UCLA UCLA Previously Published Works

Title

Rhizobium common nod genes are required for biofilm formation.

Permalink https://escholarship.org/uc/item/6462w1f0

Journal Molecular microbiology, 67(3)

ISSN 0950-382X

Authors

Fujishige, Nancy A Lum, Michelle R De Hoff, Peter L <u>et al.</u>

Publication Date 2008-02-01

Peer reviewed

Rhizobium common nod genes are required for biofilm formation

Nancy A. Fujishige,¹ Michelle R. Lum,^{1†} Peter L. De Hoff,² Julian P. Whitelegge,^{2,3} Kym F. Faull^{2,3} and Ann M. Hirsch^{1,2*}

¹Department of Molecular, Cell and Developmental Biology, ²Molecular Biology Institute and the ³Pasarow Mass Spectrometry Laboratory and Semel Institute, University of California-Los Angeles, CA 90095-1606, USA.

Summary

In legume nitrogen-fixing symbioses, rhizobial nod genes are obligatory for initiating infection thread formation and root nodule development. Here we show that the common nod genes, nodD1ABC, whose products synthesize core Nod factor, a chitin-like oligomer, are also required for the establishment of the three-dimensional architecture of the biofilm of Sinorhizobium meliloti. Common nod gene mutants form a biofilm that is a monolayer. Moreover, adding Nod Factor antibody to S. meliloti cells inhibits biofilm formation, while chitinase treatment disrupts pre-formed biofilms. These results attest to the involvement of core Nod factor in rhizobial biofilm establishment. However, luteolin, the plant-derived inducer of S. meliloti's nod genes, is not required for mature biofilm formation, although biofilm establishment is enhanced in the presence of this flavonoid inducer. Because biofilm formation is plant-inducerindependent and because all nodulating rhizobia, both alpha- and beta-proteobacteria have common nod genes, the role of core Nod factor in biofilm formation is likely to be an ancestral and evolutionarily conserved function of these genes.

Introduction

For more than 20 years, *Rhizobium nod* genes, and their product, Nod Factor (NF), have been recognized as essential for the development of nitrogen-fixing nodules on legume roots (Lerouge *et al.*, 1990). Mutations within

or deletions of entire *nod* genes result in a loss of the ability of rhizobial bacteria to induce nodules on the host, and therefore fix atmospheric nitrogen. NF is a β -1, 4-linked *N*-acetylglucosamine oligomer, with a fatty acid chain attached to the terminal glucosamine and various substituents occurring on the chitin-like backbone. Although the precise mechanism whereby NF stimulates nodule formation remains uncertain, NF is known to trigger calcium spiking, cause root hair deformation and initiate nodule primordium formation (Geurts *et al.*, 2005; Oldroyd and Downie, 2006).

The combination of the products from two different classes of nod genes, which are under the control of the lysR-like regulatory gene nodD, results in the synthesis of NF. NodD binds to the nod box region of the nod gene promoters; nodD1, one of three nodD genes in Sinorhizo*bium meliloti*, is included among the common *nod* genes. The common nodulation genes (nodDABC) are found in all bacteria that nodulate legumes (with so far only one known exception; Giraud et al., 2007), including the beta-proteobacteria (beta-rhizobia), which also establish nodules on legume roots (Moulin et al., 2001). NodC is responsible for the biosynthesis of the Nacetylolucosamine trimeric to pentameric backbone, while NodB deacetylates a terminal glucosamine, leaving a free amino group, which is acylated by NodA. The second class of nod genes (in S. meliloti, nodEF, nodG, nodH, nodPQ, nodL) consists of the host-specific nodulation genes, whose products modify the N-acetylglucosamine backbone in ways that are unique to a particular Rhizobium species. Typically, the products of the host-specific nod genes are responsible for adding side group substituents and for determining the length and saturation of the fatty acid on the terminal glucosamine (Lerouge et al., 1990). These substituents confer specificity between a rhizobial species and the cognate host.

Sinorhizobium meliloti and Rhizobium leguminosarum bv. viciae, like many other bacteria, form biofilms on sterile inert substrates, including plastic, glass, sand and soil (Fujishige *et al.*, 2006a). While screening symbiotic mutants for their effects on biofilm formation using microtiter plate and whole-root assays, we earlier found that *R. leguminosarum* bv. viciae deleted of pSym [an endogenous plasmid that carries both *nod* and *nif* (nitrogen fixation) genes] and *S. meliloti* pSymA-deletion mutants

Accepted 6 November, 2007. *For correspondence. E-mail ahirsch@ucla.edu; Tel. (+1) 310 206 8673; Fax (+1) 310 206 5413. [†]Present address: Biology Department, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045, USA.

Fig. 1. Microtiter plate assay of biofilm formation by wild-type *S. meliloti* strain and *nod* mutants. The plates were assayed 24 h after inoculation; there was no difference in growth rate among the various strains tested.

A. RCR2011 nod gene mutants are reduced in biofilm formation compared with the wild type.

B. Rm1021 nod gene mutants are reduced in biofilm formation compared with the wild type.

C. Biofilms of RCR2011 (wild-type) and the host-specific *nod* (*nodF*, *nodL*, *nodFL*, *nodH*) mutants are not statistically different from the wild type. The $\Delta nodD1ABC$ mutant, which does not produce core NF, shows significantly reduced biofilm formation.

D. Except for the *nodD3* mutant, biofilms produced by the various Rm1021 *nodD* and *syrM* (a *nodD*-like gene) mutants are reduced compared with the wild-type biofilms.

exhibited significantly reduced biofilm formation (Fujishige *et al.*, 2006b). This led to testing the effect on biofilm formation of individual and multiple *nod* gene mutations. Here we report that the products of the common *nod* genes have a hitherto unrecognized function – holding a rhizobial biofilm together.

