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FLOW VISUALIZATION USING MOVING TEXTURES *

Nelson Max
Lawrence Livermore National Laboratory

Livermore, California

Barry Becker
Lawrence Livermore National Laboratory

Livermore, California

SUMMARY

We present a method for visualizing 2D and 3D flows by animating textures on triangles, taking advan-

tage of texture mapping hardware. We discuss the problems when the flow is time-varying, and present

solutions.

INTRODUCTION

An intuitive way to visualize a flow is to watch particles or textures move in the flow. The early color

table animation of [1] was an example of this technique. More recently, van Wijk [2] has proposed advect-

ing and motion blurring particles by the flow field. The LIC method [3, 4, 5] uses integrals of white noise

textures along streamlines, moving the weighting function in the integrals from frame to frame to animate

the texture motion. The motion blur of the particles and the directional texture blurring from the LIC inte-

gration create anisotropic textures which indicate the flow even in a still frame. However they are computa-

tionally intensive, and cannot generate animation in real time. The textured splats of Crawfis [6] use a loop

of cycling texture maps with precomputed advecting motion blurred spots, and take advantage of texture

mapping hardware. These are composited in back to front order in a local region near each data point, and

oriented in the direction of the velocity vector, so that the precomputed advection cycle indicates the flow.

In this paper, we show how texture mapping hardware can produce near-real-time texture motion,
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using a polygon grid, and one fixed texture. However, we make no attempt to indicate the flow direction in

a still frame. As discussed below, any anisotropic stretching comes from the velocity gradient, not the

velocity itself.

The basic idea is to advect the texture by the flow field. In [7] we gave an indication of the wind veloc-

ity by advecting the 3D texture coordinates on the polygon vertices of a cloudiness contour surface in a cli-

mate simulation. This was slow, because the 3D texture was rendered in software, and because advecting

the texture was difficult for time-varying flows. In this paper, we replace the 3D textures by 2D texture

maps compatible with hardware rendering, and give techniques for handling time-varying flows more effi-

ciently.

The next section gives our technique for the case of 2D steady flows, and the following one discusses

the problems of texture distortion. Then we discuss the problems with extending our method to time-vary-

ing flows, and our two solutions. Next we develop compositing methods for visualizing 3D flows. The final

section gives our results and conclusions.

TEXTURE ADVECTION FOR STEADY 2D FLOWS

We start with a mathematical definition of texture advection, and then show how it can be approxi-

mated by hardware texture-mapped polygon rendering.

Let Ft(x, y) represent the steady flow solution of the differential equation

(1)

whereV(x, y) is the velocity field being visualized. Thus point P is carried by the flow to the pointFt(P)

after a time delayt. The flowFt satisfies the composition rule

(2)

for both positive and negatives andt. Thus (F t)-1(P) = F -t(P).

In this paper, we will assume that the initial texture coordinates att = 0 are the same as the (x, y) coor-

dinates of the regionR being rendered. In practice, the texture is usually defined in a different (u, v) coordi-

nate system related to (x, y) by translation and scaling, but for simplicity we will ignore the difference.

If T(x, y) is a 2D texture being advected by the flow, then a new textureTt(x, y) is defined by
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Tt(x, y) = .

Thus, to computeTt at a pointP, we go backwards along the streamline throughP, to find the pointQ such

thatFt(Q) = P, and then evaluate the texture functionT atQ. When animated, this will give the appearance

that the initial textureT is being carried along by the flow. By equation (2) above,

. Thus the streamlinesF-t(P) needed for the texture coordinates can be

computed incrementally.

There are two problems with this formulation when the domain of definition forV(x, y) or T(x, y) is

limited to a finite regionR in which the velocity data or texture is available. First of all, if the streamline

F -t(P) leaves the regionR, the necessary velocities are not available to continue the integration. One must

either extrapolate the known velocities outsideR, or continue the streamline as a straight line using the last

valid velocity. Fortunately, either of these extrapolation methods will give a correctly moving texture in

animation. This is because the visible texture motion at a point P inside R is determined only by the veloc-

ity at P, and the extrapolation of the streamline beyond R serves only to determine what texture will be

brought in from “off screen”.

