use πmax = 40h−1Mpc for all of the
wp(rp) measurements presented in this work. We esti-
mate ξ(rp, π) using the Landy-Szalay estimator (Landy
& Szalay 1993):

ξ(rp, π) =
DD − 2DR+RR

RR
, (2)

where DD, RR, and DR are the number of data-data,
random-random and data-random pairs, normalized by
the total number of pairs in each radial bin. All of
the pair-counting done in this paper makes use of the
Corrfunc library (Sinha & Garrison 2017). We use
12 logarithmically spaced bins between rp = 0.13 −
32.6h−1Mpc , and 40 linearly spaced bins in π. We
assume the SMDPL cosmology (see section 3) to convert
redshift to comoving LOS distance, always setting h = 1.
The monopole and quadrupole moments of the

anisotropic redshift-space clustering signal are given
by:

ξ`(s) =

∫ 1

0

dµ ξ(s, µ)L`(µ), (3)

where µ = rp/s is the cosine of the angle between
the line-of-sight and s. L` is the `-th Legendre poly-
nomial, with L0 = 1 and L2 = (3µ2 − 1)/2. ξ(s, µ)

is also estimated using the Landy-Szalay estimator.
We use 12 logarithmically spaced bins between s =

0.13−32.6h−1Mpc and 40 linearly spaced bins between
0 ≤ µ < 1.
Due to the finite size of the SDSS fibers used to trans-

mit light from the focal plane to the spectrographs, spec-
tra of pairs of galaxies closer than the 55 arcsecond diam-
eter of a fiber cannot both be observed. This angular size
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translates to rp = 0.12h−1Mpc at the highest redshift
edge of the samples considered in this work. For wp(rp)
we simply restrict our analysis to scales larger than this.
For ξ`(s) we must be more careful, as these statistics
can have contributions from rp < 0.12h−1Mpc for
s > 0.12h−1Mpc . In order to remove this dependence,
we first assign all galaxies with missing redshifts their
"Nearest Neighbor" redshift as implemented in the NYU
VAGC. Additionally, we exclude any (s, µ) bins that
have any contribution from rp < 0.12h−1Mpc before
computing multipoles, i.e.

ξ̂`(s) =

∫ µmax(s)

0

dµ ξ(s, µ)L`(µ), (4)

where µmax = rp,max/s. Reid et al. (2014) showed that
this approach is excellent at removing the bias imparted
to ξ0/2(s) by fiber collisions at the expense of sensitivity
to clustering at scales smaller than the fiber collision
radius.
We estimate covariance matrices for all of the mea-

surements presented here using a jackknife procedure.
We use NSIDE = 8 HealPix cells (Górski et al. 2005) as
jackknife regions. We assign randoms to these HealPix
cells, and exclude those cells that have fewer than 50%

of the average number density of randoms in them in or-
der to ensure that our jackknife regions are of equal area.
This results in 127 equal-area regions at the expense of
removing 7253 galaxies that would have otherwise been
included in our samples. We can then compute our co-
variance matrix as:

Cov(xi, xj) =
N − 1

N

N∑

k=1

(xi,k − x̄i)(xj,k − x̄j), (5)

where xi and xj are two elements of our data-vector,
xi,k and xj,k are the same elements measured when leav-
ing the k-th jackknife region out, and x̄i and x̄j are the
means of those elements averaged over all N = 127 jack-
knife measurements. We apply a Hartlap correction to
our inverse covariance matrices (Hartlap et al. 2007) in
order ameliorate biases in our analysis due to noise in
the covariance matrix. The largest data vector that we
consider in this work, the combination of wp and ξ̂0/2 for
all three stellar mass bins, has length Nd = 108, so the
Hartlap factor leads to a 87% decrease in constraining
power in this case.

3. SIMULATIONS

In this work we make use of the Small Multi-Dark
Planck (SMDPL) simulation (Klypin et al. 2016), an N -
body simulation run using L-Gadget2 (Springel 2005)

with 38403 particles in a (400h−1Mpc)3 volume and a
force softening of εPlummer = 1.5h−1kpc , yielding a
mass resolution of 9.63 × 107h−1Mpc. Using a simu-
lation with a volume of at least (400h−1Mpc)3 is im-
portant when analyzing SDSS MGS clustering, other-
wise sample variance from the simulation becomes a
dominant contribution to SHAM parameter constraints
(Lehmann et al. 2017). The simulation was initialized
using the Zel’dovich approximation at z = 100 and the
best fit cosmological parameters from Planck Collabo-
ration et al. (2016). Halo finding was performed us-
ing Rockstar (Behroozi et al. 2013a), assuming a virial
overdensity definition (Bryan & Norman 1998) and re-
moving unbound particles from the halo mass estimates.
Merger trees were generated for these halo catalogs using
Consistent Trees, (Behroozi et al. 2013b), and orphan
halos were simulated using UniverseMachine (Behroozi
et al. 2019a). Only the z = 0 snapshot is used in this
work.

4. MODELS AND MEASUREMENTS FROM
SIMULATIONS

Subhalo abundance matching is a technique that as-
signs galaxy stellar masses or luminosities to resolved
dark matter (sub)halos by enforcing the relation:

Φ(M∗ > x) = n(Xh > y), (6)

where Φ(M∗ > x) is the cumulative number density of
galaxies more massive than M∗, and n(Xh > y) is the
cumulative number density of halos where some chosen
halo property, Xh, often times referred to as the SHAM
proxy, is greater than y. This implicitly defines a rela-
tion M∗(Xh) that can be used to assign galaxy stellar
masses to halos as a function of Xh.
We use the stellar mass function measured in Reddick

et al. (2013) based on the data described in section 2.
Although this stellar mass function was measured over
the redshift range 0.026 ≤ z < 0.067, we have confirmed
that using this stellar mass function accurately repro-
duces the number densities of our two most massive
samples whose upper redshift limit extends to z = 0.106.
Equation (6) holds in the case that there is zero scatter

in the relation between M∗ and Xh, but in any realistic
scenario there is scatter induced in this relation, both
due to observational uncertainty in the measurement of
M∗ and because of correlations between M∗ and vari-
ables in addition to Xh that have been neglected in our
model. We account for these sources of scatter by de-
convolving a fiducial amount of scatter, σlogM∗|Xh

(ab-
breviated as σlogM∗ for the duration of this work), from
Φ(x > M∗), using eq. (6) to determine Mr(Xh), and
then to adding the same amount of scatter back to the
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assigned values ofM∗. The deconvolution procedure as-
sumes p(logM∗|Xh) to be log-normal, where σlogM∗ is
conventionally quoted in dex. Behroozi et al. (2010) de-
scribes this method in greater detail. σlogM∗|Xh

is then
left as a free parameter in the SHAM model to be fit to
the data under consideration.

4.1. SHAM Proxy

In this work we use vα as the proxy for M∗ i.e. Xh =

vα in eq. (6). vα is given by:

vα = vvir

(
vmax

vvir

)α
, (7)

where vmax is the maximum circular velocity of the halo,
vvir = GMvir

Rvir
, is the virial velocity of the halo, and α is

a free parameter that governs the concentration depen-
dence of the abundance matching proxy. This proxy is
evaluated at the epoch at which the halo attains its peak
mass, i.e. vmax = vMpeak in eq. (7), and vvir is computed
using Mpeak.
Using quantities evaluated at this epoch mitigates the

effects of mergers on vmax, which otherwise can cause
large temporary spikes in vmax that likely do not contain
information relevant to long term stellar mass evolution
(Behroozi et al. 2014; Chaves-Montero et al. 2016).

