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Abstract

We introduce a variant of the k-nearest neighbor classifier in which k is chosen1

adaptively for each query, rather than supplied as a parameter. The choice of2

k depends on properties of each neighborhood, and therefore may significantly3

vary between different points. (For example, the algorithm will use larger k for4

predicting the labels of points in noisy regions.)5

We provide theory and experiments that demonstrate that the algorithm performs6

comparably to, and sometimes better than, k-NN with an optimal choice of k. In7

particular, we derive bounds on the convergence rates of our classifier that depend8

on a local quantity we call the “advantage” which is significantly weaker than the9

Lipschitz conditions used in previous convergence rate proofs. These generalization10

bounds hinge on a variant of the seminal Uniform Convergence Theorem due to11

Vapnik and Chervonenkis; this variant concerns conditional probabilities and may12

be of independent interest.13

1 Introduction14

We introduce an adaptive nearest neighbor classification rule. Given a training set with labels {±1},15

its prediction at a query point x is based on the training points closest to x, rather like the k-nearest16

neighbor rule. However, the value of k that it uses can vary from query to query. Specifically, if there17

are n training points, then for any query x, the smallest k is sought for which the k points closest to x18

have labels whose average is either greater than +∆(n, k), in which case the prediction is +1, or less19

than −∆(n, k), in which case the prediction is −1; and if no such k exists, then “?” (“don’t know”)20

is returned. Here, ∆(n, k) ∼
√

(log n)/k corresponds to a confidence interval for the average label21

in the region around the query.22

We study this rule in the standard statistical framework in which all data are i.i.d. draws from some23

unknown underlying distribution P on X ×Y , where X is the data space and Y is the label space. We24

takeX to be a separable metric space, with distance function d : X×X → R, and we take Y = {±1}.25

We can decompose P into the marginal distribution µ on X and the conditional expectation of the26

label at each point x: if (X,Y ) represents a random draw from P , define η(x) = E(Y |X = x). In27

this terminology, the Bayes-optimal classifier is the rule g∗ : X → {±1} given by28

g∗(x) =

{
sign(η(x)) if η(x) 6= 0
either −1 or +1 if η(x) = 0

(1)

and its error rate is the Bayes risk, R∗ = 1
2EX∼µ [1− |η(X)|]. A variety of nonparametric classi-29

fication schemes are known to have error rates that converge asymptotically to R∗. These include30

k-nearest neighbor (henceforth, k-NN) rules [FH51] in which k grows with the number of training31

points n according to a suitable schedule (kn), under certain technical conditions on the metric32

measure space (X , d, µ).33

In this paper, we are interested in consistency as well as rates of convergence. In particular, we find34

that the adaptive nearest neighbor rule is also asymptotically consistent (under the same technical35

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.
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Figure 1: For values of x on the left half of the shown interval, the pointwise bias η(x) is close to
−1 or 1, and thus a small value of k will yield an accurate prediction. Larger k will not do as well,
because they may run into neighboring regions with different labels. For values of x on the right half
of the interval, η(x) is close to 0, and thus large k is essential for accurate prediction.

conditions) while converging at a rate that is about as good as, and sometimes significantly better36

than, that of k-NN under any schedule (kn).37

Intuitively, one of the advantages of k-NN over nonparametric classifiers that use a fixed bandwidth38

or radius, such as Parzen window or kernel density estimators, is that k-NN automatically adapts to39

variation in the marginal distribution µ: in regions with large µ, the k nearest neighbors lie close to40

the query point, while in regions with small µ, the k nearest neighbors can be further afield. The41

adaptive NN rule that we propose goes further: it also adapts to variation in η. In certain regions of42

the input space, where η is close to 0, an accurate prediction would need large k. In other regions,43

where η is near −1 or 1, a small k would suffice, and in fact, a larger k might be detrimental because44

neighboring regions might be labeled differently. See Figure 1 for one such example. A k-NN45

classifier is forced to pick a single value of k that trades off between these two contingencies. Our46

adaptive NN rule, however, can pick the right k in each neighborhood separately.47

Our estimator allows us to give rates of convergence that are tighter and more transparent than those48

customarily obtained in nonparametric statistics. Specifically, for any point x in the instance space49

X , we define a notion of the advantage at x, denoted adv(x), which is rather like a local margin.50

We show that the prediction at x is very likely to be correct once the number of training points51

exceeds Õ(1/adv(x)). Universal consistency follows by establishing that almost all points have52

positive advantage.53

1.1 Relation to other work in nonparametric estimation54

For linear separators and many other parametric families of classifiers, it is possible to give rates55

of convergence that hold without any assumptions on the input distribution µ or the conditional56

expectation function η. This is not true of nonparametric estimation: although any target function can57

in principle be captured, the number of samples needed to achieve a specific level of accuracy will58

inevitably depend upon aspects of this function such as how fast it changes [DGL96, chapter 7]. As a59

result, nonparametric statistical theory has focused on (1) asymptotic consistency, ideally without60

assumptions, and (2) rates of convergence under a variety of smoothness assumptions.61

Asymptotic consistency has been studied in great detail for the k-NN classifier, when k is allowed62

to grow with the number of data points n. The risk of the classifier, denoted Rn, is its error rate63

on the underlying distribution P ; this is a random variable that depends upon the set of training64

points seen. Cover and Hart [CH67] showed that in general metric spaces, under the assumption65

that every x in the support of µ is either a continuity point of η or has µ({x}) > 0, the expected66

risk ERn converges to the Bayes-optimal risk R∗, as long as k → ∞ and k/n → 0. For points67

in finite-dimensional Euclidean space, a series of results starting with Stone [Sto77] established68

consistency without any assumptions on µ or η, and showed that Rn → R∗ almost surely [DGKL94].69

