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Abstract 

The performance of distributed applications (such as file transfer, remote login, tele-conferencing, 
full-motion video, and scientific visualization) is influenced by several factors that interact in com­
plex ways. In particular, application performance is significantly affected both by communication 
infrastructure factors and computing infrastructure factors. Several communication infrastructure 
factors include channel speed, bit-error rate, and congestion at intermediate switching nodes. Com­
puting infrastructure factors include (among other things) both protocol processing activities (such 
as- connection management, flow control, error detection, and retransmission) and general operating 
system factors (such as memory latency, CPU speed, interrupt and context switching overhead, pro­
cess architecture, and message buffering). Due to a several orders of magnitude increase in network 
channel speed and an increase in application diversity, performance bottlenecks are shifting from the 
network factors to the transport system factors. 

This paper defines an abstraction called an "Operating System Transport System Architecture" 
(OSTSA) that is used to classify the major components and services in the computing infrastructure. 
End-to-end network protocols such as TCP, TP4, VMTP, XTP, and Delta-t typically run on general­
purpose computers, where they utilize various operating system resources such as processors, virtual 
memory, and network controllers. The OSTSA provides services that integrate these resources to 
support distributed applications running on local and wide area networks. 

A taxonomy is presented to evaluate OSTSAs in terms of their support for protocol processing 
activities. vVe use this taxonomy to compare and contrast five general-purpose commercial and 
experimental operating systems including System V UNIX, BSD UNIX, the x-kernel, Choices, and 
Xinu. 





1 Introduction 

In the past few years, the demand for many kinds of communication services has intensified. Dis­
tributed applications involving voice, video, data, and images are rapidly expanding, and application 
requirements and usage patterns are undergoing significant qualitative and quantitative changes. For 
instance, multimedia applications such as medical imaging, supercomputer graphics for scientific visu­
alization, and tele-conferencing have communication requirements that differ greatly from traditional 
data applications like remote login, email, and file transfer [Che86]. 

Qualitative changes in application requirements necessitate extremely high throughput (e.g., 
HDTV), strict real-time delivery (e.g., robotics), low delay and low delay jitter (e.g., voice con­
versation), multicast capability (e.g., video-conferencing), and some degree of loss tolerance (e.g., 
hierarchically coded voice and video). In addition, distributed applications impose different network 
traffic patterns. For example, some applications generate highly bursty traffic (e.g., variable bit-rate 
video applications), some generate continuous traffic (e.g., constant bit-rate video applications), and 
others generate short, interactive, transaction-oriented traffic (e.g., network file systems using remote 
procedure calls (RPC)). 

Quantitative changes in distributed computing usage are also occurring. For instance, in current 
workstation environments, local computing activities (e.g., editing and compiling) dominate remote 
communications (which consist mostly of network file system operations). In future multimedia 
workstation environments, on the other hand, it is expected that remote communication activities 
(e.g., audio- and video-conferencing applications) will dominate local computing. 

Many researchers, commercial vendors, and standards bodies are working to integrate lightwave 
communication technology with general-purpose computer systems. For example, in very high speed 
internet (VHSI) [Par90] environments, these distributed systems will consist of high-speed public 
access networks linked to high-speed LANs and MANs [Gre91]. Support for multimedia applications 
running on these distributed systems is provided by both the communication infrastructure and the 
computing infrastructure (see Figure 1). 

The communication infrastructure provides mechanisms (e.g., transmission media and the lower 
three layers of the ISO OSI network protocols r for transmitting information throughout a network. 
The computing infrastructure is more precisely defined as the "OSTSA" (Operating System Transport 
System Architecture1 ) in this paper. It integrates peer-to-peer network protocols into general-purpose 
computer host operating systems (containing OS kernel services and hardware devices) to support 
diverse user applications running across the communication infrastructures. 

The communication infrastructure now exhibits very high transfer rates due to recent advances 
in optical transmission technology. Example communication infrastructures include the Fiber Dis­
tributed Data Interface (FDDI), the Distributed Queue Dual Bus (DQDB), and the Asynchronous 
Transfer Mode (ATM). These new teclrnologiP;;, coupled with an increase in application diversity) 
have shifted performance bottlenecks to the OSTSA computing infrastructure [CJRS89]. 

The OSTSA computing infrastructure rnw;ists of components that operate at several levels of 
abstraction. First, it provides user processes with an interface to end-to-end network protocols such 
as TCP, TP4, and/or XTP. These protocols implement various transport service classes that support 
communication between distributed user applications. Next, it provides a framework 2 for orches­
trating various resources managed by the OS to support these network protocols. These resources 
include hardware devices (such as CPU, primary and secondary storage, and high-speed I/ 0 devices 
like network controllers) and software abstractions (such as virtual memory, processes, and protocol 

1 An architecture is a design that describes the system components, provides a functional decomposition, and specifies 
individual module semantics. 

2 A framework is defined as "a design that can be reused" [Zwe91]. 
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Figure 1: Examples of Computing and Communications Infrastructures 

Next generation OSTSAs must be flexible in order to meet diverse application requirements and to 
take advantage of advances in the communication infrastructure. However, existing OSTSAs are the 
performance bottleneck in high-speed networks with channel speeds exceeding 100 Mbps [CJRS89]. 
This bottleneck is manifested by the throughput preservation problem [MS92], where only a limited 
fraction of the available network bandwidth is delivered to distributed applications. This situa­
tion results from OSTSA overhead (such as memory-to-memory copying and process management 
operations like interrupt handling, context switching, and scheduling) not decreasing as rapidly as 
the transmission media channel-speed is increasing. Moreover, the throughput preservation problem 
persists despite an increase in CPU speeds.4 

This paper presents a taxonomy of the major OSTSA dimensions and compares and contrasts 
five general-purpose commercial and experimental OSTSAs (including System V UNIX, BSD UNIX, 
x-kernel, Choices, and Xinu)5 along the taxonomy dimensions. vVe focus on general-purpose OST­
SAs in this paper for several reasons. First, they facilitate flexibility and extensibility and thereby 

3 A protocol graph is a generalization of a protocol stack; it represents the hierarchical relations between protocols in 
one or more protocol suites (OP91J. Figure 3 in Sect.ion 2 depicts an example protocol graph containing certain Internet 
and OSI protocols. 

4 There are several explanations for this: ( 1) networks have increased by 5 or 6 orders of magnitude (from kbps 
to Gbps), whereas CPU speeds have only increased by 2 or 3 orders of magnitude (from 1 MIP up to 100 MIPS) 
(Haa91], (2) network host interfaces in existing systems interrupt the CPU for every packet transmitted (Haa91], and 
(3) despite leading to an increase in total MIPS, RISC architectures (such as the SPARC) penalize this interrupt-driven 
network communications, since they typically have higher context switching overhead, resulting from the cost of flushing 
instruction and data caches and pipelines, storing and retrieving large register windows, etc. [Ste92]. 

5 This paper describes System V Release 4, 4.3 BSD, x-kernel 3.2, Choices 6.16.91, and Xinu version 7 unless otherwise 
noted. 
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Figure 2: The OS Transport System Architecture 

encourage experimentation. 6 Second, special-purpose solutions (such as off-board processors [KC88] 
and VLSI-based hardware implementations [Che89]) may not be adaptive enough to meet multimedia 
application requirement diversity. For instance, a special-purpose solution that efficiently supports 
one application or type of network is not necessarily appropriate for other applications coexisting 
on the same network. Third, even if special multi-processor pool architectures [JSB90] or off-board 
processors become widely available, they must still interoperate with the host operating system at 
some point. Studies [KC88] have shown that significant host OS and protocol processing overhead 
remains, despite using off-board protocol processors like the VMP Network Adapter Board. There­
fore the OSTSA dimensions described in this paper remain an integral part of the overall throughput 
preservation problem. 

The remainder of the paper is organized as follows: Section 2 describes the OS TS A components in 
detail; Section 3 presents a general taxonomy for classifying OSTSAs; Section 4 provides an in-depth 
survey of five representative OSTSAs; Section 5 summarizes the paper and outlines several important 
open research issues. 

2 OS Transport System Architecture Components 

Operating System Transport System Architectures (OS TS As) provide a framework that coordinates 
various hardware resources (e.g., primary and secondary storage and CPU( s)) and software abstrac-

6 Experimentation is important since there is no clear consensus on precisely how different factors affect OSTSA 
performance [PC91]. Controlled empirical experimentation, based on a general-purpose OSTSA, is a useful method for 
investigating the impact of various performance factors. 
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Figure 3: Typical Protocol Graph for Internet and OSI Protocol Families 

tions (e.g., algorithms and data structures that represent process architectures and protocol graphs) 
to support network protocols. 

OSTSAs are frequently modeled as virtual machines, representing the different levels of abstrac­
tion they encompass [Tan88, Tan90, Tan92]. Each virtual machine level is characterized by the service 
interfaces it exports to the levels surrounding it. Protocol suites like TCP /IP or OSI are implemented 
by combining various services offered by the nested OSTSA levels shown in Figure 2.7 The following 
paragraphs provide a brief overview of all the OSTSA levels discussed in this paper. 

