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a b s t r a c t

Seismic anisotropy has been found in many regions of the Earth’s interior. Its presence in the Earth’s crust
has been known since the 19th century, and is due in part to the alignment of anisotropic crystals in
rocks, and in part to patterns in the distribution of fractures and pores. In the upper mantle, seismic ani-
sotropy was discovered 50 years ago, and can be attributed for the most part, to the alignment of intrin-
sically anisotropic olivine crystals during large scale deformation associated with convection. There is
some indication for anisotropy in the transition zone, particularly in the vicinity of subducted slabs.
Here we focus on the deep Earth – the lower mantle and core, where anisotropy is not yet mapped in
detail, nor is there consensus on its origin. Most of the lower mantle appears largely isotropic, except
in the last 200–300 km, in the D00 region, where evidence for seismic anisotropy has been accumulating
since the late 1980s, mostly from shear wave splitting measurements. Recently, a picture has been
emerging, where strong anisotropy is associated with high shear velocities at the edges of the large
low shear velocity provinces (LLSVPs) in the central Pacific and under Africa. These observations are con-
sistent with being due to the presence of highly anisotropic MgSiO3 post-perovskite crystals, aligned dur-
ing the deformation of slabs impinging on the core-mantle boundary, and upwelling flow within the
LLSVPs.
We also discuss mineral physics aspects such as ultrahigh pressure deformation experiments, first prin-

ciples calculations to obtain information about elastic properties, and derivation of dislocation activity
based on bonding characteristics. Polycrystal plasticity simulations can predict anisotropy but models
are still highly idealized and neglect the complex microstructure of polyphase aggregates with strong
and weak components. A promising direction for future progress in understanding the origin of seismic
anisotropy in the deep mantle and its relation to global mantle circulation, is to link macroscopic infor-
mation from seismology and microscopic information mineral physics through geodynamics modeling.
Anisotropy in the inner core was proposed 30 years ago to explain faster P wave propagation along the

direction of the Earth’s axis of rotation as well as anomalous splitting of core sensitive free oscillations.
There is still uncertainty about the origin of this anisotropy. In particular, it is difficult to explain its
strength, based on known elastic properties of iron, as it would require almost perfect alignment of iron
crystals. Indeed, the strongly anomalous P travel times observed on paths from the South Sandwich
Islands to Alaska may or may not be due to inner core anisotropy, and will need to be explained before
consensus can be reached on the strength of anisotropy in the inner core and its origin.

� 2017 Elsevier B.V. All rights reserved.
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1. Background and motivation

The presence of seismic anisotropy in the crust and in the upper
mantle is well documented and there is relatively good consensus
on its origins, owing to direct observations in the field and labora-
tory experiments on mineral crystal structure and deformation
properties, in a range of pressures and temperatures that is now
readily accessible. The situation is much less clear for the deep
mantle and core, due on the one hand, to the poor sampling by
seismic waves, contamination by upper mantle effects, and, on
the other hand, the difficulty for mineral physics deformation
experiments to reach the relevant physical conditions. However,
there has been significant progress in both fields, in the last decade,
and a new and promising approach has emerged, aiming at com-
bining seismic observations of anisotropy in the deep Earth with
knowledge from geodynamics modelling and constraints from
mineral physics, towards understanding deformation patterns
related to global mantle circulation.

Here we review the present state of knowledge on deep mantle
and inner core anisotropy in seismology and mineral physics,
describe current efforts at linking the two through mantle circula-
tion modeling, and discuss future directions and challenges. First,
we start with some historical background.

Anisotropic propagation of sound waves was already described
by Green (1838), who introduced Green’s functions. Rudzki (1897,
1911) recognized the importance of anisotropic wave propagation
in crustal rocks and developed the framework for seismic explo-
ration in the Earth’s crust. He highlighted the relationship between
the orientation of crystals and fractures in rocks. On the mineral
physics side it was D’Halloy (1833) who introduced the expression
‘‘texture” to describe directional properties of the rock fabric that
was further quantified by Naumann (1850). Voigt (1887) first
introduced a quantitative link between elastic properties of single
crystals and their orientation with the elastic properties of a tex-
tured aggregate. In the following century, these concepts were
refined and were applied in materials science as well as geo-
physics. In exploration geophysics, e.g. of oil deposits, anisotropy
became a central issue (e.g. Crampin, 1984; Thomsen, 1986).

It took considerably longer to recognize anisotropy in the deep
Earth. At an I.U.G.G. meeting in Berkeley, Raitt (1963) reported azi-
muthal anisotropy below the Moho in the Mendocino escarpment.
Similar anisotropy was observed by Morris et al. (1969) in Hawaii
(Fig. 1a). This came at a time when Wegener’s (1915) theory of
continental drift was revived by Vine and Matthews (1963), docu-
menting magnetic reversals along ridges of upwelling basalts. The
structural geologist Hess (1964) immediately interpreted these
observations as due to large-scale mantle convection that pro-
duced alignment of olivine crystals. The alignment was attributed
to crystal plasticity. Cann (1968) further advanced the mantle con-
vection concept (Fig. 1b).

With the advent of global seismic tomography, it became possi-
ble to map the patterns of radial and azimuthal anisotropy in the
uppermost mantle using fundamental mode surface wave disper-
sion data. This pattern of azimuthal anisotropy turned out to be
quite regular, with an indication of the direction of spreading near
mid-ocean ridges (e.g. Fig. 1c, Tanimoto and Anderson, 1985;
Montagner and Tanimoto, 1990, 1991), while differences in the
velocity of vertically polarized Rayleigh waves and transversely
polarized Love waves could point to the location of rising or sink-
ing currents (e.g. Nataf et al., 1984; Montagner, 2002).

While it was generally accepted that alignment of olivine crys-
tals during mantle convection plays a critical role in the develop-
ment of seismic anisotropy, the mechanism proposed by Hess
(1964) was very simple-minded. Olivine crystals do not occur as
platelets or needles that float in a viscous liquid and align relative
to flow plane and flow direction. Interest in the mantle started
experimental research on deformation mechanisms of olivine and
associated crystal preferred orientation (CPO), mainly with
piston-cylinder deformation apparatus (e.g. Raleigh, 1968 and later
Kohlstedt and Goetze, 1974; Jung and Karato, 2001; Jung et al.,
2006). It revealed that depending on conditions, different disloca-
tion glide mechanisms are active, with dominant (010)[100] slip
at low stress and water content (A-type), dominant (010)[001]
slip at high stress (B-type) and (100)[001] slip at high water con-
tent, as derived from observations of dislocations by transmission
electron microscopy and fabric types in aggregates (e.g. Karato
et al., 2008). During dislocation glide, crystals in a polycrystalline
aggregate rotate and align. But the deformation pattern in the con-
vecting upper mantle is more complex than a deformation experi-
ment, most commonly performed in axial compression and
sometimes in simple shear, and at much higher strain rates than
in the Earth.



Fig. 1. (a) Azimuthal variation of surface wave velocities in Hawaii (Morris et al. 1969). (b) Proposed model for mantle upwelling at an oceanic ridge (Cann, 1968). (c)
Azimuthal anisotropy in Rayleigh waves at a period of 98s (Montagner and Tanimoto, 1990). The lines correspond to fast wave propagation directions, and are proportional to
the strength of anisotropy.
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Geodynamic models are necessary to suggest realistic deforma-
tion paths. Early models assumed flow in an isotropic medium dri-
ven by temperature and density gradients (e.g. Hager and
O’Connell, 1981; Tackley, 1993; Bunge et al., 1996). Also, subduc-
tion of crustal slabs was explored, including rigid slabs (e.g.
McKenzie, 1969) as well as more ductile and weak slabs (e.g.
Gurnis and Hager, 1988). The development of seismic anisotropy
was considered only later by including polycrystal plasticity to
explain the development of preferred orientation during plastic
deformation (e.g. Blackman et al., 1996; Dawson and Wenk,
2000; Kaminski and Ribe, 2001). We will discuss convection mod-
els in more detail below.

Seismic observations revealed that the pattern of anisotropy in
the upper mantle is much more complex that the picture in Fig. 1c.
This has been reviewed recently (e.g. Long and Becker, 2010; Long,
2013). Here we will focus on anisotropy in the lower mantle and
inner core, first from what we know from seismology, and from
our current knowledge about mineral physics, particularly elastic-
ity of minerals at deep Earth conditions and deformation mecha-
nisms. Then we will explain how geodynamics modeling is
brought into the picture. Great progress has been made in all three
fields over the last 20 years. The deep Earth appeared like a simple
image, but the more we learn about it, the more complexities arise.
In a concluding section, we will highlight some important issues
that need to be addressed in the future. There has been a lot of
interest in this topic, with many publications in prestigious jour-
nals such as Science and Nature, but still a lot of work remains to
be done to better describe and understand processes that cause
seismic anisotropy at deep Earth conditions.
The purpose of this review is to establish our current state of
knowledge and to identify some outstanding questions. It also
should serve as an introduction to the field of deep Earth aniso-
tropy for those who are not experts in the field, for example for
student projects.
2. Seismic anisotropy in the deep mantle

2.1. Overview

There is as yet no compelling evidence for the presence of sig-
nificant anisotropy in the bulk of the lower mantle, at least away
from subduction zones (e.g. Meade et al., 1995; Montagner and
Kennett, 1996; Niu and Perez, 2004; Panning and Romanowicz,
2006; Moulik and Ekström, 2014), although a recent study based
on normal mode center frequency observations suggests the pres-
ence of anisotropy, as expressed in the radial anisotropy parameter
g, already 1000 km above the core-mantle boundary (de Wit and
Trampert, 2015). In any case, it is now well established that signif-
icant seismic anisotropy is present in the D00 region at the base of
the mantle. Here, we review the corresponding observational evi-
dence, which is based on local studies of shear body waves sensi-
tive to the deep mantle, complemented by global tomographic
studies of radial anisotropy throughout the mantle.

The first observations of shear wave splitting attributed to ani-
sotropy in the D00 region date back to the late 1980s. Vinnik et al.
(1989) observed elliptically polarized Sdiff waves, for paths sam-
pling the lowermost mantle in the central Pacific, along a direction



Fig. 3. Background: ‘‘Voting map” based on 5 shear wave velocity tomographic
models modified (from Lekic et al., 2012). Locations in D00 where 5 models agree
that Vs is lower than average or higher than average are shown in red and dark blue,
respectively. White ellipses indicate locations where shear wave splitting observa-
tions with Vsh > Vsv have been attributed to anisotropy in D00 . These include regions
where azimuthal anisotropy has been reported. Green ellipses indicate regions
where strong lateral variations of anisotropy in D00 have been reported, at the edges
of the African LLSVP (14, 17, 21), the Perm anomaly (19) and in the south Pacific
(7,19). Blue ellipses with broken lines indicate regions where Vsv > Vsh has been
reported and/or null splitting. See Table 1 for references to numbers and letters.
White bars and blue broken lines (no splitting) are from Niu and Perez (2004).
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for which no splitting was present in SKS. Because the absence of
the latter indicated that the data were not contaminated by upper
mantle anisotropy, they suggested that the splitting originated in
the deep mantle and could be due to the presence of anisotropy.
Earlier, Mitchell and Helmberger (1973) and Lay and Helmberger
(1983) had observed time shifts between the arrival of ScSH and
ScSV, but attributed them to the presence of a high velocity region
at the base of the mantle. Many studies followed in the 1990s, doc-
umenting splitting times of up to 10 s in shear waves, such as ScS
and Sdiff (Fig 2), that propagate quasi-horizontally in D00, and inter-
preted them as indicating the presence of several percent of VTI
(Vertical Transverse Isotropy) in the deep mantle (see Lay et al.,
1998 and Kendall and Silver, 1998 for early reviews).

As different areas of the world were progressively sampled, the
picture that emerged was that globally, the vertically polarized
wave (SV) is generally delayed with respect to the horizontally
polarized one (SH) in the circum-pacific ring where isotropic shear
wave velocities are higher than average in D00. On the other hand,
intermittent splitting and sometimes delayed SH with respect to
SV was observed on paths sampling the large low shear velocity
provinces (LLSVPs) in the central Pacific and under Africa (Fig. 3).
Additional reports of splitting in ScS and Sdiff have been published
in the last two decades, most of them attributed to anisotropy in
D00. A review of observations of shear wave splitting originating
in D00 can be found in Wookey and Kendall (2007) and Nowacki
et al. (2011) as well as Lay (2015). Here we focus primarily on
the most recent contributions, while an updated list of observa-
tions is given in Table 1 and Fig. 3.

Several important challenges affect studies of shear wave split-
ting in D00. One is the necessity to account for (or avoid) contamina-
tion of seismic waveforms by strong upper mantle anisotropy
sampled by the body waves considered (Fig. 2). Another challenge
is the poor azimuthal sampling of D00 at any given location, due to
the limited global distribution of earthquake sources and receivers.
This makes it difficult to distinguish between different possible
causes of anisotropy, whether due to periodic layering or crystal
alignment, and whether the nature of the anisotropy is transverse
isotropy with a vertical (VTI) or tilted (TTI) axis of symmetry, or
S
ScS

SKKS

SKS

Fig. 2. Raypaths through the Earth of the main seismic body wave phases used for
studying anisotropy in the deep mantle. Asterisk is earthquake location, triangles
are receiver stations.
perhaps involves more complex symmetries. Also, in the case of
Sdiff, an apparent delay of SVdiff may be due to waveform distorsion
in a laterally heterogeneous, but isotropic, structure, due to the fact
that the amplitude of SVdiff decays rapidly with distance in regions
of fast isotropic velocity (e.g. Vinnik et al., 1995; Komatitsch et al.,
2010). More generally, apparent splitting in S waves sampling the
D00 region may sometimes be due to other causes than anisotropy,
such as propagation in a complex heterogeneous medium near the
boundary between the solid mantle and the liquid core, which
requires more sophisticated modeling than infinite frequency ray
theory (Monteiller and Chevrot, 2010; Borgeaud et al., 2016;
Nowacki and Wookey, 2016). Careful waveform analysis is there-
fore necessary before attributing splitting observations to aniso-
tropy. Some of the splitting results listed in Table 1 may need to
be re-evaluated in that context. However, consistency in the split-
ting results obtained using different types of waves across a num-
ber of regions of the world, and in some cases detailed waveform
modeling, indicates that in general, invoking anisotropy as a cause
for the observed splitting, is a robust result. At the present time,
interpretation in terms of layering or CPO requires invoking possi-
ble constraints from other fields than seismology, and remains
uncertain.