2



More recent work has extended these universal consistency results—that is, consistency without70

assumptions on η—to arbitrary metric measure spaces (X , d, µ) that satisfy a certain differentiation71

condition [CG06, CD14].72

Rates of convergence have been obtained for k-nearest neighbor classification under various smooth-73

ness conditions including Holder conditions on η [KP95, Gyö81] and “Tsybakov margin” condi-74

tions [MT99, AT07, CD14]. Such assumptions have become customary in nonparametric statistics,75

but they leave a lot to be desired. First, they are uncheckable: it is not possible to empirically76

determine the smoothness given samples. Second, they view the underlying distribution P through77

the tiny window of two or three parameters, obscuring almost all the remaining structure of the78

distribution that also influences the rate of convergence. Finally, because nonparametric estimation is79

local, there is the intriguing possibility of getting different rates of convergence in different regions80

of the input space: a possibility that is immediately defeated by reducing the entire space to two81

smoothness constants.82

The first two of these issues are partially addressed by recent work of [CD14], who analyze the finite83

sample risk of k-NN classification without any assumptions on P . Their bounds involve terms that84

measure the probability mass of the input space in a carefully defined region around the decision85

boundary, and are shown to be “instance-optimal”: that is, optimal for the specific distribution P ,86

rather than minimax-optimal for some very large class containing P . However, the expressions for87

the risk are somewhat hard to parse, in large part because of the interaction between n and k.88

In the present paper, we obtain finite-sample rates of convergence that are “instance-optimal” not89

just for the specific distribution P but also for the specific query point. This is achieved by defining90

a margin, or advantage, at every point in the input space, and giving bounds (Theorem 1) entirely91

in terms of this quantity. For parametric classification, it has become common to define a notion92

of margin that controls generalization. In the nonparametric setting, it makes sense that the margin93

would in fact be a function X → R, and would yield different generalization error bounds in different94

regions of space. Our adaptive nearest neighbor classifier allows us to realize this vision in a fairly95

elementary manner.96

Organization. Due to space limitations, all proofs are relegated to appendices.97

We begin by formally defining the setup and notation in Section 2. Then, a formal description of98

the adaptive k-NN algorithm is given in Section 3. In Sections 4 and 5 and appendix A, we state99

and prove consistency and generalization bounds for this classifier, and compare them with previous100

bounds in the k-NN literature. These bounds exploit a general VC-based uniform convergence101

statement which is presented and proved in a self-contained manner in Appendix B.102

2 Setup103

Take the instance space to be a separable metric space (X , d) and the label space to be Y = {±1}.104

All data are assumed to be drawn i.i.d. from a fixed unknown distribution P over X × Y .105

Let µ denote the marginal distribution on X : if (X,Y ) is a random draw from P , then

µ(S) = Pr(X ∈ S)

for any measurable set S ⊆ X . For any x ∈ X , the conditional expectation, or bias, of Y given x, is

η(x) = E(Y |X = x) ∈ [−1, 1].

Similarly, for any measurable set S with µ(S) > 0, the conditional expectation of Y given X ∈ S is

η(S) = E(Y |X ∈ S) =
1

µ(S)

∫
S

η(x) dµ(x).

The risk of a classifier g : X → {−1,+1, ?} is the probability that it is incorrect on pairs (X,Y ) ∼ P ,106

107

R(g) = P ({(x, y) : g(x) 6= y}). (2)
The Bayes-optimal classifier g∗, as given in (1), depends only on η, but its risk R∗ depends on µ. For108

a classifier gn based on n training points from P , we will be interested in whether R(gn) converges109

to R∗, and the rate at which this convergence occurs.110
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Given:
• training set (x1, y1), . . . , (xn, yn) ∈ X × {±1}
• confidence parameter 0 < δ < 1

To predict at x ∈ X :
• For any integer k, let Bk(x) denote the smallest ball centered at x that contains

exactly k training points. a

• Find the smallest 0 < k ≤ n for which the Bk(x) has a significant bias: that
is, |ηn(Bk(x))| > ∆(n, k, δ), where

∆(n, k, δ) = c1

√
log n+ log(1/δ)

k
. (6)

• If there exists such a ball, return label sign(ηn(Bk(x))).
• If no such ball exists: return “?”

aWhen several points have the same distance to x there might be some values of k for which Bk(x)
is undefined. Our algorithm skips such values of k.

Figure 2: The adaptive k-NN (AKNN) classifier. The absolute constant c1 is from Lemma 6.