The outermost-level of the OSTSA is the Operating System Network Application Programmatic 
Interface ( OSNAPI). The OSNAPI provides service interfaces through which user processes (e.g., 
distributed multimedia applications) interact with inner-level OST SA services. The OSN API pro­
vides data-transfer operations (e.g., sending and receiving messages) and control operations (e.g., 
connection establishment and termination) to user applications. The BSD UNIX socket layer is a 
representative example of an OSN APL 

The second outer-most level of the OSTSA is the Operating System Session8 Architecture ( OSSA ). 
The OSSA provides peer-to-peer network protocol services. These services are associated with proto­
col sessions that contain information used to manage the state of end-to-end network connections. 9 

OSSA services include dynamically establishing and terminating network connections, managing pro­
tocol interpreters (e.g., the TCP or XTP finite state machine) for network connections, controlling 
peer-to-peer flow and congestion, and providing various error detection and error recovery policies. 

The Operating System Protocol Architecture (OSPA) provides services that compose and manage 
multiple protocol graphs. These protocol graphs implement protocol suites such as TCP /IP or OSI 
(shown in Figure 3). Each layer in the protocol graph consists of one or more network protocols 
(e.g., RPC/XDR, TCP, IP, TP4, and CLN P ). These services include intra-protocol services (such 

7The virtual machine model depicted in Figure 2 is used for descriptive purposes throughout this paper. Its levels 
represent an abstraction of the services and interfaces common to many existing OSTSAs, although not all systems 
follow such a strict hierarchy, and may bypass or omit certain levels. In particular, OSTSA implementations often 
proceed in a monolithic, non-uniform manner for performance reasons (CT90, Ten89] (as Section 3.3.1 discusses below). 

8 The term "session" is used throughout the paper to refer to the data structures and subroutines that implement a 
network connection. It is not equivalent in meaning to the ISO OSI "session layer." 

9 Note that creating a new session only involves processing on the local host (such as dynamically allocating a session 
control block and associating it with the appropriate protocol component). Establishing a network connection, on the 
other hand, usually involves a message handshake exchange with peer protocols and sessions located on remote hosts. 
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as session management and message management) and inter-protocol services (such as layer-to-layer 
flow control and multiplexing and demultiplexing). The primary distinction between the OSSA and 
OSPA levels is that OSSA services manage the session state information for a particular network 
connection, whereas OSPA services manage multi-layered protocol graphs (with each protocol layer 
containing one or more sessions). 

The Operating System Kernel Architecture ( OSKA) provides services that manage hardware 
resources such as primary and secondary storage, CPU(s), and various I/O devices. These services 
include concurrent programming abstractions and multi-processing support, timer handling, virtual 
memory management, and low-level interprocess communication (IPC). In addition, to support delay­
sensitive user applications, the OSKA may provide mechanisms such as real-time scheduling and 
resource reservation [PPA +go, GA91, AH91]. The primary distinction between the OSPA and OSKA 
levels is that OSKA services are also utilized by user application programs and other OS subsystems 
such as the file system. On the other hand, OSPA services pertain primarily to network protocols 
and distributed applications. 

At the core of the OSTSA are hardware devices such as CPU(s ), memory hierarchies (e.g., instruc­
tion and data caches, main memory, magnetic and optical disks, and magnetic tape), and network 
controllers (which are responsible for transmitting bit streams into a network). For instance, Ethernet 
network controllers mediate access to the logical link layer, providing services like frame transmission 
and reception (e.g., using scatter-read and gather-write and direct memory access (DMA)), deter­
mining link layer addresses, and collision detection. Sections 2.1 through 2.4 discuss each level of the 
OSTSA in greater detail. 

2.1 The OS Network Application Programmatic Interface (OSNAPI) 

The OS Network Application Programmatic Interface (OSNAPI) provides interfaces that enable user 
processes (i.e., processes executing in user-space) to access inner-level OSTSA services in order to 
exchange data and control messages with peer entities on remote hosts. Example OSNAPis include 
BSD sockets [LMKQ89], the System V Transport Layer Interface (TLI) [Sun90], the V kernel's UIO 
system [Che87], and the Multifaceted Communications System for the NCUBE [MK91]. 

OSNAPis provide service interfaces for transferring data. Since operations on network connections 
are very similar to operations on files and other I/ 0 devices, OSN API service interfaces often supply 
some variant on the standard open, close, read, and write paradigm used by traditional I/O 
interfaces. Typical services for sending and receiving data include synchronous and/or asynchronous 
I/O, buffered and/or unbuffered I/O, scatter/gather I/O, blocking and/or non-blocking I/O, multi­
priority in-band and/or out-of-band I/O, and multicast and/or broadcast I/O [MK91]. An important 
evaluation criteria for an OSNAPI is how efficiently it supports all these different types ofl/O services. 

Supporting control operations is another important OSN API service. Control operations provide 
user applications with interfaces for services that do not directly involve data transfer. These services 
include establishing and terminating connections (e.g., using in-band and out-of-band signaling), 
dynamically configuring protocol graphs (e.g., pushing a System V STREAM module onto a Stream), 
and setting and retrieving the values for user-tunable options (e.g., the maximum datagram size and 
send/receive buffer sizes). 

The OSNAPI level often accounts for a large portion of the overall OSTSA performance overhead. 
For example, [HP91] profiled BSD UNIX and determined that 31 percent of the total user-to-user 
latency for TCP appliCations resulted from socket layer processing overhead. Likewise, [JSB90] 
described how BSD socket processing required 36 percent of the total message processing time for 
outgoing messages and 43 percent for incoming messages. 

This overhead results from several factors. First, memory-to-memory copying is often performed 
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at the OSN API level, in order to move messages from user-space to kernel-space and vice versa 
(Sections 3.1.3 and 3.2.1 discuss mechanisms for reducing this memory copying overhead). Second. 
distributed applications typically run in "user-mode," i.e., outside the OS kernel address space. 
Therefore, the kernel must perform one or more context switches to transfer messages from the 
network device driver interfaces, up through the protocol graph to the OSNAPI-level, where user 
applications may be waiting to receive them [MRA87]. [Che87, MK91, HP91] evaluate the function­
ality and performance of alternative OSN AP Is. A thorough discussion of OSN API issues is beyond 
the scope of this paper. 

2.2 The OS Session Architecture (OSSA) 

The OS Session Architecture (OSSA) provides a framework for implementing peer-to-peer network 
protocol services that manage the state of protocol sessions. Sessions are used to implement network 
connections. Conceptually, the OSSA exists within the framework provided by the OSPA and the 
OSKA (described in Sections 2.3 and 2.4, respectively). 

The OSSA provides services that include connection management (e.g., opening and closing con­
nections, and reporting and updating connection status information), managing protocol interpreters 
(e.g., controlling transitions between states in the TCP finite state machine) for active network con­
nections, controlling peer-to-peer flow and congestion10 (e.g., advertizing the available sliding window 
size, and tracking round-trip delays), error detection and recovery (e.g., computing checksums, detect­
ing mis-sequenced or duplicated messages, and performing acknowledgments and retransmissions), 
and quality-of-service negotiation (e.g., throughput, delay, error rate, jitter and priority characteris­
tics) with peer sessions entities. 

The performance of OSSA services largely depends on the complexity and characteristics of the 
protocols they support. For example, [CT90] reports that the complex processing of presentation 
layer conversions (which involves encoding and/ or decoding binary messages using the ASN .1 transfer 
syntax [HD89]) accounts for over 90 percent of the OSSA overhead. In addition, OSSA performance is 
also affected by protocol characteristics such as the transmitted segment size (larger segments decrease 
the ratio of header to data overhead and also reduce the number of subroutine calls, interrupts, and 
context switches to move messages between protocol layers), peer-to-peer flow and congestion control 
algorithms (e.g., sliding window versus rate control), and connection management schemes (e.g., 
implicit timer-based connections vs explicit handshaking). 

Recent research has addressed several OSSA-related issues. Avoca [OP90a, B091] used the x­
kernel as a run-time environment to investi~ate the performance characteristics and reuse potential 
from using modular, highly-layered protocols and sessions. The Conduit framework [Zwe90, Zwe91] 
from the Choices OS is used to investigate t lw applicability of object-oriented programming techniques 
such as delegation [ZJ91] and inheritance to 111·t work protocol and session design and implementation. 
Finally, the ADAPTIVE system [BSS92] is l"·ing developed to identify OSSA, OSPA, and OSKA 
configurations that efficiently support divn''' multimedia applications running on a wide range of 
high-speed networks. [PS91, DDK+90] sun·1·v various OSSA issues in greater detail; a thorough 
discussion of the issues is beyond the scope of this paper. 

10 Different flow control mechanisms are used for different OSTSA levels. For example, peer-to-peer flow control 
synchronizes the rate of senders and receivers communicating at the same protocol layer (e.g., between two TCP 
connections residing on different hosts); layer-to-layer flow control regulates the amount of data exchanged between 
adjacent layers in a protocol graph (e.g., between TCP and IP STREAM modules in System V STREAMS). 
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2.3 The OS Protocol Architecture (OSPA) 

The previous section described OSSA services that manage the session state information associated 
with an active network connection. The OS Protocol Architecture (OSPA), on the other hand, 
constitutes a broader framework that supports network computing services that occur within and 
between the layers in a protocol graph. Services within a given protocol layer involve creating and 
1f:stroying protocol sessions (e.g., in response to a user application performing socket accept or 
close system calls in BSD UNIX). Services between adjacent protocol layers involve regulating 
layer-to-layer data flow (e.g., the canput subroutine in the System V STREAMS utility library that 
determines if there is available space left in a message queue), along with multiplexing/demultiplexing 
and encapsulating/de-encapsulating outgoing and incoming messages. 