4.2. Orphans

It has been shown that subhalos are susceptible to ar-
tificial disruption (van den Bosch & Ogiya 2018) even in
high resolution N -body simulations such as the one used
in this work. Whether a subhalo artificially disrupts or
not is strongly dependent on the orbit that the subhalo
takes within its host halo, and as such can potentially
impart biases on the shape of the clustering signals pre-
dicted by SHAM.
The way that we account for this effect in our mod-

eling is two-fold. First, we determine when a subhalo
can no longer be tracked by our merger tree algorithm.
After this point, we continue to evolve these disrupted
subhalos forward in time, modeling their mass and ve-
locity evolution as well as their orbits within their host
halo semi-analytically in the manner described in Ap-
pendix B2 of Behroozi et al. (2019b). This procedure
gives us a catalog of disrupted subhalos, also known as
orphan subhalos, in addition to all the subhalos that can
still be identified and tracked in the standard manner.
A problem remains that many of the disrupted subha-

los that we continue to track are actually disrupted in
a physical manner, for example through major mergers.
We must decide which of these orphan subhalos may ac-
tually still host galaxies. There is a growing literature

that attempts to address this problem as a function of
properties of the subhalo itself and its orbital parame-
ters (Ogiya et al. 2019; Jiang et al. 2021). In this work,
we parameterize the probability that an orphan subhalo
physically disrupts, i.e. that it is not available to be
populated with a galaxy, as a function of the maximum
velocity of the subhalo at its peak mass, vMpeak:

P (disrupt) = Θ(Tdisr(vMpeak)− vnow/vMpeak)) , (8)

where Θ is the Heavyside step-function, and

Tdisr(vMpeak) = Tdisr,low + (Tdisr,high − Tdisr,low)×

0.5 + 0.5erf
(

log10(vMpeak)− vdisr,mean

2σdisr

)
,

(9)

where Tdisr,low, and Tdisr,high are the asymptotes of
Tdisr(vMpeak) at low and high vMpeak respectively, σdisr

determines the gradient of Tdisr(vMpeak) as a function
of vMpeak and vdisr,mean sets the vMpeak at which the
slope of Tdisr(vMpeak) is greatest. We also investigated
a number of other forms for Tdisr, including dependence
on host vMpeak and a joint dependence on host and sub-
halo vMpeak, none of which improved our ability to fit
all of the stellar mass bins in our data simultaneously,
as discussed in section 5.2.
It is also possible that baryonic effects disrupt subha-

los as a function central galaxy morphology (e.g. the
presence of a disk), star formation rate or super-massive
black hole activity. In this work we have assumed that
all subhalos that are resolved at z = 0 in our simulation
can potentially host galaxies, and thus baryonic effects
cannot disrupt resolved subhalos. This seems a reason-
able assumption given the stellar mass ranges considered
here, especially as there is only a very small population
of halos that are significantly stripped but still resolved
in our simulations.

4.3. Velocity Bias

As an additional extension of our model we consider
the possibility that the velocity distributions of central
and satellite galaxies differ from the velocity distribu-
tions of the (sub)halos in our simulations. We introduce
two parameters to govern these potential deviations, αc
and αs, which determine central and satellite velocity
bias respectively.
We include central velocity bias by assigning central

galaxies LOS velocities, vc, with respect to the LOS host
halo center-of-mass velocity, vh, drawing from the dis-
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tribution:

p(vc − vh) =
1√

2πσc
exp

(
− (vc − vh)2

2σ2
c

)
, (10)

where σc = αcσh/
√

3, σh is the three-dimensional host
halo velocity dispersion as measured by Rockstar, and
the factor of

√
3 comes from the conversion between

three-dimensional velocity dispersion and LOS velocity.
Satellite galaxies, i.e. galaxies that have been assigned

to subhalos, are treated separately. In the absence of
satellite velocity bias, satellite galaxies are assigned the
velocities of the subhalos that host them. Our imple-
mentation of satellite velocity bias simply re-scales the
satellites velocities in the host-halo frame of reference:

vs = αs(vsub − vh) + vh , (11)

where vs is the satellite LOS velocity, and vsub is the
LOS velocity of the subhalo that the satellite galaxy is
assigned to.

4.4. Conditional Abundance Matching

In order to assign galaxy SSFRs to simulated galax-
ies, we adopt a conditional abundance matching (CAM)
framework. CAM posits that at fixed stellar mass, SSFR
is monotonically related to a second halo property, Yhalo,
i.e.

F (SSFR|M∗) = P (< SSFR|M∗) = P (< Yhalo|M∗)
(12)

where F (SSFR|M∗) is the cumulative distribution of
galaxy SSFR at fixed M∗. No functional form is as-
sumed for P (< SSFR|M∗) or P (< Yhalo|M∗), rather,
they are measured directly from the data and the simu-
lations respectively.
As a generalization of CAM, we allow for an imper-

fect correlation between Yhalo and SSFR. This is accom-
plished by enforcing

P (< SSFR|M∗) = P (< Ỹhalo|M∗) (13)

where

P
(√

2S(2R̃ − 1)
∣∣∣
√

2S(2R− 1)
)

∼ N
(√

2S(2R− 1)), r
)
,

with S(x) = erf−1(x), R̃ = Rank(Ỹhalo) and R =

Rank(Yhalo) ∈ [0, 1]. This ensures that Ỹhalo is a noisy
version of Yhalo, where the Pearson correlation coefficient
between Rank(Yhalo) and Rank(Ỹhalo) is set to r.
We use a "bin-free" version of CAM as implemented

in halotools (Hearin et al. 2016), where P (< Yhalo|M∗)

and P (< SSFR|M∗) are determined in sliding windows
around the M∗ of each simulated halo and galaxy in
the data respectively. This allows us to avoid the dis-
creteness effects imparted by wide bins in M∗ evident
in earlier implementations of CAM.
In a similar way to eq. (6), this defines a relation

P (SSFR|Yhalo,M
∗). In this work we consider two differ-

ent quantities for Yhalo. The first, which we refer to as
∆vmax, is a measure of recent accretion of matter onto
subhalos defined as

∆vmax(a) =
vmax(a)

vmax(min[aMpeak, adyn])
, (14)

where aMpeak is the scale factor at which the halo attains
its peak mass, and adyn is the scale factor one dynamical
time before a, where a dynamical time is given by tdyn =(

4
3πGρvir

)−1/2. ∆vmax is also used as a proxy for SFR
in UniverseMachine (Behroozi et al. 2019a), albeit in a
significantly more intricate manner.
The second proxy that we make use of is Rh. Rh

is defined as the distance between a given galaxy and
the closest host halo with mass greater than a specified
threshold, Mcut, where Mcut is left as a free parameter
that is fit to data. This proxy is motivated by claims
that quenching has a strong dependence on proximity
to massive halos, and that there is a particular mass
scale for this quenching (Peng et al. 2010; Behroozi et al.
2013a; Zu & Mandelbaum 2016).

4.5. Measurements in Simulations

We take a slightly different approach to RSD mea-
surements in our simulation than what we use on the
SDSS data. In particular, the periodic nature of our
simulations allows measurements to be made without
the use of random points. This is important in order
to improve the accuracy of the emulators we build in
this work, which make use of small scale clustering mea-
surements. Otherwise, a very large number of random
points would be required to remove the contribution of
their finite sampling from our measurements. Because
of this difference between the measurements in our sim-
ulations, and those made in the data, the angular and
redshift window functions of the data are not accounted
for in our model predictions. Nevertheless, these are
largely accounted for in our jackknife covariance matrix
measured from the SDSS data.
For each stellar mass bin in table 1, we select an anal-

ogous sample in our simulations by cutting on the stellar
masses that have been assigned via our SHAM model.
We produce redshift-space coordinates for each galaxy
from real-space positions by modifying the LOS coordi-
nate as follows:
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xz,rsd = xz,comov +
vz

aH(a)
, (15)

where xz,rsd and xz,cos are the redshift-space and comov-
ing line-of-sight coordinates and vz is the line-of-sight
velocity in km s−1. Periodic boundary conditions are
applied after this transformation. We can then use the
natural estimator:

ξ =
DD

RR
− 1 (16)

for ξ(rp, π) and ξ(s, µ), where DD and RR are again
data-data and random-random pair counts normalized
by the number of pairs in each bin. The RR term can
now be expressed analytically, given our periodic bound-
ary conditions. wp(rp), ξ̂0 and ξ̂2 are then calculated in
the same way as described in section 2. We measure
wp(rp), ξ̂0 and ξ̂2 three times, once using each of the
x, y, and z axes of our simulation as the line-of-sight,
using the average over the three lines of sight to build
our emulators.
For the purposes of estimating covariance matrices for

our simulation measurements, which is necessary due to
the non-negligible contribution of sample variance from
our simulations to the total error in our analysis, we
again use a jackknife procedure. Here we make use of 125
equal volume sub-boxes as our jackknife regions rather
than the regions used for measurements on SDSS. Our
covariance matrix is again estimated from our jackknife
measurements using eq. (5). We compute this jackknife
covariance matrix at the joint best fit parameter values
for wp, ξ̂0 and ξ̂2 for the ∆vmax CAM model discussed
in section 6.1.
We must account for one additional source of uncer-

tainty in our analysis: the stochasticity imparted on our
measurements due to our use of Monte Carlo draws from
random variables in our SHAM and CAM implementa-
tions. We do this by repopulating our simulations 10
times at each point in SHAM and CAM model space
and recomputing wp, ξ̂0 and ξ̂2 for each re-population.
The measurements presented in the following sections
are the mean of these 10 re-populations. We neglect
any residual contribution of this stochasticity in our er-
ror budget.