The algorithm and analysis in this paper depend heavily on the probability masses and biases of balls
in X . For x ∈ X and r ≥ 0, let B(x, r) denote the closed ball of radius r centered at x,

B(x, r) = {z ∈ X : d(x, z) ≤ r}.
For 0 ≤ p ≤ 1, let rp(x) be the smallest radius r such that B(x, r) has probability mass at least p,111

that is,112

rp(x) = inf{r ≥ 0 : µ(B(x, r)) ≥ p}. (3)

It follows that µ(B(x, rp(x))) ≥ p.113

The support of the marginal distribution µ plays an important role in convergence proofs and is
formally defined as

supp(µ) = {x ∈ X : µ(B(x, r)) > 0 for all r > 0}.
It is a well-known consequence of the separability of X that µ(supp(µ)) = 1 [CH67].114

3 The adaptive k-nearest neighbor algorithm115

The algorithm is given a labeled training set (x1, y1), . . . , (xn, yn) ∈ X × Y . Based on these points,116

it is able to compute empirical estimates of the probabilities and biases of different balls.117

For any set S ⊆ X , we define its empirical count and probability mass as118

#n(S) = |{i : xi ∈ S}|

µn(S) =
#n(S)

n
. (4)

If this is non-zero, we take the empirical bias to be119

ηn(S) =

∑
i:xi∈S yi

#n(S)
. (5)

The adaptive k-NN algorithm (AKNN) is shown in Figure 2. It makes a prediction at x by growing a120

ball around x until the ball has significant bias, and then choosing the corresponding label. In some121

cases, a ball of sufficient bias may never be obtained, in which event “?” is returned. In what follows,122

let gn : X → {−1,+1, ?} denote the AKNN classifier.123
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Later, we will also discuss a variant of this algorithm in which a modified confidence interval,124

∆(n, k, δ) = c1

√
d0 log n+ log(1/δ)

k
, (7)

is used, where d0 is the VC dimension of the family of balls in (X , d).125

4 Pointwise advantage and rates of convergence126

We now provide finite-sample rates of convergence for the adaptive nearest neighbor rule. For127

simplicity, we give convergence rates that are specific to any query point x and that depend on a128

suitable notion of the “margin” of distribution P around x.129

Pick any p, γ > 0. Recalling definition (3), we say a point x ∈ X is (p, γ)-salient if the following130

holds for either s = +1 or s = −1:131

• sη(x) > 0, and sη(B(x, r)) > 0 for all r ∈ [0, rp(x)), and sη(B(x, rp(x))) ≥ γ.132

In words, this means that g∗(x) = s (recall that g∗ is the Bayes classifier), that the biases of all balls133

of radius ≤ rp(x) around x have the same sign as s, and that the bias of the ball of radius rp(x) has134

margin at least γ. A point x can satisfy this definition for a variety of pairs (p, γ). The advantage135

of x is taken to be the largest value of pγ2 over all such pairs:136

adv(x) =

{
sup{pγ2 : x is (p, γ)-salient} if η(x) 6= 0
0 if η(x) = 0

(8)

We will see (Lemma 3) that under a mild condition on the underlying metric measure space, almost137

all x with η(x) 6= 0 have a positive advantage.138

4.1 Advantage-based finite-sample bounds139

The following theorem shows that for every point x, if the sample size n satisfies n ' 1/adv(x),140

then the label of x is likely to be g∗(x), where g∗ is the Bayes optimal classifier. This provides a141

pointwise convergence of g(x) to g∗(x) with a rate which is sensitive to the “local geometry” of x.142

Theorem 1 (Pointwise convergence rate). There is an absolute constant C > 0 for which the143

following holds. Let 0 < δ < 1 denote the confidence parameter in the AKNN algorithm (Figure 2),144

and suppose the algorithm is used to define a classifier gn based on n training points chosen i.i.d.145

from P . Then, for every point x ∈ supp(µ), if146

n ≥ C

adv(x)
max

(
log

1

adv(x)
, log

1

δ

)
then with probability at least 1− δ we have that gn(x) = g∗(x).147

If we further assume that the family of all balls in the space has finite VC dimension do then we148

can strengthen Theorem 1 so that the guarantee holds with high probability simultaneously for149

all x ∈ supp(µ). This is achieved by a modified version of the algorithm that uses confidence interval150

(7) instead of (6).151

Theorem 2 (Uniform convergence rate). Suppose that the set of balls in (X , d) has finite VC152

dimension d0, and that the algorithm of Figure 2 is used with confidence interval (7) instead of (6).153

Then, with probability at least 1 − δ, the resulting classifier gn satisfies the following: for every154

point x ∈ supp(µ), if155

n ≥ C

adv(x)
max

(
log

1

adv(x)
, log

1

δ

)
then gn(x) = g∗(x).156

A key step towards proving Theorems 1 and 2 is to identify the subset of X that is likely to be157

correctly classified for a given number of training points n. This follows the rough outline of [CD14],158

which gave rates of convergence for k-nearest neighbor, but there are two notable differences. First,159

we will see that the likely-correct sets obtained in that earlier work (for k-NN) are subsets of those160

we obtain for the new adaptive nearest neighbor procedure. Second, the proof for our setting is161

considerably more streamlined; for instance, there is no need to devise tie-breaking strategies for162

deciding the identities of the k nearest neighbors.163

5



4.2 A comparison with k-nearest neighbor164

For a ≥ 0, let Xa denote all points with advantage greater than a:165

Xa = {x ∈ supp(µ) : adv(x) > a}. (9)

In particular, X0 consists of all points with positive advantage.166

By Theorem 1, points in Xa are likely to be correctly classified when the number of training points167

is Ω̃(1/a), where the Ω̃(·) notation ignores logarithmic terms. In contrast, the work of [CD14]168

showed that with n training points, the k-NN classifier is likely to correctly classify the following set169

of points:170

X ′n,k = {x ∈ supp(µ) : η(x) > 0, η(B(x, r)) ≥ k−1/2 for all 0 ≤ r ≤ rk/n(x)}
∪ {x ∈ supp(µ) : η(x) < 0, η(B(x, r)) ≤ −k−1/2 for all 0 ≤ r ≤ rk/n(x)}.