2.2. Accounting for upper mantle anisotropy

In order to account for upper-mantle anisotropy, an approach
taken in early studies of Sdiff splitting was to only consider deep
earthquakes and paths for which SKS and SKKS do not present
any evidence of splitting (e.g. Vinnik et al., 1989, 1995). Selecting
observations for deep earthquakes assures that contamination by
anisotropic effects in the upper mantle on the source side can lar-
gely be avoided. On the station side, the paths of Sdiff and SKS/SKKS
are very close in the upper mantle (Fig 2), while they diverge in the
deep mantle. Also, only Sdiff spends significant time within D00. The
absence of splitting in SKS/SKKS indicates that either there is no
anisotropy in the upper mantle region sampled on the receiver
side, or the direction of the great circle path is along the null split-
ting direction. Any splitting observed in Sdiff can thus be attributed
to the deep mantle.

However, such geometries are exceptional. Therefore it is
important to find ways to correct for the widespread and strong



Table 1
Summary of local studies of anisotropy in D00

Authors Region Type of
seismic
waves

VSH > VSV

A Wookey and Kendall (2007)
and Refs. therein:

Caribbean

Kendall and Silver (1996) Caribbean S,Sdiff
Ding and Helmberger

(1997)
Caribbean ScS

Rokosky et al. (2004) Caribbean ScS
B Wookey and Kendall (2007)

and Refs. therein:
Alaska

Lay and Young (1991) Alaska S,ScS
Matzel et al. (1996) Alaska S,ScS,Sdiff
Garnero and Lay (1997) Alaska S,ScS,Sdiff
Wysession et al. (1998) Alaska Sdiff
Fouch et al. (2001) Alaska S,Sdiff

E Ritsema (2000) Indian Ocean S
F Thomas and Kendall (2002) Siberia S,ScS,Sdiff
I Usui et al. (2008) Antarctic Ocean S
1 Kendall and Silver (1998) NW Pacific S,ScS,Sdiff
3 Vinnik et al. (1995, 1998b) north central Pacific Sdiff
6 Wookey et al. (2005b) N. Pacific ScS
8 Long (2009) East Pacific SKS-SKKS
9 Niu and Perez (2004) N. America, Asia SKS/SKKS
11 Vanacore and Niu (2011) Caribbean SKS-SKKS
12 He and Long (2011) NW Pacific PcS,ScS, SKS,

SKKS
13 Wookey and Kendall (2008) Caribbean ScS
18 Thomas et al. (2007) W Pacific ScS
20 Fouch et al. (2001) North central Pacific S,Sdiff
SV < SH
4 Pulliam and Sen (1998) Central Pacific S
C Ritsema et al. (1998) Central Pacific S,Sdiff
22 Kawai and Geller (2010) Central Pacific S,ScS,SKS
Tilted/azimuthal/laterally varying
5 Russell et al. (1998, 1999) North Central Pacific ScS
7 Ford et al. (2006) South Pacific S,Sdiff
A Garnero et al. (2004a) Caribbean S,ScS,Sdiff
A Maupin et al. (2005) Caribbean S,ScS,Sdiff
A Rokosky et al. (2004, 2006) Caribbean ScS
G Wookey et al. (2005a) North West Pacific ScS
23 Restivo and Helffrich

(2006)
North America SKS, SKKS

21 Wang and Wen (2007) East/South Africa SKS,SKKS
10 Nowacki et al. (2010) Caribbean/west US ScS
14 Lynner and Long (2012) Central Africa SKS-SKKS
15 Cottaar and Romanowicz

(2013)
South edge of African
LLSVP

Sdiff

16 Lynner and Long (2014) East/South Africa SKS-SKKS
19 Long and Lynner (2015) Near Perm Anomaly SKS-SKKS
17 Ford et al. (2015) East Africa SKS-SKKS
Isotropic or weak anisotropy
2 Kendall and Silver (1996) South Pacific S,ScS,Sdiff
H Garnero et al. (2004b) Atlantic S,Sdiff
9 Niu and Perez (2004) South Africa, Antarctica,

Southeast Pacific
SKS,SKKS

21 Wang and Wen (2007) Eastern Atlantic SKS,SKKS
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upper mantle anisotropy sampled along the path of deep mantle
seismic waves. For example, Vinnik et al. (1998a) proposed a refer-
ence event method to correct Sdiff waveforms for unknown upper
mantle anisotropy using SKS and SKKS waveforms. In the past
two decades, characterization of upper mantle anisotropy from
SKS splitting data has progressed significantly (see review by
Long and Silver, 2009), making it possible to apply relatively robust
corrections in 00known00 upper mantle models, both on the source
and receiver sides, and thus augment the number of D00 locations
that can be sampled.

Another approach to minimize effects of upper mantle aniso-
tropy has been the use of differential measurements on pairs of
phases. One such suitable pair is S and ScS, which have similar
paths in the upper mantle on the source and station side, but, at
appropriate distances, only ScS samples D00 (Fig. 2), while S samples
a portion of the lower mantle which is assumed to be isotropic (e.g.
Wookey et al., 2005a; Nowacki et al., 2010). Similarly, while SKS
and SKKS splitting is most strongly acquired during propagation
in the upper mantle, the paths of SKS and SKKS waves diverge sig-
nificantly in the lowermost mantle, so that differential splitting of
these two phases can sometimes be attributed to anisotropy in the
deep mantle (e.g. Hall et al., 2004; Niu and Perez, 2004; Restivo and
Helffrich, 2006; Wang and Wen, 2007). Such an approach has been
applied to several regions of the world (e.g. Long, 2009; He and
Long, 2011; Vanacore and Niu, 2011; Lynner and Long, 2012,
2014; Long and Lynner, 2015; Ford et al., 2015). Results consis-
tently show strong and complex anisotropy on the borders of the
LLSVP’s, and interestingly, also in the vicinity of the Perm Anomaly
(Long and Lynner, 2015), a low velocity anomaly seen at the base of
the mantle in all tomographic models in the vicinity of the town of
Perm (Russia), and of smaller lateral extent (� 900 km) but corre-
sponds to a similar reduction in shear velocity as found in the
LLSVPs (e.g. Lekic et al., 2012; Fig. 3).

2.3. Results from array studies

Earlier observations and forward modeling studies of D00 aniso-
tropy mostly relied on data from isolated stations, which made it
difficult to constrain the geometry of anisotropy, for lack of sam-
pling of the target regions by waves propagating in different direc-
tions (e.g. Maupin, 1994). Thus, most studies only reported the
differences in SH and SV propagation times, leading to models of
apparent VTI. Yet, evidence for azimuthal anisotropy has been sug-
gested, either from waveform complexity (e.g. Garnero et al.,
2004a; Maupin et al., 2005) or, when the geometry permitted, from
measurements of splitting on paths sampling the target region in
at least two directions (e.g. Wookey and Kendall, 2008). With the
advent of denser broadband arrays, more detailed studies have
emerged in recent years, aiming at the very least, to distinguish
VTI from radial anisotropy with tilted axis of symmetry (TTI), with
implications for the interpretation of observations in terms of
intrinsic or extrinsic anisotropy (e.g. Long et al., 2006).

Regions of the world where this has been possible so far are
central America, exploiting ScS, S data from the dense USArray
(Nowacki et al., 2010), and the northwest Pacific (He and Long,
2011), using ScS data from F-net in Japan. Studies of Sdiff at the
southern border of the African LLSVP, based on data from the Kaap-
val array, show lateral variations in anisotropy (To et al., 2005;
Cottaar and Romanowicz, 2013), with strong anisotropy in the fast
velocity region outside the LLSVP, increasing towards its border
and apparently disappearing inside it. Although caution must be
taken when interpreting apparent splitting in Sdiff, due to isotropic
heterogeneity potentially affecting SVdiff in a significant way
(Komatitsch et al., 2010), the strong elliptical shape of the particle
motion outside of the African LLSVP (Fig. 4 and To et al., 2005),
where isotropic velocities are relatively fast, contrasting with the
linear particle motion for paths travelling inside the LLSVP cannot
be accounted for by isotropic heterogeneity. This was demon-
strated in the follow-up study of Cottaar and Romanowicz
(2013), in which the waveforms of Fig. 4 and others were modelled
using the spectral element method, a numerical method for 3D
seismic wavefield computations, which can take effects of 3D iso-
tropic heterogeneity into account accurately. Differential splitting
in S and ScS has also been exploited in the north Pacific (Wookey
et al., 2005a) and in east Africa (Ford et al., 2015), where, remark-
ably, several azimuths can be sampled.

The recent studies have confirmed earlier results, with, in gen-
eral, Vsh> Vsv in the ring of faster than average velocities sur-
rounding the two LLSVPs, and absence of significant splitting, or
Vsh<Vsv found primarily within the LLSVPs (Fig. 3, Table 1).



Fig. 4. Example of change of character of particle motion for paths sampling the
border of the African LLSVP. (a) Map showing the paths sampled plotted on top of a
background shear wave tomographic model (SAW24B16, Mégnin and Romanowicz,
2000). The portion of path sampling the D00 region is highlighted in yellow. (b) and
(c) shows particle motions of Sdiff at distances of � 120o and at two azimuths: In (b)
the path in D00 is outside of the LLSVP and in (c), the path in D00 is inside the LLSVP
(from To et al., 2005). The color indicates the time with respect to predicted Sdiff
arrival from PREM. Black: �35 to �5 s, Blue: �5 to 20 s, Green 20 to 45 s, Red 45 to
70 s. The elliptical particle motion in (B) contrasts with the linear particle motion in
(c). This cannot simply be explained by lateral heterogeneity in isotropic velocity, as
one would expect larger amplitudes in SV for waves propagating inside the low
velocity LLSVP. This interpretation was later confirmed by 3D numerical waveform
modelling (Cottaar and Romanowicz, 2013). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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The recent results indicate variability of anisotropy at relatively
short scales, with evidence for azimuthal anisotropy with different
orientations of fast velocity axes, at least in regions of faster than
average isotropic shear velocity. Interestingly, the studies of
Cottaar and Romanowicz (2013), Lynner and Long (2014) and
Ford et al. (2015), consistently show changes in anisotropy across
the border of the African LLSVP, with stronger anisotropy outside
of it, practically disappearing inside it (e.g. Fig. 5). Interestingly,
the same trend, although less sharply defined because of the chal-
lenging geometry, is likely present at the northern edge of the Paci-
fic LLSVP (Fig. 6). Indeed, all studies of the latter region consider
paths from Fiji-Tonga sources to stations in north America. Differ-
ent results are found for different distance ranges, with Vsv>Vsh
for the shorter distances, sampling inside the LLSVP (as well as
above D00), and Vsh>Vsv at longer distances (Sdiff) which sample
a significant portion of the fast Vs region outside of the LLSVP.
Vinnik et al. (1995, 1998b) used Sdiff data and found VSH>VSV; the
portion of the corresponding paths inside the LLSVP was small
and Vinnik et al. (1998b) showed that splitting only occurred for
distances larger than 102o, when paths sampled more of the fast
region outside of the LLSVP. Likewise, Fouch et al. (2001) and
Ritsema et al. (1998) used S, Sdiff and found Vsh>Vsv for larger dis-
tance paths, while Vsv>Vsh for shorter distance paths that sample
within the LLSVP and above D00, as did Kawai and Geller (2010).
Pulliam and Sen (1998) and Russell et al. (1998) used S and ScS,
respectively, at shorter distances, sampling inside the LLSVP, and
found Vsv>Vsh.
All these results point in the same direction: evidence for signif-
icant anisotropy with generally Vsh>Vsv within the ring of fast
velocities surrounding the Pacific and African LLSVP, possibly
increasing and tilting at their borders, but vanishing or changing
sign (Vsv>Vsh) inside the LLSVP’s.

2.4. Results from global anisotropic tomography

Gaining improved understanding of the distribution and nature
of seismic anisotropy at the base of the mantle requires better glo-
bal sampling with accurate corrections for upper mantle aniso-
tropy. One possible approach is to construct global whole mantle
tomographic models of anisotropy. Such an approach is attractive,
because a variety of seismic waveforms can be included, in partic-
ular fundamental and overtone surface waves, which provide con-
straints on the strong anisotropy in the uppermost mantle (e.g.
Debayle and Ricard, 2013). Combining surface wave data with var-
ious body waveforms that illuminate the entire mantle should ulti-
mately allow improved resolution and characterization of deep
mantle anisotropy. So far, this has proven very challenging for
the deep mantle.

Indeed, most successful has been the tomographic characteriza-
tion of shear wave azimuthal anisotropy in the uppermost 200 km
of the mantle at the global scale using Rayleigh wave dispersion
data (e.g. Tanimoto and Anderson, 1984; Montagner and
Tanimoto, 1990, 1991, Fig. 1). More recent models developed by
different groups show broadly consistent trends (e.g. Trampert
and Woodhouse, 2003; Ekström, 2011; Debayle and Ricard, 2013;
Yuan and Beghein, 2013). On the other hand, the robustness of glo-
bal scale transition zone azimuthal anisotropy models that utilize
surface wave overtone information (e.g. Trampert and van Heijst,
2002; Yuan and Beghein, 2013) is still debated. This is because
the anisotropic signal in overtone surface waves is weak, the azi-
muthal sampling far from ideal, and the number of parameters
needed to invert for azimuthal anisotropy at the global scale, even
when considering only the dominant terms in 2-w (where w is the
azimuth) is very large, likely resulting in trade-offs with isotropic
structure. It is not possible at present to extend this type of study
to the deep mantle, as the sensitivity of available long period over-
tone data becomes too weak and azimuthal coverage for body
waves provided by the current geometry of sources and stations
is not sufficient.