5. SHAM RESULTS

Instead of directly populating our simulations at each
point in parameter space in order to make clustering pre-
dictions, we construct surrogate models for our SHAM
and CAM models and use these to predict observables
as a function of our model parameters. Appendix A

describes the surrogate modeling framework we use to
perform all of our parameter estimation in more detail.
All posterior parameter distributions and evidences

in this work are derived using the nested sampling al-
gorithm dynesty (Speagle 2019). We use a convergence
criterion of ∆ logZ < 0.01 for all analyses, where Z is
the evidence. All analyses assume a Gaussian likelihood,
where the covariance used is the combination of the jack-
knife covariance matrix estimated from the data and the
jackknife covariance matrix from the simulations used as
an approximation for the error on our surrogate models.
We assume flat priors on all parameters, whose edges
are listed in table 2.

5.1. Baseline SHAM

We now study the behavior of our fiducial SHAM
model including as parameters only the scatter in stellar
mass at fixed SHAM proxy, σlogM∗ , and the parameter
controlling the concentration dependence of the SHAM
proxy, α.
The effect that these parameters have on projected

and redshift-space clustering can be seen in fig. 2, where
we show the effect of varying σlogM∗ and α (among other
parameters to be discussed later) by 2σ around their
best fit values for each stellar mass bin. It is clear that
σlogM∗ has the greatest impact on the most massive bin,
affecting wp and ξ̂0/2 at similar levels. This is expected,
as the effect that variations in σlogM∗ have on cluster-
ing is highly dependent on the slope of the stellar mass
function, and the bias–halo-mass relation b(M). This is
because increasing σlogM∗ preferentially brings galaxies
hosted by lower mass halos into a given stellar mass se-
lection. This effect is stronger the steeper the slope of
the stellar mass function. As galaxies hosted by halos of
lower mass scatter into the selection, the large scale bias
of that sample is reduced because of the positive slope
of b(M). Thus, changes in σlogM∗ have the greatest ef-
fect where the slope of b(M) and stellar mass function
are simultaneously large, which occurs at high stellar
masses.
Variations in α become quite important for the two

less massive bins, where there is more scatter in vMpeak−
vvir relation (Lehmann et al. 2017). Increasing α ranks
halos with larger concentrations higher at fixed Mpeak,
thus preferentially selecting satellite galaxies, which gen-
erally form earlier and are thus more concentrated on
average than host halos of the same Mpeak. As such, in-
creasing α boosts the satellite fraction fsat of our sam-
ples, preferentially increasing both the one halo term
of our clustering signals, which scales as the number of
satellite galaxies squared, and the large scale bias of our
samples, as satellites preferentially reside in more mas-



8 DeRose et al.

Table 2. Parameters and priors

Parameter Prior Analysis Configuration
Base SHAM

σlog10M
∗ flat (0.0, 0.8) section 5

α flat (0.0, 1.0) section 5
Sub-halo Disruption

Tdisr,high flat (0.2, 1.4) section 5.2
Tdisr,low flat (0.2, 1.4) section 5.2
vdisr,mean flat (1.9, 3.3) section 5.2
σdisr flat (0.1, 4) section 5.2

Velocity Bias
αc flat (0.0, 0.5) section 5.3
αs flat (0.5, 1.5) section 5.3

∆vmax CAM
r∆vmax flat (0.0, 1.0) section 6.1

Rh CAM
rRh flat (0.0, 1.0) section 6.2

log10 Mcut flat (13, 15) section 6.2

sive and highly biased halos. Increasing α also prefer-
entially selects more concentrated central halos at fixed
Mpeak, again boosting the large scale bias due to the sec-
ondary dependence of halo bias on concentration, which
is a positively sloped relation at this halo mass scale
(Wechsler et al. 2006; Mao et al. 2018). We will revisit
the effects of these parameters on our clustering statis-
tics when discussing model extensions in sections 5.2
and 5.3, but we note here that additional SHAM pa-
rameters such as artificial subhalo disruption and veloc-
ity bias severely hamper our ability to constrain α.
Table 3 lists the reduced chi-squared values of the

best fit models for a number of different data vector
and galaxy sample combinations. For the two most
massive galaxy samples (10.2 ≤ log10M

∗ < 10.6 and
10.6 ≤ log10M

∗ < 11.2, combined referred to as "Top
two") our model obtains a good fit to wp, ξ̂0 and ξ̂2
simultaneously. All three clustering measurements, wp
and ξ̂0/2, show similar reduced chi-squared values, sug-
gesting that there is not significant tension in the model
when trying to fit all three statistics simultaneously.
Nevertheless, we show in sections 5.2 and 5.3 that some
model extensions can improve these fits.
We also see in table 3 that the goodness of fit for

all clustering statistics is significantly worse for the
9.8 ≤ log10M

∗ < 10.2 sample than for the more massive
samples. This is particularly true for the redshift-space
clustering statistics, and can also be seen in the rela-
tively larger values for reduced chi-squared seen in the
joint fit to all three samples. In the following sections,
we will discuss further extensions to our fiducial SHAM

model that improve our ability to fit this least massive
galaxy sample, although no extension does a good job
of simultaneously fitting all three samples.
Figure 3 shows constraints on the fiducial SHAM

model parameters when fit to statistics measured from
the two most massive galaxy samples. We see that
all three statistics prefer consistent values for the fidu-
cial SHAM parameters. The parameter constraints
from each statistic have very similar degeneracies, with
σlog10M

∗ and α showing little correlation. ξ0 and ξ2
are significantly more constraining than wp, mostly due
to the relatively larger signal to noise of the multipole
measurements.
We also show the best fit model to all clustering statis-

tics in each stellar mass bin in fig. 1. This figure conveys
the same impression as the goodness-of-fit statistics in
table 3, namely that our model is a good fit to the two
most massive galaxy samples and that there are more
significant residuals in the least massive sample.
Our ability to fit the more massive samples runs con-

trary to the results presented in Guo et al. (2016), who
used the same simulation to show that a SHAM model
accounting for only scatter in absolute magnitude at
fixed SHAM proxy cannot simultaneously fit projected
and redshift-space clustering in the SDSS MGS. This
discrepancy can be explained by considering the con-
straints that we obtain on α, which governs the behav-
ior of the mass proxy used in our abundance match-
ing models. In fig. 1 we see that our data rule out
α = 0, which corresponds to Mpeak abundance match-
ing, at high significance. Mpeak is approximately the
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same as the Macc abundance matching model presented
in Guo et al. (2016), and so we see that when using a
similar SHAM proxy we obtain similar results. Our con-
straints rule out α = 1, corresponding to vMpeak at 1.4σ

confidence. vMpeak abundance matching is similar, but
not identical, to the vacc and vpeak abundance matching
models that Guo et al. (2016) also rule out, although
Guo et al. (2016) rules them out at much higher signifi-
cance. This discrepancy may be a result of slight differ-
ences between vMpeak, vacc and vpeak, and may also be
a result of different fitting procedures and galaxy sam-
ples. Guo et al. (2016) also use a different method to
correct for fiber collisions than the one used here, allow-
ing them to use smaller scale clustering measurements,
which could also account for some of the differences be-
tween the findings presented here and those presented
in their work.
Nevertheless, we see that allowing for a continuous

degree of freedom governing the concentration depen-
dence of our abundance matching proxy is important for
obtaining good fits to all clustering statistics simultane-
ously. We have tested that this still holds when selecting
galaxies using absolute magnitude in appendix B, as was
done in Guo et al. (2016). Although we obtain improved
fits with respect to those presented in Guo et al. (2016),
we shall show in sections 5.2 and 5.3 that extensions to
the baseline SHAM model presented here are still pre-
ferred by the data in some cases.