Such points are (k/n, k−1/2)-salient and thus have advantage at least 1/n. In fact,⋃
1≤k≤n

X ′n,k ⊆ X1/n.

In this sense, the adaptive nearest neighbor procedure is able to perform roughly as well as all choices171

of k simultaneously (logarithmic factors prevent this from being a precise statement).172

5 Universal consistency173

In this section we study the convergence of R(gn) to the Bayes risk R∗ as the number of points n174

grows. An estimator is described as universally consistent in a metric measure space (X , d, µ) if it175

has this desired limiting behavior for all conditional expectation functions η.176

Earlier work [CD14] has established the universal consistency of k-nearest neighbor (for k/n→ 0177

and k/(log n)→∞) in any metric measure space that satisfies the Lebesgue differentiation condition:178

that is, for any bounded measurable f : X → R and for almost all (µ-a.e.) x ∈ X ,179

lim
r↓0

1

µ(B(x, r))

∫
B(x,r)

f dµ = f(x). (10)

This is known to hold, for instance, in any finite-dimensional normed space or any doubling metric180

space [Hei01, Chapter 1].181

We will now see that this same condition implies the universal consistency of the adaptive nearest182

neighbor rule. To begin with, it implies that almost every point has a positive advantage.183

Lemma 3. Suppose metric measure space (X , d, µ) satisfies condition (10). Then, for any conditional
expectation η, the set of points

{x ∈ X : η(x) 6= 0, adv(x) = 0}
has zero µ-measure.184

Proof. Let X ′ ⊆ X consist of all points x ∈ supp(µ) for which condition (10) holds true with f = η,185

that is, limr↓0 η(B(x, r)) = η(x). Since µ(supp(µ)) = 1, it follows that µ(X ′) = 1.186

Pick any x ∈ X ′ with η(x) 6= 0; without loss of generality, η(x) > 0. By (10), there exists ro > 0
such that

η(B(x, r)) ≥ η(x)/2 for all 0 ≤ r ≤ ro.
Thus x is (p, γ)-salient for p = µ(B(x, ro)) > 0 and γ = η(x)/2, and has positive advantage.187

Universal consistency follows as a consequence; the proof details are deferred to Section A.188

Theorem 4 (Universal consistency). Suppose the metric measure space (X , d, µ) satisfies condi-189

tion (10). Let (δn) be a sequence in [0, 1] with (1)
∑
n δn <∞ and (2) limn→∞(log(1/δn))/n = 0.190

Let the classifier gn,δn : X → {−1,+1, ?} be the result of applying the AKNN procedure (Figure 2)191

with n points chosen i.i.d. from P and with confidence parameter δn. Letting Rn = R(gn,δn) denote192

the risk of gn,δn , we have Rn → R∗ almost surely.193
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Figure 3: Effect of label noise on k-NN and AKNN. Performance on MNIST for different levels of
random label noise p and for different values of k. Each line in the figure on the left (a) represents the
performance of k-NN as a function of k for a given level of noise. The optimal choice of k increases
with the noise level, and that the performance degrades severely for too-small k. The table (b) shows
that AKNN, with a fixed value of A, performs almost as well as k-NN with the optimal choice of k.

At left: performance of AKNN on notMNIST
for different settings of the confidence param-
eter (A = 1, 3, 9), as a function of the neigh-
borhood size. For each confidence level we
show two graphs: an accuracy graph (solid
lines) and a coverage line (dashed line). For
each value of k we plot the accuracy and the
coverage of AKNN which is restricted to us-
ing a neighborhood size of at most k. In-
creasing A generally causes an increase in the
accuracy and a decrease in coverage. Larger
values of A cause AKNN to have coverage
zero for values of k that are too small. For
comparison, we plot the performance of k-
NN as a function of k. The highest accuracy
(≈ 0.88) is achieved for k = 10 (dotted hori-
zontal line), and is surpassed by AKNN with
high coverage (100% for A = 1).

Figure 4: Performance of AKNN on notMNIST. See also Figure 5.

6 Experiments194

We performed a few experiments using real-world datasets from computer vision and genomics (see195

Section C). These were conducted with some practical alterations to the algorithm of Fig. 2.196

Multiclass extension: Suppose the set of possible labels is Y . We replace the binary rule “find197

the smallest k such that |ηn(Bk(x))| > ∆(n, k, δ)" with the rule: “find the smallest k such that198

ηyn(Bk(x))− 1
|Y| > ∆(n, k, δ) for some y ∈ Y , where ηyn(S)

.
= #n{xi∈S and yi=y}

#n(S)
."199

Parametrization: We replace Equation (6) with ∆ = A√
k

, where A is a confidence parameter.200

Resolving multilabel predictions: Our algorithm can output answers that are not a single label. The201

output can be “?”, which indicates that no label has sufficient evidence. It can also be a subset of Y202

that contains more than one element, indicating that more than one label has significant evidence. In203

some situations, using subsets of the labels is more informative. However, when we want to compare204

head-to-head with k-NN, we need to output a single label. We use a heuristic to predict with a single205

label y ∈ Y on any x: the label for which maxk η
y
n(Bk(x))/

√
k is largest.206

We briefly discuss our main conclusions from the experiments, with further details deferred to207

Appendix C.208
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Figure 5: A visualization of the performance of AKNN on notMNIST. (a) The correct labels, with
prediction errors of AKNN (A = 4) highlighted. (b) The value of k chosen by the algorithm
when predicting each datapoint. Zooming in reveals more details. An interactive explorer for our
experiments is available at http://35.239.251.24/aknn/.