Thus, tomographic imaging of anisotropy in the whole mantle
can, at present, only hope to resolve the simplest form of aniso-
tropy that does not have as strong requirements on azimuthal cov-
erage, which is VTI (or apparent VTI). Such studies are based on
relatively long period waveforms, mostly sensitive to shear veloc-
ity, combining fundamental mode surface waves, surface wave
overtones and shear body waves, and aim at solving for the distri-
bution of only two anisotropic parameters: Vsh and Vsv, or, alter-
natively, isotropic velocity Vsiso and the anisotropic parameter n =
(Vsh/Vsv)2 (Panning and Romanowicz, 2004, 2006; Panning et al.,
2010; Kustowski et al., 2008; French and Romanowicz, 2014;
Moulik and Ekström, 2014; Auer et al., 2014; Chang et al., 2014,
2015). The other three anisotropic parameters that are necessary
to fully describe a VTI medium are scaled to Vsiso and n, using scal-
ing relations that are appropriate for the upper mantle (e.g.
Montagner and Anderson, 1989), but may be questionable for the
lower mantle. However, this may not be a significant issue given
the dominant sensitivity of the waveforms considered to shear
velocities. While the resulting models show qualitative agreement
at long wavelengths, details vary frommodel to model significantly
enough not to be trustworthy for quantitative interpretations.

These models do agree on the following observations: on aver-
age, radial anisotropy is strongest in the uppermost mantle, and
most of the lower mantle exhibits little radial anisotropy (Fig. 7).



Fig. 5. a and b: Whole mantle depth cross sections through the isotropic Vs part of model SEMUCB_WM1 (French and Romanowicz, 2014) at the southern (a) and eastern (b)
edge of the African LLSVP, where rapid variations in the direction and strength of anisotropy have been reported, decreasing from outside (blue) to inside (pink) the LLSVP. in
c) the map view is from Lynner and Long (2014) with background shear velocity model GyPSuM of Simmons et al. (2012). The cross-section location is indicated on the map
by a straight line. c and d: corresponding cartoons proposed by the authors, respectively (c) Cottaar and Romanowicz (2013); (d) Ford and Long (2015).
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Inmostmodels, there is an indication of an increase in anisotropy in
D00, with Vsh> Vsv (n slightly larger than 1), although there is vari-
ability among models, due to a combination of parametrization,
types of seismic waves considered, and theoretical assumptions.

Common 3D features of these models in D00 are a predominance
of Vsh > Vsv outside of the LLSVPs, with patches of Vsh < Vsv con-
fined within the LLSVPs, in agreement with local studies (Fig. 8).
However, the current models do not show consistency in the
amplitude of the lateral variations in n, nor the wavelengths of
these variations. This is partly due to the parametrization chosen.
For example, Panning and Romanowicz (2004, 2006) and Auer
et al. (2014) allowed relatively short wavelength lateral variations
in n, while Moulik and Ekström (2014) and French and
Romanowicz (2014) chose to assign shorter wavelength lateral
variations to isotropic Vs, while constraining the anisotropic part
of the model to be smooth. Theoretical assumptions on wave prop-
agation are also important: ray theory is not valid for modelling of
Sdiff, nor is it valid to use the surface wave approximation for mod-
elling this phase, as shown by Li and Romanowicz (1995). So far,
only the Berkeley models are constructed taking into account finite
frequency effects rather than ray theory for body waves (Panning
and Romanowicz, 2004, 2006; French and Romanowicz, 2014).

One fundamental issue is that Sdiff and ScSn data (with n>1) are
necessary to obtain good coverage of D00 at the global scale. As dis-
cussed previously, SVdiff decays rapidly with distance in models
such as the reference model PREM (Dziewonski and Anderson,
1981) where the velocity in D00 is relatively fast. The global datasets
are thus necessarily biased, although to various degrees depending
on the particular dataset, by the predominance of SHdiff, introduc-
ing trade-offs between isotropic and anisotropic structure (e.g.
Kustowski et al., 2008; Chang et al., 2015), and making it only pos-
sible to resolve the very longest wavelengths of VTI in D00, with
poor constraints on their amplitude.

In summary, robustly mapping even the simplest component of
seismic anisotropy, apparent VTI, at the base of the mantle, at high
resolution using a tomographic approach is still a challenging open
question, let alone constraining azimuthal anisotropy at the global
scale. Still, available global models agree with local studies about
the prevalence of Vsh>Vsv in regions of faster than average velocity
in D00.

As for P wave anisotropy in the deep mantle, only few studies
have tried to constrain it so far. Several studies have attempted
to retrieve the global average variation with depth of the radially
anisotropic parameter g = (Vph/Vpv)2 using normal mode data
(Montagner and Kennett, 1996; Beghein et al., 2006), finding some
indication that the anisotropy in gmay be anticorrelated with that
of n in the D00 region, with, however, strong trade-offs with density
(to which normal mode data are also sensitive). Note that the anti-
correlation of isotropic P and S velocities, at long wavelengths, in
the deep mantle is, in contrast, better established (e.g. Su and
Dziewonski, 1997; Kennett and Widyantoro, 1998; Masters et al.,
2000; Ishii and Tromp, 1999; Romanowicz and Bréger, 2000). The
possibility of P wave anisotropy in the deep mantle using P wave
data (mantle and core phases) has been investigated by Boschi
and Dziewonski (2000), concluding that anisotropy may be small
with significant trade-offs with core-mantle boundary topography



Fig. 6. Zoom on the northern edge of the Pacific LLSVP. The background tomographic model is the isotropic Vs part of model SEMUCB_WM1 (French and Romanowicz, 2014).
(A) Map view, with locations of studies of D00 shear wave splitting suggesting a change of character of anisotropy across the boundary of the LLSVP. Green dots indicate the
location of major hotspots. Black line with white and purple dots is the great circle path corresponding to the depth cross section shown in (B), displaying the Hawaian plume
and transition from low to fast velocities in D00 . Kawai and Geller (2010), Pulliam and Sen (1998) and Russell et al. (1998) find VSV > VSH while Ritsema et al. (1998), Fouch et al.
(2001) and Vinnik et al. (1998) find that Vsh > Vsv, increasingly so for paths sampling the fast region outside of the LLSVP. Note that the color saturation of the tomographic
model is different in (A) and (B).
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and outer core structure. The possible anticorrelation of P and S
radial anisotropy in the D00 must therefore be considered with cau-
tion, at the present time, when used as a constraint in modeling.

Given these difficulties, a currently explored possible avenue is
to try and combine constraints not only from seismology but also
from mineral physics and geodynamics. Each of these approaches,
taken individually, involves many assumptions and uncertainties,
but by combining them, the hope is that the space of acceptable
models for anisotropy and its causes can be further reduced. The
idea is to start with the strain field inferred from a mantle circula-
tion model, compute the corresponding texture development and
predicted seismic anisotropy using available information on crystal
plasticity and elasticity for different lower mantle minerals, and
compare these predictions with seismic observations. This should
provide constraints on the mineral physics assumptions as well
as the deep mantle dynamics, or at least allow us to rule out some
classes of models. Note that in this approach, the fundamental
assumption is that anisotropy is due to CPO development resulting
from large-scale mantle flow.

Before describing these efforts in more detail, we will review
current knowledge and capabilities in mineral physics and describe
how seismology and mineral physics can be linked through geody-
namics modeling.
3. Mineral physics perspective on the deep mantle

3.1. Dominant mineral phases in the lower mantle

Ringwood (1962) speculated about the composition of the
lower mantle, suggesting that olivine Mg2SiO4 would first break
down to spinel Mg2SiO4, and then to MgSiO3 with a ‘‘corundum-
like” structure and periclase (MgO). Liu (1974) synthesized this
structure at high temperature and pressure and identified it as
MgSiO3 perovskite (which has recently been named bridgmanite,
Tschauner et al., 2014). At high pressure, bridgmanite transforms
to post-perovskite, pPv (e.g. Murakami et al., 2004; Oganov and
Ono, 2004; Tateno et al., 2009, Fig. 9a) and this may be the most
important phase near the core-mantle boundary, particularly along
a cold geotherm within subducting slabs (Fig. 9b). Thus it appears
that cubic periclase (Fig 10a), orthorhombic bridgmanite (Fig 10b)
and orthorhombic post-perovskite (Fig. 10c) are the dominant
minerals in the lower mantle. Periclase has the same highly sym-
metric structure as halite (NaCl) with close-packed MgOVI octahe-
dral coordination polyhedra. Bridgmanite (spacegroup Pbnm) is a
distorted cubic perovskite structure with SiOVI coordination octa-
hedra linked over corners and Mg2+ in large interstices. Post-
perovskite (spacegroup Cmcm) has layers of SiOVI octahedra alter-
nating with layers of Mg. The layers are parallel to (010). It is
isostructural with CaIrO3 (e.g. Hunt et al., 2009). While the pseu-
docubic perovskite structure is elastically fairly isotropic, the lay-
ered post-perovskite structure is highly anisotropic. As we will
see, post-perovskite is of critical importance for anisotropy in the
lower mantle. In the following discussion we will use mostly the
abbreviation pPv.

Most lower mantle minerals (>660 km) cannot be studied at
surface conditions. Even if lower mantle material has reached the
surface by upwelling, minerals have undergone phase transitions.
Thus information about phase diagrams is based on in situ observa-
tions in high pressure experiments and ab initio calculations.

Irifune and Tsuchiya (2015) have reviewed the mineralogical
composition of the lower mantle. Different bulk compositions of
the lower mantle have been proposed. Ringwood (1962, 1975) sug-
gested a peridotitic-‘‘pyrolitic” composition (Fig. 11a). Subducting



Fig. 7. Comparison of depth profiles throughout the mantle of global average radial
anisotropy parameter n = (Vsh/Vsv)2, in 6 recent global shear velocity models. n = 1
corresponds to isotropy.. Model S362ANI (Kustowski et al., 2008) is isotropic in the
lower mantle. While there are differences between models, all of them agree that
radial anisotropy is strongest in the first 200 km of the mantle and very weak in
most of the lower mantle. In D00 , on average Vsh is equal of slightly faster than Vsv.
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slabs may correspond to more siliceous, aluminous and Ca-rich
mid-ocean ridge basalts (MORB, e.g. Irifune and Ringwood, 1993,
Fig. 11b). In both cases MgSiO3-perovskite (bridgmanite) domi-
nates in large volumes of the lower mantle but for MORB compo-
sitions, high pressure silica and alumina phases are also
significant, and there may be no ferropericlase. Calcium perovskite
(CaSiO3) is cubic (spacegroup Pm3 m) at lower mantle conditions
(e.g. Wang et al., 1996; Kawai and Tscuchiya, 2015) and is an
important component at depths beyond 750 km. It distorts to a
tetragonal structure at low temperature and high pressure (e.g.
Shim et al., 2002).

As more details about the lower mantle are revealed, composi-
tional heterogeneities become apparent (e.g. Badro et al., 2003; Li,
Y. et al., 2014). Higher concentrations of Si, Al and Fe add consider-
able complexity. The diverse composition is in part the result of
subduction of slabs composed of crust and upper mantle. Silica
(SiO2) may exist as stishovite with a rutile structure and 6-fold
coordination, or at higher pressure as a cubic phase with CaCl2.
structure and 8-fold coordination (e.g. Kingma et al., 1995) and
at even higher pressure as an orthorhombic (Pbcn) a-PbO2 struc-
ture (seifertite) (e.g. Dubrovinsky et al., 2004; Grocholski et al.,
2013; Zhang et al., 2016). According to first principles calculations,
at extreme pressure SiO2 may transform to a pyrite structure
(Kuwayama et al., 2005). Al2O3 in the form of trigonal corundum
or orthorhombic Rh2O3(II) may be present, and Fe may exist as
native iron (e.g. Frost et al., 2004; Shi et al., 2013).

Of considerable importance is the oxidation state as well as the
spin state of iron that have received a lot of attention (e.g.
McCammon, 1997; Badro et al. 2003; Li et al. 2004; Tsuchiya
et al., 2006; Fei et al., 2007; Lin et al., 2008; Catalli et al., 2010;
Saha et al., 2011, 2012; Vilella et al., 2015). With increasing pres-
sure, there is a transition from a high spin to a low spin configura-
tion. It may be responsible for the anomalous viscosity structure in
the central part of the lower mantle (900–1200 km, e.g. Rudolph
et al., 2015), although the spin transition is generally thought to
occur deeper (�1500 km).

In addition, hydrogen may play a significant role (e.g. Ohtami
and Sakai, 2008). A hydrous aluminosilicate is stable at lower man-
tle conditions (e.g. Tsuchiya and Tsuchiya, 2008, 2011; Pamato
et al., 2014) and dehydration may cause melting at the top of the
lower mantle (Schmandt et al., 2014).

As far as elastic properties and anisotropy are concerned, one
should keep in mind that the major phases over large volumes of
the lower mantle are bridgmanite, ferropericlase, pPv and CaSiO3

perovskite. These contribute largely to the bulk elastic properties,
but there may be local deviations.

3.2. Some comments on plasticity models and representation of
anisotropy

What are the sources of seismic anisotropy in the Earth? Very
important is the alignment of anisotropic crystals called crystal
preferred orientation (CPO) or texture (based on D’Halloy, 1833)
and universally used in materials science. The crystal anisotropy
is linked to the crystal structure. A second aspect is crystal shape
that produces a shape-preferred orientation (SPO). CPO and SPO
are sometimes linked (in mica, for example, the crystal plane
(001) is parallel to the platelet). Often it is not (e.g. in quartz or
in periclase). Also significant is the orientation of flat fractures
and fractures filled with kerogen. This is a very important contribu-
tion to anisotropy in shales (e.g. Hornby et al., 1994; Sayers, 1994;
Vasin et al., 2013) but insignificant in the lower mantle. In the
lower mantle there is the possibility of partial melt, particularly
near the core-mantle boundary (e.g. Williams and Garnero, 1996;
Lay et al., 2004; Shi et al., 2013) but this would only give rise to ani-
sotropy if melt occurred in parallel thin layers (e.g. Backus, 1962).
We will focus here on the development of CPO.

Before going into plasticity in the mantle, a few words about
deformation mechanisms of polycrystalline aggregates are in
order. Deformation experiments on minerals have a long history.
Pfaff (1859) documented mechanical twinning in calcite when a
stress is applied. In the early twentieth century deformation exper-
iments at a wide range of temperature and strain conditions were
conducted on metals to explore the deformation behavior (e.g.
Schmid, 1924) and in this context linear defects called dislocations
were discovered (Polanyi, 1934; Taylor, 1934). Without disloca-
tions it would be very difficult to deform crystals and indeed they
are present in most crystalline materials.