Second, even ifF -t(P) is extended outsideR, the texture may not be known there. The standard solu-

tion to this is to takeT(x, y) to be a periodic function in bothx andy, so that it is defined for all (x, y). Most

texture mapping hardware is capable of generating this sort of wraparound texture, by using modular arith-

metic (or truncation of high order bits) to compute the appropriate texture map address from thex andy

values. There are also tools to generate textures which wrap around without apparent seams [8].

To adapt this technique to hardware polygon rendering, the 2D region R is divided up into a regular

grid of triangles, and the texture coordinatesF -t(Pi) are only computed for the verticesPi of the grid. Dur-

ing the hardware scan conversion, texturing, and shading process, the texture coordinates at each pixel are

interpolated from those at the vertices, and the appropriate texture pixels are accessed. For triangles, the

standard bilinear interpolation, which is not rotation invariant, reduces to linear interpolation, which is. For

anti-aliasing, the hardware can use the higher order bits of the texture coordinates to weight an average of

four adjacent texture map values (or four values in each of the two most-nearly-appropriate-resolution ver-

sions of the texture, if MIP mapping [9] is employed.)

TEXTURE DISTORTION

The flowF-t(P) can change the shape of a triangle, so that it becomes long and thin in texture space, as

shown in figure 1. In the direction where the triangle is stretched byF -t, the texture will be compressed by

F t. This distortion will not be present if the velocity is constant, so thatF -t andF t are both translations.

The distortion instead indicates anisotropies in the derivatives ofV. For incompressible 2D flows, stretching

T F
t

 
  1–

x y,( ) 
 

T F
t–

x y,( ) 
 

=

F
t ∆t+( )–

P( ) F
∆t–

F
t–

P( ) 
 

=



in one direction will be compensated by compression in a perpendicular direction. For compressible flows,

there may be stretching in all directions at some positions, and shrinking in all directions at others.

During the animation of the texture advection, this distortion continues to build up, so that eventually

the visualization will become useless. Therefore we periodically restart the texture coordinates back at their

original positions in the regular grid. To avoid the sudden jump this would cause in the animation, we grad-

ually fade up the new texture and fade down the old one, according to the weighting curves in figure 2.

Each texture starts with weight zero, fades up over the old texture until it alone is present, and then fades

down as an even newer texture takes its place. This “cross dissolve” can be done in hardware, usingα com-

Figure 1. The triangle on the right is mapped to the texture on the left, which ends up being
compressed vertically when the triangle is rendered.

Figure 2. Three cycles of the weighting curves for fading the textures up and down.



positing [10]. If the textures are random, and contain an adequate range of spatial frequencies, this cross

dissolve will not disturb the perception of continuously flowing motion.

Since each texture is used for only a short time, the distortion does not become extreme. For a steady

flow, one cross dissolve cycle ends with the same image at which it began, so an animation loop may be

created which can be cycled rapidly and repeatedly on a workstation screen. Similar precomputed loops are

possible with the surface particle [2], LIC [3], and textured splat [6] techniques.

TEXTURE ADVECTION FOR UNSTEADY 2D FLOWS

If the velocityV depends ont, the differential equation

(3)

defines a flow which no longer satisfies equation (2). For a fixed initial positionQ, the curveF t(Q) is a par-

ticle traceC(t) as in [11], rather than a streamline. To find the texture coordinates forP at timet0 we need to

find the pointQ such that (Q) = P. We must go backwards along the particle trace, and thus solve the

differential equation

(4)

for thet range 0≤ t ≤ t0, with “final” conditionC(t0) = P, and then setQ = C(0). With the change of vari-

ablesu = t0 - t, this is equivalent to the differential equation

(5)

for theu range 0≤ u ≤ t0, with initial conditionC(0) = P. ThenQ = C(t0).

In the case of unsteady flow, the differential equations (5) for differentt0 are not related and define

completely different particle traces, so incremental methods can no longer be used. In [7] we integrated

equation (5) anew for each frame timet0. To find the texture coordinates for framet0, we had to access the

time varying velocity data for the wholet range 0≤ t ≤ t0, which is very inefficient for large data sets. Here

we propose two more practical methods.

The first method is to derive a differential equation for the flow . This flow

maps a pointP to the texture coordinate pointQ needed at frame timet, that is, the point withFt(Q) = P.