AKNN is comparable to the best k-NN rule. In Section 4.2 we prove that AKNN compares209

favorably to k-NN with any fixed k. We demonstrate this in practice in different situations. With210

simulated independent label noise on the MNIST dataset (Fig. 3), a small value of k is optimal for211

noiseless data, but performs very poorly when the noise level is high. On the other hand, AKNN212

adapts to the local noise level automatically, as demonstrated without adding noise on the more213

challenging notMNIST and single-cell genomics data (Fig. 4, 5, 6).214

Varying the confidence parameter A controls abstaining. The parameter A controls how conser-215

vative the algorithm is deciding to abstain, instead of incurring error by predicting. A→ 0 represents216

the most aggressive setting, in which the algorithm never abstains, essentially predicting according to217

a 1-NN rule. Higher settings of A cause the algorithm to abstain on some of these predicted points,218

for which there is no sufficiently small neighborhood with a sufficiently significant label bias (Fig. 7).219

Adaptively chosen neighborhood sizes reflect local confidence. The number of neighbors chosen220

by AKNN is a local quantity that gives a practical pointwise measure of the confidence associated with221

label predictions. Small neighborhoods are chosen when one label is measured as significant nearly222

as soon as statistically possible; by definition of the AKNN stopping rule, this is not true where large223

neighborhoods are necessary. In our experiments, performance on points with significantly higher224

neighborhood sizes dropped monotonically, with the majority of the dataset having performance225

significantly exceeding the best k-NN rule over a range of settings of A (Fig. 4, 6; Appendix C).226
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A Analysis and proofs275

The first step in establishing advantage-dependent rates of convergence is to bound the accuracy276

of empirical estimates of probability mass and bias. This is achieved by a careful choice of large277

deviation bounds.278

A.1 Large deviation bounds279

Suppose we draw n points (x1, y1), . . . , (xn, yn) from P . If n is reasonably large, we would expect280

the empirical mass µn(S) of any set S ⊂ X , as defined in (4), to be close to its probability mass281

under µ. The following lemma, from [CD10], quantifies one particular aspect of this.282

Lemma 5 ([CD10], Lemma 7). There is a universal constant co such that the following holds. Let B
be any class of measurable subsets of X of VC dimension d0. Pick any 0 < δ < 1. Then with
probability at least 1 − δ2/2 over the choice of (x1, y1), . . . , (xn, yn), for all B ∈ B and for any
integer k, we have

µ(B) ≥ k

n
+
co
n

max
(
k, d0 log

n

δ

)
=⇒ µn(B) ≥ k

n
.

283

Likewise, we would expect the empirical bias ηn(S) of a set S ⊂ X , as defined in (5), to be close to284

its true bias η(S). The latter is defined whenever µ(S) > 0.285

Lemma 6. There is a universal constant c1 for which the following holds. Let C be a class of subsets
of X with VC dimension d0. Pick any 0 < δ < 1. Then with probability at least 1− δ2/2 over the
choice of (x1, y1), . . . , (xn, yn), for all C ∈ C,

|ηn(C)− η(C)| ≤ ∆(n,#n(C), δ)

where #n(C) = |{i : xi ∈ B}| is the number of points in C and286

∆(n, k, δ) = c1

√
d0 log n+ log(1/δ)

k
. (11)

287

Lemma 6 is a special case1 of a uniform convergence bound for conditional probabilities (Theorem 8)288

that we present and prove in Appendix B.289

A.2 Proof of Theorem 1290

Theorem (Theorem 1 restatement). There is an absolute constant C > 0 for which the following291

holds. Let 0 < δ < 1 denote the confidence parameter in the AKNN algorithm (Figure 2), and292

suppose the algorithm is used to define a classifier gn based on n training points chosen i.i.d. from P .293

Then, for every point x ∈ supp(µ), if294

n ≥ C

adv(x)
max

(
log

1

adv(x)
, log

1

δ

)
then with probability at least 1− δ we have that gn(x) = g∗(x).295

Proof. Define c2 = max(c1, 1/2)
√

1 + co, where co and c1 are the constants from Lemmas 5 and 6,296

and take c3 = 16c22.297

Suppose η(x) > 0; the negative case is symmetric. The set B of all balls centered at x is easily seen298

to have VC dimension d0 = 1. By Lemmas 5 and 6, we have that with probability at least 1− δ2, the299

following two properties hold for all B ∈ B:300

1. For any integer k, we have #n(B) ≥ k whenever nµ(B) ≥ k + co max(k, log(n/δ)).301

2. |ηn(B)− η(B)| ≤ ∆(n,#n(B), δ).302

1Indeed, Lemma 6 follows from Theorem 8 by plugging in itA = {X ×{+1}},B = {C×{±1} : C ∈ C}.
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Assume henceforth that these hold.303

By the definition of advantage, point x is (p, γ)-salient for some p, γ > 0 with adv(x) = pγ2. The304

lower bound on n in the theorem statement implies that305

γ ≥ 2c2

√
log n+ log(1/δ)

np
, (12)

or equivalently that n · adv(x) ≥ 4c22(log n+ log(1/δ)).306

Set k = np/(1 + w). By (12) we have np ≥ 4c22 log(n/δ) and thus k ≥ log(n/δ). As a result,307

np ≥ k + wmax(k, log(n/δ)), and by property 1, the ball B = B(x, rp(x)) has #n(B) ≥ k. This308

means, in turn, that by property 2,309

ηn(B) ≥ η(B)−∆(n, k, δ) = γ − c1
√

log(n/δ)

k

≥ 2c2

√
log(n/δ)

np
− c1

√
log(n/δ)

k
≥ 2c1

√
log(n/δ)

k
− c1

√
log(n/δ)

k

= c1

√
log(n/δ)

k
≥ ∆(n,#n(B), δ).