Results

Effect of nod *gene mutations on biofilm formation* in vitro

Individual common *nod* gene mutants, the class of *nod* genes common to nodulating rhizobia, including the β -rhizobia, as well as mutants in the second class of *nod* genes, the host-specific *nod* genes, were tested for biofilming ability. We determined that *S. meliloti* mutants deleted of any one of the common *nod* genes or *nodD1ABC* exhibited significantly reduced (50–70%) biofilm formation not only in microtiter plate assays (Fig. 1A and B), but also on environmentally relevant substrates, including roots (Fig. 2A). Mutations in individual genes, *nodA* or *nodC* (Table 1), either in *S. meliloti* RCR2011 (Fig. 1A) or in the sequenced strain Rm1021 (Galibert *et al.*, 2001; Fig. 1B), did not affect the growth of these bacteria compared with wild-type *S. meliloti* (data not shown), but did result in statistically significantly reduced biofilm formation. A similar result was observed for individual *nodB* mutants (data not shown). In contrast, host-specific *nod* mutants were not altered in their level of biofilm establishment compared with the wild-type strains in the RCR2011 (Fig. 1C) and Rm1021 genetic back-grounds (data not shown).

In *S. meliloti*, in addition to the three *nodD* genes, there is a *nodD*-like gene, *syrM*. SyrM and NodD3 together form a positive regulatory circuit (Swanson *et al.*, 1993; Dusha *et al.*, 1999a,b). In the microtiter plate assay, mutants of *nodD1*, *nodD2*, *nodD1D2D3* and *syrM* developed reduced biofilms, whereas the *nodD3* mutant was unaffected (Fig. 1D). The difference between *syrM* and *nodD3* may lie in SyrM's involvement in succinoglycan (EPSI) biosynthesis (Swanson *et al.*, 1993); we previously reported that *S. meliloti* EPSI mutants exhibit reduced biofilm formation (Fujishige *et al.*, 2006a). The *nodD1* gene is activated by plant-produced flavonoids, such as

506 N. A. Fujishige et al.

Table 1. Strains and plasmids used in this study.

DODOOU		
RCR2011	Wild-type derivative of SU47	Jean Dénarié
Rm1021	Wild-type Sm ^r derivative of 2011	Meade et al. (1982)
Rm1021 (pRm57)	Rm1021 nodC::lacZ	Mulligan and Long (1985)
GMI3253	Rm1021 ∆ <i>nodA</i> null	Jean Dénarié
Rm5612	Rm1021 <i>nodC</i> ::Tn5	Ethan R. Signer
SL44	Rm1021 ∆ <i>nodD1ABC</i>	Sharon R. Long
GMI5383	RCR2011 nodA::Tn5	Jean Dénarié
GMI5389	RCR2011 nodC::Tn5	Jean Dénarié
GMI357	RCR2011 ∆nodD1ABC	Jean Dénarié
RCR2011-gfp	RCR2011 (pHC60)	This study
Rm1021 DsRed	Rm1021 (pDG77)	Bringhurst et al. (2001)
Rm1021-gfp	Rm1021 (pHC60)	Cheng et al. (1998)
Rm5612-gfp	Rm5612 (pHC60)	This study
GMI357-gfp	GMI357 (pHC60)	This study
TJ9B8	Rm1021 nodD1::Tn5	Sharon R. Long
RmD2	Rm1021 nodD2::tm	Honma and Ausubel (1987)
RmD3-1	Rm1021 nodD3::sp./g-1	Honma and Ausubel (1987)
Rm <i>D1D2D3</i>	Rm1021 nodD1::Tn5, nodD2::tm, nodD3:: sp./g-1	Honma and Ausubel (1987)
JAS105	Rm1021 <i>syrM</i> ::Tn <i>5–233</i>	Swanson et al. (1993)
Rm <i>D1D2D3-gfp</i>	Rm <i>D1D2D3</i> (pHC60)	This study
GMI5378	RCR2011 ∆nodF	Jean Dénarié
GMI6436	RCR2011 nodL::Tn5	Jean Dénarié
GMI6628	RCR2011 ∆ <i>nodF</i> , <i>nodL</i> ::Tn5	Jean Dénarié
GMI2212	RCR2011 <i>nodH</i> ::Tn5	Jean Dénarié
RCR2011 (p149)	RCR2011 carrying the common and host-specific nod genes	This study
RCR2011 (pRmJ30)	RCR2011 carrying the common nod genes	This study
GMI357 (pRmJ30)	GMI357 carrying the common nod genes	This study
A348	Wild-type Agrobacterium tumefaciens	Garfinkel et al. (1981)
A348 (pRmJ30)	A348 carrying the S. meliloti common nod genes	Hirsch <i>et al</i> . (1985)
Plasmids		
pPROBE-AT'	Broad host-range promoter-gfp vector	Miller et al. (2000)
pGMI149	nodD1ABCIJQPGEFH, nodD3, syrM on IncP plasmid	Lerouge et al. (1990)
pLAFR1	Broad host-range cosmid-cloning vector	Friedman et al. (1982)
pNF2	pPROBE-AT' nodA promoter-gfp	This study
pRmJ30	8.7 kb EcoRI fragment carrying nodD1ABCIJ	Jacobs et al. (1985)

luteolin (Mulligan and Long, 1985), whereas *nodD2* is activated by plant-produced betaines (Phillips *et al.*, 1992). No change in biofilm formation was observed when betaine was added to the culture medium (data not shown), whereas luteolin addition enhanced biofilm establishment (see later section).