Dislocations form in the crystal lattice when a stress is applied.
Edge dislocations propagate on a glide plane (hkl) and in a slip
direction [uvw], defined by rational indices relative to crystallo-
graphic axes. Propagation of dislocations causes crystals to rotate
relative to the applied stress, which is conceptually illustrated for
an experimentally compressed single crystal in Fig. 12. By move-
ment of dislocations on glide planes the rectangular crystal attains
a new shape (parallelogram). Since pistons must stay in contact
this results in an effective rotation of b. In a polycrystalline aggre-
gate neighboring grains play the function of pistons.

Based on deformation experiments on metals, deformation
mechanism maps were established (e.g. Ashby, 1972; Langdon
and Mohamed, 1978; Frost and Ashby, 1982). They define condi-
tions such as temperature, pressure, stress magnitudes, strain rate
and grain size under which mechanisms such as dislocation glide,
dislocation climb, grain boundary migration and grain boundary
sliding are active (Fig. 13). Identifying mechanisms is important



Fig. 8. Comparison of 6 recent models of lateral variations in the radial anisotropy parameter n = (Vsh/Vsv)2, plotted in terms of dlnn referred to isotropy. While the models
disagree in detail, common features are Vsh > Vsv (blue) in the circum Pacific ring (roughly in agreement with local studies), and pronounced Vsv > Vsh (orange) in the Fiji-
Tonga/Indonesia region and under southernmost Africa (except SAVANI). Models plotted are: (a) SAW642ANb (Panning et al., 2010); (b) SAW642AN (Panning and
Romanowicz, 2006); (c) SAVANI (Auer et al., 2014); (d) SGLOBE-rani (Chang et al., 2015); (e) S362WANI + M (Moulik and Ekström, 2014); (f) SEMUCB_WM1 (French and
Romanowicz, 2014).

Fig. 9. (a) Experimentally determined PT phase diagram for perovskite/bridgmanite (Pv)-post-perovskite (Murakami et al. 2004). (b) T-Depth phase diagram, plotting the pv-
ppv phase boundary and cold and warm geotherms (after Hernlund et al., 2005).
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because some produce crystal rotations and thus crystallographic
preferred orientation (notably dislocation glide and – to some
extent – dynamic recrystallization) while others generate random
orientations (such as grain boundary sliding in fine-grained mate-
rials and dislocation climb). We will return to these issues in
Section 4.8.



Fig. 10. Crystal structures of (a) periclase, (b) bridgmanite and (c) post-perovskite, the latter two with octahedrally coordinated silicon.

Fig. 11. Lower mantle composition for different models: (a) pyrolite, (b) MORB
(from Irifune and Tsuchiya, 2015). Pv perovskite/bridgmanite, Ppv post-perovskite,
Mw magnesiowuestite/ferropericlase, Mj majorite, Rw ringwoodite, SiO2: St
stishovite, CC CaCl2 phase, AP a-PbO2 phase; Al2O: Hex, CF calcium-ferrite phase,
CT calcium-titanate phase.
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In a polycrystalline aggregate, stresses are transmitted across
grain boundaries, causing heterogeneities, even within grains. This
is most realistically approached with finite element methods (e.g.
Mika and Dawson, 1999), but these are still extremely demanding
and rarely applied. Simpler models have been used in materials
science for a long time. The Taylor (1938) theory, developed by
the same Taylor who discovered dislocations (1934), assumes
homogeneous strain. All grains undergo the same shape change
irrespective of orientation. This leaves grain boundaries intact
(Fig. 14, left side). The Taylor model is very applicable to cubic met-
als with many symmetrically related slip systems. Slip on {111}h
1 1 0i in fcc metals or cubic periclase has 12 equivalent systems.
Another model (Sachs, 1928) assumes stress equilibrium and more
favorably oriented grains deform more than others. In the model
this causes overlaps and gaps at grain boundaries. In principle, this
would be more adequate for low symmetry minerals (such as
orthorhombic) but of course overlaps and gaps do not exist. A com-
promise between homogeneous strain and stress equilibrium is a
self-consistent model that treats grains as ellipsoidal inclusions
deforming in an anisotropic viscous medium (Fig. 14, center;
Molinari et al., 1987). It is most widely applied in the Los Alamos
code VPSC (Lebensohn and Tomé, 1993), and it can be used both
to understand preferred orientation in high pressure experiments
and to predict anisotropy in geodynamic models. In the viscoplas-
tic self-consistent model grains deform without knowledge of their
neighborhood. In a finite element model (Fig. 14, right) grains are
constrained by the orientation of neighbors. In this sketch it is
assumed that each grain has a single orientation. In more sophisti-
cated FEM models there are strain and orientation gradients devel-
oping within grains (e.g. Mika and Dawson, 1999).

When crystals are deformed in a polycrystalline medium they
undergo systematic rotations (Fig. 12) and the material attains an
anisotropic pattern. We need to describe the orientation of a crys-
tal relative to the macroscopic sample. This is efficiently done by
relating two orthogonal coordinate systems (sample x, y, z; crystal
[100], [010], [001]) by three rotations. Most frequently the so-
called Euler angles are used. U is the distance from z to [001],
/1 is the azimuth of [001] from y (around z); /2 is the azimuth
of [100] around [001] (Fig. 15). The 3-dimensional crystal orienta-
tion distribution (COD) is conventionally described by a continuous
orientation distribution function (ODF). The ODF is required to cal-
culate anisotropic elastic properties of an aggregate from crystal
orientations.

For graphical representations of orientation patterns generally
2-dimensional spherical projections of the ODF are used. Depend-
ing on the application one can either use the macroscopic sample x,
y, z as reference and plot crystal directions (pole figures) or use the
crystal as reference and plot sample directions (inverse pole fig-
ures). Inverse pole figures are useful if only a single sample direc-
tion is of interest, e.g. the compression direction in a compression
experiment. The symmetry of pole figures reflects the symmetry of
the deformation path. In compression experiments pole figures are
axially symmetric. The density of poles on the sphere is contoured
and then expressed as continuous pole densities, usually normal-
ized relative to a random distribution and defined as multiples of
a random distribution (m.r.d.). 2–5 m.r.d. are moderate CODs,
20–50 m.r.d. very strong CODs. The strongest crystal alignments
in rocks that have been observed are muscovite in slates, exceeding
100 m.r.d. Fig. 16a is a {111} pole figure of rolled copper with roll-



Fig. 12. Under stress imposed by pistons a crystal deforms to a new shape by slip of dislocations on a glide plane. Since pistons remain in contact with the crystal surface,
there is an effective rotation b. In a polycrystal neighboring grains act as effective pistons to transmit the stress.

Fig. 13. Stress-temperature deformation mechanism map (Langdon and Mohamed,
1978).
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ing R, transverse T and normal N sample directions indicated.
Fig. 16b is the corresponding inverse pole figure of the normal
direction. Inverse pole figures display the crystal symmetry. Both
representations will be used in the following discussion.
3.3. Deformation experiments and rheology

The experiments on plasticity of metals were not applicable to
most minerals, because, even at elevated temperatures, their
deformation behavior at ambient pressure is generally brittle.
One had to wait until high pressure deformation experiments were
developed by Griggs (1936) and applied on a wide scale, including
olivine (e.g. Raleigh, 1968). Since then sophisticated deformation
apparati have been constructed in many laboratories, making it
possible to deform rocks at a wide range of pressures and temper-
atures. They were applied to many minerals and rocks in the crust
and upper mantle. Studies on olivine (e.g. Jung and Karato, 2001;
Hansen et al., 2012; Jackson and Faul, 2010) documented the com-
plex influence of temperature, pressure, composition (such as
water and iron content). The most sophisticated apparatus was
developed at the Australian National University (Paterson and
Olgaard, 2000). It allows for deformation experiments on relatively
large samples (�1 cm) in compression, tension and torsion. Pres-
sures are limited to �0.3 GPa and the limitation in pressure pre-
vents these instruments to be used for experiments relevant to
the lower mantle (20–150 GPa) and inner core (320–360 GPa).

Higher pressure deformation experiments have been reviewed
by Weidner and Li (2015). The multi-anvil apparatus called DIA
with three pairs of octahedral pistons (Onodera, 1987) has been
modified to apply stress by preferentially advancing one piston
pair (D-DIA for deformation DIA). The sample can be heated inter-
nally. Changes in phase structure, preferred orientation and
microstructure can be recorded in situ if the D-DIA apparatus is
combined with a monochromatic synchrotron X-ray beam for
diffraction and imaging (e.g. Wang et al., 2003, 2011). The conven-
tional D-DIA apparatus has been used to 20 GPa and samples are
cylinders �1 mm in diameter (e.g. Kawazoe et al., 2010). A more
advanced D-DIA (Kawai-type) reaching >110 GPa with sintered
diamond anvils and smaller samples has been introduced at
SPring8 in Japan (Yamazaki et al., 2014).

Shear deformation at high pressure can be performed with a
rotational Drickamer apparatus (RDA) (e.g. Yamasaki and Karato,
2001). Shear deformation of a bridgmanite-ferropericlase aggre-
gate at 25 GPa and 2100 K has been achieved to large strains
(Girard et al., 2016). In such torsion experiments the strain varies
greatly as a function of sample radius. The experiment documented
that most of the plastic deformation is accommodated by the
weaker ferropericlase.

Currently the most accessible method to deform samples at
ultrahigh pressures (>500 GPa) is with diamond anvil cells (DAC)
where diamonds are used as pistons, compressing a small sample
(�30–80 lm in diameter and �50 lm thick) (e.g. Merkel et al.,
2002, Fig. 17). The diamonds are used not only to induce pressure
but also to cause compressive deformation (Fig. 17 b, c) and the
evolution of preferred orientation can be observed in situ if hori-
zontal X-rays transmit the sample in radial diffraction geometry
(r-DAC). Strong textures have been observed in ferropericlase
(e.g. Merkel et al., 2002; Lin et al., 2009), perovskite/bridgmanite
(e.g. Merkel et al., 2003; Wenk et al., 2006; Miyagi and Wenk,
2016; Tsujino et al., 2016) and pPv, the phase likely to be present
at the core-mantle boundary (e.g. Merkel et al., 2006, 2007;



Fig. 14. 2D Sketches of polycrystal plasticity models. Gray shades express orien-
tation. (Left) For the full constraints Taylor model all grains undergo the same
deformation, regardless of orientation. (Center) The viscoplastic model VPSC treats
grains as inclusions in an anisotropic viscous medium. (Right) In finite element
models grains deform differently, depending on the orientation of neighbors.

Fig. 15. Definition of crystal orientation relative to sample coordinates with three
rotations (Euler angles) /1, U, /2. Projection based on sample coordinate system x,
y, z (pole figure). Crystal coordinate system is defined by axes [100], [010] and
[001].

Fig. 16. Comparison of (a) 111 pole figure relative to sample coordinates and (b) N
inverse pole figure relative to crystal coordinates for rolled copper. Equal area
projection, red colors are high and blue colors are low pole densities. N normal
direction, R rolling direction and T transverse direction. Note the equivalent
information: In the 111 pole figure a maximum in the N direction, and in the ND
inverse pole figure a maximum in 111.
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Miyagi et al., 2010, 2011; Wu et al., 2017). Shear deformation can
be induced in rotational DACs (e.g. Levitas et al., 2006). This
method has been mainly used to induce phase transformations
and has not yet been applied to study texture evolution at high
pressure.

In addition to pressure and stress, temperature can be induced
in DAC experiments by resistive (e.g. Liermann et al. 2009) and
laser heating (e.g. Prakapenka et al., 2008; Dubrovinsky et al.,
2009), or a combination of the two (Miyagi et al., 2013). Tateno
et al. (2015) reached temperatures of 6000 K at >400 GPa on exper-
iments on Fe and Fe-Si, corresponding to conditions of the Earth’s
inner core. Obviously there are limitations to DAC experiments:
samples are extremely small, strain is always compressive and
strain rates are difficult to control.

It was surprising to see that silicates and oxides that are brittle
at ambient conditions, including olivine, become ductile at pres-
sures of �10GPa, even at room temperature, and deform by dislo-
cation glide (e.g. Wenk et al., 2004). The diffraction image of
MgSiO3 post-perovskite at 150 GPa (Fig. 18a) is ‘‘unrolled” and
the compression direction is indicated by arrows (large 2h, small
d, Q=1/d) (Fig. 18b). The elastic lattice distortion (wave-like pattern
with azimuth) is related to applied stress and elastic properties.
The intensity variations with azimuth are indicative of preferred
orientation. For example there is a strong maximum for 004
(fourth order diffraction on the lattice plane 001) in the compres-
sion direction. This image illustrates why radial diffraction geome-
try has to be used to display CPO as function of angle to the
compression direction. In axial geometry (X-rays parallel to the
diamond axis) Debye-rings have uniform intensity since all
diffracting lattice planes have the same angle to the compression
direction.

A qualitative interpretation of a diffraction image is illustrated
in Fig. 19 for an experiment with MgGeO3 post-perovskite
(Miyagi et al., 2011) and used to construct an inverse pole figure
of the compression direction (arrow). MgGeO3 is an analog of
MgSiO3 but transforms to pPv at lower pressure. There is a maxi-
mum for 002 and a minimum for 020 in the compression direction
which can be plotted in the inverse pole figure (Fig. 19, right side).
The quantitative deconvolution of diffraction images is not trivial
and most often an iterative Rietveld method is applied (e.g.
Lutterotti et al., 2014; Wenk et al., 2014). The high pressure syn-
chrotron X-ray diffraction deformation images provide quantita-
tive information about phases, crystal structures, density, stress,
elastic properties and preferred orientation.

Fig. 20a-c shows experimental inverse pole figures of MgSiO3

pPv, documenting increasing texture development with pressure-
stress–strain, with a maximum at (001). From the orientation pat-
tern, active slip systems can be derived by comparing experimental
inverse pole figures with results from polycrystal plasticity calcu-
lations that assume certain combinations of slip systems
(Fig. 20d). Based on the good agreement it can be concluded that
pPv deformed in the experiment by dominant (001)[100] slip
(Miyagi et al., 2010).