Each network protocol contains one or more OSSA sessions. A session is typically created and 
destroyed by an OSPA-level "protocol session management" facility. Figure 4 illustrates a session 
graph corresponding to several protocol layers. In the figure, multiple sessions (shown in the ovals) 
are encapsulated by protocol components (represented by the rectangles). The OSSA manages the 
sessions, whereas the OSPA manages the protocols. 

To facilitate interoperability, OSPAs may support multiple protocol suites simultaneously. For 
example, the BSD UNIX networking subsystem supports three different OSPAs that implement the 
TCP /IP, OSI, and XNS protocol suites [LMKQ89]. The performance of OSPA services depends heav­
ily on how they are integrated with OS Kernel Architecture ( OSKA) services [ Cla82] (particularly 
the process architecture described in Section 3.1.1). OSPA factors that affect overall OSTSA per­
formance overhead involve creating, executing, and synchronizing protocol and session components. 
Other potentially expensive OSPA services include message management (e.g., adding and stripping 
headers/trailers and fragmenting/reassembling messages) and the multiplexing and demultiplexing 
of messages to the appropriate protocol or session. 

Section 3.2 describes the OSPA level in greater detail. Section 4 surveys five OSTSAs (System V 
UNIX STREAMS [UNI90], the BSD protocol layers [LMKQ89], the x-kernel [HP91], Choices' Conduit 
framework [Zwe90], and the Xinu TCP /IP subsystem [Com91b]) that provide different types of OS 
Protocol Architectures. 
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2.4 The OS Kernel Architecture (OSKA) 

The OSN API, OSSA, and OSPA levels described above ultimately interoperate with the services 
provided by the Operating System Kernel Architecture ( OSKA). The OSKA provides services such 
as virtual memory management (e.g. allocating and deallocating memory objects), concurrent pro­
gramming abstractions for uni- and multi-processors (e.g., creating, scheduling, executing, synchro­
nizing, and destroying heavy-weight or light-weight processes), sending and receiving low-level !PC 
messages11 between communicating processes, event management (e.g., registering, canceling, and 
invoking subroutines under timer-control), and interrupt handling (e.g., servicing device interrupts 
from network controllers and disk controllers). 

Many researchers [Cla82, HP91, WM87, CT90] suggest that of all the OSTSA levels, the OSKA 
services have the greatest overall impact on end-to-end protocol performance. For example, [PS91] 
reports that OSPA and OSSA services generally account for less than 20 percent of all protocol 
processing time, and that the remaining time is spent performing OSKA services like interrupt and 
event handling, copying data, and process management. 

OSKA performance is significantly affected by process management services that include creating, 
scheduling, executing, and synchronizing multiple OSKA processes. Process management is generally 
time-consuming. For example, [Mul90] states that 36 percent of the overall Amoeba RPC round-trip 
delay is related to client and server process scheduling overhead. Interrupt-handling and context 
switching are two high-cost process management activities. Interrupts are used by network devices 
to inform the OS protocol software that incoming messages are available for higher-layer protocol 
processing. Interrupts often lead to a context switch, which represents a major performance penalty 
[Cla82]. Another source of context switching overhead occurs from invalidating virtual memory 
translation-lookaside buffers [ JSB90]. 

Section 3.1 describes the OSKA level in greater detail. Some representative OSKAs include the 
Mach micro-kernel [GDFR90], the x-kernel (the x-kernel provides both OSKA and OSPA services) 
[HP91], the V-kernel [Che88], BSD UNIX [LMKQ89] and System V UNIX [Bac86]. [TR85, Gos91, 
GL89, ABG+86] describe OSKA issues in further detail. 

3 An OS Transport System Architecture Taxonomy 

This section classifies OS Transport System Architectures ( OSTSAs) by their OS Kernel Architecture 
(OSKA) dimensions, OS Protocol Architecture (OSPA) dimensions, and software quality dimensions. 
Table 1 depicts the taxonomy used to classify OSTSAs. Note that the OS Session Architecture 
(OSSA) and OS Network Application Programmatic Interface (OSNAPI) levels are not included 
in the taxonomy. This is because this paper focuses primarily on the OSPA and OSKA services 
that support the computing requirements of multiple protocol graphs on source and destination 
host machines. The OSNAPI and OSSA services, on the other hand, are primarily concerned with 
managing the system call interface to OSPA and OSKA services, and performing the end-to-end 
computing aspects of network protocols. 

3.1 OS Kernel Architecture Dimensions 

The OS Kernel Architecture ( OSKA) provides services such as process management, virtual memory, 
and timer mechanisms, These services are employed by user application programs and other parts 

11 In a message-passing kernel, OSKA IPC is used to exchange messages between local processes [ABG+ 86). These 
messages (and memory management scheme used to implement them) differ from the OSPA messages that are encapsu­
lated and de-encapsulated as they move up and down a protocol graph (OSPA messages are described in Section 3.2.1). 
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Categories I Dimensions Subdimensions Alternatives II 
Process ( 1) Concurrency Models single-threaded, LWP, HWP, coroutines 
Architecture (2) Proc. Arch. Models vertical, horizontal, hybrid 

OS Kernel (3) Parallelism Models layer, directional, connectional, message, task 
Architecture Event ( 1) Timing Relations relative, absolute 
Dimensions Management (2) Search Structure array, linked list, heap 

( 3) Event Notification message passing, function call 
Virtual Memory none, bi-directional, 
Remapping outgoing-only, incoming-only 

Message Buffering list-based, graph-based 
Multiplexing and ( 1) Synchronization synchronous, asynchronous, hybrid 

OS Protocol Demultiplexing ( 2) Layering layered, non-layered 
Architecture (3) Search Method sequential-search, hashing, indexing 
Dimensions (4) Caching none, single-item, multiple-item 

Layer-to-Layer per-queue, per-process 
Flow Control 

Modularity ( 1) Interface Uniformity uniform, non-uniform 
( 2) Data Coupling low coupling, high coupling 

Software Flexibility and ( 1) Protocol Families multiple, single 
Quality Extensibility (2) Configuration Time static, dynamic 
Dimensions (3) Composition Order static, LIFO, arbitrary 

(4) Composition Typing typed, untyped 
(5) OSPA Location kernel-space, user-space, off-board 

Table 1: OSTSA Taxonomy Template 

of the operating system (such as the file subsystem and the OS Protocol Architecture (OSPA)). The 
OSPA is built on top of OSKA services that implement the process architecture, event management, 
and virtual memory remapping (which uses copy-on-write optimizations to reduce memory-to-memory 
copying overhead). Each of these dimensions is described below. 

3.1.1 The Process Architecture Dimension 

OSKA processes are fundamental operating system abstractions. A process consists of a collection 
of resources, along with one or more threads of control [ABG+86]. Process resources include virtual 
memory, CPU(s), file and device descriptors, access rights to other OS resources, etc. Threads of 
control act as separate instruction pointers within a single virtual address space. 12 Threads maintain 
state information (such as a stack of subroutine call activation records) that represents a program in 
execution. This st.ate information allows processes and threads to be transparently suspended and 
resumed by the OSKA scheduler. 

A process architecture is a framework that coordinates the independent execution of multiple 
OSKA processes in support of OSTSA protocol processing activities. This framework strongly im­
pacts the performance of an OSTSA. In addition, it also influences the complexity of OSTSA software 
development. An effective process architecture makes it easier to design, implement, and modify both 
OSTSAs and network protocols without unduly sacrificing efficiency. 

The OSN API, OSSA, and OSPA levels perform their services within the context of one or more 
cooperating OSKA processes. For example, multiple network connections may concurrently transmit 

12 The traditional BSD and System V UNIX OS process only contains a single thread of control. The x-kernel and 
Conduit, on the other hand, use multi-threaded processes. 
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and receive messages between peer session entities. Furthermore, within a given session, multiple 
protocol processing activities may run concurrently. For example, checksums may be computed in 
parallel with locating a session control block and computing round-trip time estimations. 

The following section examines several dimensions of process architectures. It describes three dif­
ferent concurrent programming abstractions, compares and contrasts horizontal and vertical process 
architecture models, and discusses several ways to map process architectures onto multi-processors. 

(1) Concurrent Programming Abstractions: Using separate OSKA processes to program con­
current threads of control is generally simpler than trying to explicitly synchronize and schedule mul­
tiple activities "by hand" (i.e., outside the OSKA process architecture) [BA90]. However, to support 
concurrent protocol processing efficiently, the OSKA must minimize the overhead of preempting, 
rescheduling, and synchronizing executing processes and serializing access to shared resources. 

Several concurrent programming abstractions that form the basis for many OSTSA process ar­
chitectures include heavy-weight processes, light-weight processes, and coroutines [TRG+87]. Each 
abstraction entails different types of performance overhead and allows different levels of programmer 
control over process management activities like scheduling and synchronization. 

• Heavy-Weight Processes: Heavy-weight processes (HWPs) reside in separate virtual ad­
dress spaces within the OS kernel. Synchronizing, scheduling, and sending messages between HWPs 
typically requires a context switch. Context switching is a relatively expensive operation, since it 
usually requires copying registers and data between main memory and secondary storage, as well as 
flushing pipelines and invalidating virtual memory "translation lookaside buffer" caches. 