Confocal imaging of wild-type green fluorescent protein (GFP)-labelled rhizobia showed that mature biofilms consist of towers and ridges (Fig. 2D and E). This biofilm morphology contrasted with that produced by Nod⁻ mutant bacteria, which only established a monolayer with few bacteria attached to one another (Fig. 2F and G). When viewed under transmission electron microscopy (TEM), wild-type *S. meliloti* biofilms revealed extensive cell-to-cell contacts (Fig. 3A), whereas the *nod* mutants remained as single cells or occasionally as doublets (Fig. 3B).

Effect of nod gene mutations on biofilm formation in vivo

We extended the findings from the microtiter plate assay by examining biofilm formation on roots of white sweetclover (*Melilotus alba* Desr.). Confocal laser scanning micrographs of roots inoculated with Rm1021 showed distinct microcolonies along the root surface, which remained adherent after extensive washing (arrows, Fig. 2A). In contrast, few *nodC* mutant cells remained attached after washing (arrow, Fig. 2B). The number of colony-forming units (cfu) per gram of root tissue demonstrated a significant reduction (> 50%) in attachment ability of both *nodC* and *nodD1D2D3* mutants compared with the wild-type control Rm1021 (Fig. 2C).

Luteolin is not required for biofilm formation

We hypothesized that the common *nod* genes are expressed in the biofilm independently of plant-derived inducers because biofilms developed in the microtiter plate wells without adding luteolin (Fig. 1). To test this hypothesis specifically, a *nodA–gfp* transcription fusion was introduced into wild-type Rm1021 cells, which were inoculated onto sand particles. Using this transcriptional fusion, attached single cells and small microcolonies were visualized by their fluorescence 4 h after the initiation of

Fig. 2. Attachment in vivo and in vitro.

A and B. Confocal images showing the attachment of (A) wild-type *S. meliloti* (Rm1021) and (B) a *nodC* mutant (Rm5612) to roots of *Melilotus alba* Desr. 72 h post inoculation. Bar, 250 µm.

C. Colony-forming unit (cfu) counts from roots 48 h post inoculation with either wild-type (Rm1021) or nod mutant bacteria (nodD1D2D3 and nodC).

D. Confocal imaging (top and side views) of a wild-type *gfp*-expressing RCR2011 strain 72 h post inoculation shows biofilms composed of ridges (arrows) and towers (arrowheads). Bar, 10 µm.

E. Confocal imaging (top and side views) of a wild-type gfp-expressing RCR2011 strain 5 days post inoculation. Bar, 100 µm.

F. Very few $\Delta nodD1ABC$ mutant cells (top and side views) remain attached to each other or to the glass coverslip 72 h post inoculation. Bar, 10 μ m.

G. After 5 days, the $\triangle nodD1ABC$ mutant bacteria remain in a monolayer. Bar, 100 μ m.

© 2007 The Authors

Journal compilation © 2007 Blackwell Publishing Ltd, Molecular Microbiology, 67, 504-515

Fig. 3. Transmission electron micrographs of *S. meliloti* grown under biofilm conditions. A. Wild-type RCR2011. The cells adhere to each other.

B. GMI357, the $\Delta nodD1ABC$ mutant in the RCR2011 genetic background, grown under biofilm conditions. Few cell aggregates are observed. Bar, 0.5 μ m.

the experiment (Fig. 4A). By 24 h after the start of the experiment without the luteolin inducer, large GFP-positive colonies were observed on the sand particles (Fig. 4B).

Wild-type *S. meliloti* biofilm formation was enhanced by adding 1 μ M luteolin to the culture medium, whereas the *nodC* mutant showed no difference in biofilm establishment in the presence or absence of luteolin (Fig. 4C). Luteolin induced an almost twofold increase in β galactosidase activity in biofilmed *S. meliloti* carrying a *nodC-lacZ* transcriptional fusion (Mulligan and Long, 1985) over the control, which was treated with the solvent methanol (Fig. 4D). As expected, planktonic cells also showed increased β -galactosidase activity in the presence of luteolin.

Because biofilm formation correlated with augmented NF production brought about by luteolin addition, we examined the effect of NF overproduction by introducing the plasmid pRmJ30, which carries the common nod genes, or the plasmid pGMI149, which contains both common and host-specific nod genes, or pLAFR1, the vector control, into the RCR2011 genetic background (Table 1). Each nod gene containing plasmid enhanced biofilm formation in the absence of luteolin by approximately 25% (Fig. 5A). A similar result was found for the Rm1021 wild-type strain (data not shown). No enhancement was observed for strains containing the vector pLAFR1 (data not shown). Interestingly, we detected no statistical difference between strains carrying only the common nod genes versus those carrying a plasmid with the full complement of nod genes, indicating that the contribution of host-specific nod genes to biofilm formation is minimal (see also Fig. 1C). When the plasmid carrying nodD1ABC was introduced into a mutant deleted of these genes, biofilm formation was restored (Fig. 5B).