With similar experiments it was suggested that MgSiO3 bridg-
manite deforms dominantly by slip on (001) planes in [100],
[010], and h1 1 0i directions (e.g. Miyagi and Wenk, 2016) but sim-



Fig. 18. (a) Diffraction image of MgSiO3 post-perovskite at 150 GPa (b) Unrolled diffractio
changes in Q are due to elastic distortion of the crystal lattice under compression. Bot
quantitative information such as inverse pole figures.

Fig. 17. Diamond anvil cell for radial diffraction experiments. The X-ray beam is
horizontal. (a) illustrates the cell and the insert is an enlargement with diamonds
and gasket to contain the sample. (b, c) illustrate that diamonds not only apply
pressure but also compressive stress that deforms the sample and produces CPO.
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ple shear experiments in a D-DIA apparatus indicate (100)[001]
slip (Tsujino et al., 2016). Ferropericlase likely deforms by {110}h
1�10i slip (e.g. Stretton et al., 2001; Merkel et al., 2002; Lin
et al., 2009) at high pressure conditions. For Ca-perovskite domi-
nant {110}h1�10i slip was proposed (Miyagi et al., 2006, 2009).

So far most DAC high-pressure deformation experiments
extracted COD information from intensity variations along Debye
rings (e.g. Fig. 18). A new method called multigrain is still under
development. It obtains orientation information from individual
grain diffractions (e.g. Barton and Bernier, 2012; Rosa et al.,
2015; Langrand et al., 2017) and is especially applicable to coarser
aggregates. Nisr et al. (2012) used information about dislocations
from distortion of single crystal diffraction patterns of the post-
perovskite analog MgGeO3 and suggested dominant slip on {110}
and (001) planes.

It should be mentioned that information from such high pres-
sure experiments is by no means unambiguous. Obviously defor-
mation conditions in experiments and simulations differ
considerably from those in the deep Earth, just to mention temper-
ature, grain size, strain rate, interaction of dislocations and interac-
tion between grains. Furthermore, not all CPO patterns that are
observed are due to deformation but could be inherited from orien-
tation patterns of precursor phases such as for pPv from perovskite
(Dobson et al., 2013) or enstatite (Merkel et al., 2006, 2007; Miyagi
et al., 2011). Also, slip systems may not be the same for pPv phases
of different compositions such as MgGeO3, CaIrO3, NaMgF3, or
Mn2O3.

A different approach has become very important: computation
of Peierl’s stresses and lattice friction for dislocation systems based
on bonding characteristics. It was originally developed for metals
(e.g. Kubin et al., 1992; Devincre and Kubin, 1997) and has more
recently been applied to minerals in the mantle where it allows
to predict slip system activities for a wide range of temperature–
pressure–strain rate conditions (e.g. Carrez et al., 2007;
Mainprice et al., 2008; Cordier et al., 2012). Amodeo et al. (2012,
2014, 2016) propose a switch from {110}h0�10i slip to {100}h
0 1 1i slip in periclase with pressure. Kraych et al. (2016) suggest
(010)[100] slip in bridgmanite at high pressure. According to
these calculations, the strength of bridgmanite increases greatly
with pressure and at 60 GPa bridgmanite appears 20 times stron-
ger than periclase. The critical resolved shear stress decreases
about 20% from strain rates of 10�5 s�1 (which corresponds to
n image as function of Q (Q = 1/d). Intensity variations with azimuth illustrate CPO,
tom experimental data, above fit of the data with the Rietveld method to extract



Fig. 19. Explanation of the relationship between DAC diffraction image and inverse pole figure. Left: Unrolled diffraction image of MgGeO3 post-perovskite. Some diffraction
lines are labeled. The sinusoidal variations are due to imposed stress. High stress (high Q, low d) is indicated by arrows. On the right side is a conceptual construction of the
inverse pole figure of the compression axis based on relative diffraction intensities (Miyagi et al. 2011).

Fig. 20. Inverse pole figures for MgSiO3 post-perovskite. (A–C) experiments (D) Plasticity model with dominant (001) slip, equal area projection (Miyagi et al. 2010).
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experimental values) to 10�14 s�1, corresponding to likely values at
deep mantle conditions (Fig. 21a). The opposite is the case for pPv
which appears much weaker than periclase at high pressure, high
temperature and slow strain rates (Fig. 21b, Goryaeva et al., 2015,
2016). Also, the predicted weakest calculated slip system for post-
perovskite at deep mantle conditions is (010)[100], corresponding
to the layered crystal structure (Fig. 21c) but different from that
observed in DAC experiments (Miyagi et al., 2010; Wu et al. 2017).

It should be mentioned that a single slip system is not sufficient
to deform a polycrystal. In the case of the Taylor model, at least 5
systems have to be active to produce an arbitrary strain (Mises,
1928). This is relaxed for the self-consistent model but also here
several slip systems are active. The choice of activity depends on
the crystal orientation relative to the applied stress (Schmid fac-
tor). TEM investigations confirm this, though some slip systems
usually dominate and the literature refers to the ‘‘dominant” slip
system. Some dominant slip systems for deep Earth minerals are
summarized in Table 2.

3.4. Elastic properties

Elastic properties of crystals at conditions pertaining to the
lower mantle are critical to link microstructural properties of the
rock with seismic observations. The most straightforward experi-
mental method that has been applied to many lower mantle min-
erals is Brillouin scattering (see review by Speziale et al., 2014) and
energy-dispersive X-ray diffraction (e.g. for calcium silicate per-
ovskite, Shieh et al., 2004). A different approach is with first prin-
ciples calculations at high pressure and temperature (for some
applications to bridgmanite, CaSiO3 perovskite and pPv see e.g.
Zhang et al., 2013; Wentzcovitch et al., 2005; Kawai and
Tsuchiya, 2015). First principles results look fairly consistent for
minerals at lower mantle conditions, but as we will see in Sec-
tion 6.2, predictions for iron at inner core conditions are still
ambiguous. Furthermore, the actual composition of the minerals,
particularly the iron content can be significant (e.g. Koci et al.
2007). Values of stiffness coefficients and P-wave anisotropy (An
% = 200(Pmax � Pmin)/(Pmax + Pmin) for some low mantle minerals
at lowermost mantle conditions are listed in Table 3. Fig. 22 gives
corresponding S velocities of single crystals with black lines corre-
sponding to the orientation of the fast S-wave polarization. As can
be seen in Table 1 periclase and pPv have the highest P-wave ani-
sotropy and Ca-perovskite is least anisotropic. The S-wave aniso-
tropy is considerably higher for pPv and periclase than for
bridgmanite and particularly CaSiO3 perovskite.

To obtain elastic properties of aggregates, one has to average
over all orientations and corresponding elastic tensors, taking
phase fractions into account. Simple averages are upper bound
(Voigt, 1887) and lower bound (Reuss, 1929). Generally an inter-
mediate arithmetic mean (Hill, 1952) or a geometric mean
(Matthies and Humbert, 1995) are preferred. All these models do
not take grain shape into account, which is not very significant
for crystalline phases but becomes important for systems with
platy minerals such as graphite or sheet-silicate containing rocks
and aggregates with flat oriented pores. For such cases, a self-
consistent (Matthies, 2012; Vasin et al., 2013) or differential effec-
tive medium approach (e.g. Hornby et al. 1994) should be consid-
ered. It is probably not important for the lower mantle.

Note that S-waves passing through anisotropic media have arbi-
trary polarization directions in the plane perpendicular to the
direction of propagation, as is best displayed for the fast direction
of single crystals in Fig. 22 but applies also to aggregations of ori-



Fig. 21. Critical resolved shear stress CRSS for dislocation glide activities as function
of temperature of (a) bridgmanite at 60 GPa (from Kraych et al. 2016) and MgO
(from Amodeo et al. 2016) at strain rates 10�5 s�1 and 10�14 s�1. (b) post-perovskite
at 120 GPa at strain rate 10�16 s�1 (from Goryaeva et al., 2016) compared with MgO
(from Amodeo et al. 2012). Courtesy of P. Cordier.
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ented crystals. Seismologists generally consider the projection of
that polarization direction onto horizontal and vertical axes. This
is convenient, because differences in arrival times and waveforms
in this representation can be expressed in terms of apparent verti-
cal transverse isotropy (VTI), which, because of limited azimuthal
sampling, is often the only anisotropic constraint that can be
obtained.
4. Linking seismology and mineral physics through predictions
of anisotropy in geodynamic models

4.1. Isotropic geodynamic models for upper mantle convection

Ever since the concept of plate tectonics became accepted in the
1960s, convective movements in the Earth’s mantle have been pro-
posed such as upwelling along oceanic ridges (e.g. Hess, 1964;
Cann, 1968, Fig 1b). The first quantitative models based on hydro-
dynamics emerged in the eighties (e.g. Hager and O’Connell, 1981).
Table 2
Proposed dominant slip systems in deep Earth minerals.

Ferropericlase Lower P {110}1�10
High PT also {100}011

Bridgmanite Low P (001)[100], [010], 110
High P (100)[001]
(010)[100]

pPv (001)[100]
(010)[100]

Ca-perovskite {110}1�10
e-iron (0001)11�20, subordinate {10�10
Geodynamic models have been mainly applied to the upper mantle
and we will not discuss them here in detail (see e.g. review by Long
and Becker, 2010).

Many convection models have been developed to understand
the evolution of the deep Earth. Calculations generally assume a
viscous fluid and use non-dimensional equations for the conserva-
tion of mass, momentum, and energy, applying the Boussineq
approximation. Critical parameters are Rayleigh number, viscosity,
boundary temperatures. In order to evaluate the strain evolution
during the convection process, tracers are introduced that record
the velocity gradient tensor at each time step along the path of
the tracer. If the deformation mechanisms are known (e.g. disloca-
tion glide) polycrystal plasticity calculations can be used to calcu-
late the evolution of crystal preferred orientation based on the
strain recorded by tracers.

Most geodynamic models assume a viscous isotropic medium,
with a smoothly varying viscosity structure, and the microstruc-
tural processes leading to preferred orientation are introduced
post-mortem. Considering an anisotropic medium that constantly
changes its properties greatly increases the complexity of geody-
namic calculations. However, there are models in metallurgy, such
as extrusion of an aggregate, that illustrate the importance of an
anisotropic material behavior (e.g. Beyerlein et al., 2003).
4.2. Review of upper mantle anisotropic models

We will start the discussion of anisotropic convection by
returning to a simple 2D model (Dawson and Wenk, 2000) that
was originally issued as an educational video by AGU (1999) and
can now be downloaded in digital form (http://eps.berkeley.edu/
~wenk/TexturePage/Mantle-Video.htm). At high Rayleigh number
(low viscosity) heat transfer occurs by convection rather than con-
duction, corresponding to conditions in the Earth’s mantle. Convec-
tion is driven by temperature gradients. As aggregates move along
streamlines, the orientation of grains is constantly updated and the
local texture affects the next deformation step, which introduces
considerable heterogeneities. It was surprising to find locally
heterogeneous CPO patterns in the 2D convection cell representing
the upper mantle, shown as [100] pole figures of olivine after
100 m.y. (Fig. 23). Some regions have strong and others very weak
patterns, that can be attributed to heterogeneous deformation due
to CPO development and result in ‘‘anisotropic” viscosity.

Some complexities of different plasticity models for a simple
case of upwelling have been investigated by Blackman et al.
(1996, 2002) and Castelnau et al. (2009). If a lower bound behavior
is assumed (Sachs, 1928), there is very strong CPO development.
For self-consistent models (Lebensohn and Tomé, 1993) rotations
are reduced. If dislocation glide is combined with dynamic recrys-
tallization, both grain growth and grain growth combined with
nucleation, resulting orientation patterns can be very different.
Recrystallization is likely in the deep Earth, with high temperature
and large strains, where grain boundary migration is likely to
occur. We will return to the issue of recrystallization in Section 4.8.
Merkel et al. (2002) and Lin et al. (2009)
Amodeo et al. (2016)
Miyagi and Wenk, 2016
Tsujino et al. (2016)
Kraych et al. (2016)
Miyagi et al. (2010) and Wu et al. (2017)
Goryaeva et al. (2016)
Miyagi et al. (2009) and Ferré et al. (2009)

} Merkel et al. (2004) and Miyagi et al. (2008)

http://eps.berkeley.edu/<ucode type=
http://eps.berkeley.edu/<ucode type=


Table 3
Density (g/cm3), elastic stiffness (GPa) and P-wave anisotropy (An%) of periclase, bridgmanite, post-perovskite and Ca-perovskite at conditions of the lowermost mantle (3000 K,
125 GPa).

Periclase Bridgmanite pPv Ca-perovskite

Karki et al. (2000) Wentzcovitch et al. (2004) Stackhouse et al. (2005) Kawai and Tscuchiya (2015)
q 5.07 5.25 5.35 5.6
C11 1154.0 860.0 1220.0 970
C12 265.5 535.5 474.0 505
C13 265.5 437.0 359.0 505
C22 1154.0 1067.5 899.0 970
C23 265.5 467.5 493.0 505
C33 1154.0 1053.0 1176.0 970
C44 198.0 294.0 273.0 305
C55 198.0 249.5 245.0 305
C66 198.0 284.5 376.0 305
An% 16.7 11.0 15.2 4.7

Fig. 22. Spherical representation of shear-wave splitting (in m/s) of main minerals at lowermost mantle conditions and corresponding to elastic properties in Table 1. Values
are in m/s; black lines illustrate polarization of the fast S-wave.

Fig. 23. (001) pole figures of olivine for a finite element model of homogeneous upper mantle convection that takes anisotropy development into account. Upwelling on left,
subduction on the right (Dawson and Wenk, 2000).
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4.3. Anisotropic models for the lowermost mantle

As explained earlier, seismic imaging of the D00 zone has
revealed an anisotropic velocity structure, particularly expressed
in fast S-wave velocities for polarization parallel to the core-
mantle boundary, in regions that are thought to correspond to slab
graveyards (Fig. 8). This seismic anisotropy depends on the elastic
properties of the rocks. Elastic properties are due to the mineral
phases that are present, the orientation of crystals and the elastic
properties of single crystals at D00 conditions. If we know the defor-
mation mechanisms of crystals at conditions of the lower mantle
(from high pressure/temperature deformation experiments or
bonding calculations), we can predict the alignment of crystals in
an aggregate that has undergone a strain path recorded by tracers
in a geodynamic model.