Thus we have
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. (6)

Let Gt
x andGt

y be thex andy components of the vector-valued functionGt(x, y), and similarly letFt
x and

Ft
y be the components ofFt. Then by differentiating the components of equation (6) with respect tot by the

chain rule, we get the pair of equations

,

.

Now by equation (3),  and , whereVx andVy are the components of the velocity field

at position  and timet. Therefore we have

whereM is the Jacobian matrix for the flowFt(x, y):

.

Thus

.

But sinceGt(x, y) = , the matrix is the Jacobian matrix J forGt(x, y):

.

ThusGt(x, y) satisfies the partial differential equations:
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. (7)

These differential equations essentially say that the flowGt(x, y) is determined from the negative of the

velocityV, as transformed into the texture coordinate system appropriate fort = 0, so they determine the

texture flow necessary to give the desired apparent velocity at timet. The initial condition forGt at t = 0 is

thatG0(P) = P, that is,G0 is the identity map. Equations (7) can be integrated incrementally in time by

Euler’s method. IfGt(Pi) is known at timet for all vertices on a regular grid, the partials in the Jacobian

matrixJ(Pi) can be estimated from central differences between theGt values at adjacent grid vertices. (For

vertices at the boundary ofR, one-sided differences must be used.) Then, using the current velocity

V(Gt(Pi), t), increments∆Gx =  and∆Gy =  are found for the components ofGt. If necessary,

∆t can be a fraction of the time step between frames, and/or the vertex grid used for solving equations (7)

can be finer than the triangle grid used in rendering the texture, in order to make the solution more accurate.

The vertex grid spacing will affect the accuracy of the finite difference approximations to the partial

derivatives like . This accuracy is critical, because small errors in these partials will cause errors in

position in the next frame, which may compound the errors in the partials, and cause them to grow expo-

nentially from frame to frame. Here again, it is useful to fade out the current advected texture and fade in a

new texture whose coordinates are reinitialized to the identity map, so that the integration errors cannot

accumulate for too long.

The second method for handling unsteady flows is to move the triangle vertices by the flowFt(x, y),

keeping their texture coordinates constant. This advects the texture directly, by moving the triangles, and

carrying the texture along with them. To do this, we incrementally integrate equation (3), and no partial

derivative estimates are needed for a Jacobian. However we again have a problem at the edges of the region

R. The boundary vertices may move insideR, leaving gaps at the edges, or may move outside, causing too

much texture to be rendered. The excess rendering is easily prevented by clipping all triangles to the

boundary ofR. The gaps can be eliminated by creating extra guard polygons around the edges ofR, widen-

ing it to a larger regionS. Whenever any vertex on the boundary ofS crosses intoR, a new row of guard

polygons is added to the affected side ofS. Again it is useful to integrate only over a limited time interval

before reinitializing the texture coordinates, to avoid creating too many extra polygons.

FLOWS IN 3D

In three dimensions, one could advect 3D texture coordinates, but 3D texturing is not widely available.

∂Gx
t

x y,( )
∂t

-------------------------
∂Gx

t
x y,( )

∂x
-------------------------Vx–

∂Gx
t

x y,( )
∂y

-------------------------Vy–=

∂Gy
t

x y,( )
∂t

-------------------------
∂Gy

t
x y,( )

∂x
-------------------------Vx–

∂Gy
t

x y,( )
∂y

-------------------------Vy–=

∂Gx
t

∂t
---------∆t

∂Gy
t

∂t
---------∆t

∂Gy
t

∂x
---------



We have instead used 2D textures on parallel section planes. We made the textured planes semi-transparent,

and composited them from back to front using theα compositing hardware in our workstation. (This is how

3D texture mapping is usually implemented in hardware.) For the methods which change only the texture

coordinates, we used the 2D projection of the velocity onto the section plane. For the method which moves

the triangle vertices, we used the true 3D velocity, allowing the section surfaces to warp out of planarity.

Combining the compositing for the cross-dissolve of figure 2 with the compositing of the separate tex-

ture planes can lead to problems in the accumulated opacity. Given two objects with opacitiesα1 andα2,

the resulting opacity from compositing both objects isα1 + α2 - α1α2. (See [10] or multiply the transparen-

cies.) Supposef1(t) andf2(t) are the two weighting curves shown in figure 2, withf1 + f2 = 1, andα is the

desired section plane opacity. If we just take the two component opacities to beα1 = αf1 andα2 = αf2, the

result is a composite opacity

The unwanted last term causes a periodic pulsation inαC.