5.2. Orphan galaxies

We now examine physically motivated extensions to
our fiducial SHAM model to see how they impact our
parameter constraints and goodness-of-fit statistics. We
consider two different model extensions: orphan galaxies
and velocity bias.
First, we consider a SHAM extension that corrects for

potential artificial subhalo disruption in SMDPL. We
will often refer to this extension as an "orphan" model.
Artificial subhalo disruption has received attention in
the recent literature, with van den Bosch & Ogiya (2018)
pointing out that artificial disruption is commonplace in
cosmological N -body simulations at virtually all resolu-
tions, even for subhalos that are resolved with hundreds
of thousands of particles.
The model that we use to correct for this potential

simulation artifact is presented in section 4.2. Orphan
subhalos are tracked after disruption until their current
maximum circular velocity, vnow, falls below a fraction,
Tdisr, of their vMpeak value. The four parameters of the
orphan model govern the vMpeak dependence of Tdisr, al-
though only one of them, the parameter controlling the
low vMpeak asymptote of Tdisr, Tdisr,low, has a large ef-

fect on the SHAM model predictions. As we decrease
Tdisr,low, we bring more subhalos into our sample, thus
increasing fsat, again boosting the one and two-halo
terms of our clustering signals. Changes in Tdisr,low al-
most exlusively change fsat, and thus give the depen-
dence of our clustering signals slightly different scale
and environmental dependence than changes in α and
σlogM∗ . This can be seen in fig. 2, where Tdisr,low, is
largely degenerate with α and σlog10M

∗ on large scales,
but on small scales has a different scale dependence es-
pecially in ξ̂0,2, where the effect of fsat has an additional
effect in boosting the amplitude of the finger-of-god, al-
lowing for constraints on subhalo disruption that are not
entirely degenerate with α and σlogM∗ .
In order to perform model comparisons, we make use

of Bayes factors:

R =
P (d|Mext)

P (d|Mfid)
=
Zext

Zfid
, (17)

i.e. the ratio of the Bayesian evidence for the data given
an extended model, P (d|Mext) to that obtained using
our fiducial model, P (d|Mfid). If the ratio is larger than
unity, then the extended model is preferred over the fidu-
cial model, and if it is less than unity then the data
prefer the fiducial model. In table 4, we list the Bayes
factors for each of our extended models computed when
fitting the clustering measurements of each stellar mass
bin, the two most massive mass bins, and all mass bins
simultaneously. For the most massive bin we findR < 1,
but for the two less massive bins the SDSS data do prefer
the presence of orphan galaxies.
It is not surprising that the less massive bins consid-

ered here require orphan galaxies while the most mas-
sive bin does not. The effect of artificial subhalo disrup-
tion has been shown to have a halo mass dependence at
fixed simulation mass resolution, with less massive and
more poorly resolved subhalos disrupting sooner than
their counterparts that are resolved with more particles
(Ogiya et al. 2019).
The larger impact of orphans on less massive sam-

ples is also observable in the effect that including or-
phan galaxies has on our σlog10M

∗ and α constraints,
shown in fig. 4. The constraints on these parameters
for the most massive galaxy sample are significantly less
affected by including orphans in our model than the con-
straints from the less massive bins. For the least massive
sample both α and σlog10M

∗ become almost entirely un-
constrained once orphans are included, and for the sec-
ond most massive bin, α becomes largely unconstrained.
The changes in the constraints on α for the less mas-

sive bins are particularly interesting. The fiducial model
favors α consistent with 1 for these bins, while including
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Table 3. Fiducial SHAM Reduced Chi-Squared Values

9.8 ≤ log10 M
∗ < 10.2 10.2 ≤ log10 M

∗ < 10.6 10.6 ≤ log10 M
∗ < 11.2 Top Two All

wp + ξ̂0,2 1.14 0.73 0.67 0.70 1.54
wp 0.93 0.51 0.27 0.40 0.62
ξ̂0 1.38 0.95 0.34 0.54 0.80
ξ̂2 0.89 0.44 0.66 0.44 0.78
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Figure 1. Comparison of the best fit projected correlation function, wp(rp) , monopole ξ0(s) and quadrupole ξ2(s) models
(lines) models the SDSS measurements (points) in three bins of stellar mass, as listed in the bottom row. Rows alternate between
clustering measurements, and fractional residuals of our model from the measured data. Gray bars in the fractional residual
panels represent the 1σ errors. Error bars on the points include both sample variance from the data and from our simulation.
Shaded regions around the solid lines represent the 1−σ posteriors of our model. The blue lines are the best fit model including
artificial subhalo disruption and velocity bias as discussed in sections 5.2 and 5.3, while the orange line is our fiducial model,
discussed in section 5. Velocity bias is important in order to fit the most massive sample, and orphan galaxies are preferred by
the two lower mass samples.
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Figure 2. Effect of varying parameters of our SHAM model by ±2σ around their best fit values for each stellar mass bin.
The solid points with error bars are the best fit model predictions, while the colored lines are the model predictions varying
each parameter one by one. We see that the most important parameter for each stellar mass bin is different, with σlogM∗ , α,
and Tdisr,low causing the largest variations in the most, second most, and least massive stellar mass bins respectively. Satellite
velocity bias is important for ξ̂0/2 for all masses, having a small residual impact on wp because we do not project over infinitely
long distances along the LOS. α, and Tdisr,low have similar impacts on large scales, but differ for r < 2h−1Mpc , allowing some
ability to constrain α in the presence of subhalo disruption systematics.

Table 4. SHAM Bayes Factors

9.8 ≤ log10 M
∗ < 10.2 10.2 ≤ log10 M

∗ < 10.6 10.6 ≤ log10 M
∗ < 11.2 Top Two All

Fid. + orphans 2.8± 0.3 2.1± 0.3 0.37 ± 0.06 0.40 ± 0.09 0.0017 ± 0.0004

Fid. + αc,s 3.1± 0.4 0.4 ± 0.4 6.80± 0.06 0.4 ± 0.1 0.046 ± 0.0004

Fid. + orphans + αc,s 6.2± 0.4 0.4 ± 0.4 1.84± 0.07 0.9 ± 0.1 1± 0.0005
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Figure 3. Constraints on the parameters of the fiducial
SHAM model, σlogM∗ , log-normal scatter in M∗ at fixed vα,
and α, the parameter that controls the concentration de-
pendence of the SHAM proxy, fit to the two most massive
galaxy samples. Various contours are constraints from dif-
ferent clustering measurements, all of which are statistically
consistent. The combined result rules out Mpeak (α = 0)
SHAM at many sigma, and vMpeak SHAM (α = 1)at 1.4
sigma.

orphan galaxies removes nearly all constraining power
on α suggesting that previous results favoring vMpeak

abundance matching over Mpeak were largely a result
of those models’ lack of orphan galaxies, similar to the
claims made in Campbell et al. (2018).
Finally, we examine the vMpeak dependence of our or-

phan model for these three different stellar mass selec-
tions in fig. 5. For the most massive bin, we again see
the preference for no orphan galaxies in the fact that
Tdisr ≥ 1 for all vMpeak, meaning that the data do not
require the inclusion of any orphans for any values of
vMpeak populated by our model. The best fit in the
second bin shows some preference for orphan galaxies,
but the no-orphan scenario is not ruled out. On the
other hand, for the least massive sample, we see that the
mean constraint on Tdisr is less than one for all values
of vMpeak, indicating that the SDSS data prefer orphan
galaxies.
We also see that there is some tension between the

orphan model constraints from this least massive sam-
ple and the most massive sample, with the least massive
sample requiring orphan galaxies in vMpeak ranges where
the most massive sample rules out orphans. The bot-
tom panel of fig. 5 shows the vMpeak distributions for
the three mass bins. We see that all three have signifi-
cant overlap in vMpeak and so the different preferences
for Tdisr at fixed vMpeak lead to an inability to simul-
taneously model the least and most massive bins. This

0.0 0.5 1.0

α

Low Mass

Mid Mass

High Mass

Top two

All

0.2 0.4 0.6 0.8
σlogM∗

fid

fid + 4 par disr.

fid + 4 par disr. + αs,c

Figure 4. (Right) Constraints on σlog10M
∗ for all three

stellar mass bins individually, the two most massive bins an-
alyzed simultaneously ("Top two") and all three bins ana-
lyzed simultaneously ("All"). Points are the 1 dimensional
posterior means, and error bars depict 95% confidence in-
tervals. Different colored points represent different model
choices, including our fiducial two parameter SHAM model
(blue), an extension that allows for orphan galaxies (orange)
and an extension allowing for both orphans and velocity bias
(green). The constraints on σlog10M

∗ are not significantly af-
fected by varying these modeling choices, except for the least
massive bin where inclusion of orphans significantly degrades
the ability to constrain σlog10M

∗ . (Left) Same as right panel,
but showing constraints on α. Allowing for orphan galaxies
significantly degrades the constraints in α for the two less
massive galaxy samples. This indicates that previous prefer-
ences for vMpeak abundance matching over Mpeak abundance
matching in the literature may have been driven by artificial
subhalo disruption.

tension is also borne out by the very small Bayes factors
for this model extension when considering all mass bins.
This finding suggests that there must be a secondary

variable that controls artificial subhalo disruption that
our model does not account for. We have tried modify-
ing our disruption model to account for more complex
dependencies, including dependence on host halo vMpeak

and concentration, none of which alleviate this tension.
We leave more extensive investigation of these additional
dependencies to future work.