An isotropic viscous medium approach was used by McNamara
et al. (2002) and then extended to include texture development by
Wenk et al. (2006) and Wenk et al. (2011) in 2D, and Cottaar et al.
(2014) in 3D, to predict patterns of seismic anisotropy in and
around slabs as they impinge on the core-mantle boundary.

In another approach, the flow field is derived from an instanta-
neous flow calculation based on the consideration of an existing
3D mantle global tomographic model, a 1D mantle viscosity
model, as well as constraints from geodynamic observables such
as the gravity field and surface plate motions (e.g. Simmons
et al., 2009). This was used by Walker et al. (2011) and Nowacki
et al. (2013) to predict global anisotropy patterns. The advantage
of this model is that it applies to the whole Earth, but it may be
biased by the tomographic seismic structure, and assumptions
on the conversion of seismic velocities to density to establish
the flow field.

In both approaches, particle paths are tracked by tracers, allow-
ing the computation of the strain field. Texture development is
then modelled in polycrystalline aggregates, starting from a large
sample of randomly oriented grains, and applying polycrystal plas-
ticity theory (Section 3.2), followed by computation of the elastic
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tensor of the aggregate, by averaging over crystal orientations and
corresponding single crystal elastic properties.

4.4. Isotropic viscosity medium approach for lower mantle anisotropy

This type of model investigates the characteristics of a subduc-
tiong cold slab descending through the lower mantle to the core-
mantle boundary. The model is isochemical and isotropic viscosity
is assumed. The calculations solve non-dimensional equations for
the conservation of mass, momentum and energy, using the
Boussinesq approximation (McNamara et al., 2003). The strain evo-
lution is evaluated by inserting tracers into the isotropic convec-
tive medium. This strain is then used to calculate development of
preferred orientation using the viscoplastic self-consistent method
(Lebensohn and Tomé, 1993), which was introduced in Section 3.2
for evaluating slip systems in high pressure deformation
experiments.

We will explain the general procedure for a 2D model of a sub-
ducting slab into the D00 zone (Wenk et al., 2011). Fig. 24 (top) is a
snapshot of a section of the upper mantle with downwelling cold
slabs (blue) und upwelling hot plumes (red). Below (Fig. 24 bot-
tom) is an enlarged section of D00, extending 300 km above the
core-mantle boundary. It indicates the path of some streamlines.
We are following the lowest tracer 189. Post-perovskite and fer-
ropericlase are likely the main components in the cooler parts of
the enigmatic D00 zone and texture calculations were done with
such a 2-phase system. In addition significant amounts of cubic
CaSiO3 perovskite may be present but this was not considered in
this model because of relatively low anisotropy.

Plasticity calculations were performed by assuming different
combinations of dominant slip systems for pPv, since there is some
ambiguity (Section 3.2 and Table 2), (100), (010), (001) (e.g.
Merkel et al., 2004, 2007; Miyagi et al., 2010, 2011; Wu et al.
2017; Goryaeva et al., 2015, 2016). They are shown in Fig. 25 for
dominant (001)[100] slip for pPv and dominant {110}h�1 1 0i
slip for periclase (MgO) (e.g. Merkel et al. 2002; Miyajima et al.
2009) at three step increments. There is moderate CPO at 1200
steps but it becomes very strong at 3600 steps. For periclase, there
is a significant rotation of the pattern due to simple shear, similar
to what was observed in halite with the same crystal structure
(Wenk et al., 2009). The simple shear rotation is less pronounced
for orthorhombic pPv than for cubic periclase.

Below the pole figures are corresponding maps of P-velocities,
again expressing significant rotations for periclase. Post-
perovskite shows very low P-velocities parallel to the core-
mantle boundary. For two-phase materials the combination may
add or reduce overall anisotropy. It should be mentioned that plas-
ticity models assume deformation by dislocation slip. At deep
mantle conditions other mechanisms are likely active that do not
contribute crystal rotations, such as dislocation climb, grain
Fig. 24. 2D convection model illustrating subduction of a cold slab (blue) into the lowe
(reproduced from Wenk et al. 2011).
boundary sliding and to some extent dynamic recrystallization.
We will return to some of these issues in Section 4.5. For this cal-
culation, it was assumed that only half of the strain is accommo-
dated by dislocation glide.

Following this procedure for many streamlines, we can map
anisotropic velocity patterns over the whole region of the geody-
namic model. Fig. 26 shows five simulations, one for ferropericlase
and perovskite, and three for post-perovskite assuming different
dominant slip systems. Only the pattern for dominant (001) dislo-
cation glide of post-perovskite compares well with seismic obser-
vations of fast SH waves in regions of faster than average
isotropic Vs (e.g. Fig. 3). The anti-correlation of anisotropy in S
and P is consistent with a seismic study of the average profile with
depth of VTI parameters constrained by normal mode data
(Beghein et al., 2006). Perovskite was also considered, but did not
match the seismic observations. One additional argument in favor
of (001) slip, is the strong splitting and prediction of a tilted fast
axis. This is also more compatible, in both direction and strength,
with the observations of splitting in Sdiff at the edge of the African
LLSVP (Cottaar and Romanowicz, 2013).

This is an interesting example linking microscopic and macro-
scopic observations. Deformation mechanisms at the crystal scale
(dislocations), derived from laboratory experiments, predict defor-
mation mechanisms and are then applied to Earth processes over
large volumes and long time-scales. Comparing the geodynamic
results with seismic observations in this case seems to confirm
the assumptions about microscopic processes, i.e. the type of dislo-
cations that are active. However, the interpretation relies heavily
on the very tentative seismic observation of anti-correlation of S
and P anisotropy in the deep mantle.

4.5. Flow calculation based on a global tomographic model

This type of flow model is based on the joint inversion of global
S-wave travel times, the global gravity field, dynamic surface
topography, tectonic plate motions and the excess ellipticity of
the core-mantle boundary (Walker et al., 2011). A theory of viscous
flow in a compressible, self-gravitating spherical mantle is used to
calculate the mantle convective flow predicted on the basis of the
tomographically-inferred 3D density anomalies (Mitrovica and
Forte, 2004). Fig. 27 shows a map of the horizontal flow vectors
(arrows) and radial components of flow velocity (color, blue nega-
tive, red positive) illustrating upwelling in the Pacific and in South
Africa, for one model. From the 3D mantle flow field polycrystal
plasticity calculations, similar to themodel discussed in Section 4.3,
are used to calculate orientation patterns and corresponding aniso-
tropic elastic properties.

In tomographic models of radial anisotropy in P (Boschi and
Dziewonski, 2000) and instantaneous flow calculations, global
maps of VTI inferred from different pPv models are compared with
rmost mantle. The insert illustrates some tracers and temperatures in the D00 zone



Fig. 25. (001) Pole figures and P-wave velocities for three positions along tracer 189 marked on Fig. Equal area projection. Core-mantle boundary is horizontal.
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global seismic VTI models of D00 (Walker et al., 2011). They suggest
a preference for slip of dislocations on (010) or (100) and {110}
rather than on (001). However, this preference is based on the cal-
culation of correlations that are dominated by regions within the
LLSVPs, where, in fact, pPv might not be present, since the LLSVPs
are very likely hotter than average regions, and the pPv-
bridgmanite transition may occur at pressures corresponding to
the core (Fig. 9b). The correlation is dominated by the centers of
the Pacific and African LLSVP, where actually one might not expect
Fig. 26. D00 zone with plots of squared ratios of horizontally and vertically polarized
S waves (left side) and horizontal and vertical P-waves for different phases (ppv:
post-perovskite, pv perovskite and MgO) and different dominant slip systems
(Wenk et al. 2011).
pPv to be present (Fig. 9b). Clearly, further constraints on P aniso-
tropy in the deep mantle are necessary to better discriminate
among possible pPv slip systems.

Whereas Walker et al. (2011) restricted their analysis to the VTI
portion of their predicted anisotropic structure, in a follow-up
study, Nowacki et al. (2013) extended this approach to allow a
most general form of anisotropy, albeit focused on three regions
of paleo-subduction, where differential S-ScS shear wave splitting
measurements indicate the presence of azimuthal anisotropy in
Fig. 27. Tomographic inversion model for mantle flow. Map showing the radial
(color, red positive, blue negative) and horizontal flow (arrows) 150 km above the
CMB (from Walker et al. 2011).
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D00. Testing, as previously, the predictions of anisotropy from the
same flow models as in Walker et al. (2011), they confirmed that
the (010) slip system of pPv provided the best fit to the seismic
data. Still, only the fast axis directions were tested, disregarding
the amplitude of splitting, arguing that the latter may be unrealis-
tically strong in plasticity calculations, while imposing any scaling
would be arbitrary.

We note that Ford and Long (2015) have independently tested
the seismic anisotropy predictions of the Walker et al. (2011) flow
models on a set of measurements of shear wave splitting at the
eastern edge of the African LLSVP. They concluded that none of
the flow models and pPv slip system combinations provided satis-
factory predictions of their dataset, although when they relax con-
straints on the fast axis orientations, the (010) slip model is
favored.
4.6. Compositional heterogeneities

Neither the 2D and 3D convection models nor the instantaneous
flow model constrained by tomography, include the presence of
thermo-chemical piles, as have been hypothesized to explain
LLSVPs. The presence of such piles could significantly modify the
flow patterns, and focus deformation at the border of the piles,
which seems to be observed in some local shear wave splitting
studies (e.g. Fig. 4). Also, it appears that the lowermost mantle
may be compositionally considerably heterogeneous (e.g. White,
2015). Subduction of lithospheric slabs is a major contribution to
heterogeneity, including in the D00 zone (van den Berg et al.,
2010, c.f. Fig. 11a and b). Additional phases are likely present,
among them cubic CaSiO3 perovskite, silica and perhaps metallic
iron (e.g. Shi et al., 2013) (see Fig. 11). Upwelling plumes display
chemical heterogeneity and characteristic isotope signatures were
documented at hotspots such as Hawaii (Weis et al., 2011; Nobre
Silva et al., 2013; Li, Y. et al., 2014), but this does not explain the
prevalent seismic anisotropy in the D00 zone, expressed in S-wave
splitting patterns with SH>SV (e.g. Table 1, Fig. 3), and for this,
crystal alignment during subduction is the most obvious explana-
tion at present (e.g. Cottaar et al., 2014).
4.7. Viscosity changes

There are some complications that have not been taken into
account in any of these models. Changes in viscosity do occur,
e.g. during phase transformations, with strong increases in the
transition zone between the upper and lower mantle (410–
660 km). The viscosity is assumed to be low in the upper mantle
(radial viscosity of reference model �0.1�1021 Pa s, Becker, 2006),
increases in the transition zone (�1�1021 Pa s) and then again as
minerals transform to denser lower mantle phases (�50�1021
Pa s). There is considerable complexity as some slabs descend into
the lower mantle (e.g. Conrad and Lithgow-Bertelloni, 2004).

Recently seismic heterogeneities were attributed to higher vis-
cosities in the mid-mantle region (�1000 km), leading to a stagna-
tion of subducting slabs (Rudolph et al., 2015) and this could be
due to composition (e.g. Bolfan-Casanova et al., 2003 suggested
that the solubility of water decreases), iron fractionation and iron
spin transitions (e.g. Lin et al., 2012; Vilella et al., 2015), or changes
in mechanical properties with pressure of ferropericlase (e.g.
Marquardt and Miyagi, 2015) and post-perovskite (Catalli et al.,
2009). First principle calculations of Kraych et al. (2016) suggest
a strong strength increase for bridgmanite with pressure
(Fig. 21a) and a dramatic decrease for post-perovskite (Goryaeva
et al., 2016, Fig. 21b). The geodynamic models described here do
not take changes in viscosity into account nor do they consider ani-
sotropic viscosity (e.g. Christensen, 1987).
4.8. Active deformation mechanisms

The models described in this section attribute anisotropy to
plastic deformation of crystals by dislocation glide that induces
rotations and resulting preferred orientation. In Section 3.2 we dis-
cussed deformation mechanisms, and clearly at lower mantle con-
ditions other mechanisms are likely active. The deformation
mechanism map (Fig. 13) suggests a creep regime with a combina-
tion of dislocation glide and diffusional dislocation climb (e.g.
Ammann et al., 2010). Also, grain boundary mechanisms may be
active at low stress (e.g. Chen and Argon, 1979), with grain bound-
ary sliding, grain-size reduction but there are no experimental data
for lower mantle conditions (e.g. Sun et al., 2016 describe disclina-
tions in olivine). Recent bonding calculations suggest that disloca-
tion climb may dominate in olivine (Boioli et al., 2015) and
particularly in bridgmanite (Boioli et al., 2017). Since only glide
generates CPO, this may explain why most of the lower mantle
appears isotropic. To account for these other mechanisms, in some
geodynamic convection models only half of the strain was attribu-
ted to glide but this limit is arbitrary.

Many deformation mechanism maps have been introduced for
geological systems, with emphasis on the upper mantle and the
influences of temperature, pressure, stress and strain rate (e.g.
Hansen et al., 2011, 2012; Kohlstedt and Goetze, 1974; Linckens
et al., 2011). Extrapolating results to the lower mantle is more
speculative, but with new models such as Boioli et al. (2017),
Goryaeva et al. (2016) and Kraych et al. (2016), this domain may
come within reach.

Another mechanism that is likely active in the deep mantle is
dynamic recrystallization. It has been approached with thermody-
namic theory of grain growth under stress (e.g. Kamb, 1961;
Paterson, 1973; Green, 1980; Shimizu, 1999, 2008; Rozel et al.,
2011). While recrystallization can result in grain growth, it more
often produces grain size reduction, which has an effect on the rhe-
ology (e.g. De Bresser et al., 2001). But evidence from materials
science suggests that in deformed aggregates recrystallization is
often controlled by crystal defects. Grains with high dislocation
densities are less stable and nucleation may occur. On the other
hand, a grain with low dislocation density may grow and replace
a highly strained grain by grain boundary migration (e.g.
Haessner, 1978). These concepts can be introduced in plasticity
models and were able to explain orientation patterns observed in
experimentally deformed quartzite, halite and ice (Wenk et al.,
1997) and olivine (Wenk and Tomé, 1999; Kaminski and Ribe,
2001), but there are too many unknown parameters to predict
recrystallization mechanisms in lower mantle rocks. Often
dynamic recrystallization randomizes orientation patterns.

