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ABSTRACT 

The instanton tunnelling amplitude induces a non­

perturbative violation of scale invariance which can be un­

derstood in terms of the anomaly in the trace of the stress 

energy tensor. The scaling violation determined by the 

trace anomaly is compared with the explicitly constructed 

instanton amplitude in the one-loop approximation . 
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In quantum chromoQynamics (QCD) because· of the chiral anomaly the instanton 

tunnelling amplitude induces a non-perturbative violation of the chiral U(l) sym- .. 

metry1 ). The purpose of this note is to observe that because of the anomaly in 

h . 2) . . al . d t e trace of the stress energy tensor the 1nstanton so 1n uces a non-perturba-

tive breaking of scale and conformal symmetry. The non-conservation of the dila­

tion charge is just proportional to the gauge field action. In Euclidean space, 

where the tunneling amplitude is computed, the gauge· field action is greater than 

or equal to the topologically determined quantity 

-- (l) 

where ·g is the coupling constant, GlJ\1 = ~ e:lJVal3 G and q is the winding a . aae• 
number. Therefore all solutions with q ~ 0 induce non-perturbative breaking of 

scale (and conformal) symmetry. 

Unlike the chiral anomaly, the trace anomaly is not free of higher order per­

turbative corrections, since the theory cannot be regulated in a scale invariant 

wa:y. The lowest order trace anomaly occurs at the one-loop level -- the triangle, 

square, and pentagc;>n diagrams familiar from the chiral anomaly. For the instanton 

with q = 1 we can compare the scale breaking computed from the lowest order trace 

anomaly with 't Hoeft's explicit construction3) of the one-loop quantum correc­

tions to the.instantontunnellingamplitude. The results agree. In particular, the 

anomaly requires that the contribution of the non-zero eigenmodes be independent 

-of the coupling constant subtraction point lJ, as is verified by the explicit one­

~oop calculation of Ref. 3). 

The simple details for the one-loop approximation are presented below. The 

note then concludes with two comments: on the breaking of. conformal symmetry and 

on the possible experimental significance of the non-perturbative breaking of scale 

invariance. 

The trace anomaly may be regarded as the scale invariance analogue of the more 

·fmniliar anomaly of chiral symmetry. The trace of the tress tensor is the diver­

gence of the dilatation current 4), e :: e lJ = a DlJ, whose charge D = J d 3x D0 

lJ lJ . 
generates scale transformations, [n(t), ~(x = ~.t)] = -i 

defines the scale dimension d~ of the field ~). In the 

( dcp + X • a ) ~ (X) (whiCh 

(e JlJJ\1) amplitude in 

spinor electrodynamics the lowest order triangle diagram requires that the naive 

trace e = m~ be modified by addition of an "anomalous" term
2

) 
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e= (2) 

just as the triangle diagram for (aTJ! J~J") induces the chiral anomaly 

( 3) 

Equation (3) is valid to any finite order in perturbation theory, but Eq. (2) is 

modified by radiative corrections, which have recently been computed5) to all 

orders in a. in terms of functions defined by the renormalization group. 

Here we are interested in the trace anomaly of QCD, which has also recently 

been expressed6) to all orders in the renormalized coupling constant g: 

(4) 

We use the notation of-Collins et al.: ym(g) and S(g) are defined in the con­

text of the renormalization group, N denotes the normal product definition 

of the operators, and G~" is the normal gauge covariant field tensor. We will a 
use Eq. (4) in Green's functions with only gauge field or current external legs, 

in which case the one-loop approximation to Eq. (4) is*) 

e - - (5) 

where 

-- . .. . + (6) 

*) In such Green's functions the factor y in Eq. (4) only appears in two-loop 
order. I thank John Ellis for dispelliWg my confusion on this point. 
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To compare with Ref. 3) we choose SU(2) to be the gauge group, so 

b= I - ( 232 2 -:3 
(7) 

where NF is the number of quark flavours. 

The breaking of the dilatation charge is characterized by 

.. - (8) 

We want to compute in the one-loop approximation the contribution to flD due to 

the anomalous term in Eq. (5) in the presence of the q = 1 instanton background 

field. The leading-order anomaly in Eq. (5) is already a o~e-loop effect, so it 

suffices to evaluate (al-1\1 G ) . t t in tree approximation. The amplitude in 
a alJ\1 1ns an on 

7
) 

this approximation is just the classical instanton field and we compute 

--
(9) 

Here Gel denotes the classical solution with q = 1, for which the inequality 

of .Eq. (1) is saturated. The factor "i" in Eq. (9) is due to the continuation 

of Eq. (1) back to Minkowski space. 