5.3. Velocity Bias

We have also explored an extension to our fiducial
SHAM model that allows galaxies to have different ve-
locity distributions from the subhalo populations that
they are assigned to. Such an extension is commonly re-
ferred to as velocity bias. We note that the constraints
on velocity bias presented in this work are not directly
comparable to constraints obtained from HOD models
that place galaxies on particles or model satellite veloc-
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Figure 5. (Top) Constraints on Tdisr = vnow/vMpeak as
a function of vMpeak for the three different stellar mass se-
lected samples. Constraints with Tdisr ≥ 1 imply no need for
orphan galaxies. (Bottom) vMpeak distribution preferred by
the best fit models for each sample. The significant overlap
in these distributions for the least and most massive samples,
along with the different inferred Tdisr for these two samples
suggests that additional complexity is required in our orphan
model in order to account for subhalo disruption consistently
across the whole stellar mass range considered in this work.

ity distributions assuming isotropic Jeans equilibrium in
an NFW profile, as the unbiased velocity distributions
used in this work come from subhalo populations. Here
we consider two additional parameters. The first, αc,
allows central galaxies to have non-zero velocity with
respect to the center-of-mass of the halo they are hosted
by. The second parameter re-scales the velocity disper-
sions of satellites with respect to their host halo by a
multiplicative factor, αs. The implementations of these
models are described in section 4.3.
In table 4 we see R > 1 for model extensions that

include only velocity bias other than for combinations
that include the middle mass bin. Figure 6 shows con-
straints on the velocity bias parameters for each stellar
mass selection. The blue points are for model extensions
including only velocity bias, and orange points show con-
straints when including orphan galaxies as well as ve-
locity bias. The inclusion of orphan galaxies does not
appreciably change our velocity bias constraints. It is
apparent that the preference for the velocity bias model
in the most and least massive galaxy samples is driven
by a deviation of αs from unity at a significance of 3.1σ

and 2.6σ for the least and most massive bins respec-
tively. When analyzing the two most massive samples
simultaneously with one set of velocity bias parameters,
this preference for non-unity satellite velocity bias is sig-
nificantly decreased. This may indicate that the detec-
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fid + αs,c

fid + 4 par disr. + αs,c

0.0 0.2 0.4
αc

Figure 6. Same as fig. 4, but for velocity bias constraints.
Dashed vertical lines indicate the parameter values represent-
ing no velocity bias, and error bars represent 95% confidence
intervals. (Left) Constraints on satellite velocity bias are
inconsistent with no velocity bias at > 2σ, except for com-
binations that include the middle mass bin. (Right) Arrows
denote 2σ upper limits. Constraints on central velocity bias
are all consistent with zero at 2σ, except for the combined
constraints from all samples when not including orphans.
Including orphan galaxies does not significantly affect either
satellite or central velocity bias constraints, as indicated by
the consistency between the blue and orange points.

tion of velocity bias in the most massive galaxy sam-
ple is due to noise, or it may simply indicate that the
10.2 ≤ log10M

∗ < 10.6 bin is driving the fit back to-
wards αs = 1. When all three bins are analyzed to-
gether, αs is consistent with unity, but we caution that
this result may not be robust due to the poor overall fit
to the combination of all three galaxy samples.
The central velocity bias parameter, αc is consistent

with 0 at 95% confidence for all samples when analysed
individually as shown by the blue points in in the right-
hand panel of fig. 6. The constraints when analyzing all
samples simultaneously prefer non-zero central velocity
bias at greater than two sigma but once orphan galax-
ies are included we find αc consistent with zero for all
samples.
As can be seen in fig. 4, including velocity bias has

little effect on parameter constraints for σlog10M
∗ and α.

The slight exception to this is for the σlog10M
∗ from the

top two most massive samples, where including velocity
bias changes the constraint by approximately 1σ.

6. CONDITIONAL ABUNDANCE MATCHING
RESULTS

Here we investigate whether conditional abundance
matching (CAM), is capable of modeling clustering as a
function of stellar mass and specific star formation rate
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(SSFR). Previous sections explored SHAM extensions
that may be required to model stellar mass complete
galaxy selections, but such samples are rarely gathered
in large spectroscopic surveys where redshift-space clus-
tering can be measured with high precision. If CAM
were capable of modeling selections in stellar mass and
SSFR, then it would hold potential for modeling the
clustering signals of luminous red galaxy and emission
line galaxy samples observed in upcoming surveys such
as DESI, 4MOST, Euclid and PFS, whose selections will
implicitly depend on both stellar mass and SSFR in ad-
dition to other variables.
In the following subsections we investigate two distinct

conditional abundance matching models: one that ties
SSFR to the rate of change in potential well depth of
subhalos as traced by their maximum circular velocities,
and one that matches SSFR with distance to the nearest
halo above a specified mass threshold.
The following analyses are limited to individual stellar

mass selections, as we cannot estimate a covariance ma-
trix that is simultaneously invertible for all stellar mass
and SSFR bins. As such, we cannot present CAM re-
sults using the combined constraining power of all stellar
mass bins, as we did for the SHAM models. Instead, the
following analyses are always based on models fit simul-
taneously to the quenched, star forming and combined
samples for each individual stellar mass bin. As we shall
see, the CAM models for individual mass bins are not
entirely consistent, and so analysis of all bins in combi-
nation would have limited utility even if we could obtain
a reliable covariance matrix for such an analysis.

6.1. ∆vmax CAM

The first CAM model that we explore is one that
ties SSFR to ∆vmax (see eq. (14)). This model is
motivated by the success of the UniverseMachine in
fitting the clustering and number densities of stellar
mass and SSFR selected galaxies as a function of time.
UniverseMachine also ties galaxy SSFR to ∆vmax al-
beit in a model with many more free parameters in or-
der to model star formation over a much broader range
in time. Here we focus on a simplified version of the
UniverseMachine model, where we allow for a single
free parameter: the linear correlation coefficient between
SSFR and ∆vmax at fixed galaxy stellar mass. The im-
plementation of this model is discussed in section 4.4.
The solid lines in fig. 7 show the fits of the ∆vmax

CAM model to wp, and ξ̂0/2 for quenched (red), star-
forming (blue), and combined (black) samples for each
stellar mass bin. Similar to fig. 1, the fits shown in each
stellar mass bin are performed independently.

The correlations that allow the ∆vmax CAM model
to fit these signals are similar to those at play in the
baseline SHAM model. For ∆vmax CAM with r∆vmax

=

1, galaxies with lower values of ∆vmax at fixed M∗

are monotonically assigned galaxies with lower SSFRs.
Subhalos preferentially have lower values of ∆vmax at
fixed halo mass, and so subhalos are preferentially as-
signed lower values of SSFR, thus boosting fsat for more
quenched samples. Additionally, ∆vmax CAM assigns
low SSFR values to the oldest host halos that are no
longer accreting mass, thus boosting the central assem-
bly bias signal in a similar way to increasing α in SHAM
(Zentner et al. 2014). As r∆vmax

is decreased, the cor-
relation between SSFR and fsat, assembly bias, and,
by proxy, clustering amplitude becomes flatter. Thus,
r∆vmax

governs the ratio of clustering amplitudes of the
various SSFR selections at fixed M∗.
By eye, we see that the fits to the quenched and star

forming samples are reasonable, but slightly worse in
general than the fits to the combined samples. This is
shown more quantitatively by the reduced chi-squared
values shown in table 5. The reduced chi-squared values
from the wp + ξ̂0/2 row of table 3 are included for ref-
erence and listed as "Combined SHAM" indicating that
the SHAM model is fit to the "combined" sample of
galaxies binned in stellar mass but not SSFR. Fitting to
the quenched and star-forming samples simultaneously
with the combined sample degrades the fit to the com-
bined sample for all stellar mass bins, indicating that
adjustments from the best fit model from section 5 are
required in order to simultaneously fit the quenched and
star-forming galaxy samples. The most striking example
of this is a large shift in the orphan model parameters for
the least massive sample, where the ∆vmax CAM model
prefers essentially all artificially disrupted subhalos to
be kept as orphans in order to fit the very large one
halo term for the quenched sample in this stellar mass
bin. Evidently, ∆vmax CAM on its own cannot boost
the one-halo clustering signal of this least massive bin
enough on it’s own. Thus, more orphan galaxies must
be included in order to further boost fsat, and these or-
phans must be preferentially quenched. This happens
naturally in ∆vmax CAM, as orphans will be preferen-
tially stripped and thus assigned lower SSFRs. In gen-
eral, the constraints on the SHAM parameters are also
broadened when fit simultaneously with r∆vmax

, again
indicating a slight tension in the CAM model when fit
to the data presented here.
Figure 8 shows constraints on r∆vmax

in blue for the
three stellar mass bins considered here. Notably, there is
little evolution of this parameter as a function of stellar
mass, with the least massive bin yielding constraints of
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Figure 7. Comparison of the best fit ∆vmax (solid) and Rh (dashed) CAM models to wp and ξ̂0/2 measured for quenched
(red), star-forming (blue) and combined (black) samples for each stellar mass bin. Shaded regions around the solid lines are 1σ
posterior model predictions. 1σ posterior distributions are not included around the Rh models for clarity as they are comparable
to the ∆vmax distributions in size. Overall the fits for both models are comparable, although the ∆vmax model generally out-
performs the Rh model for star-forming samples. Both models struggle to fit the quenched galaxy measurements for the two
less massive bins on scales r ≤ 1h−1Mpc .