As a further gain-of-function test, we introduced a series of *nod* plasmids into another member of the Rhizobiaceae, *Agrobacterium tumefaciens* strain A348,

which generates tumours on plant tissues (Garfinkel *et al.*, 1981). In all cases, there was a clear enhancement of biofilm formation, even when only *nodD1ABC* was introduced (Fig. 5C). This finding shows that the minimalist or core NF contributes to the enhancement of biofilm formation in *A. tumefaciens* as it does in *S. meliloti.*

Core NF facilitates cell-to-cell adhesion

Based on the morphology of the wild-type versus nod mutant biofilms (Figs 2D-G and 3), we hypothesized that core NF causes the rhizobial cells to adhere to one another. Cell-to-cell adhesion would allow the rhizobial cells to remain closely attached to roots until an adequate population accumulated to produce a sufficient localized concentration of the host-specific signalling NF, which is required for root hair calcium spiking and deformation. We examined biofilms formed by mixing a GFP-labelled nodC mutant strain 1:1 with wild-type Rm1021 labelled with DsRed (Fig. 4E). Interestingly, the nodC mutant strain was excluded from the biofilm, suggesting that the lack of NF kept the mutant from integrating into the Rm1021 biofilm. A similar response was observed when a nodCgfp mutant was mixed with a DsRed-labelled exoY mutant (see Fig. S1).

An *in silico* investigation revealed an overall similarity of 37% between *Staphylococcus epidermidis* IcaA and *S. meliloti* NodC on the protein level (data not shown). IcaA and other proteins encoded by the *ica* gene cluster synthesize a long chain of *N*-acetylglucosamines known as polysaccharide intercellular adhesin (PIA), which is essential for maintaining *S. epidermidis* biofilm adherence (Heilmann *et al.*, 1996; Götz, 2002). PIA is detected in fibrous material surrounding the bacterial cells within the *S. epidermidis* biofilm (Vuong *et al.*, 2004). However, we detected no cross reaction between PIA and *S. meliloti* or between PIA and NF (data not shown).

Fig. 4. Expression of *nod* genes in response to adherence to a surface and to the flavonoid inducer luteolin.

A. Rm1021 with a nodA-gfp transcriptional fusion fluoresced as single cells and as microcolonies attached to sand particles as early as 4 h after inoculation. Bar, 40 µm.

B. After 24 h, the microcolonies were significantly larger. Bar, 40 µm.

C. The microtiter plate assays show an increase in Rm1021 biofilms when 1 μ M luteolin was added to RDM, but no change in the *nodC* mutant biofilms occurred between the luteolin-treated and untreated samples.

D. Luteolin induced an almost twofold increase in β-galactosidase activity over the control in biofilmed S. meliloti Rm1021 carrying a

nodC-lacZ transcriptional fusion. The planktonic cells as expected also showed an increase in β-galactosidase activity.

E. Mixed biofilm of Rm5612-gfp (*nodC*::Tn5) and Rm1021-DsRed as viewed with epifluorescence. The green Nod⁻ cells remained on the top of the biofilm. Bar, 20 μ m.

We utilized an *S. meliloti* NF-specific antibody (Timmers *et al.*, 1998) conjugated to colloidal gold in TEM studies against biofilms (Lévesque *et al.*, 2004), but found no labelling of any definite structures on the bacterial cell surface. However, the gold-labelled antibody was detected in both the external milieu and on the cell membrane (Fig. S2). Because NF is only three to five *N*-acetylglucosamines long, detecting a fibrous component analogous to PIA, which is a long chain of 100–120 *N*-acetylglucosamine residues, is unlikely. On the other

hand, we observed that wild-type *S. meliloti* biofilm formation was reduced in the microtiter plate assay with antibody dilutions ranging from 1:10 000 to 1:100 (Fig. 5D). The NF antibody at dilutions of 1:10 000 (Fig. 5E) and 1:1000 (data not shown) similarly reduced biofilm formation of *A. tumefaciens* A348 carrying pRmJ30, but no effect on A348 biofilms was detected at any concentration. This result strongly suggests that a molecule recognized by NF antibody is present on the surface of or within the biofilm matrix of agrobacteria expressing the common *nod* genes.

Fig. 5. Microtiter titer plate assays demonstrating the importance of core NF to biofilm formation.

A. Addition of *nod* genes, either the complete set or only the common *nod* genes, to RCR2011 enhanced biofilm formation over the wild-type control.

B. Addition of the core NF-encoding genes to the *AnodD1ABC* mutant restored biofilm formation to wild-type levels.

C. Adding the core NF-encoding genes to wild-type A. tumefaciens strain A348 enhanced its biofilm formation.

D. Adding NF antibody to wild-type S. meliloti cells interfered with biofilm formation even at the lowest dilutions.

E. NF antibody added at 1:10 000 decreased biofilm formation of an *A. tumefaciens* strain (A348) carrying the common *nod* genes, but had no effect on A348 biofilms. A similar result was found for a 1:1000 dilution (data not shown).

Sinorhizobium meliloti biofilms were next treated with chitinase, which caused the dispersal of a pre-formed 24-h-old Rm1021 biofilm, more than twofold over the control (Fig. 6A). Numerous cells were released from the biofilm after 90 min of chitinase treatment, resulting in large areas of the surface that were bacteria-free. After 180 min of chitinase treatment, the biofilm had completely dispersed. These data show that the structure of the biofilm is broken down by chitinase, which is consistent with NF composition.

Core NF is similar in structure to chitosan, which has been reported to promote *Escherichia coli* CSH57 adhesion by making the microbial surface more hydrophobic, thereby enhancing biofilm formation (Goldberg *et al.*, 1990). Two different assays demonstrated that the wildtype strains are more hydrophobic than the Nod⁻ mutant strains. For example, in the salt aggregation test (Honda *et al.*, 1983), both Rm1021 (Fig. 6B) and RCR2011 (Fig. 6C) aggregated at a lower concentration of ammonium sulphate than the Nod⁻ mutants. Treatment with 10 μM luteolin enhanced aggregation of the wild-type strains, but no increase in aggregation was observed for the nodulation-defective *S. meliloti* mutant (Fig. 6B and C).