Thus ball B would trigger a prediction of +1.310

At the same time, for any ball B′ = B(x, r) with r < rp(x),

ηn(B′) ≥ η(B′)−∆(n,#n(B′), δ) > −∆(n,#n(B′), δ)

and thus no such ball will trigger a prediction of −1. Therefore, the prediction at x must be +1.311

A.3 Proof of Theorem 2312

This proof follows much the same outline as that of Theorem 1. A crucial difference is that uniform313

large deviation bounds (Lemmas 5 and 6) are applied to the class of all balls in X , which is assumed2314

to have finite VC dimension d0. In contrast, the proof of Theorem 1 only applies these bounds to the315

class of balls centered at a specific point, which has VC dimension at most 1 in any metric space.316

A.4 Proof of Theorem 4317

Recall from (9) that Xa denotes the set of points with advantage > a.318

Lemma 7. Pick any 0 < δ < 1 as a confidence parameter for the AKNN estimator of Figure 2. Fix
any a > 0. If the number of training points n satisfies

n ≥ c3
a

max

(
log

c3
a
, log

1

δ

)
,

then with probability at least 1− δ, the resulting classifier gn has risk

R(gn)−R∗ ≤ δ + µ(X0 \ Xa).

319

Proof. From Theorem 1 , we have that for any x ∈ Xa,

Prn(gn(x) 6= g∗(x)) ≤ δ2,
where Prn denotes probability over the choice of training points. Thus, for X ∼ µ,

EnEX1(gn(X) 6= g∗(X)|X ∈ Xa) ≤ δ2,
and by Markov’s inequality,

Prn[PrX(gn(X) 6= g∗(X)|X ∈ Xa) ≥ δ] ≤ δ.
2This is motivated by finite-dimensional Euclidean space RD , where it holds with d0 = D + 1 ([Dud79]).
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Thus, with probability at least 1− δ over the training set,

PrX(gn(X) 6= g∗(X)|X ∈ Xa) ≤ δ.
On points with η(x) = 0, both gn and the Bayes-optimal g∗ incur the same risk. Thus320

R(gn)−R∗ ≤ PrX(gn(X) 6= g∗(X)|X ∈ Xa) + PrX(X 6∈ Xa, η(X) 6= 0)

≤ δ + PrX(X ∈ X0 \ Xa) + PrX(adv(X) = 0, η(X) 6= 0)

≤ δ + µ(X0 \ Xa),

where we invoke Lemma 3 for the last step.321

We now complete the proof of Theorem 4. Given the sequence of confidence parameters (δn), define
a sequence of advantage values (an) by

an =
c3
n

max

(
2 log n, log

1

δn

)
.

The conditions on (δn) imply an → 0.322

Pick any ε > 0. By the conditions on (δn), we can pick N so that
∑
n≥N δn ≤ ε. Let ω denote a

realization of an infinite training sequence (X1, Y1), (X2, Y2), . . . from P . By Lemma 7, for any
positive integer N ,

Pr (ω : ∃n ≥ N s.t. R(gn(ω))−R∗ > δn + µ(X0 \ Xan)) ≤
∑
n≥N

δn ≤ ε.

Thus, with probability at least 1− ε over the training sequence ω, we have that for all n ≥ N ,

R(gn(ω))−R∗ ≤ δn + µ(X0 \ Xan),

whereupon R(gn(ω)) → R∗ (since δn, an → 0 and lima↓0 µ(X0 \ Xa) = 0). Since this holds for323

any ε > 0, the theorem follows.324

B Uniform Convergence of Empirical Conditional Measures325

B.1 Formal Statement326

Let P be a distribution over X , and let A,B be two collections of events. Consider n independent327

samples from P , denoted by x1, . . . , xn. We would like to estimate P (A|B) simultaneously for328

all A ∈ A, B ∈ B. It is natural to consider the empirical estimates:329

Pn(A|B) =

∑
i 1[xi∈A∩B]∑
i 1[xi∈B]

.

We study when (and to what extent) these estimates provide a good approximation. Note that the330

case where B = {X} (i.e., in which one estimates P (A) using Pn(A) simultaneously for all A ∈ A)331

is handled by the classical VC theory. Throughout this section we assume that both A,B have a finite332

VC-dimension, and we let d0 denote an upper bound on both VC(A) and VC(B).333

To demonstrate the kinds of statements we would like to derive, consider the case where each of A,B334

contains only one event: A = {A}, and B = {B}, and set #n(B) =
∑
i 1[xi∈B]. A Chernoff335

bound implies that conditioned on the event that #n(B) > 0, the following holds with probability at336

least 1− δ:337

|P (A|B)− Pn(A|B)| ≤
√

2 log(1/δ)

#n(B)
. (13)

To derive it, use that conditioned on xi ∈ B, the event xi ∈ A has probability P (A|B), and therefore338

the random variable “#n(B) · pn(A|B)” has a binomial distribution with parameters #n(B) and339

P (A|B).340

Note that the bound on the error in Equation (13) depends on #n(B) and therefore is data-dependent.341