• Light-Weight Processes: Light-weight processes (LWPs) are often referred to as a threads. 
Unlike HWPs, multiple LWPs usually share a virtual address space. This sharing reduces the overhead 
of thread creation, synchronization, and scheduling, since switching control between LWPs is less 
time-consuming than performing a context switch between several HWPs. 

• Coroutines: In a coroutine model, the programmer, rather than the OSKA scheduler, ex­
plicitly chooses the next coroutine to run at some synchronization point. 13 With coroutines, the 
programmer has the flexibility to schedule processes in any desired manner. The programmer also 
has the responsibility, however, to handle all the details of scheduling, notably avoiding starvation 
and deadlock. Furthermore, coroutines only support "interleaved execution." This allow only one 
process to run at a given time, thereby limiting the benefits of parallel processing. 

In order to produce efficient OSTSAs, it is important to match the design of the process archi­
tecture with the appropriate concurrent programming abstraction. In particular, it is essential to 
minimize context switching overhead [HP9 l]. 

(2) Different Process Architecture Models: As shown in Figure .5, there are two basic process 
architecture models: horizontal and vertical. 14 These architectures are logically equivalent. In other 
words, it is possible to implement the same protocol families (e.g., TCP /IP, OSI, etc.) with either 
model. Important differences between the horizontal and vertical approaches involve performance 

13 For example, synchronization points occur when coroutine C'1 must "suspend" its activities to allow coroutine C'2 
to execute its code. At some later point, coroutine C'2 may "resume" control to coroutine C'1. 

14 Different authors use these two terms in different ways. For example, (Haa91] uses the terms in a nearly opposite 
sense to describe the HOPS (horizontally oriented protocols) architecture. Haas defines a "vertical" architecture as 
one corresponding to a conventionally layered protocol graph such as the ISO OSI reference model (i.e., what we are 
calling a "horizontal" architecture). The primary difference between the two usages of these terms stems from whether 
one chooses to focus on the layering "cuts" themselves or the components that results from these cuts. Our use of the 
horizontal/vertical terminology is consistent with (Cla85, Atk88, OP90a]. 
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Figure 5: Horizontal and Vertical Process Architectures 

(e.g., process management, context switching. and messages-passing overhead) and software design 
and implementation complexity (which is related to the OSKA concurrent programming abstraction, 
e.g., it is often easier to write complicate concurrent programs with light-weight processes, as opposed 
to coroutines). 

The process architecture model is orthogonal to multi-processor support, i.e., either vertical or 
horizontal process architectures may be implP1nented with single- or multi-threaded uni-processors or 
multi-processors. On multi-processors, separa t I' pt·ocesses may execute in parallel, although the extent 
to which separate processes actually run in pa 1·;tilel is constrained by synchronization and scheduling 
overhead. On uni-processor computers, sornP i'<>rm of "time-slicing" may be used to provide logical 
(rather than physical) concurrency. 

• Horizontal Process Architectures: Horizontal process architectures correspond closely to 
many layered protocol family specifications [At k88]. Figure 5 ( 1) illustrates a hypothetical horizontal 
process architecture where user processes P1, P2, and P3 exchange messages with Sun RPC/XDR 
(which, in turn, runs 011 top of the TCP, UDP, and IP protocols). In this model, each protocol layer 
is encapsulated in one or more light-weight or heavy-weight processes15 that function as a pipeline for 
incoming and outgoing message. Messages flow between the processes as the result of multiplexing 

15 Nate that a protocol running in a heavy-weight process typically resides in its own separate address space, 

11 



and demultiplexing operations. Each protocol layer processes the messages sent to it and then places 
them in a message queue for the next layer in the protocol graph. To improve performance, messages 
must be moved between processes with a minimal amount of memory-to-memory copying (which can 
be difficult if there is no global shared memory, as occurs with separate processing elements in a 
transputer architecture [Zit89]). 

Horizontal process architectures have several advantages. First, the process architecture corre­
sponds closely to layered protocol specifications like the ISO OSI [Bla91] and Internet [ Com9 la] 
reference models. This makes it relatively straight-forward to design and implement pratocols in a 
horizontal architecture [Atk88]. Second, each protocol component manages its active sessions within 
a single process address space. This organization reduces the synchronization required to handle 
multiple messages bound for the same active session, since only one process controls a given protocol 
component's internal data structures. 16 

However, horizontal process architectures have several significant disadvantages. For example, 
the amount of available parallelism is rather limited. This is due to the fact that most major proto­
col suites specify only a small number of protocol layers. For example, the Internet reference model 
has only four primary layers (e.g., data link, network, transport, application) and the OSI reference 
model has just seven layers (e.g., physical, data link, network, transport, session, presentation, appli­
cation). Therefore, the amount of available parallelism is rather limited if there is only a one-to-one 
correspondence between processes and protocol components. A more severe disadvantage stems from 
the context switching, scheduling, synchronization overhead associated with horizontal process archi­
tectures. Messages flowing up and down between protocol layers incur a large amount of interprocess 
communication (IPC) overhead, since in a horizontal architecture, each protocol layer corresponds 
to one or more processes. IPC overhead between protocol layers strongly influences overall system 
performance and throughput [Cla85]. Due to this overhead, most high-performance OSTSAs avoid 
highly-layered horizontal process architectures [CT90]. 

• Vertical Process Architectures: Vertical process architectures represent a more recent 
OSKA structuring approach for OSTSAs [Cla85, Atk88, JSB90). Figure .5 (2) illustrates one hy­
pothetical vertical process architecture that implements the same protocol graph as Figure 5 (1). 17 

Unlike the horizontal process architecture example, in this example the OSKA associates a separate 
process to each incoming and outgoing message [HP91]. Each process escorts its message through 
the protocol graph, delivering it "down" to a network interface or "up" to a user application process. 
Since each process resides in its own address space, messages flow through active protocol sessions 
via synchronous subroutine calls rather than asynchronous IPC mechanisms (such as the message 
queues used by the horizontal model). 

Figure 5 (2) also illustrates three different ways that user applications exchange information with 
network protocols. Process P1 interacts with an OSN API data queueing endpoint (similar to System 
V STREAMS and BSD UNIX), process P.2 uses upcalls running in the same process (similar to the 
x-kernel approach), and process P3 uses asynchronous message queues. 

Vertical process architectures have several advantages compared to horizontal approaches. First, 
there is greater potential for exploiting available parallelism, since every arriving and departing 
message is associated with its own process [JSB90]. Increased parallelism also enables improved 
processor load balancing (which potentially improves overall OSTSA throughput). 18 For example, if 
processes are carefully implemented on a multi-processor, each incoming message may be dispatched 

16 One consequence of this architectural design is that multiple messages are serialized at each protocol component. 
17 Note, there are other ways to organize a vertical process architecture, one of which ( connectional parallelism) is 

described below. 
18 The actual benefit from load balancing depends heavily on its interaction with cache affinity [VZ91] effects, which 

involve the interaction between scheduling policies and instruction and data caches on shared memory multiprocessors. 
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Figure 6: Models of Parallelism for Horizontal Process Architecture 

to an available processing element. Second, context switches are not required to multiplex and 
demultiplex messages between protocol layers. Since protocol layers reside in the same address space, 
synchronous subroutine calls are used to communicate between the layers. This is substantially faster 
than performing IPC with asynchronous message queues, since exchanging messages between protocol 
layers does not incur context switch overhead [HP91]. Finally, the vertical process architecture does 
not impose a total ordering on messages bound for the same connection. This is an advantage for 
network protocols that require only partial orderings between messages (e.g., the Psync IPC protocol 
[PBS89] which uses partial orderings to implement "many-to-many" group communication efficiently) 
or that utilize application level framing [CT90] (which is a design principle that maintains application 
data unit boundaries throughout lower-layer protocol processing stages). 

Vertical process architectures also have several disadvantages. First, performance may suffer if 
the OSKA cannot efficiently associate an process with each message. This is particularly problematic 
when overall system communication loads are very high (i.e., a large number of messages are arriving 
and departing). One potential solution for this problem is to cache processes in a "process pool" 
and recycle them for subsequent messages [HP91]. However, these cached processes may sit idle 
when overall system communication activity is light, thereby "tying up" OS resources like memory 
buffers and process table entries (which may also be needed by other OS subsystems). Second, 
increased synchronization overhead and memory contention may occur when complex interactions 
occur between messages and sessions at the receiver. For example, multiple messages bound· for the 
same higher-layer sessions (e.g., as the result of TCP segmentation or IP message fragmentation at 
the sender) must coordinate and synchronize in order to share session state information correctly, 
efficiently, and consistently between multiple processes. 
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(3) Mapping Process Architectures onto Multi-Processors: Several forms of multi-processing 
have been suggested to develop OSTSAs that effectively support gigabit networks [Zit91, .JSB90, 
Haa91, CG91, GKWW89, HEHK92]. This section examines a number of approaches for mapping 
horizontal and vertical process architectures onto multiple processing elements (PEs ). 