Discussion

Taken together, the data presented herein indicate that NF is critical for establishing a mature rhizobial biofilm. This is a new function for NF, and is distinctly different from the established role as a morphogen for inducing legume nodule development. The involvement of core NF in biofilm establishment has been hitherto unrecognized in part because of the prior emphasis on the signalling functions of rhizobial NF (Ardourel *et al.*, 1994). We propose that the biofilm function may reflect an earlier evolutionary development, as this property is encoded by genes common to all nodulating rhizobia, including *Burkholderia* and *Cupriavidus* strains, the so-called

Fig. 6. Assays suggesting that core NF is either on the bacterial surface or in the biofilm matrix

A. Chitinase disrupted pre-formed S. meliloti biofilms.

B. The salt aggregation test demonstrated that wild-type S. meliloti Rm1021 cells have a more hydrophobic surface than the $\Delta nodD1ABC$ mutant (SL44), because the wild-type rhizobia aggregated at a much lower salt concentration (2 M) than the mutant cells. Luteolin enhanced aggregation in Rm1021, but not in SL44.

C. RCR2011 bacteria aggregated more in the presence of 10 µm luteolin (dissolved in methanol) than the control bacteria (treated with methanol alone). GMI357 (∆nodD1ABC) exhibited very little aggregation even in the presence of luteolin.

Α

β-rhizobia (Moulin et al., 2001), whereas the host-specific nod genes needed for the signalling function vary depending on the rhizobial species. In addition, plant-derived activators, such as luteolin, are not required for S. meliloti biofilm formation, further supporting the hypothesis that this function is more ancestral or primitive. Apparently, some change in rhizobial behaviour, brought about by contact to either abiotic surfaces or to roots, leads to the expression of the common nod genes. Supporting this is the fact that S. meliloti containing nodC-lacZ fusions, when tested in microtiter plates for β-galactosidase activity, turned blue even without luteolin addition (data not shown). Ongoing research may identify the factors important for manifesting this change.

Lending support to the idea that core NF may play a structural role, perhaps by associating with the bacterial cell surface, is the fact that we could not rescue the monolayer biofilms established by Nod- rhizobia by adding purified NF (data not shown). Similarly, NF addition does not restore a wild-type phenotype to Nod-S. meliloti (Hirsch et al., 1993), although it triggers the beginnings of nodule development on alfalfa, which is very sensitive to NF application (Truchet et al., 1991). This lack of rescue may be characteristic of rhizobia that nodulate

512 N. A. Fujishige et al. 🔳

indeterminate nodule-forming legumes, because purified NF does not rescue the aberrant phenotype of a *R. leguminosarum* bv. *viciae nodEnodO* double mutant either (Walker and Downie, 2000). On the other hand, adding NF rescues the Nod⁻ phenotype of mutants of *Rhizobium* NGR234 and *Bradyrhizobium japonicum*, which nodulate determinate nodule-forming legumes (Relic *et al.*, 1993). These results suggest that for rhizobia interacting with indeterminate nodule-forming plants, NF must be associated in some way with the rhizobial cell surface to complement both the biofilm and nodulation phenotypes of Nod⁻ mutants. If NF is not localized to the cell surface, as is the case for exogenous NF, it is incompatible with cell-to-cell contact and subsequent rhizobial invasion.

Core NF's importance has been previously thought of only in terms of its being a backbone for host-specific determinants. However, core NF is critical for root colonization and biofilm formation in that it holds the rhizobia together until a threshold population density is achieved and sufficient host-specific signalling NF is synthesized to act as a morphogen. It may also protect non-spore forming prokaryotes, such as rhizobia from desiccation, especially in the absence of a host legume, by facilitating the adherence of cells together in a biofilm on soil particles or on non-host roots. Moreover, core NF's involvement in biofilm formation may shield attached rhizobia from host defence reactions, in a manner similar to PIA, which inhibits the defence mechanisms of human innate immunity (Vuong *et al.*, 2004).

Interestingly, molecules similar to core NF are involved in non-signalling functions in other bacteria. For example, *N*-acetylglucosamines are reported to act as adhesins not only in *Staphylococcus* species (Heilmann *et al.*, 1996; Götz, 2002), but also in *Caulobacter crescentus* (Merker and Smit, 1988; Ong *et al.*, 1990). In the latter, *N*-acetylglucosamines are localized to the holdfast of the stalked cells, promoting cell-to-cell adhesion (rosette formation) and adherence to abiotic surfaces. Based on the fact that *N*-acetylglucosamines function as adhesins in a number of bacteria and on our results showing the importance of core NF for biofilm formation, we propose that core NF plays a similar role in *S. meliloti*.

The realization that core NF has dual functions, both as a structural component of the biofilm and independently as a precursor to host-specific morphogens, implies the likely existence of two different sets of control mechanisms, one luteolin-dependent and the other luteolin-independent, which regulate NF production. Also, based on our data, it is very likely that NodD1 probably regulates the expression of other genes, exclusive of *nod*, which are essential for biofilm formation. A fruitful area of future research will be to tease these systems apart, and thus arrive at an understanding of the factors that separately regulate production of the structural and morphogenic components.

Experimental procedures

Strains and plasmids

Bacterial strains and plasmids used for the biofilm analysis are listed in Table 1. Triparental matings were performed as described (Figurski and Helinski, 1979).