Table 5. CAM Reduced Chi-Squared

9.8 ≤ log10 M
∗ < 10.2 10.2 ≤ log10 M

∗ < 10.6 10.6 ≤ log10 M
∗ < 11.2

Combined SHAM 0.98 0.53 0.69
Combined ∆vmax CAM 1.13 0.49 0.82
Combined Rh CAM 1.02 0.49 0.80

Quenched ∆vmax CAM 1.76 0.72 0.61
Quenched Rh CAM 1.78 0.51 0.58

Star-forming ∆vmax CAM 1.03 0.64 0.39
Star-forming Rh CAM 1.48 1.02 0.45

All ∆vmax CAM 0.62 0.21 0.18
All Rh CAM 0.52 0.30 0.18
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the least massive bin, ∆vmax is more correlated with SSFR
than Rh, again indicating that ∆vmax is a better proxy for
SSFR. We also see that rSSFR varies much more strongly
with stellar mass for the Rh model than the ∆vmax model.

r∆vmax
= 0.58 ± 0.01, while the two most massive sam-

ples prefer r∆vmax
= 0.52±0.02 and r∆vmax

= 0.54±0.13

respectively.

6.2. Rh CAM

The second CAM model we consider is one that ties
SSFR to Rh, the distance to the nearest host halo with
mass above a threshold Mcut where Mcut is left as a
free parameter. Here, the physics that creates the dif-
ferences between high and low Rh samples is quite dif-
ferent than in the ∆vmax CAM case. Subhalos that are
close to massive host halos and thus have low values for
Rh are assigned lower values of SSFR. This again acts
to boost fsat at fixed M∗ for quenched galaxy samples,
but here there is no direct correlation between halo age
and quenching, thus this model will not impart central
galaxy assembly bias signals in the way that the ∆vmax

CAMmodel does. On the other hand, this model will in-
troduce large correlations between quenching of nearby
galaxies, also known as galactic conformity (Weinmann
et al. 2006), which can have a large effect on one and two
halo clustering amplitudes (Hearin et al. 2015). Like the
∆vmax CAM model, the Rh CAM model also allows the
correlation coefficient between Rh and SSFR, rRh

, to be
free, again controlling the ratio of clustering amplitudes
for quenched and star-forming samples.
The dashed lines in fig. 7 show the best fit Rh model

to each stellar mass bin. Overall the fits are comparable
to the ∆vmax model, although with noticeably worse
performance for star-forming samples. The reduced chi-
squared values for these fits are displayed in table 5,
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Figure 9. Posterior of the Mcut and scatter parameters
used in the Rh CAM model for each stellar mass bin. rRh

and Mcut are strongly correlated for all samples, and both
parameters show significant trends with the stellar mass of
the samples. More massive samples prefer less correlation
between Rh and SSFR, while also preferring larger values
for Mcut.

where we indeed see that the Rh model is a worse fit to
the star-forming samples.
Table 6 shows Bayes factors comparing the ∆vmax and

Rh model. The ∆vmax model is preferred by the data for
the two most massive bins, although the significance of
this preference is by far the greatest in the second most
massive galaxy sample. The Rh model is preferred in the
least massive sample, but neither model is a particularly
good fit to the data for this bin. It should be noted that
these Bayes factors depend on the prior that we have
chosen forMcut, and a significantly smaller prior on this
parameter would result in smaller Bayes factors and less
of a preference for the ∆vmax model.
Joint constraints on the Rh CAM model parameters

are shown in fig. 9, where a strong correlation between
rRh

and Mcut can be seen for all stellar mass bins. Un-
like with the ∆vmax model, there is a strong trend in
the correlation between Rh and SSFR as a function of
stellar mass. There is also an apparent trend in Mcut

with stellar mass. More massive samples tend to be
quenched by their proximity to more massive halos, as
indicated by the larger preferred Mcut values as a func-
tion of stellar mass. The 1-dimensional posteriors on
rRh

are compared with those obtained from the ∆vmax

CAM model in fig. 8.
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Table 6. CAM Bayes Factors

9.8 ≤ log10 M
∗ < 10.2 10.2 ≤ log10 M

∗ < 10.6 10.6 ≤ log10 M
∗ < 11.2

5.8 × 10−6 ± 1.7 × 10−6 9.9 × 107 ± 3.1 × 107 21 ± 5.2

6.3. Model predictions for finer color selections

Given the comparable ability of both CAM models to
fit the clustering statistics considered thus far, we now
look more closely at the clustering of samples selected
more finely in SSFR-M∗ space. To do so, we divide
the SDSS galaxies into four equal quartiles in SSFR,
independent of M∗, yielding four bins in SSFR:

Yi+1 ≥ log10 SSFR > Yi, (18)

with Yi ∈ {−99,−11.84,−10.98,−10.072,−6.39}. It
should be noted that the four bins in SSFR do not con-
tain equal numbers of galaxies for each stellar mass bin
because the SSFR bin edges are determined using all
galaxies with 9.8 ≤ log10M

∗ < 11.2. We use the same
M∗ and redshift bins as those discussed in section 2. Er-
rors on the data are again estimated via jackknife, and
the simulation errors are estimated using the jackknife
procedure discussed in section 3.
Instead of fitting our CAM models to these new finer

SSFR selections, we make predictions for these selections
given the MAP CAM parameters presented in the pre-
vious section using the joint fit to wp, ξ̂0 and ξ̂2 for each
stellar mass bin. These predictions are shown in fig. 10,
where the points represent the SDSS measurements, and
the solid lines and contours are the best fit and 1σ pos-
terior of the ∆vmax CAM model, while dashed lines are
the MAP Rh model.
Given the small differences in the performance of these

models when fit to the quenched and star-forming sam-
ples, the marked difference in the predictions for this
finer binning in SSFR is surprising. For the least massive
sample, the ∆vmax model significantly out-performs the
Rh model, with the Rh model predicting a very small dif-
ference in clustering amplitude for the lower SSFR sam-
ples, and a very large difference in clustering amplitude
for the higher SSFR samples. These predictions average
out to be roughly correct when performing the binary
splits in SSFR, but these finer splits make it clear that
the reasonable fit to the binary split samples is merely
coincidental. For the two most massive bins, the predic-
tions for the ∆vmax and Rh model are more comparable,
with the ∆vmax model outperforming the Rh model for
star-forming samples, while the Rh model is a better fit
to the third lowest SSFR bin.
In the two less massive bins, the large difference in

clustering amplitude for the two lower SSFR bins is in-

teresting in its own right, suggesting that there is a di-
versity in the quenched galaxy population that is ex-
plained to a large extent by diversity in ∆vmax. This
can be compared to the two most star forming samples,
whose clustering amplitudes are much more comparable,
suggesting less diversity of environments when galaxies
are on the star-forming main sequence than for quenched
galaxies. This further suggests that that the data may
prefer a model with separate correlation coefficients be-
tween SSFR and ∆vmax for quenched and star-forming
galaxies, with ∆vmax being more correlated with SSFR
in the quenched regime than the star-forming regime.