To improve the benefits from multi-processing, a parallel implementation of a process architecture 
should meet several criteria [.JSB90]. First, the process architecture should be amenable to significant 
levels of parallelization. For example, a process architecture that only utilizes two PEs is not as likely 
to scale up as well as one that effectively utilizes dozens of PEs (all other factors held equal). Second, 
overall throughput will suffer, if too much time is spent coordinating activities between PEs. This 
implies that an effective multi-processor architecture should strive to minimize interprocess commu­
nication and synchronization overhead, while taking advantage of cache affinity properties. Finally, 
processing loads should be carefully distributed between the multiple PEs to reduce bottlenecks and 
"hotspots." 

Five models of process architecture parallelism, ( 1) layer parallelism, (2) directional parallelism, 
( 3) message parallelism, ( 4) connectional parallelism, and ( 5) task parallelism, are illustrated in Fig­
ure 6, 7, and 8 and described below. These five models are differentiated by their granularity, ranging 
from "coarse-grained" to "fine-grained." Granularity is determined both by the size of the tasks as­
sociated with each PE and the number of PEs involved. In general, coarse-grained approaches (e.g., 
directional parallelism and connectional parallelism) are simpler to design and implement than the 
finer-grain approaches (e.g., message parallelism and task parallelism), since there is less interaction 
between the PEs. However, coarse-grain approaches are also less scalable in their degree of potential 
parallelism. Determining the conditions under which a particular model is more scalable and efficient 
remains an open research question. 

• Layer Parallelism: Layer parallelism is a straight-forward implementation of a horizontal 
process architecture. In this approach (shown in Figure 6 ( 1) ), a PE is associated with each layer in 
the protocol graph. Messages flow through the layers in a pipeline fashion. The primary disadvantages 
are that potential parallelism is limited to the number of protocol layers and there is typically high 
overhead to move between layers. 

• Directional Parallelism: Directional parallelism (shown in Figure 6 (2)) is similar to layer 
parallelism, though it dedicates two PEs per-protocol layer, one for sending outgoing messages and 
another for receiving incoming messages. This model is also relatively easy to conceptualize and 
design, though it provides only a multiplicative increase in parallelism compared to layer parallelism. 
Moreover, unless protocol input and output operations are relatively independent, communication 
between the sending PE and receiving PE in a protocol component may become a source of overhead. 
For example, protocols such as TCP, where acknowledgments for incoming segments are "piggy­
backed" on outgoing data and control messages, require communication and cooperation between 
sender and receiver [GKWW89]. Finally, as with layer parallelism, directional parallelism does not 
facilitate PE load balancing, since PEs are dedicated to specific protocol processing layers. 

• Message Parallelism: Figure 7 ( 1) depicts message parallelism, which involves associating 
a separate PE with each incoming or outgoing message. Compared with the previous two parallelism 
models, the advantages of this approach are ( l) the degree of parallelism is potentially quite high 
(being a function of the number of messages, minus the synchronization overhead and cache affinity 
effects), ( 2) communication over head decreases (since moving between protocol layers may not involve 
a context switch), and (3) messages may be more evenly balanced between PEs. However, this model 
appears somewhat easier to conceptualize than to implement, due to the complexity and overhead 
of synchronizing messages bound for the same higher-layer network connection. For example, the 
synchronization overhead resulting from obtaining locks required to gain exclusive access to shared 
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resources (e.g., memory buffers or session control blocks) may become a bottleneck when joining 
together TCP segments bound for the same higher.-layer session. Moreover, overhead may also occur 
from factors such as shared-memory bus contention [JSB90]. 

• Connectional Parallelism: Connectional parallelism dedicates a separate PE for each ac­
tive connection. Figure 7 ( 2) illustrates this approach, where connections C'1, C'2, C'3, and C'4 are each 
associated with a separate process that is responsible for processing all messages addressed to that 
connection. This approach may be useful for servers that have several connections open simultane­
ously [HEHK92]. The degree of parallelism in this approach is a function of the number of active 
connections. One drawback is that it is difficult to balance PE loads. For example, a highly active 
connection might swamp its PE with excessive work, even though other PEs sit idle at inactive con­
nections. Unlike directional parallelism, synchronization and communication overhead is relatively 
low (within a given connection). 

•Task Parallelism: Task parallelism is an example of very "fine-grain" parallelism that applies 
multiple PEs to perform multiple tasks on a per-message or per-protocol basis. Figure 8 illustrates 
an example of task parallelism where multiple processes perform or coordinate several operations 
in parallel on a message. These operations include computing checksums (usually performed in 
hard ware to improve i;fficiency), decoding an address field in a message header, searching various 
tables for protocol and session control blocks, and computing round-trip time estimates. Since most 
protocol processing tasks appear to have large amounts of interdependency, it may be difficult to 
eliminate memory contention and synchronization overhead. One proposed strategy for alleviating 
the overhead from these interdependencies is to pipeline the message processing.[Zit89, GKWW89] 
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Figure 9 plots the relationship between the process architecture models and the five parallelism 
models. Layer parallelism appears to be the most coarse-grain approach and task parallelism appears 
to be the most fine-grain approach. Note that both layer and directional models have a fixed amount 
of parallelism (i.e., corresponding to the number of protocol layers), whereas the parallelism available 
in the message and connectional models varies according to the number of messages and connections, 
respectively. Finally, it may also be possible to combine these models, forming more complicated ar­
chitectures such as HOPS (horizontally oriented protocols) [Haa91]. Sections 3.2.2 and 3.2.3 examine 
the relationship between the process architecture and other OSTSA dimensions such multiplexing, 
demultiplexing, and flow control. 

3.1.2 The Event Management Dimension 

The OSKA event manager provides timing-related services used by both user applications and com­
ponents in other OSTSA levels (i.e., OSNAPf. OSSA, and OSPA). A typical event manager interface 
is modeled as an Abstract Data Type (ADT) that provides three basic operations: (1) registering 
a subroutine that will execute at some user--.,pPcified time in the future, (2) canceling a previously 
registered subroutine, and (3) asynchrono11,,[\· invoking a registered subroutine when its "time-to­
execute" occurs. In order to support real-I i1111• applications, it is important to perform all three of 
these services efficiently, with small amou11h of variance (even when there are a large number of 
registered subroutines). These services are b11ilt on top of a hardware-interrupt-driven clock mecha­
nism. On each clock tick the event manager checks whether it is time to execute any of the scheduled 
events. If one or more events must be run, the event manager invokes the associated subroutines. 

At the OSSA level, many network protocols perform time-related operations on active and inactive 
network connections, and these operations use the event management services provided by the OSKA. 
Some of these operations are driven by timers that are set or canceled in response to protocol-related 
events. For example, when a TCP segment is sent, a retransmission handler subroutine is registered 
with the event manager. The time to execute is based on a time interval calculated from the TCP 
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round-trip estimate for that connection. vVhen the timer expires, the event manager calls the handler, 
which then retransmits the segment. If an acknowledgement for the message arrives before the timer 
expires, on the other hand, the handler is canceled. 

Timers can also be scheduled to run periodically, in which case they do not correspond directly 
to any particular protocol-related event. For example, the SNR transport protocol uses a periodic 
interval timer to synchronize sender and receiver state information. In this scheme, a receiver does 
not explicitly acknowledge the sender when it receives a message, but instead waits for a periodic 
interval timer to expire. At this point, the previously registered handler exchanges the receiver's 
complete state information with the sender [NRS90]. 

Example OSKA event management implementations include delta lists [Com91b], timing wheels 
[VL87], and heap-based [BL88] and linked list-based [LMKQ89] callout queues. The following three 
primary dimensions classify these different event management mechanisms. 

(1) ADT Implementation: There are several common strategies for implementing the event 
management Abstract Data Type (ADT). A simple approach is to sort the events by their "time-to­
execute" value and store them in an array [Bac86]. A variant on this approach replaces the array with 
a sorted linked list (which reduces the overhead of adding or deleting an arbitrary event handler) 
[Com91b]. A third approach uses a heap-based priority queue [BL88]. Using a heap instead of a 
sorted list or array reduces the time complexity for inserting or deleting an entry from O(n) to 
O(lg n) time. This can save a significant amount of time in a large system where many devices use 
the event manager (e.g., terminals and network connections). 

(2) Time Relationships: A second aspect of event management involves time relationships, i.e., 
whether relative or absolute timing is used to sequence events. Relative time is typically used with 
a sorted array or sorted linked list ADT. Every item in the array or list corresponds to an event 
scheduled to occur in the future. Because each item's time is stored relative to the previous item, 
the event manager only needs to examine the first element in the array or list on every clock tick 
to determine if it should execute the event handler. On the other hand, heap-based approaches use 
absolute time, due to the operations required to maintain a heap. 
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(3) Event Notification Mechanism: When a timer expires, the event management mechanism 
either calls a registered subroutine with its associated argument [BL88] or it may send a control 
message to a port via a message queue [Com91b] (see Section 4.1..5 for additional details). 

3.1.3 The Virtual Memory Remapping Dimension 

Regardless of the process architecture, achieving efficient network protocol performance requires min­
imizing the amount of memory-to-memory copying performed throughout the OSTSA [WM87]. In 
general, memory copying provide an upper bound on user application throughput [CT90]. Choosing 
an efficient message management mechanism is one method for reducing copying overhead (see Sec­
tion 3.2.1 below). A related approach uses OSKA virtual memory facilities to avoid expensive data 
copying. For example, in situations where data copies would ordinarily be performed19 , the OSKA 
remaps virtual memory pages instead, marking them "copy-on-write." Page remapping is particularly 
useful for transferring large quantities of data between separate address spaces [YTR+S7]. 