Construction of the nodA-gfp transcriptional fusion

A 400 bp Eagl–Sacl fragment of the *S. meliloti nodA* promoter was ligated into the multicloning site of the broad host-range promoter-GFP vector, pPROBE-AT' (Miller *et al.*, 2000). This fragment includes the *nod* box, to which the NodD transcriptional activators bind, and 81 bp of the *nodA* gene. The resulting plasmid, pNF2, was transformed into the chemically competent *E. coli* strain, DH5 α (Sambrook and Russell, 2001). Plasmid pNF2 was conjugated into *S. meliloti* strain RCR2011 by triparental mating, using DH5 α (pRK2013) as the helper plasmid (Figurski and Helinski, 1979).

Biofilm preparation

Biofilms were established as described (Fujishige *et al.*, 2006a) and grown for 24 h before staining with crystal violet. Each data point is the average of at least 18 wells. Error bars indicate the standard deviation from the mean. Root biofilms were prepared (Fujishige *et al.*, 2006c) and harvested 48–72 h post inoculation with either wild-type or *nod* mutant bacteria. The strains constitutively expressed GFP. Attached cells were quantified by counting cfus (Fujishige *et al.*, 2006c). Error bars indicate the standard deviation from the mean.

β -Galactosidase activity

Biofilms were grown for 48 h in 96 well plates as previously described (Fujishige et al., 2006a). Biofilm and planktonic cells carrying a *nodC-lacZ* transcriptional fusion (Mulligan and Long, 1985) were grown in supplemented Rhizobium defined medium (RDM) culture medium (Fujishige et al., 2006a) with added solvent (methanol) or 10 µM luteolin dissolved in methanol. β-Galactosidase-specific activity of biofilm and planktonic cells was measured as described in Stanley et al. (2003). To reprise, 80 µl of planktonic bacteria were removed carefully from each well. The biofilms were gently rinsed three times with sterile RDM to remove the planktonic cells, and the biofilm cells were scraped from the wells into RDM. The wells were vigorously washed to remove all bacteria (wells were subsequently stained with crystal violet, as described above, to verify that bacteria were thoroughly removed). Biofilm cells were dispersed by extensive vortexing. To quantify cell number, the OD₅₉₅ of the separate preparations of planktonic and biofilm cells was measured. The planktonic or biofilm cells were mixed with 100 µl of Z-buffer (60 mM Na₂HPO₄, 4 mM NaH₂PO₄, 10 mM KCI, 1 mM MgSO₄ and 50 mM β -mercaptoethanol). To each of these samples, 1 μ l of SDS (1% w/v) and 2 µl of chloroform were added. Reactions were pre-incubated at 28°C for 5 min, and then 20 µl of ONPG (4 mg ml⁻¹) were added to each sample. Reactions were stopped by the addition of 50 µl of Na₂CO₃. Samples were centrifuged for 2 min at 8000 g. The OD₄₁₅ of the supernatants were measured, and Miller units were calculated as follows:

Miller units = $(1000 \times OD_{415})/(t \times v \times OD_{595})$; t = reaction time (min) and v = volume of culture (ml).

Microscopy

For confocal scanning laser microscopy, the bacteria were grown on flame-sterilized glass coverslips placed into 20 well microtiter plate wells for 72 h or 5 days. GFP-labelled biofilms were examined on a Zeiss LSM510 microscope, and the images obtained using a 10x/0.3 or 63x/1.4 oil-immersion objective with excitation at 488 nm in conjunction with the Zeiss LSM510 imaging software. Rm1021 *nodA-gfp* bacteria grown on sand particles (Fujishige *et al.*, 2006a) were placed into the wells of depression slides, topped with a coverslip, and examined under epifluorescence using a Zeiss Axiophot microscope.

Chitinase assay

Rm1021 or RCR2011 biofilms were grown for 48 h in U-bottom polyvinyl chloride microtiter plate wells. The biofilms were rinsed once with chitinase buffer (200 mM potassium phosphate, 2 mM calcium chloride, pH 6.0) and then treated with chitinase (0.1 unit ml⁻¹), which was validated for purity by mass spectrometry analysis (see Fig. S3 and Table S1), or buffer alone for 1 h. The wells were rinsed once with buffer and processed for crystal violet staining.

Antibody interference assay

A polyclonal anti-NF antibody (Timmers et al., 1998) was diluted 1:10 in phosphate buffered saline (PBS), pH 7.2 (Sambrook and Russell, 2001). Liquid cultures of the △*nodD1ABC* mutant (GMI357) were grown to early stationary phase and centrifuged for 5 min at 7500 g. The cell pellets were resuspended in the antibody solution at a final concentration of 1×10^8 cfu ml⁻¹. The cell suspension was mixed on a rotary platform for 18 h at 4°C and then centrifuged for 5 min at 10 000 g. The supernatants containing the cleared antibody were filter-sterilized to remove residual bacteria. The cleared anti-NF antibody was diluted 1:100-1:10 000 in the culture medium (Fujishige et al., 2006a), which was filtersterilized and used to resuspend S. meliloti RCR2011 cells, A. tumefaciens A348, or A348 (pRmJ30) to $OD_{600} = 0.2$. One hundred millilitres of cell suspension were added to individual wells of a 96 well PVC plate. Biofilm formation was assayed as described (Fujishige et al., 2006a).

Salt aggregation assay

Liquid cultures were supplemented with either 10 μ M luteolin dissolved in 0.1% methanol or with 0.1% methanol alone. Cultures were grown to OD₆₀₀ = 1.5, washed and resuspended in 2 mM sodium phosphate (pH 7.0) at a final concentration of 5 × 10⁸ cfu ml⁻¹. On a microscope slide, 25 μ l of the cell suspension was mixed with an equal volume of ammonium sulphate in 2 mM sodium phosphate (pH 7.0). Ammonium sulphate concentrations ranged from 0.5 M to 4.0 M. Bacterial aggregation was monitored by microscopy for at least 2 min.