4.9. Complications in polyphase systems

Perhaps the most important complication for anisotropic geo-
dynamics is that the lower mantle is a system with two major
phases of different strength. The interaction of these phases is
not taken into account in most polycrystal plasticity models. Such
systems are common, yet there is not much work, neither in mate-
rial science nor geological environments and recommendations
formulated at an interdisciplinary polyphase polycrystal plasticity
workshop still apply (Bréchet et al., 1994).

Most rocks in the Earth’s crust and mantle are polymineralic,
yet most experimental and theoretical investigations were done
on monomineralic systems and, for example in quartz-mica mix-
tures, CPO of quartz is greatly reduced compared with a pure
quartz aggregate (Canova et al., 1992; Tullis and Wenk, 1994).
Under metamorphic conditions complex reactions may occur at
grain boundaries and change the fabric (e.g. Abart et al., 2004;
Gaidies et al., 2017).
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In most recrystallized gneisses, feldspar and quartz show barely
any preferred orientation (e.g. Kern et al., 2008; Ullemeyer et al.,
2006). This becomes particularly pronounced if rocks have under-
gone large secondary deformation, resulting in mylonites (e.g.
Handy, 1994; Kern and Wenk, 1990; Herwegh et al., 2011;
Linckens et al., 2011; Bercovici and Ricard, 2016). In mylonites of
granitic composition the much stronger and dominant feldspar
phase barely deforms and grains tumble in the much weaker and
recrystallizing quartz phase (Fig. 28). A similar microstructure
may be expected in highly deformed parts of the lower mantle
with strong bridgmanite in a matrix of weak ferropericlase
(Fig. 21a) and could explain the lack of significant anisotropy.

For the analog system neighborite-halite, Kaercher et al. (2016)
have documented that for single phase systems strong CPO devel-
ops, but for mixtures CPO is greatly reduced, caused by locally
heterogeneous deformation. This is also confirmed by DAC experi-
ments for perovskite-ferropericlase mixtures (e.g. Miyagi and
Wenk, 2016; Girard et al., 2016).

For the 2-phase problem with local heterogeneities, there is no
straightforward polycrystal plasticity model. Canova et al. (1992)
have developed an n-site viscoplastic formulation and applied it
to muscovite quartz mixtures. There have been attempts with
finite element approaches (e.g. Mika and Dawson, 1999) and Four-
ier transform methods (e.g. Lebensohn, 2001) but they are not
applicable to large geophysical systems, at least for now, and par-
Fig. 28. (a) Thin section image of granite mylonite from the Santa Rosa mylonite
zone in Southern California, with rigid strong plagioclase crystals floating in fine
grained recrystallized quartz creating a viscous matrix. This represents probably a
similar microstructure as bridgmanite and periclase in the lower mantle. (b) Image
of deformed quartzite with feldspar inclusions from the Bergell Alps. This pervasive
ductile deformation may be similar to sheared post-perovskite in the lowermost
mantle. Width of images is 10 mm, crossed polarizers.
ticularly do not account for grain boundary sliding, which may be
very significant.

For the D00 zone, this is likely different because post-perovskite
is of similar strength or weaker than ferropericlase (Fig. 21b) and
thus deforms with a significant contribution of dislocation glide.
The microstructure of highly strained D00 material may be more
analogous to deformed quartzite with some feldspar inclusions
and extremely strong preferred orientation (Fig. 28b).
5. Seismic anisotropy in the inner core

We conclude this review with a brief discussion about seismic
anisotropy in the solid inner core. While the presence of a dense,
possibly fluid core had been suggested long ago based on the high
average density of the Earth as well as measurements of tides, its
presence was confirmed by seismology in the early 20th century
(Oldham, 1906; Gutenberg, 1913). An iron-nickel composition
was assigned, in analogy to iron meteorites. In 1936, Inge Lehmann
discovered the presence of an inner core of different elastic proper-
ties within the fluid outer core (Lehmann, 1936). Several decades
later, the solidity of the inner core was demonstrated by
Dziewonski and Gilbert (1971) based on the measurements of
eigenfrequencies of inner core-sensitive free oscillations. Birch
(1952) showed that the density of an iron-nickel alloy is too high
compared to seismological estimates, and proposed the presence
of �10% of lighter elements. Since then, the structure and compo-
sition of the core was refined based on seismic, gravitational and
magnetic evidence (e.g. Hirose et al., 2013).

The presence of cylindrical anisotropy in the inner core, with
the fast axis aligned with the Earth’s rotation axis, was first pro-
posed thirty years ago to explain two types of independent seismic
observations: (1) travel time anomalies of P waves that traverse
the inner core (denoted PKIKP or PKP(DF)) on polar paths (i.e. in
a direction quasi parallel to the Earth’s rotation axis) arriving up
to 5 s earlier than those travelling on equatorial paths (Morelli
et al., 1986), and (2) anomalous splitting of inner core sensitive free
oscillations (Woodhouse et al., 1986). Neither of these observations
could be explained by long-wavelength heterogeneous structure in
the earth’s mantle. It was suggested that this anisotropy could
likely be due to the alignment of intrinsically anisotropic iron crys-
tals, and in the following decade several models for the physical
cause of such alignment were proposed (Jeanloz and Wenk,
1988; Romanowicz et al., 1996; Bergman, 1997; Karato, 1999;
Wenk et al., 2000b; Buffett and Wenk, 2001; Yoshida et al., 1996;
see review by Sumita and Bergman, 2015).

In the decades since its discovery, many seismic studies have
confirmed these early observations from ever increasing datasets,
leading to a current landscape of the distribution of inner core ani-
sotropy that is surprisingly complex for such a small volume of the
Earth (e.g. Tkalčić, 2015). The top �100 km of the 1220 km-thick
inner core have been found to be isotropic, while deeper, there is
evidence for a hemispherical pattern of anisotropy (Tanaka and
Hamaguchi, 1997; Creager, 1999; Niu and Wen, 2002; Garcia,
2002; Waszek et al., 2011; Irving and Deuss, 2011; Lythgoe et al.,
2014), with weaker anisotropy in the eastern hemisphere than in
the western hemisphere. There is also evidence for depth depen-
dence, with increased strength of anisotropy towards the center
(Creager, 1992; Vinnik et al., 1994), and more recently, the sugges-
tion of a different orientation of anisotropy in the central part of
the inner core (Ishii and Dziewonski, 2002; Beghein and
Trampert, 2003), dubbed ‘‘Inner Most Inner Core” (IMIC, Ishii and
Dziewonski, 2002). The IMIC, as reexamined in more recent stud-
ies, would have a radius of about 550 km (e.g. Cormier and
Stroujkova, 2005; Cao and Romanowicz, 2007; Lythgoe et al.,
2014; Wang et al., 2015; Romanowicz et al., 2016). The signature
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of a hemispherical anisotropic structure has also been found from
the modeling of coupling of pairs of modes sensitive to such struc-
ture (Deuss et al., 2010). In addition, regional variations in the
direction of the fast axis and strength of anisotropy have been doc-
umented (e.g. Bréger et al., 1999; Sun and Song, 2008a,b; Irving,
2016). To explain this complexity, Tkalčić (2010) suggested that
the inner core may be made of a patchwork of anisotropic domains
of different orientations. Attenuation of PKIKP waves also presents
anisotropic variations, with higher attenuation correlated with
early arrivals along quasi-polar paths (Souriau and Romanowicz,
1996, 1997; Oreshin and Vinnik, 2004). We refer the reader to
more complete reviews of seismological studies of inner core ani-
sotropy (Deuss, 2014; Souriau, 2015; Tkalčić, 2015). Here, we
briefly describe some of the seismological challenges that are still
preventing us from a full understanding of these intriguing
observations.

One of the main challenges in fully resolving the pattern of
inner core anisotropy is the poor directional sampling available
due to the limited distribution of sources and receivers in polar
regions (e.g. Tkalčić, 2015). Thus, paths sampling the inner core
at a given location from different directions, which is necessary
to confirm the presence of anisotropy, are frequently lacking, mak-
ing it difficult to image inner core anisotropy in three dimensions
without imposing strong a priori-constraints (e.g. Sun and Song,
2008a; Lythgoe et al., 2014). The strongest anisotropy in PKIKP
data is found primarily along paths from events in South Sandwich
Islands (SSI) to Alaska, which dominate the set of observations in
the strongly anisotropic western hemisphere that contribute to
the n angle range between 10-30o, where n is the angle of the ray-
path in the inner core with the Earth’s axis of rotation. At shorter
distances (<�155�), the PKP(DF) phase can be referred to PKP
(BC), which is a core phase that does not traverse the inner core
(Fig. 29). This makes it possible to eliminate contributions from
uncertainties in the source parameters, as well as a significant part
of the effects of 3D mantle structure, given that PKP(BC) and PKP
Fig. 29. Raypaths of main body wave phases used in the study of inner-core
structure and anisotropy, at an epicentral distance of 155o. At this distance, all three
core phases, PKIKP (also called PKP(DF)), PKP(BC) and PKP(AB) are observed. The
phase PKJKP (a shear wave in the inner core) is very difficult to observe, and is
plotted here only for reference.
(DF) have very similar paths throughout the mantle, diverging only
in the vicinity of the inner core.

In fact, the SSI dataset shows a wide range of travel time
anomalies, ranging from 0 to >�5 s, when referred to the PKP(BC)
phase, suggesting a strong local anomaly (e.g. Tkalčić et al.,
2002). When plotted as a function of the angle n, the global PKP
(BC)-PKP(DF) travel time dataset (which covers epicentral dis-
tances between 150o and 160�) forms an L-shaped curve which is
not well explained by best fitting simple models of inner core ani-
sotropy with fast axis aligned with the Earth’s rotation axis
(Fig. 30), for which one would expect a parabolic shape according
to the equation:

dt ¼ aþ bcos2nþ ccos4n

where a, b, c, are related to integrals of elastic anisotropic parame-
ters along the path in the inner core.

At larger distances, the reference outer core phase is PKP(AB),
which spends significant time in the highly heterogeneous D00

region at the base of the mantle. Therefore, absolute travel time
anomalies of PKP(DF) are preferred, although in that case, contri-
butions from mantle 3D structure and uncertainties in source
parameters can bias the data (e.g. Bréger et al., 2000). Most studies
will therefore only consider events from the high quality relocated
EHB catalog (Engdahl et al., 1998) which presently exists only
through 2010. Still, analysis of these PKP(DF) data indicate that,
in the western hemisphere, a similar trend is observed in the abso-
lute PKP(DF) travel time residuals as in the PKP(DF)-PKP(AB) resid-
uals as a function of angle n (Fig. 30b). Most recent estimates of the
corresponding anisotropy are on the order of 3–4% in the IMIC,
which is considerable and difficult to reconcile with current pre-
dictions from mineral physics (see Section 6), let alone the esti-
mate of 3–8.8% of Lythgoe et al. (2014).

To explain this trend and other aspects of complexity in travel
time measurements of core sensitive phases that cannot be
explained by mantle structure, Romanowicz et al. (2003) proposed
alternative models that would involve structure in the outer core,
with either faster than average velocities in the inner core tangent
cylinder, or in polar caps at the top of the outer core, that could
represent an increased concentration of light elements. For exam-
ple, Fig. 31 shows the pattern obtained when plotting absolute
travel time anomalies for DF,BC and AB, plotted at the entry point
of the corresponding raypath into the outer core, on the Alaska
side, for south-Sandwich to Alaska paths, as well as paths from
Alaska to Antarctica. When plotted in this manner, the travel-
time anomalies form a coherent pattern suggesting a localized
anomaly that may originate near the core-mantle boundary on
the Alaska side, compatible with both a polar cap in the outer core
or heterogeneity within at least part of the tangent cylinder. Most
anomalously split inner core sensitive normal modes could be
explained by either of these models, except for mode 3S2 which
exhibits particularly strong splitting (Romanowicz and Bréger,
2000). These results have been reexamined critically by Ishii and
Dziewonski (2005).

Putting structure in the outer core remains controversial (e.g.
Souriau et al., 2003), as significant density anomalies in the vigor-
ously convecting outer core appear to be ruled out (e.g. Stevenson,
1987). However, recent work suggesting the possibility of stagnant
layers at the top of the outer core from magneto-hydrodynamics
considerations (e.g. Buffett, 2014), indicates that at least the polar
cap hypothesis should perhaps remain on the table as alternative
to a strongly anisotropic region in the inner core. On the other
hand, Tkalčić (2010) found that differential travel time anomalies
of similar amplitude are observed on PcP-P data in the vicinity of
SSI. Because such data do not sample the inner core at all, Tkalčić
(2010) proposed that a significant part of the SSI anomaly could



Fig. 30. Travel time anomalies of core phases as a function of angle n of the ray path in the inner core with respect to the Earth’s rotation axis from the combined Berkeley
data collection (Tkalčić et al., 2002) and from Leykam et al. (2010). Left: (DF–BC) – Right: absolute DF. a) and d) all data; b) and e): for events in the south-Sandwich Islands; c)
and f) for events in Alaska.
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be located in the deep mantle, although no such structure has been
identified yet tomographically. Therefore, explaining the broad
spread of PKP(DF) travel time anomalies on SSI paths to Alaska
remains an open question, which needs to be answered before
robust bounds on the strength of anisotropy in the inner core’s
western hemisphere can be provided to mineral physicists. Accu-
mulation of data from the current deployment of USArray in Alaska
may shed more light on this question.