We stress that this is the type of statement we want: the more samples belong to B, the more certain342

we are with the empirical estimate. Thus, we would want to prove a statement as follows:343
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With probability at least 1− δ,344

(∀A ∈ A) (∀B ∈ B) : |P (A|B)− Pn(A|B)| ≤ O
(√

d0 log(1/δ)

#n(B)

)
,

where #n(B) =
∑n
i=1 1[xi ∈ B].345

The above statement is, unfortunately, false. As an example, consider the probability space defined346

by drawing x ∼ [n] uniformly, and then coloring x by cx ∈ {±1} uniformly. For each i let Bi347

denote the event that i was drawn, and let A denote the event that the drawn color was +1. (formally,348

Bi = {i}×{±1}, andA = [n]×{+1}). One can verify that the VC dimension of B = {Bi : i ≤ n}349

and of A = {A} is at most 1. The above statement fails in this setting: indeed, one can verify that if350

we draw n samples from this space then with a constant probability there will be some j such that:351

(i) j always gets the same color (say +1), and352

(ii) j is sampled at least Ω(log n/ log log n) times3.353

Therefore, with constant probability we get that354

Pn(A|Bi) = 1, P (A|Bi) = 1/2,

and so the difference between the error is clearly 1−(1/2) = 1/2, which is clearly not upper bounded355

by O(
√

log log n/ log n).356

We prove the following (slightly weaker) variant:357

Theorem 8 (UCECM). Let P be a probability distribution over X , and let A,B be two families358

of measurable subsets of X such that VC(A),VC(B) ≤ d0. Let n ∈ N, and let x1 . . . xn be n i.i.d359

samples from P . The, the following event occurs with probability at least 1− δ:360

(∀A ∈ A) (∀B ∈ B) : |P (A|B)− Pn(A|B)| ≤
√

ko
#n(B)

,

where ko = 1000 (d0 log(8n) + log(4/δ)), and4 #n(B) =
∑n
i=1 1[xi ∈ B].361

Discussion. Theorem 8 can be combined with Lemma 5 to yield a bound on the minimal n for362

which Pn(A|B) is a non-trivial approximation of P (A|B). Indeed, Lemma 5 implies that if n is large363

enough so that P (B) = Ω
(
d0 logn
n

)
, then the empirical estimate Pn(A|B) is a decent approximation.364

In the context of the adaptive nearest neighbor classifier, this means that the empirical biases provide365

meaningful estimates of the true biases for balls whose measure is Ω̃
(
d0
n

)
. This resembles the366

learning rate in realizable settings.367

We remark that a weaker statement than Theorem 8 can be derived as a corollary of the classical368

uniform convergence result [VC71]. Indeed, since the VC dimension of {B ∩A : i ∈ I} is at most369

d0, it follows that370

Pn(A|B) ≈ P (A ∩B)±
√
d0/n

P (B)±
√
d0/n

.

However, this bound guarantees non-trivial estimates only once P (B) is roughly
√
d0/n. This is371

similar to the learning rate in agnostic (i.e., non-realizable) settings.372

Another major advantage of the uniform convergence bound in Theorem 8 is that it is data-dependent:373

if many points from the sample belong to B ∈ B (i.e. #n(B) is large), then we get better guarantees374

on the approximation of P (A|B) by Pn(A|B) for all A ∈ A.375

3This follows from analyzing the maximal bin in a uniform assignment of Θ(n) balls into n bins [RS98]
4Note that the above inequality makes sense also when k(B) = 0, by identifying ·

0
as∞, and using the

convention that∞−∞ =∞ and that∞ ≤∞.
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B.2 Proof of Theorem 8376

As noted above, the standard uniform convergence bound for VC classes can not yield the bound377

in Theorem 8. Instead, we use a variant of it due to [BBL05] which concerns relative deviations378

(see [BBL05]: Theorem 5.1 and the discussion before Corollary 5.2). In order to state the theorem,379

we need the following notation: Let C be a family of subsets of X . We denote by SC : N→ N the380

growth function of C, which is defined by:381

SC(n) = max{|C|R| : R ⊆ X, |R| = n},
where C|R = {C ∩R : C ∈ C} is the projection of C to R.382

Theorem 9 ([BBL05]). Let C be a family of subsets of X and let P be a distribution over X . Then,383

the following holds with probability 1− δ:384

(∀C ∈ C) : |P (C)− Pn(C)| ≤ 2

√
Pn(C)

log SC(2n) + log(4/δ)

n
+ 4

log SC(2n) + log(4/δ)

n
.

Set C = B ∪ {A ∩B : A ∈ A, B ∈ B}. We prove Theorem 8 by applying Theorem 9 on C; to this385

end we first upper bound SC(n). Let D = {A ∩B : A ∈ A, B ∈ B}, so that C = B ∪ D. Then:386

SC(n) ≤ SB(n) + SD(n) ≤ SB(n) + SA(n)SB(n) ≤ 2SA(n)SB(n) ≤ 2

(
n

≤ d0

)2

≤ 2(2n)2d0 ,

where the second inequality follows since SD(n) ≤ SA(n)SB(n), the second to last inequality387

follows from the Sauer-Shelah-Perles Lemma, and the last inequality follows since
(
a
≤b
)
≤ (2a)b.388

Therefore, applying Theorem 9 on C yields that with probability 1− δ the following event holds:389

(∀C ∈ C) : |P (C)− Pn(C)| ≤ 4

√
Pn(C)

d0 log 8n+ log(4/δ)

n
+ 8

d0 log 8n+ log(4/δ)

n
. (14)

For the remainder of the proof we assume that the event in Equation (14) holds and argue that it390

implies the conclusion in Theorem 8. Let A ∈ A, B ∈ B, and let k = n · Pn(B) = #n(B) denote391

the number of data points in B. We want to show that392

|P (A|B)− Pn(A|B)| ≤
√
ko
k
, (15)

where ko = 1000 (d0 log(8n) + log(4/δ)). Let j = k · Pn(A|B) = #n(A ∩B) denote the number393

of data points in A ∩B. We establish Equation (15) by showing that394

P (A|B) ≤ Pn(A|B) +

√
ko
k

and P (A|B) ≥ Pn(A|B)−
√
ko
k
.