Transmission electron microscopy

Twenty-four-hour-old biofilm cells were scraped off glass coverslips and resuspended in PBS, pH 7.4. A drop of each suspension was placed on a carbon-coated grid, and the bacteria were allowed to settle. The cells on the grid were negatively stained with 2% uranyl acetate for 35–60 s, and subsequently examined under a JEOL-100CX transmission electron microscope.

Acknowledgements

We are grateful to F.M. Ausubel, H.-P. Cheng, J. Dénarié, D.J. Gage, S.R. Long, E.R. Signer and G.C. Walker and their colleagues for strains, and also to A. Sagasti for the use of the confocal microscope. B. Sjostrand and M. Cilluffo are thanked for their assistance with the TEM experiments, and we thank R. Gunsalus and J. Lake for their comments on an earlier version of the manuscript. We also acknowledge B. Lazazzera and N. Stanley for their help in the biofilm experiments. This work was supported in part by a UCLA Doctoral Dissertation Grant given to N.A.F. and by a Shanbrom Family Foundation Grant to A.M.H.

References

- Ardourel, M., Demont, N., Debellé, F., Maillet, F., de Billy, F., Promé, J.C., et al. (1994) *Rhizobium meliloti* lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic responses. *Plant Cell* 6: 1357–1374.
- Bringhurst, R.M., Cardon, Z.G., and Gage, D.J. (2001) Galactosides in the rhizosphere: utilization by *Sinorhizobium meliloti* and development of a biosensor. *Proc Natl Acad Sci USA* 98: 4540–4545.
- Cheng, H.-P., and Walker, G.C. (1998) Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by *Rhizobium meliloti*. *J Bacteriol* **180**: 5183–5191.
- Dusha, I., Austin, S., and Dixon, R. (1999a) The upstream region of the *nodD3* gene of *Sinorhizobium meliloti* carries enhancer sequences for the transcriptional activator NtrC. *FEMS Microbiol Lett* **179**: 491–499.
- Dusha, I., Oláh, B., Szegletes, Z., Erdei, L., and Kondorosi, A. (1999b) syrM is involved in the determination of the amount and ratio of the two forms of the acidic exopolysaccharide EPSI in Rhizobium meliloti. Mol Plant Microbe Interact 12: 755–765.
- Figurski, D.H., and Helinski, D.R. (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided *in trans. Proc Natl Acad Sci USA* **76:** 1648–1652.
- Friedman, A.M., Long, S.R., Brown, S.E., Buikema, W.J., and Ausubel, F.M. (1982) Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of *Rhizobium* mutants. *Gene* 18: 289–296.
- Fujishige, N.A., Kapadia, N., De Hoff, P.L., and Hirsch, A.M. (2006a) Investigations of *Rhizobium* biofilm formation. *FEMS Microbiol Ecol* **56**: 195–206.
- Fujishige, N.A., Rinauldi, L., Giordano, W., and Hirsch, A.M.

© 2007 The Authors

Journal compilation © 2007 Blackwell Publishing Ltd, Molecular Microbiology, 67, 504-515

514 N. A. Fujishige et al.

(2006b) Superficial liaisons: colonization of roots and abiotic surfaces by rhizobia. In *Biology of Plant-Microbe Interactions, Vol. 5. Proceedings of the 12th International Congress on Molecular Plant-Microbe Interactions.* Sánchez, F., Quinto, C., López-Lara, I.M., and Geiger, O. (eds). St. Paul, MN: ISMPMI Press, pp. 292–299.

- Fujishige, N.A., Kapadia, N., and Hirsch, A.M. (2006c) A feeling for the microorganism: structure on a small scale. Biofilms on plant roots. *Bot J Linn Soc* **150**: 79–88.
- Galibert, F., Finan, T.M., Long, S.R., Pühler, A., Abola, P., Ampe, F., Barley-Hubler, F., *et al.* (2001) The composite genome of the legume symbiont *Sinorhizobium meliloti*. *Science* **293:** 668–672.
- Garfinkel, D., Simpson, R., Ream, L., White, F., Gordon, M., and Nester, E. (1981) Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. *Cell* **27:** 143–153.
- Geurts, R., Fedorova, E., and Bisseling, T. (2005) Nod factor signaling genes and their function in the early stages of *Rhizobium* infection. *Curr Opin Plant Biol* 83: 346–352.
- Giraud, E., Moulin, L., Vallenet, D., Barbe, V., Cytryn, E., Avarre, J.-C., Jaubert, M., *et al.* (2007) Legume symbioses: absence of *nod* genes in photosynthetic bradyrhizobia. *Science* **316**: 1307–1312.
- Goldberg, S., Doyle, R.J., and Rosenberg, M. (1990) Mechanism of enhancement of microbial cell hydrophobicity by cationic polymers. *J Bacteriol* **172:** 5650–5654.
- Götz, F. (2002) *Staphylococcus* and biofilms. *Mol Microbiol* **43:** 1367–1378.
- Heilmann, C., Schweitzer, O., Gerke, C., Vanittanakom, N., Mack, D., and Götz, F. (1996) Molecular basis of intercellular adhesion in the biofilm-forming *Staphylococcus epidermidis. Mol Microbiol* **20**: 1083–1091.
- Hirsch, A.M., Drake, D., Jacobs, T.W., and Long, S.R. (1985) Nodules are induced on alfalfa roots by *Agrobacterium tumefaciens* and *Rhizobium trifolii* containing small segments of the *Rhizobium meliloti* nodulation region. *J Bacteriol* **161:** 223–230.
- Hirsch, A.M., Asad, S., Wycoff, K., Fang, Y., and Löbler, M. (1993) Molecular interactions during nodule development. In *New Horizons in Nitrogen Fixation*. Palacios, R., Mora, J., and Newton, W.E. (eds). Dordrecht: Kluwer, pp. 291– 296.
- Honda, T., Khan, M.M.A., Takeda, Y., and Miwatani, T. (1983) Grouping of enterotoxigenic *Escherichia coli* by hydrophobicity and its relation to hemagglutination and enterotoxin productions. *FEMS Microbiol Lett* **17**: 273–276.
- Honma, M.A., and Ausubel, F.M. (1987) *Rhizobium meliloti* has three functional copies of the *nodD* symbiotic regulatory gene. *Proc Natl Acad Sci USA* 84: 8558–8562.
- Jacobs, T.W., Egelhoff, T.T., and Long, S.R. (1985) Physical and genetic map of a *Rhizobium meliloti* nodulation gene region and nucleotide sequence of *nodC. J Bacteriol* **162**: 469–476.
- Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Promé, J., and Dénarié, J. (1990) Symbiotic hostspecificity of *Rhizobium meliloti* is determined by a sulphated and acylated glucosamine oligosaccharide signal. *Nature* **344**: 781–784.
- Lévesque, C., Vadeboncoeur, C., and Frenette, M. (2004) The *csp* operon of *Streptococcus salivarius* encodes two