Several complications arise with page remapping schemes that make them difficult to implement 
in practice. First, most page remapping schemes require placing data in contiguous buffers that 
begin on page boundaries. Ensuring this alignment restriction may be complicated by other protocol 
operations and options such as message de-encapsulation (i.e., stripping headers and trailers as 
messages migrate up a protocol graph), presentation layer expansion [CT90] (e.g., uncompressing or 
decrypting an incoming message), and variable-size header options. Certain versions of BSD UNIX 
support a "trailer option" that places variable-size protocol headers at the end of a message, so that 
the fixed-size data portion comes first. This technique facilitates remapping (or at least minimizes 
copying) by allowing incoming messages to be aligned on page boundaries. Second, remapping may 
not be useful if the remapped page is immediately written upon, since a separate copy must be made 
anyway [LMKQ89]. Finally, if messages are small, there may be more overhead in remapping them 
(e.g., adjusting page table entries, invalidating translation-lookaside buffers, etc.) compared with 
simply copying them in the first place. 

3.2 OS Protocol Architecture Dimensions 

The OS Protocol Architecture ( OSPA) supports intra-protocol (e.g., session graph management, mes­
sage management) and inter-protocol (e.g., protocol graph management, layer-to-layer flow control, 
multiplexing and demultiplexing of messages) services that are common to most network protocols. 
OSPA services pertain primarily to network protocols and distributed applications (as opposed to 
OSKA services that are also utilized by most other OS subsystems). 

3.2.1 The Message Management Dimension 

Various types of messages are used throughout the OSTSA to exchange data and control information 
between local and remote peer entities. Some standard network message management operations 
include storing messages in buffers as they are received from network interfaces, prepending and/ or 
stripping headers and appending and/ or stripping trailers from messages as they flow through various 
protocol layers, storing messages into buffers for transmission or retransmission, fragmenting and 
reassembling messages, and reordering messages received out-of-sequence [JSB90]. 

An effective message manager for networking applications must fulfill several general requirements. 
First, it must efficiently support both fixed-size and variable-size allocations and deallocations of 

19 Transferring messages from kernel-space to user-space is a common OSN AP I-level operation that often involves 
memory-to-memory copies (OAHP90]. 
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memory. Network traffic tends to have a bi-modal distribution of sizes, either large messages (e.g., 
for bulk data transfer) or small messages (e.g., for remote login and voice applications). Second, 
it must support protocol encapsulation. Encapsulation occurs as messages move up and down a 
protocol graph; it involves adding and deleting both headers and trailers to the beginning and end of 
a message, respectively. Third, a message manager must also support fragmentation and reassembly. 
Finally, it must implement these operations with a minimal amount of data copying. 

As mentioned in Section 3.1.3, memory-to-memory copying is a significant source of OSTSA 
overhead. Naive implementations that physically copy messages between each layer are far too 
expensive. Therefore, message management schemes are optimized to minimize data copying, using 
techniques such as buffer-cut-through (passing buffers by reference through multiple protocol layers 
[WM89, ZS90]) and copy-on-write schemes (that use lazy evaluation, reference counting, and buffer­
sharing to avoid making unnecessary copies [OAHP90]). 20 

Message management schemes are often tuned to work efficiently for different message sizes. For 
example, certain schemes are well suited for small- or large-size messages, but not for medium-size 
messages. In particular, the BSD message management facility divides its buffers (called mbufs into 
small (128 byte) and large (1,024 byte) blocks. This leads to non-uniform performance as incoming 
and outgoing messages vary between small and large mbuf sizes [HMPT89]. Different schemes also 
vary in their level of support for minimizing data copying and data sharing. For instance, a standard 
message management scheme (e.g., used by BSD UNIX and System V) chains multiple pieces of a 
message together to form a linked-list of message fragments. Adding data to the front or rear of the list 
only involves relinking pointers, and does not require any data copying. An alternative approach uses 
a Directed-Acyclic-Graph (DAG)-based message data structure [OAHP90]. This method provides 
better support for data sharing between protocol layers, since DAGs allow multiple "parents" to 
share a single "child." 

3.2.2 The Multiplexing and Demultiplexing Dimension 

Multiplexing and demultiplexing are mechanisms used to route messages between sessions in one or 
more adjacent protocol layers. Multiplexing is typically performed at the sender's end of a network 
connection. It directs outgoing messages from some number of higher-layer sessions onto a smaller 
number (usually one) of lower-layer sessions [Ten89]. Demultiplexing performs the inverse task on the 
receiver's end by directing incoming messages up to their associated sessions. Nate that multiplexing 
and demultiplexing are orthogonal to data copying. In other words, depending on the message 
management scheme, messages may not require memory-to-memory data copying as they move up 
and down through the protocol layers [OAHP90]. 

In general, demultiplexing is more complicated than multiplexing as the result of several fac­
tors. First, the sender has knowledge about the entire transfer state [CT90] (e.g., the destination 
address 21 of the messages and which network interface to use). For connection-oriented services, 
this information may be precomputed at connection establishment time and reused for subsequent 
messages destined for the same address. On the other hand, when a network controller receives an 
incoming message, it must inspect the message header and perform a lookup operation to determine 
which higher-layer protocol should receive the message. This demultiplexing operation may occur sev­
eral times enroute from network controller to user process.22 Second, demultiplexing often requires 

20 These schemes may be combined with the virtual memory remapping optimizations described in Section 3.1.3. 
21 Addresses indicate which local and/or remote process( es) should receive a particular message. Examples include 

port numbers, connection identifiers, and Internet IP addresses. 
22 For example, IP messages are demultiplexed on a header field indicating whether the message is bound for TCP, 

UDP, or some other higher-layer protocol; likewise, these higher-layer protocols may demultiplex further up to an 
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Figure 10: Layered and Non-Layered Multiplexing and Demultiplexing 

dynamically allocating data structures (e.g., in order to deliver messages addressed to "passively­
opened" connections). Finally, depending on the process architecture, these demultiplexing activities 
may exhibit high synchronization and context switching overhead, since multiple processes may need 
to be awakened, scheduled, and executed. These factors help explain why receivers, rather than 
senders, are often performance bottlenecks in distributed systems [Hol91]. 

Four important multiplexing and demultiplexing dimensions are synchronous vs asynchronous, 
layered vs non-layered, and different search methods, and different caching strategies. 

(1) Synchronous vs Asynchronous: Multiplexing and demultiplexing may be either synchronous 
or asynchronous. ~Whichever method is chosen strongly relates to whether the OSKA uses a horizontal 
or vertical process architecture (see Figure 5). For example, vertical process architectures (like the x­
kernel) typically use synchronous multiplexing and demultiplexing. Since each vertical process resides 
in its own separate address space upcalls and subroutine calls may be used to transfer messages up 
and down the protocol graph. In this case, the demultiplexing operation simply determines which 
higher-layer protocol to invoke; calls from lower-layer protocols block until higher layers complete 
their protocol processing. 

On the other hand, horizontal process architectures (e.g., Xinu or System V STREAMS) often use 
asynchronous multiplexing and demultiplexing that pass messages up and clown the protocol graph 
without blocking the sender. This approach requires message queues to buffer data between layers 
and may also require additional context switching. 

(2) Layered and Non-Layered Multiplexing and Demultiplexing: Multiplexing and demul­
tiplexing route messages between OSPA protocols and sessions. In layered schemes (shown in Fig­
ure 10 ( 1) ), this routing may occur multiple times as messages traverse up or down the protocol graph. 
This approach differs from non-layered multiplexing and demultiplexing (shown in Figure 10 (2)), 
where the routing decision is performed only once, usually at the lowest-layer of the protocol graph, 
e.g., at the network interface layer. The choice between layered and non-layered multiplexing and 
demultiplexing has an important impact on both OSTSA performance and modularity. 

associated user process. 
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Using layered multiplexing and demultiplexing has several advantages [Ten89]. First, it promotes 
modularity, since services offered at one layer may be developed independently from other layers. Sec­
ond, it helps conserve resources (e.g., virtual circuits) by sharing them among higher layer sessions. 23 

Finally, layered approaches are useful for coordinating different simultaneous multimedia applications 
(e.g., synchronized voice and video streams), since messages are forced to synchronize at each Service 
Access Point (SAP) boundary. 

The main disadvantages of layered multiplexing and demultiplexing result tram the additional 
overhead of performing multiple routing decisions. For example, depending on the OSTSA process 
architecture, multiple levels of demultiplexing may lead to high context switching and synchronization 
overhead. Layering interactions also often increase jitter, which is detrimental to the performance of 
many delay- and jitter-sensitive multimedia applications. Some researchers believe that this overhead 
outweights the benefits described in the previous paragraph [Ten89]. 

Therefore, non-layered multiplexing and demultiplexing has been proposed as an alternative. Non­
layered approaches are beneficial for several reasons. First, they decrease contention from network 
connections that are transmitting and receiving from the same protocol component or protocol layer, 
because there is less competition for the same lower-layer SAPs [Ten89]. Second, in a horizontal 
process architecture, using a non-layered approach will reduce the number of processes and therefore 
decrease the total amount of context switching overhead. 