6.4. Environmental Dependence of Galaxy Quenching

Because galaxy auto-correlation functions up-weight
regions of high galaxy density, they are largely sensitive
to the clustering of satellite galaxies, which preferen-
tially live in these regions. For this reason, the clus-
tering measurements presented thus far are not particu-
larly sensitive to the processes governing central galaxy
quenching, and thus not sensitive to one of the main
pitfalls of the original formulation of CAM: its inclusion
of very strong environmental dependence on quenching
of low-mass isolated galaxies.
Tinker et al. (2017) showed that for low mass galaxies

the quenched fraction, fq =
nquenched

nall
, predicted by age

matching depends very strongly on local galaxy over-
density, while in SDSS this dependence is much weaker.
Here we perform our own comparison of similar mea-
surements to the updated CAM models presented in
this work to see if the reported tension persists. We
adopt slightly different definitions than those presented
in Tinker et al. (2017) because we use SSFR rather than
D4000, and because we have not run a group finder on
our simulations in order to identify isolated galaxies. We
define the quenched fraction as the ratio of the number
of galaxies with log10 SSFR ≤ −11 to the total number
of galaxies. We measure galaxy density, ρ, as the num-
ber of galaxies in an annulus in redshift-space defined by
0.5h−1Mpc <= rp < 4 h−1Mpc and δcz < 1000 km/s,
where we only count galaxies that are less massive than
the galaxy in question, and more massive massive than
0.3M∗, where M∗ is the mass of the galaxy around
which we are counting satellites.
The top row of fig. 11 shows a comparison of fq as

a function of galaxy density between our best fit CAM
models from section 4.4 for all galaxies in each stellar
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Figure 10. Predictions of the CAM models that provide the best fit to the combination of wp, ξ̂0 and ξ̂2 measurements using
a finer SSFR selection. Lower SSFR selections are represented by redder points and lines, while higher SSFR selections are
represented by bluer points and lines. The highest SSFR sample for the most massive bin is not shown as it is extremely
noisy. We see that the ∆vmax model outperforms the Rh model for most samples, especially for the most star-forming and most
quenched samples in the two less massive bins.

mass bin. We have limited the SDSS sample’s redshift
range to z < 0.064 to ensure volume completeness for
all samples simultaneously, and we perform the CAM
procedure using the color distributions from this sample.
We see that agreement between the best fit ∆vmax model
and the data is very good for all stellar masses, while the
agreement between the best fit Rh model and the data
is significantly worse, with the Rh model predicting a
different shape of fq as a function of galaxy density,
especially for low densities.
The bottom row of fig. 11 shows similar measure-

ments, but this time only considering primary galax-
ies, defined as those galaxies that do not have a more
massive galaxy within a region of rp < 0.5h−1Mpc and
∆cz < 1000km s−1. This is the same definition used in
Behroozi et al. (2019b). We see that the trends in fq

with ρ become less steep than their counterparts mea-
sured for all galaxies for both the SDSS data and the
CAM models. Agreement between SDSS and the ∆vmax

model is still very good for all samples, while the Rh

model shows a similar shape mismatch as seen when
considering all galaxies. Thus the tension reported in
Tinker et al. (2017) is alleviated for the ∆vmax model.
In order to demonstrate the aspect of the updated CAM
model that alleviates this tension, we also show ∆vmax

model predictions for a model with r∆vmax = 1 as dashed
lines. This r∆vmax

= 1 model is closer to what was used
in Tinker et al. (2017). We see that there is a much
stronger trend in fq as a function of galaxy density when
assuming this perfect correlation, which is very similar
to that reported in Tinker et al. (2017) and in more sig-
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nificant tension with the SDSS measurements presented
here than the best fit ∆vmaxmodel.
Recently O’Donnell et al. (2021) reported that mea-

surements of number density profiles around isolated
Milky-way mass galaxies in SDSS suggest that, if any-
thing, star-formation rates are anti-correlated with dark
matter accretion rates, seemingly contradicting the find-
ings presented here. There are a number of differ-
ences between the measurements presented here and in
O’Donnell et al. (2021), specifically the isolation cri-
teria used, which are more conservative in O’Donnell
et al. (2021), and the use of mean number profiles as
a function of scale, rather than the counts-in-cells-like
measurements that we use here. O’Donnell et al. (2021)
also use accretion rates rather than ∆vmax. Due to these
differences it is unclear whether O’Donnell et al. (2021)
contradicts our results, and further investigation con-
fronting the statistics presented in their work with the
models presented here is warranted.
Another apparent tension between CAM and SDSS

data was discovered in the joint analysis of galaxy-
galaxy lensing and projected clustering presented in Zu
& Mandelbaum (2016). They showed that at fixed
stellar mass, galaxy quenching mostly depends on halo
mass, with galaxies hosted by more massive halos ex-
hibiting stronger quenching, whereas the age-matching
model discussed in their work exhibits the opposite
trend, i.e. at fixed stellar mass, central galaxy quenching
is inversely related to halo mass. More massive galax-
ies accumulate their mass at late times, and thus are
younger and assigned bluer galaxies. We have investi-
gated this tension with the best fit ∆vmax model, and
found that unlike in age matching with a perfect correla-
tion between zstarve and SSFR, our best fit ∆vmax model
shows no signs of this inverted quenching relationship.

7. CONCLUSION AND FUTURE WORK

In this work we have explored the ability of abun-
dance matching models to fit redshift-space clustering
data measured from the Sloan Digital Sky Survey Main
Galaxy Sample. The parameter constraints in this work
make use of polynomial chaos expansions as surrogates
for abundance matching models, facilitating many as-
pects of our analysis. Our main findings are as follows:

1. SHAM models including free parameters for scat-
ter and the concentration dependence of the
SHAM proxy can fit redshift-space clustering mea-
surements.

2. Orphan galaxies improve our SHAM fits, reduc-
ing the preference for vMpeak abundance matching
over Mpeak.

3. We obtain > 2σ detections of satellite velocity
bias, emphasizing the need for this degree of free-
dom to be included when fitting RSD statistics
using SHAM.

4. Using ∆vmax as a proxy for SSFR in CAM models
provides a good fit to the clustering data presented
in this paper.

In more detail, we fit a fiducial SHAM model with
free parameters governing the scatter in stellar mass at
fixed SHAM proxy, σlog10M

∗ , and the concentration de-
pendence of the SHAM proxy, α, to SDSS RSD mea-
surements in three bins of stellar mass. We find that
this model is able to reproduce these measurements with
high fidelity except for in the least massive galaxy sam-
ple.
Section 5.2 and section 5.3 explore extensions to this

fiducial SHAM model, allowing for orphan galaxies and
velocity bias. Orphan galaxies are slightly preferred by
the data for the two less massive galaxy samples, and
satellite velocity bias is preferred by the least and most
massive galaxy samples, as quantified by Bayes factors
listed in table 4. Due to a lack of a consistent trend in
preference or exclusion of these models, we suggest that
they be included in future analyses using SHAM. Fur-
thermore, including orphan galaxies degrades the abil-
ity to constrain α, suggesting that previous SHAM con-
straints that prefer vMpeak over Mpeak may have been
driven by artificial subhalo disruption.
While orphan galaxies allow SHAM to fit the least

massive samples investigated in this work, the orphan
model constraints from the three different samples are in
tension. The least massive sample prefers a large num-
ber of orphans, boosting halo occupations of galaxies by
a factor of ∼ 1.5 across a broad halo mass range with
respect to a no-orphan model, while the most massive
sample prefers no orphans. This suggests that there are
additional variables governing artificial subhalo disrup-
tion that are not included in our model, but are required
in order to achieve self consistency over the full stellar
mass range considered in this work.
Having investigated stellar mass complete galaxy sam-

ples, we turn to samples selected in stellar mass and
SSFR, as many samples used for cosmology in ongoing
and upcoming surveys will be. We present two new con-
ditional abundance matching models, one that uses a
proxy for subhalo’s matter accretion rate, ∆vmax, and
another that uses distance to massive halos, Rh, as prox-
ies for SSFR at fixed stellar mass. We have allowed for
non-unity correlation between these proxies and SSFR
in the form of a linear correlation coefficient. We find
that both models are able to fit RSD measurements split



20 DeRose et al.

0.2

0.4

0.6

0.8

1.0
f q

∆vmax CAM

Rh CAM

SDSS

10−1 100
0.00

0.25

0.50

0.75

1.00

f
p

ri
m

a
ry

q

9.8 < logM∗ < 10.2

10−1 100

Ngal

10.2 < logM∗ < 10.6

10−1 100

10.6 < logM∗ < 11.2

Figure 11. Predictions of quenched fraction as a function of galaxy density compared to measurements in SDSS for the ∆vmax

(blue) and Rh (orange) CAM models fit to wp and ξ̂0/2Ṫhe top row shows measurements of the quenched fraction of all galaxies,
while the bottom row considers only primary galaxies as defined in section 6.4. The different columns are different stellar mass
bins, as labeled in the figure. The ∆vmax model is in good agreement with the SDSS data for all magnitudes and densities,
whereas the Rh model shows a significantly stronger correlation between galaxy density and fq than the data both for all
galaxies, and the primary only measurements. The dashed blue line shows a ∆vmax model with r∆vmax = 1, similar to that used
in Tinker et al. (2017), demonstrating that the inclusion of non-unity correlation between ∆vmax and SSFR allows the data
presented in this figure to be fit significantly better than the perfect correlation case.

into quenched and star-forming samples reasonably well,
but the ∆vmax model generally performs better than the
Rh model. While promising, neither CAM model is able
to fit the quenched and star-forming samples as well as
our SHAM model is able to fit the stellar mass complete
samples.
In order to perform further comparison between the