predicted cell-surface proteins, one of which, CspB, is associated with the fimbriae. *Microbiology* **150**: 189–198.

- Meade, H.M., Long, S.R., Ruvkun, G.B., Brown, S.E., and Ausubel, F.M. (1982) Physical and genetic characterization of symbiotic and auxotrophic mutants of *Rhizobium meliloti* induced by transposon Tn5 mutagenesis. *J Bacteriol* 149: 114–122.
- Merker, R., and Smit, J. (1988) Characterization of the adhesive holdfast of marine and freshwater caulobacters. *Appl Environ Microbiol* 54: 2078–2085.
- Miller, W.G., Leveau, J.H.J., and Lindow, S.E. (2000) Improved *gfp* and *inaZ* broad-host-range promoter-probe vectors. *Mol Plant Microbe Interact* **13:** 1243–1250.
- Moulin, L., Munive, A., Dreyfus, B., and Boivin-Masson, C. (2001) Nodulation of legumes by members of the betasubclass of Proteobacteria. *Nature* **411**: 948–950.
- Mulligan, J.T., and Long, S.R. (1985) Induction of *Rhizobium* meliloti nodC expression by plant exudate requires nodD. Proc Natl Acad Sci USA 28: 6609–6613.
- Oldroyd, G.E.D., and Downie, J.A. (2006) Nuclear calcium changes at the core of symbiosis signalling. *Curr Opin Plant Biol* **9:** 351–357.
- Ong, C.J., Wong, M.L.Y., and Smit, J. (1990) Attachment of the adhesive holdfast organelle to the cellular stalk of *Caulobacter crescentus. J Bacteriol* **172**: 1448–1456.
- Phillips, D.A., Joseph, C.M., and Maxwell, C.A. (1992) Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein in *Rhizobium meliloti*. *Plant Physiol* **99:** 1526–1531.
- Relic, B., Talmont, F., Kopcinska, J., Golinowski, W., Promé, J.C., and Broughton, W.J. (1993) Biological activity of *Rhizobium* sp. NGR234 Nod-factors on *Macroptilium atropurpureum*. *Mol Plant Microbe Interact* 6: 764–774.
- Sambrook, J., and Russell, D.W. (2001) *Molecular Cloning: A Laboratory Manual*, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
- Stanley, N.R., Britton, R.A., Grossman, A.D., and Lazazzera, B.A. (2003) Identification of catabolite repression as a physiological regulator of biofilm formation by *Bacillus subtilis* by use of DNA microarrays. *J Bacteriol* **185**: 1951–1957.
- Swanson, J.A., Mulligan, J.T., and Long, S.R. (1993) Regulation of *syrM* and *nodD3* in *Rhizobium meliloti. Genetics* **134:** 435–444.
- Timmers, A.C.J., Auriac, M.-C., de Billy, F., and Truchet, G. (1998) Nod factor internalization and microtubular cytoskeleton changes occur concomitantly during nodule differentiation in alfalfa. *Development* **125**: 339–349.
- Truchet, G., Roche, P., Lerouge, P., Vasse, J., Camut, S., de Billy, F., *et al.* (1991) Sulphated lipo-oligosaccharide signals of *Rhizobium meliloti* elicit root nodule organogenesis in alfalfa. *Nature* **351**: 670–673.
- Vuong, C., Voyich, J.M., Fischer, E.R., Braughton, K.R., Whitney, E.R., DeLeo, F.R., and Otto, M. (2004) Polysaccharide intercellular adhesin (PIA) protects *Staphylococcus epidermidis* against major components of the human innate immune system. *Cell Microbiol* **6**: 269–275.
- Walker, S.A., and Downie, J.A. (2000) Entry of *Rhizobium leguminosarum* bv. *viciae* into root hairs requires minimal Nod factor specificity, but subsequent infection thread growth requires *nodO* or *nodE*. *Mol Plant Microbe Interact* **13:** 754–762.

© 2007 The Authors

Rhizobial biofilms and nod genes 515

Supplementary material

This material is available as part of the online article from: http://www.blackwell-synergy.com/doi/abs/10.1111/ j.1365-2958.2007.06064.x

(This link will take you to the article abstract).

Please note: Blackwell Publishing is not responsible for the content or functionality of any supplementary materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.