However, there are several disadvantages to using a non-layered approach. First, it expands the 
degree of demultiplexing at the lowest layer. This violates certain protocol layering assumptions, 
since the lowest layer must be able to determine and demultiplex on session identifiers that occur 
several logical layers above it in a protocol graph. Second, it increases the number of sessions within 
every intermediate protocol layer, since these sessions are replicated and not shared [Ten89]. Finally, 
they encourage monolithic, special-purpose implementations that are difficult to maintain and extend 
[CT90]. 

(3) Search Mechanisms: Implement a multiplexing and demultiplexing scheme typically involves 
some form of searching. For example, BSD's TCP implementation searches a list of control blocks to 
demultiplex incoming messages to their appropriate connection session. The search key is known as 
an external identifier (e.g. network addresses, port numbers, and type-of-service field); it is used to 
locate some internal capability (e.g., pointers to session state information, protocol control blocks, 
and network interfaces). Several popular search algorithms include direct indexing (e.g., using a 
connection identifier), sequential-search, ·and hashing. 

Certain transport protocols (e.g., TP4 and VMTP) have connection identifiers that may be used 
to decrease demultiplexing overhead. For example, these identifiers may be computed at connection 
establishment time. This greatly simplifiec; I itP demultiplexing operation by directly indexing into 
the associated control block, rather than SP<11Thing on keys in the form of the <source addr .. source 
port, destination port> tuple used to iclent ii\ TCP and UDP associations. If a particular protocol 
does not support connection identifiers, seq111·1t1 ial-search or hashing may be used instead. Searching 
a linked list or table sequentially is simple t() i111plement, though it does not scale up well if there are 
a large number of items in the key's search sp;ice (e.g., many open network connections). Therefore, 
some form of hashing (such as bucket-chaininu) is often used if many search keys exist [HMPT89]. 

( 4) Caching and List Reorganization: There are several optimizations available for the above 
search methods. Optimizations include using single- or multiple-item caches, along with list reorga­
nization heuristics that move recently accessed control blocks to the front of the search list or bucket. 

23 For instance, This sharing is useful for leased-line communication links, where it is expensive to reestablish a 
dedicated virtual circuit for each transmitted message. 

21 



If applications form ·'message-trains" (where a sequence of back-to-back messages are destined for 
the same higher-level session), then a single-level control block cache is a relatively efficient, straight­
forward implementation [MD91]. On the other hand, single-level caching is not particularly efficient 
for applications that do not form message-trains. 24 

In general, the different search algorithms and optimizations have a significant impact on overall 
OSTSA and protocol performance. Hashing, combined with caching, produces a measurable im­
provement when searching large lists of control blocks (e.g., representing the associated network 
connections) [HP9 l]. 

3.2.3 The Flow Control Dimension 

Flow control is a mechanism used by a sender or receiver to regulate the rate of speed and amount 
of data that is being transmitted. Flow control is necessary due to resource limitations in an OSTSA 
implementation. In particular, an OST SA will not dedicate an infinite amount of memory for servicing 
network connections. 

There are two kinds of flow control (peer-to-peer and layer-to-layer) that correspond to the dif­
ferent OSTSA levels in which network communication occurs. Peer-to-peer flow control is applied 
on a per-connection basis at the OSSA level to avoid transmitting messages faster than the remote 
receiver is able to store and process them. 25 For example, at the transport layer, TCP uses a "slid­
ing window" flow control algorithm to regulate the amount of data exchanged between two network 
connections. 

Layer-to-layer flow control occurs both between and within other OS TS A levels. At the OSN API 
level, flow control is usually performed by blocking a user process that attempts to send and/or receive 
more data than the inner-level OSPA protocol and session components are capable of handling at 
that moment. Within the OSPA level, layer-to-layer flow control is used to prevent higher-layer 
protocols from flooding lower-layer protocols with more messages than they are equipped to process 
and/or buffer. Two general mechanisms for controlling layer-to-layer flow are per-queue flow control 
and per-process flow control. They are described in the bullets below. 

• Per-Queue Flow Control: Flow control is often implemented by putting a limit on the 
number of messages or number of total bytes that are queued between or within adjacent protocol 
layers. For example, a horizontal process architecture (e.g., System V STREAMS) places a limit on 
the size of the message queue used to pass information between adjacent protocol layers (or between 
the top-most protocol layer and an application program executing as a user process). 

• Per-Process Flow Control: Flow control may also be performed on a per-process basis. 
For example, in a vertical process architecture (like the x-kernel), an incoming message is discarded 
if a light-weight process is not available to shepard it up the protocol graph. 

3.3 Software Quality Dimensions 

This section examines modularity, flexibility, and extensibility, which are three software quality dimen­
sions related to the design and implementation of Operating System Transport System Architectures 
( OSTSAs). Although these quality dimensions are difficult to quantify precisely, they affect the 
correctness, performance, portability, maintainability, and reusability of OSTSA software. 

24 Note that when determining caching benefits, the "miss ratio" (i.e., how many times the desired external identifier 
is not in the cache) represents only part of the overall demultiplexing cost. It is also important to consider how many 
list entries must be searched when a cache miss occurs. If search lists are long, the cost of a cache miss may be high. 

25 Note that network congestion may also force buffering of data at the OSSA level on the sender. 
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3.3.1 The Modularity Dimension 

Modularity is a software quality dimension that promotes reusability, flexibility, and extensibility 
[Mey89]. In general, using a modular design aids the software construction process by reducing de­
velopment ·and maintenance costs and increasing system quality. Modularity divides large, complex 
systems into smaller, intellectually manageable components [Wir71], and localizes the effects of spec­
ification changes and programmer errors to within well-defined modules26 [Hen80]. Many software 
design methodologies emphasize modularity [Mye78, Par72, YC79]. 

In distributed systems, modularity is often manifested by layered designs and implementations. 
In fact, many research projects [Cla85, HP91, Zwe91, OP91, Sha91] propose different approaches 
for developing modular and efficient software architectures for distributed OSTSAs. A modular 
decomposition of an OSTSA separates system functionality into distinct components or layers. It is 
difficult to measure the degree of OS TS A modularity precisely. However, two empirical indicators of 
OSTSA modularity include interface uniformity [ OP91] (i.e., the uniformity of the service interfaces 
exported within and between software components and hierarchical layers) and the degree of data 
coupling [Mye78] between components. The following bullets discuss these indicators. 

(1) Interface Uniformity: There are two general types of interface uniformity. First, modules 
that perform the same abstract services (e.g., connection establishment, flow control, message man­
agement, etc.) possess high uniformity if their service interfaces remain the same regardless of their 
service implementations. Second, protocol components in a layered protocol graph may also exhibit 
uniformity at their Service Access Points (SAP) (which occur at the boundaries between protocol 
layers). In this case, highly uniform interfaces exist if all the SAPs in the protocol graph use the 
same service interface. For example, passing a message between the user-process-to-TCP-protocol 
SAP boundary would use the same service interface as passing a message between the TCP-protocol­
to-IP-protocol SAP boundary. 

Interface uniformity is an important ingredient for building reusable software components for 
network protocols. Lack of uniform interfaces makes it difficult to support protocol substitution 
(which is the ability to transparently interchange protocols that provide the same class of service 
[Bro88]). Furthermore, uniformity enhances simplicity [Com9lb], and it is generally easier to reuse 
simple modules that possess standard interfaces [OP91]. 

(2) Data Coupling: A second modularity indicator involves measuring the degree of data coupling 
between software components in an OSTSA. Research suggests that high data coupling between 
software components is associated with higher defect rates and higher maintenance costs [HK8la]. 
Software analysis tools are available to measure data coupling within software systems. For example, 
data binding metrics [HB85, SB91, Sel88] are one technique for quantifying the data dependencies 
between software system modules. Another technique computes information flow metrics, which 
measure the degree of module fan-in and fan-out [HKSlb]. 27 

In general, highly-layered and highly-modularized OSTSAs (such as the Conduit framework and 
the x-kernel) possess high interface uniformity and low data coupling among their components and 
layers. This implies that modules in these systems minimize inter-module data dependencies and 
respect layering boundaries. For example, protocol and session objects in the x-kernel only reference 

26 A module is defined here as "a software component encapsulating the representation of some abstraction." Modules 
may be either stand-alone subroutines or abstract data types (ADTs), which are collections of related data structures 
and subroutines that directly update and/or retrieve data structure state information (HK81b]. 

27 Fan-in measures the number of modules that pass data (via parameters or global variables) into a module. Fan-out 
measures the number of modules receiving data from a given module. 
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local variables, and only access lower-layer components via well-defined control interfaces [OP91]. 
Monolithic OSTSA decompositions, on the other hand, often de-emphasize or ignore layering bound­
aries. This is manifested by lower interface uniformity and higher data coupling. 

There are several advantages to organizing and describing OSTSA software in a modular and 
layered manner. First, layering enables multiple outer-level OSTSA components (e.g., user processes 
and network protocols) to share inner-level services [Fel90] (e.g., process and virtual memory man­
agement, and layer-to-layer flow control mechanisms). Second, viewing OS TS As as virtual machine 
levels with well-defined service interfaces enables transparent, incremental enhancement of commu­
nication services [Ten89]. Finally, modular designs generally improve the implementation, testing, 
and maintenance of software systems [Par72, Par79, PCW83]. This, in turn, reduces overall develop­
ment effort, facilitates reuse of existing software components, and creates more flexible and extensible 
OSTSAs. 