CAM models, we have made predictions for additional
statistics at the models’ maximum a posteriori parame-
ter values when constrained against wp, ξ̂0 and ξ̂2. First,
we examined the dependence of wp and ξ̂0/2 in four bins
of SSFR for each stellar mass bin, finding that the ∆vmax

model predictions match the SDSS measurements sig-

nificantly better than the Rh model, particularly for the
higher SSFR samples.
We have also examined the a posteriori predictions of

our CAM models for quenched fraction as a function of
galaxy overdensity. Here, the ∆vmax model prediction
is nearly perfect and is again significantly better than
the Rh model prediction, especially at low mass and low
density when considering both primary and non-primary
galaxies. If we force the correlation between SSFR and
∆vmax to be perfect, then we recover the tensions be-
tween CAM and SDSS data reported in previous work,
such as Tinker et al. (2017), suggesting that allowing for
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non-unity correlation between SSFR and ∆vmax is what
allows us to fit this data well.
This work suggests that SHAM is a promising al-

ternative to other simulation-based models for galaxy
redshift-space clustering, particularly for higher stellar
masses where only two free parameters are required to
fit the SDSS data considered in this work. Modeling or-
phan galaxies is important for the less massive samples,
but significant additional investigation is required in or-
der to obtain an orphan model that is flexible enough to
model the whole stellar mass range considered here. In-
cluding non-unity correlations in CAM alleviates many
of the tensions with SDSS data that have previously
been reported. CAM provides a reasonable fit to the
the RSD measurements from stellar mass and SSFR se-
lected galaxy samples, but further work is necessary in
order to improve these fits to the level required for ro-
bust cosmological inference. The development of SHAM
and CAM models lay the bedrock for the construction
of realistic mock galaxy catalogs. With more concerted
effort, SHAM and CAM may provide a robust forward
model, usable for constraining the growth of structure
in our universe from a broad range of galaxy clustering
statistics.
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A. SURROGATE MODELING

In order to facilitate our analyses, we build surro-
gates for the SHAM and CAM models considered in
this work. In particular, we have a set of measurements,
Y = {y1, ..., yN} ∈ R, at points x = {x1, ...,xN} ∈ RD
over a domain DX , and some mapping f : X → Y . The
mapping f is the SHAM/CAMmodel predictions for our
clustering statistics when applied to SMDPL, and is slow
to evaluate. We wish to construct a fast and accurate
surrogate model f̂ for f . In order to do so we construct
a Polynomial Chaos Expansion for f (Xiu 2010). If the
points in X follow a joint probability density function
p(x), and f is a finite variance model, i.e.

E[f2] =

∫

DX

f2(x)p(x)dx <∞ (19)

and f is drawn from a Hilbert space of finite variance
functions, H, endowed with the inner product

〈g, h〉 =

∫

DX

g(x)h(x)p(x)dx , (20)

then we can construct a PCE of f such that

f(X) =
∑

α∈Nd

mαΨα(X) (21)

where α = {α1, ..., αd} is a d-dimensional index and Ψα

is an element of the multivariate orthonormal polyno-
mial basis of H.
In order to evaluate the expansion in an efficient man-

ner it must be truncated in order to yield a finite sum,
yielding an approximation to f :

f̂(X) =
∑

α∈A
mαΨα(X) , (22)

where A ⊂ N. In this work, we choose a truncation rule
such that A = {α

∣∣|α| < p}, i.e. we keep all polynomials
with total order less than p, and we optimize p to com-
promise between accuracy and computational efficiency.
For finite p, the PCE coefficients can be determined by
optimizing a specified loss function. In our case, we take
our loss function to be the mean squared error over all
X, in which case the coefficients mα are determined by
solving the normal equation.
We build independent PCEs for each scale, statistic,

galaxy sample and model. In order to determine co-
efficients for each PCE we take X to be 1000 points in
SHAM parameter space drawn from a Latin Hypercube.
We have found that 1000 points is sufficient to achieve



22 DeRose et al.

an accuracy consistent with the errors on the measure-
ments in our simulations for all the models considered
in this work, as discussed below.
We populate SMDPL at each point xi ∈ X and mea-

sure wp(rp), ξ̂0(s) and ξ̂2(s) as outlined in section 4.5.
This produces 1000 training points yi ∈ Y for each scale,
statistic, galaxy sample and model. Given this data, we
determine unique sets of coefficients mβ

α for each PCE,
where β now denumerates the scale, statistic, sample
and model under consideration. In order to determine
the generalization error of our PCEs to points outside of
X we perform a cross-validation procedure, iteratively
leaving out each point xi ∈ X, refitting mβ

α, and cal-
culating the residual of the PCE at the removed point,
yi − ˆf(xi).
Figure 12 shows the residual distribution of the PCEs

for all scales and statistics averaged over the three dif-
ferent stellar mass bins considered in this work. We
only show the residuals for PCEs trained on the model
with the greatest number of parameters, i.e. the Rh

CAM model with velocity bias and subhalo disruption
discussed in section 6.2, as we have found the residuals
for this model to be the largest of all models consid-
ered in this work. Residuals are quoted as fractions of
the error on each measurement, where the errors are de-
termined via the jackknifing procedure outlined in sec-
tion 4.5. The mean error at each point, shown as the
white point in each violin, is consistent with the error
on the measurement for all but the two smallest radial
bins in wp(rp). We compare 2nd and 3rd order trunca-
tion schemes, and find that the second order scheme is
sufficient to produce residuals consistent with the error
on our training set, and so we use this scheme for all
analyses in this paper.

B. ABSOLUTE MAGNITUDE AND COLOR
SELECTED SAMPLES

In addition to the stellar mass and SSFR selected sam-
ples discussed in the rest of this work, we have also ana-
lyzed samples selected by z = 0.1-frame r-band absolute
magnitude and g − r color. The Mr selections that we
use are listed in table 7, and we divide red and blue
samples according to

g − r > 0.21− 0.03Mr. (23)

We make use of the absolute magnitude function de-
scribed in Wechsler et al. (2021) for our SHAM mod-
els, but otherwise the models are implemented identi-
cally to the descriptions in section 4. Figure 13 shows
the fiducial and extended SHAM model fits to each ab-
solute magnitude bin. We see similar trends in these
fits to those discussed in section 5, with the two fainter
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Figure 12. Test of accuracy of the emulator compared to
sample variance of SMDPL. Each panel shows the distribu-
tion of emulator residual divided by estimated sample vari-
ance in SMDPL for each radial bin in wp, ξ̂0 and ξ̂2 in the top,
middle and bottom panels respectively. Distributions are
constructed by performing leave-one-out tests where, each
point in our Latin Hypercube is left out one at a time as
described in section 4. The mean residual (white point in
the violin) is smaller than sample variance (log10 χ

2 ≤ 0),
for all but the two smallest rp bins for wp showing that our
emulator is performing at the level of sample variance in our
simulations or better. The blue and green distributions rep-
resent the residuals for a 2nd and 3rd order PCE respectively.
We see that the 2nd order expansion is sufficient to model
this data and actually outperforms the 3rd order expansion.

Mr zmin zmax Ngal Nred Nblue

-22 to -21 0.026 0.106 21338 15708 5630
-21 to -20 0.026 0.106 94630 57155 37475
-20 to -19 0.026 0.067 42078 19641 22437

Table 7. SDSS sample selections using Mr and g − r color.

bins better fit by the extended model, while the brighter
bin is fit equally well by the fiducial model and the ex-
tended model, although Bayes factors do not prefer the
extended models in any of the individual Mr bins. The
goodness of fit for the Mr selected samples is overall
slightly worse than for the stellar mass selected samples
but qualitatively the fits are still quite reasonable.
Fits of the ∆vmax and Rh CAM models to galaxy sam-

ples subdivided by Mr and g− r color are shown in Fig-
ure 14. Again the results are comparable to those found
for the M∗ and SSFR selected samples presented in sec-
tion 6, with the ∆vmax model slightly outperforming the
Rh model. The main differences that are apparent are
both models’ ability to fit the faintest red sample for the
Mr selections, while the CAM models struggled to fit
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Figure 13. Same as fig. 1, but fitting to samples selected by Mr instead of M∗. Here, the models perform comparably to
the stellar mass selected case although with slightly worse reduced chi-squared values for the fainter two samples. None of the
model extensions are preferred by Bayes factors, but there is a significant improvement in chi-squared for the extended model
in the second Mr bin.

the analogous sample for the M∗ and SSFR selections.
Unlike for the M∗ and SSFR selections, the model fits
presented here cannot fit the smallest scales for the two
fainter blue samples. We also find that the correlation

coefficients between g− r and our CAM proxies are sig-
nificantly larger than in the SSFR case, suggesting that
these CAM models describe the g − r split data better
than the SSFR selections.
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