Now we compare this result with the explicit one~loop calculation of Ref. 3). 

To this order the contribution to the q = 1 tunnelling amplitude from the instan­

tons within flz of the space-time point z and with size parameter within- flp 

of size p is3 ) 

<ol o> 
(10) 
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We want to compute the change in D in such a transition due to the anomalous con­

tribution to e. Under a dilatation p, 6p, · and 6z are rescaled, while p and · 

m are held fixed, so the generator is 

with the phase fixed by the quantum equal time commutation relation [n,~J = 
= -i (d~ + x•o)~. 

(11) 

However, we want to compute only the contribution to 6D from the anomaly, 

e- $row in Eq. (5), so we subtract the scaling violation generated by the factor 

mNF in Eq. (10). For our purpose the relevant differential operator is then · 

• -t,. (12) 

In Eq. (9) we computed the violation of D al in the presence of the in-
anom y 

stanton background field. That is, we assumed the instanton to be present with 

probability one. We now compute the analogous quantity by applying D al , anom y 
Eq. (12), to the transition amplitude and normalizing to the value of the ampli-

tude. So we have 

(13) 

D vanishes when applied to the factor g-B mNF lF-5 6p(6z )4, which is the 
anomaly 

contribution of the zero eigenmodes. The entire contribution to Eq. (13) is from 

the exponent in Eq. (10), which is due to the non-zero eigenmodes. We have 

- • 
-~.. 

(14) 
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in agreement with Eq. (9) •. Turning the argument around we can say that the ano­

maly requires the one quantum loop correction of the non-zero eigenmodes to have 

just that 1J dependence which cancels the leading (one loop)· 1J dependence of 

the classical action, exp [-8n2/g 2 (1J)]. 

If we attempt to compute ·(6n · ) to all orders in quantum flue-
anomaly instanton . 

tuations, we encounter a second w~ in which the trace anomaly differs from the 

charge, 6Qs = t:hiral anomaly. To compute the breaking of the chiral. U ( 1) 

/d~x a J~ in the presence of the instanton we must compute 1J • /d"x/Gl-l"a ) . • 
\ a aJ-1\1 1nstanton 

Because this volume integral can be written ,as an integral over the surface at in-

finity where 

to all orders 

the integrand is determined by the boundary conditions 7 ) , it is given 

in quantum loops by the classical value of Eq. (1)*). This fact, 

together with the Adler-Bardeen theorem on the absence of higher order corrections 

for the chiral anomaly itself, means that (L'IQ · ·) is equal to s,anomaly instanton 
2NFq to all orders in the loop expansion. 

For the trace anomaly, not only are there higher order corrections given by 

the factor S/2g, but in addition the integral /d~x (a al-l") 
aiJV a instanton is just 

the gauge field action which is also corrected by quantum fluctuations [which must 

be positive in Euclidean space because of Eq. (1)]. 

A second difference: in QCD the chiral U(l) symmetry is broken (as far as 

we know) only by the instanton, while scale symmetry is broken by the well-known 

perturbative effects and in addition by the non-perturbative effects due to the 

instanton. 

I conclude with two comments: 

i) .The trace anomaly is also responsible for an anomaly in the divergence of 
8) 

the conformal current , 

-- (15) 

where for QCD we substitute Eq. (4) for e. The instanton therefore non-perturba­

ti vely breaks the conformal charge, by 

*) I am grateful to David Olive .for an explanation of this point. 



- 6 -

ii) The instanton suggests an interesting :possible solution of the chiral U(l) 

:problem in QCD1 >. But lacking even an order of magnitude estimate of its effect 

on the :pseudoscalar mass matrix, it vould be :premature to claim that the problem 

is already solved. In general, there is no contact vith experiment: vhat is 

calculable is exponentially small. If the instanton really does solve the chiral 

U(l) problem, then it must have a large though presently incalculable effect on 

the pseudoscalar masses. Then, because of the trace anomaly, it vould also have 

a large effect on the scalar meson masses. The instanton should also induce non­

perturbative scaling violations in deep-inelastic phenomena. Whether these are 

big enough to observe will depend on whether in the amplitude under consideration 

the integration over the instanton size p has important contributions from sizes 

much larger or smaller than the short distance scale being probed. 
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