In the following calculation it will be convenient to denote D := d0 log(8n) + log(4/δ). By395

Equation (14) we get:396

P (A|B) =
P (A ∩B)

P (B)

≤
Pn(A ∩B) + 4

√
Pn(A ∩B)Dn + 8Dn

Pn(B)− 4
√
Pn(B)Dn − 8Dn

=

Pn(A∩B)
Pn(B) + 4

√
Pn(A∩B)
Pn(B)

D
nPn(B) + 8 D

nPn(B)

1− 4
√

D
nPn(B) − 8 D

nPn(B)

s = Pn(A|B)
1 + 4

√
D
j + 8Dj

1− 4
√

D
k − 8Dk

,

where the first inequality follows from Equation (14) and the following equalities are trivial. Thus,397

P (A|B) ≤ j

k

(
1 + 4

√
D
j + 8Dj

1− 4
√

D
k − 8Dk

)
. (16)
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Next, note that we may assume that k ≥ ko = 1000D, as otherwise Equation (15) trivially holds.398

Therefore,399

1

1− 4
√

D
k − 8Dk

≤ 1 + 8

√
D

k
+ 16

D

k
. ((∀x < 1

2 ) : 1
1−x ≤ 1 + 2x)

Plugging this in Equation (16), and using first that j ≤ k and then that 1000D ≤ k, yields:400

P (A|B) ≤ j

k

(
1 + 4

√
D

j
+ 8

D

j

)(
1 + 8

√
D

k
+ 16

D

k

)
=
j

k
+ 8

j

k

√
D

k

(
1 + 2

√
D

k

)
+
(4
√
jD + 8D

k

)(
1 + 4

√
D

k

)2
≤ j

k
+ 8

√
D

k

(
1 + 2

√
D

k

)
+
(

4

√
D

k
+

8D

k

)(
1 + 4

√
D

k

)2
≤ j

k
+ 30

√
D

k
= Pn(A|B) +

√
ko
k
,

and so401

P (A|B) ≤ Pn(A|B) +

√
ko
k
.

A symmetric argument yields similarly to Equation (16) that:402

P (A|B) ≥ j

k

(
1− 4

√
D
j − 8Dj

1 + 4
√

D
k + 8Dk

)
.

Then, a similar calculation (using the relation (∀x > 0) : 1
1+x ≥ 1− 2x) implies that403

P (A|B) ≥ Pn(A|B)−
√
ko
k
,

which finishes the proof.404

C Experimental Results405

C.1 Datasets406

We test AKNN on the notMNIST dataset ([not11]), consisting of extracted glyphs of the letters407

A-J from publicly available fonts. We use the 18724 labeled examples from this set, preprocessed408

feature-wise to be in [− 1
2 ,

1
2 ] using x 7→ x

255 − 1
2 .409

We also test on the MNIST dataset ([MNI]).410

We use AKNN on a challenging binary classification task of independent and continuing interest,411

involving gene expression data on a population single cells from different mouse organs collected412

by the Tabula Muris consortium ([C+18], as processed in [Mou18]). This constitutes 45291 cells413

(training examples). Each cell has its data collected using one of two approaches. The task is to414

classify between them.415

The data are collected using representative protocols of the two currently dominant approaches416

to isolate and measure single cells: a “plate"-based approach using microwells on a chip, and a417

“droplet"-based approach manipulating cells within droplets using microfluidic technologies. Each418

approach has its own set of technical biases, about which much remains to be understood. Identifying419

and characterizing these biases to discriminate between such approaches is currently of great interest.420

Both approaches measure effectively the same cells for our purposes, so there is a large decision421

boundary in the binary classification problem.422
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C.2 A note on efficient implementation423

In this paper, we computed the nearest neighbors of data exactly when running AKNN, to faithfully424

demonstrate its behavior. In practice, this would be done using approximate nearest-neighbor search425

to build a k-NN graph using a small fixed k (say 10), and then using pairwise distances on this426

graph to compute neighborhoods as needed by AKNN. We tried this (using the nearest-neighbor427

method of [DCL11]) on notMNIST without substantive differences in the results, and will release428

this implementation upon publication.429

C.3 Supplemental Figures430

Figure 6: As Fig. 4, on single-cell mouse data.

Figure 7: AKNN predictions on notMNIST, for different settings of A.
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Figure 8: AKNN neighborhood sizes on notMNIST, in increasing order of A, plotted on a log scale.
Top left figure (A = 0) represents a 1-NN classifier. Bottom right figure (A = 15) shows that many
of the points’ neighborhoods are maximally large, which can be compared to the right panel of Fig. 7.

Figure 9: As Fig. 8, on single-cell mouse data.
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