A solution is to use exponentials, which have better multiplicative properties. Define an “optical

depth” l = - ln(1 -α), so thatα = 1 -e - l, and letα1 = 1 -  andα2 = 1 - . The resulting composite

opacity is then

as desired.

Another problem with compositing texture planes of constant transparency is that the frontmost planes

will eventually obscure the ones to the rear if the data volume gets large. One solution is to use variable-

transparency textures, so that some regions of the texture are completely transparent. Another is to specify

the transparency on triangle vertices using a separate scalar data variable which can select out regions of

interest where the texture motion should be visible. In [7] we used percent cloudiness contour surfaces to

specify the location of the advecting software-rendered texture. With our new hardware based technique,

this cloudiness variable is used to specify the vertex transparency, and produces similar realism in much

less time.

IMPLEMENTATION AND RESULTS

The different types of moving textures discussed were implemented as a class hierarchy in C++. Inven-
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tor [12] quadmeshes were used to represent texture layers. An Iris Explorer module was then constructed in

order to make use of color maps and data readers.

Figure 3 shows what happens when the vertices themselves are advected. The whole surface distorts,

even in the direction perpendicular to the plane. In Figure 4 the texture coordinates are advected backwards

while the vertices are held fixed. This gives the impression of motion in the direction of flow. Unfortunately

the texture distorts too much over a long period of time. Also the texture vertices may move outside the

defined domain. A solution to the first problem is to fade in a second texture with the texture coordinates

reset to their original positions. The resulting cross dissolve is shown in Figure 5. The opacity for each tex-

ture is computed using exponentials, as discussed above, so there is no distracting variation in the overall

intensity during animation. To avoid the problem of having to sample outside the domain, we used the

inverse flowGt for the texture coordinates, as explained above, while keeping the vertices fixed (Figure 6).

This method also gives bad results over time if we do not periodically fade in a new unadvected texture as

shown figure 7. Figure 8 illustrates how flow moves through particles of aerogel, a material with very low

density which is a good thermal insulator. Figure 9 shows a frame from an animation of global wind data on

a spherical mesh. The opaque regions represent high percent cloudiness. Although the vector field is static,

the texture (but not the colors) appear to move in the direction of flow. Figures 10 and 11 depict steady flow

near a high density contour in an interstellar cloud collision simulation (data courtesey of Richard Klein).

Figure 10 has moving vertices, while figure 11 has moving texture coordinates. The color indicates density.

A frame from an animation of unsteady wind data over Indonesia on a curvilinear mesh is shown in Figure

12. Percent cloudiness is mapped to color and opacity.

 We ran our software on an SGI Onyx supporting hardware texture mapping. For a 32 by 32 slice of a

volume (as in the aerogel example) we were able to achieve about four frames per second. To rotate a com-

plete 50x40x10 volume, like the one shown in Figure 9, about 15 seconds was required.
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Figure 6. Texture coordinates are advected
using vectors transformed by the local
jacobian matrix, while vertices are held fixed.

Figure 3. Actual vertices are advected in 3D.Figure 4. Texture coordinates are advected
backwards.

Figure 5.  Same method
as figure 4, but with a
new texture fading in as
soon as the other
becomes too distorted.

Figure 7. Same method
as figure 6, but with a
new texture fading in
as soon as the other
becomes too distorted.



Figure 8. Method of
figure 6 applied to a
steady flow moving
through particles of
aerogel and using a
colored texture.

Figure 9. Method of
figure 5 applied to a
steady flow depicting
wind data on a spherical
mesh. Color and opacity
from percent cloudiness.

Figure 11. Method of
figure 6 applied to asteady
flow representing a field
from an interstellar cloud
collision simulation.

Figure 12. Method of
figure 7 applied to an
unsteady flow
representing global
climate data. Color and
opacity indicate percent
cloudiness. Both the
winds and percent
cloudiness vary in time.

Figure 10. Several layers of textures advected using the
method of figure 3. The layers are colored by density and
move near a high density solid contour surface.