This leads us to the second, and possibly related challenge that
has come to light recently (Lincot et al., 2015, 2016; Romanowicz
et al., 2016), which is how to reconcile the 3–8% seismic anisotropy
inferred in the inner core’s western hemisphere with current
knowledge from mineral physics.
6. Mineral physics of the inner core

6.1. Phase relations

From the mineral physics point of view, a first order question
has been the phase in which iron is present in the inner core.
The high pressure e phase of iron was first confirmed by X-ray
diffraction by Mao et al. (1967) and a hexagonal close-packed
(hcp) structure was identified. Since then, many high pressure
experiments have been conducted. Most important are those per-
tinent to conditions of the inner core (Fig. 32). They include
dynamic shock compression with relatively large error margins
(e.g. Alfè et al., 2002; Anzellini et al., 2013; Brown, 2001; Ping



Fig. 31. Absolute travel time anomalies for DF (circles and triangles), BC (crosses)
and AB (squares), for events at latitudes lower than �50�S or higher than 50�N
plotted as a function of the location of the entry point of the ray path into the outer
core. Triangles are for events at latitude >50�N observed at stations at latitudes
<�50�S. Expanded from Romanowicz et al. (2003) to include data from Leykam
et al. (2010), as also shown in Fig. 34b–f. This collection of travel time anomalies
forms a coherent pattern with a sharp gradient delineating a localized boundary
between very fast paths to the northwest and normal paths to the southeast,
suggesting a ‘‘polar cap” pattern, that may or may not originate in the inner core.
Note that the color code is centered at dt = �3.5 s.

Fig. 32. Pressure–temperature phase diagram for iron at high pressure, illustrating
diamond anvil and shock experiments as well as ab initio simulations. The lines
correspond to melting curves (courtesy of B.K. Godwal).
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et al., 2013) and DAC experiments at high pressure and tempera-
ture, up to 380 GPa and 6000 K (e.g. Tateno et al., 2010). Based
on theoretical calculations, some authors have suggested that
body-centered cubic (bcc) iron could be stable just below the melt-
ing point at core pressures (e.g. Vočadlo et al., 2003; Belonoshko
et al., 2003, 2006; Dubrovinsky et al., 2007; Bouchet et al., 2013),
but most recent studies indicate that bcc is unstable at these con-
ditions (e.g. Godwal et al., 2015).

An important aspect is that the inner core may not be chemi-
cally and structurally homogeneous. It is likely that nickel, a com-
ponent in iron meteorites, is also present in the core (Sakai et al.,
2011; Tateno et al., 2012). Furthermore, to account for the lower
density implied by seismic data suggests that lighter elements
may be present and a good candidate is silicon. The Fe-Si system
has been studied at intermediate pressure-temperatures (e.g.
Sakai et al., 2011; Fischer et al., 2013, Fig. 33) and inner core con-
ditions (Tateno et al., 2015). At high pressure and high tempera-
ture, FeSi crystallizes in the cubic B2 structure (CsCl structure)
which is an ordered bcc structure. Fe3Si forms a DO3 structure with
doubling of the B2 unit cell and ordering. At lower pressures FeSi
forms the B20 structure which is partially disordered bcc, with a
lack of inversion symmetry (e.g. Jeong and Pickett, 2004). Elastic
properties of FeSi have been investigated by Petrova et al. (2010).
Badro et al. (2014) explored a range of possible elements in the
core (O, S, Si, Ni) and concluded that oxygen is required in the outer
core.

6.2. Causes of anisotropy in the inner core

Potential mechanisms for alignment of crystals in the inner core
are dislocation-plasticity (e.g. Jeanloz andWenk, 1988; Wenk et al.,
2000a; Lincot et al., 2015, 2016), growth from a melt (e.g. Bergman,
1997; Deguen, 2012), magnetic Maxwell stresses (e.g. Karato,
1999; Buffett and Wenk, 2001).
Radial DAC experiments (e.g. Wenk et al., 2000a; Merkel et al.,
2004, 2013; Miyagi et al., 2008) documented texture development
in e iron at high pressure and inferred (0001) and subordinate
f11 �20g slip, combined with mechanical twinning as potential
mechanisms. However, these experiments were not at inner core
conditions.

Elastic properties at core conditions rely on first principle calcu-
lations and various groups have been involved (e.g. Vočadlo et al.,
2008, 2009; Mattesini et al., 2010). It is interesting to find that
results are quite contradictory, as expressed in P-wave velocity
profiles for hcp single crystals with the c-axis at n = 0� (Fig. 34b).
While Vočadlo et al. (2009) predict maximum velocities perpendic-
ular to the c-axis, Mattesini et al. (2010) suggest maximum veloc-
ities parallel to the c-axis (the elastic tensor of hexagonal crystals is
axially symmetric about the c-axis). Estimates of inner core seismic
anisotropy are very high ((Vp-fast � Vp-slow)/Vp-iso = 3–8%; Fig. 34a),
compared with the rather small P-wave anisotropy obtained from
first principles calculations for single crystals (e.g. 4.9% for Vočadlo
et al., 2009 at 308 GPa and 5000 K or 5.7% for Mattesini et al., 2010
at 346 GPa and 6000 K) and the best fit with seismic data would be
a hexagonal single crystal aligned with the c-axis more or less par-
allel to the N-S axis. A huge single crystal seems unlikely, given
that the largest documented crystals on Earth are about 20 m in
size, and with pressure–temperature gradients, it is likely that
huge crystals at high temperature would undergo transformations
and recrystallization over geologic times.

A recent study (Lincot et al., 2016) constructed a multi-scale
model, combining self-consistent polycrystal plasticity, inner-
core formation models, and Monte Carlo simulations of elastic
parameters to predict travel times of inner core PKP waves and
confront them with observations. These authors found that they
could explain as much as 3% seismic anisotropy with an hcp-iron
structure with fast c axis, and with anomalous single crystal aniso-
tropies near the melting point of up to 20% (Martorell et al., 2013),
with dominant pyramidal hc + ai slip and crystal alignment pro-
vided by a low degree boundary condition for crystallization at
the ICB. While this model might account for the faster PKP travel
times on polar, compared to equatorial paths, it does not reproduce
the L-shaped travel time anomaly curve as a function of angle n
(Fig. 30).



Fig. 33. Phase diagrams of the Fe-Si system (Fischer et al. 2013). (a) Pressure–temperature phase diagram illustrating stability fields of the various phases for Fe-9Si. (b)
Temperature-composition diagram at 145 GPa illustrating the transition from hcp to B2.

Fig. 34. (a) Comparison of relative velocity variations (in%) as a function of angle n of the ray path in the inner core with respect to the Earth’s rotation axis for several
seismological models. Black: OIC model of Wang et al. (2003); Grey: OIC model of Beghein and Trampert (2003). Blue: best fitting IMIC model using Wang et al.’s model for
OIC anisotropy corrections. Green: best fitting IMIC model using Beghein and Trampert’s (2003) OIC model for anisotropy corrections in the OIC. In the latter two cases the
IMIC radius is held at 600 km. The IMIC model obtained is only slightly sensitive to the radius in the range 500–600 km. Dashed lines indicate the range of uncertainty on the
IMIC model. (b) Calculated normalized P-wave velocities of hexagonal single crystals based on first principle elastic properties at various temperatures and pressures. An is
strength of anisotropy. The polar angle n is zero parallel to the hexagonal c-axis. Mat: Mattesini et al., 2010, Voc: Vočadlo et al. (2009). Based on Romanowicz et al. (2016).
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7. Conclusions and future directions

7.1. Anisotropy in the deep mantle

In the last ten years, global seismic tomography has provided
increasingly refined images of seismic heterogeneity in the deep
Earth. There is now agreement on the long wavelength structure,
dominated by the presence of two low shear velocity provinces
(LLSVPs) under Africa and the central Pacific, which may require
compositional heterogeneity, at least at their base. There is also
evidence for smaller scale structures suggestive of subducting
slabs and upwelling plumes in the lower mantle. While the bulk
of the lower mantle appears largely isotropic, the long wavelength
pattern of VTI anisotropy detected in D00 from shear wave tomo-
graphic studies seems to track that of isotropic velocity, with SH
faster than SV outside of the LLSVPs and SV faster than SH within
them. However, the agreement among different models is limited
to the very longest wavelengths (‘‘degree 200), and there are still
debates about trade-offs between isotropic and anisotropic
structure.

On the other hand, recent local studies of shear wave splitting
are consistently showing the presence of strong seismic anisotropy
(both radial and azimuthal) at the edges of the LLSVPs, primarily on
the fast side. Because anisotropy in post-perovskite (pPv) is
thought to be much stronger than in perovskite, and pPv is likely
more widely present outside of the LLSVP (i.e. colder regions man-
ifested by faster than average shear velocity) than inside the
LLSVPs (which are likely warmer), these observations suggest that
CPO of pPv may be the cause, indicating the presence of strong
deformation due to constrained flow at the base of the mantle,
with a change of direction towards the vertical at the border of
the LLSVP, and more vertically oriented flow within it. While very
attractive, because it can also explain opposite polarity behavior in
reflections of P and S waves on the discontinuity at the top of D00
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(Thomas et al., 2011; Cobden et al., 2015), the interpretation in
terms of pPv must be considered with caution, given the uncertain-
ties on whether pPv is actually present at deep mantle depths.

A priority for future seismic studies is to continue investigating
the patterns of anisotropy on the borders of the LLSVPs as well as in
the vicinity of upwelling plumes, where high concentrations of
strain are expected. This would be greatly helped by installations
of large aperture broadband arrays on the ocean floor, collecting
high quality horizontal component data for at least 1 year, to cover
gaps in the available sampling of D00 in these regions. We also lack
robust constraints on deep mantle P anisotropy which would help
differentiate between dominant (001) and (010) slip systems in
post-perovskite.

Also mineral physics has added a lot of new information, most
significantly the discovery of post-perovskite (Oganov and Ono,
2004) and derivation of deformation mechanisms, both by experi-
ments and theoretical models. But as the anisotropic seismic struc-
ture of the Earth has become more complex over the last ten years,
so has the interpretation with mineral physics concepts, opening a
wide range of opportunities for new investigations. Perhaps most
significant have been the recent advances in modeling crystal
deformation based on bonding characteristics at a wide range of
conditions that are relevant for the mantle but cannot be
approached with experiments, like slow strain rates. It will be
important to apply theory to experimental conditions and this
might explain why DAC experiments at high pressure suggest
(001) slip for MgSiO3 post-perovskite (Miyagi et al., 2010; Wu
et al., 2017), while bonding models predict (010) slip at deep man-
tle conditions (Goryaeva et al., 2016).

High pressure experiments will remain crucial. With advances
in multi-anvil technology it will become possible to reach lower
mantle conditions (Yamazaki et al., 2014), with larger samples
and better defined deformation geometry than DAC, which is
restricted to the �50 lm range), with large gradients in pressure,
deformation rates and temperature. In addition, D-DIA experi-
ments can provide tomographic information about microstructural
evolution, e.g. during phase transitions and recrystallization (Wang
et al., 2011). Also DAC technology is adding new possibilities such
as resistive heating for high temperature experiments, multigrain
texture analysis for coarser aggregates (e.g. Barton and Bernier,
2012; Langrand et al., 2017), and the possibility of using DAC with
Laue microdiffraction (Tamura, 2014) to perform orientation and
microstructural mapping in situ at high pressure.

In the future, also a larger range of compositions needs to be
explored experimentally, for example iron-magnesium content,
multiphase systems (pPv, ferropericlase and CaSiO3 perovskite)
and the significance of perovskite/post-perovskite transformations.

Geodynamic models need refinements. New 3D models with
tracers (e.g. Cottaar et al., 2014; Li, M. et al., 2014) still do not
account for the very significant viscosity changes implied by min-
eral physics. And following texture evolution along streamlines
provides results at different times for the advancing tracers, while
relating anisotropy results to the Earth assumes that the stream-
line does not change, which is clearly not the case.

The issue of deformation mechanisms was addressed in Sec-
tion 4.8. All models for lower mantle anisotropy assume disloca-
tion glide of post-perovskite and ferropericlase as the cause of
crystal alignment and use a self-consistent viscoplastic plasticity
model. Some arbitrary strain fraction corrections are introduced
to account for mechanisms such as climb, grain boundary migra-
tion, grain boundary sliding that do not contribute to texture. In
the future, the significance of these mechanisms should be studied
more systematically, both with experiments and models. There are
strong indications that the activity of different mechanisms is the
cause for lack of significant anisotropy in large parts of the lower
mantle.
7.2. Inner core anisotropy

While the complexities of the lower mantle are developing into
a realistic and solvable puzzle, inner core anisotropy is becoming
more enigmatic. As we learn more about the large seismic aniso-
tropy, it is not clear what the origin of this signal is and how much
originates in the inner core. There is room for many possible inter-
pretations, including a layered inner core with a bcc iron structure
in the innermost inner core and an outer shell with an hcp struc-
ture (Wang et al., 2015). While such a structure is not impossible,
it is quite unlikely (e.g. Romanowicz et al., 2016), and not presently
resolvable from seismological observations. The high axial veloci-
ties, compared with equatorial velocities are difficult to explain,
and particularly the striking L-shape of the PKP travel time residual
as a function of angle of the raypath in the inner core with respect
to the rotation axis. It is not impossible that heterogeneous struc-
tures in the outer liquid core, particularly columnar convection
with a characteristic seismic pattern (e.g. Jones, 2011; Soderlund
et al., 2012), influence the apparent seismic signature of the inner
core. A priority for future seismic studies, in our view, is to achieve
consensus on the origin of the observed L-shape mentioned above.
The dense temporary broadband arrays recently installed in Alaska
(as part of the Earthscope program) and in Antarctica should help
in that endeavor.

On the mineral physics side, there is general agreement that
hexagonal close-packed iron is the most likely component but
the actual composition is still debated and an iron-silicon alloy
may exist. There is uncertainty and disagreement about elastic
properties of pure iron at inner core conditions derived with first
principles calculations (e.g. Vočadlo et al., 2009 versus Mattesini
et al., 2010) and no information about elastic properties of iron-
silicon alloys. While there are many experiments documenting
phase relations both of Fe and Fe-Si at high pressure and temper-
ature (e.g. Tateno et al., 2010, 2015), there is still considerable
uncertainty about the melting temperature.

These studies highlight the chemical and structural complexi-
ties of the core, with likely heterogeneities in the inner core, vari-
able elastic properties and anisotropy. A multi-disciplinary
approach including seismologists, geodynamicists, mineral physi-
cists and material scientists is required to make progress. Such col-
laborations have been initiated and show great promise for the
near future.
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