There are also several disadvantages of using modular and layered approaches for OSTSAs 
[Ten89, CWWS92]. A common criticism of layered implementations is that they introduce too 
much overhead, which prevents them from delivering high-speed network bandwidth to applications 
[Cla82]. This overhead typically results from several factors. First, modular and highly-layered OST­
SAs incur significant inefficiencies if layering is not carefully structured with the process architecture 
[HP91, CWWS92]. In particular, in a horizontal process architecture, the context switching over­
head may be so large that efficiently supporting a highly-layered protocol graph (where each layer is 
encapsulated in a separate process) is extremely difficult [B091 ]. Second, modular systems incur a 
performance penalty by encapsulating OSTSA data structures and protocol state information behind 
abstract service interfaces. This approach requires protocol processing activities to use subroutine 
calls and parameter passing to access desired information. The overhead from encapsulation may be 
quite significant for protocol families like TCP /IP, where TCP protocol processing involves a strong 
dependency on IP protocol state information. 28 Monolithic implementations avoid this encapsulation 
overhead, since information hiding is either non-existent or not strictly followed. 

Monolithic implementations are not necessarily always more efficient than modular ones, however. 
In fact, carefully designed modular architectures may actually "enhance" performance in several ways. 
First, modular OSTSA components are potentially more amenable to efficient parallelization. For 
instance, modularity reduces global memory references, thereby reducing memory-bus contention 
for shared-memory references and decreasing synchronization overhead. Second, modularity may 
facilitate macro-level performance improvements, even if there are increased micro-level performance 
penalties (such as additional subroutine-call overhead). 

The latter point is exemplified by several empirical benchmarks performed using the x-kernel. 
These findings illustrate that efficient protocols may be created from modular, layered, and reusable 
software components if the process architecture minimizes context switching overhead and the mes­
sage management scheme minimizes memory-to-memory copying (especially for large blocks of mem­
ory) [HP91J. For example, [HP91] demonstrated how the x-kernel's highly-layered OSTSA outper­
formed BSD's more monolithic OSTSA in terms of latency and throughput. Likewise, [OP90a] 
implemented the Sprite RPC protocol in the .r-kernel using an efficient, highly-layered design that 
significantly outperformed the original monolithic Sprite implementation. One reason for the improve­
ment was that the highly-layered x-kernel implementation allowed incoming and outgoing messages 
to bypass unnecessary layers of protocol processing (e.g., skipping the IP layer when messages are 
bound for hosts on a local subnet). 

28 For instance, TCP uses the IP pseudo-header for checksum calculations. 
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3.3.2 The Flexibility and Extensibility Dimension 

As described in Section 2.3, the OS Protocol Architecture (OSPA) manages software components 
that implement protocols, sessions, and messages. The OSPA design generally determines the overall 
flexibility and extensibility of an OSTSA. 29 The flexibility of an OSPA is characterized by how easily 
existing components may be recombined to form new configurations, and extensibility is characterized 
by how easily new components and services may be added to the OSPA. As discussed below, OSPA 
flexibility and extensibility dimensions involve support for multiple protocol families, various OSPA 
component composition mechanisms (e.g., component configuration time, component composition 
order, and whether typed or untyped component composition is supported), and OSPA component 
locations within the OSTSA. 

(1) Support for Multiple Protocol Families: A protocol family is a collection of network 
protocols that share related communications syntax (e.g., addressing formats), semantics (e.g., in­
terpretation of standard control messages), and operations (e.g., checksum computation algorithms). 
Many different protocol families exist, such as SNA, TCP /IP, XNS, and OSI. 

Support for multiple protocol families is becoming increasingly important for both interoperabil­
ity and performance reasons. Obviously, an OSPA that supports TCP /IP, OSI, XNS, and SNA will 
be able to communicate with far more host machines than an OSPA that only supports one protocol 
family. Moreover, different protocol families offer different types of services that favor certain applica­
tions while compromising performance for others [vVM87]. In any layered protocol family it is difficult 
to achieve good performance at layer N without efficient support from layers below N. Therefore, 
application and network performance may decrease when protocol families are not designed to meet 
their specific requirements [OP90b]. For example, the TCP /IP protocol family does not specify a 
low-latency RPC service, which makes it difficult to efficiently support request/response-style appli­
cations (such as implementing a distributed file server on a LAN containing diskless workstations). 

Some OSPAs support only a limited number of protocol families. For instance the V-kernel 
[Che88] only supports VMTP, Xinu [Com91b] only supports TCP /IP, and early versions of Amoeba 
[TRS+9o, KvRvST91] only supported its high-performance RPC protocol graph. If only one protocol 
family is supported, then various special-purpose optimizations (e.g., coding the protocols in assembly 
language [RST89]) may be used to improve performance. On the other hand,· more flexible and 
extensible OSPA designs are required to support multiple protocol families. For example, System V 
STREAMS, BSD UNIX, the x-kernel, and the Conduit framework all provide general-purpose OSPAs 
that support multiple protocol families. 

(2) OSPA Component Configuration Time: OSPA components (e.g., representing protocols, 
sessions, and messages.) may be configured and/ or reconfigured either statically or dynamically. 
Static configuration takes place at operating system boot time. In this case, the OSPA component 
configuration is "hard-coded," and available communication services are based only upon pre-ordained 
alternatives. Both BSD UNIX30 and Xinu support static OSTSA composition. For example, user 
application programs that use the Internet protocol family on BSD UNIX may only select between 
the TCP and UDP transport protocols. 

Dynamically configured OSPAs, on the other hand, compose some or all of their components while 
the system is running. A common method for supporting dynamic composition is to provide user 
applications with OSN API control operations that modify the OSPA protocol graph. For example, 

29 Since an OSKA typically supports other OS subsystems besides network computing, they are usually more difficult 
to change than the OSPA. 

30 This paper focuses on 4.3 BSD UNIX. 4.4 BSD incorporates a more flexible OSPA composition mechanism similar 
to System V UNIX STREAMS. However, the 4.4 BSD design is still in flux. 
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System V STREAMS allows user applications to link and/or unlink protocol components (called 
STREAM modules) via the ioctl system call. In addition, support for the dynamic linking and 
loading of executable code is useful for increasing extensibility. 

The main advantage of statically configured OSPAs is that they may run very efficiently, since 
they are able to make assumptions about component ordering. For example, the BSD UNIX OSPA 
tightly couples the TCP and IP layers, which enables it to place header fields (such as the source 
and destination IP network addresses) at fixed-offsets in an mbttf message. On the other hand, 
dynamically configured OSPAs require more complex mechanisms to process messages whose header 
fields may contain a variable number of addresses, stored at variable offsets in the message headers.31 

The main disadvantage of statically configured OSPAs is that they are inflexible. For instance, 
after any modifications, OSPA code must be recompiled, relinked, and restarted; carrying out these 
activities may require system downtime. Moreover, adding complicated extensions often requires 
changes to the design of OSPA software components and application programs. For example, when 
OSI and XNS support was added to the BSD UNIX kernel, many modifications were required to 
kernel- and user-level source code and system call interfaces [OTW85]. 

Dynamic configurations have several advantages over static configurations. First, they enhance 
flexibility and extensibility by enabling "dynamically tailoring" of OSPA components that selectively 
adapt to user application requirements and particular network environments. OSPA configurations 
may be specified by applications or they may be based upon dynamically changing feedback on 
network congestion, CPU load, and resource availability of networks and hosts [Sti92, Tsc91]. In 
addition, the ability to modify an OSPA at run-time may be important for systems that must be 
"highly available" (e.g., systems such as an airline reservation system or telephone switching systems 
that cannot tolerate downtime). 

(3) OSPA Component Composition Order: OSPAs that support dynamic configuration must 
provide some form of user interface to enable inserting and/or removing components. Two general 
approaches are to either allow components to be added or subtracted in an arbitrary order, or to 
enforce some constraints on the order such as "last-in, first-out" (LIFO). The x-kernel and Con­
duit framework provide OSPAs that support arbitrary component composition orders. System V 
STREAMS, on the other hand, only supports LIFO composition orders. 

(4) Typed versus Untyped Component Composition: OSPAs supporting dynamic configu­
ration may also provide either typed or unt,yped component composition. Typed composition is used 
to ensure that components are composed together in meaningful ways. This prevents, for instance, 
a TCP protocol component from being accidentally attached directly to an Ethernet driver, instead 
of an IP component. The Conduit framework is an example of a system that provides typed compo­
sition. Conversely, most OSPAs do not haw ~tandard facilities to ensure that arbitrary component 
combinations are semantically valid. 

( 5) OSPA Component Location: OSP,\ rnmponents may be implemented inside the OS kernel, 
in user-space, in off-board processors, or in ~<llllE' hybrid combination of these. Component location 
affects flexibility and extensibility, since it is generally harder to debug, develop, port, modify, and 
maintain OS kernel code, compared with code written in user-space [Cla82]. For example, when the 
OS runs in kernel-mode there is generally no protection against run-time errors. Therefore, erroneous 
kernel code may cause .the entire OS to crash, whereas erroneous code running in user-mode only 
causes the associated user program to crash. 

31 Variable-offset headers may be necessary because the particular set of higher-layer protocol addresses is not known 
until a message arrives at the bottom of a protocol graph [OP91]. 
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Process Architecture ( 1) Coroutines, ( 2) horizontal (process-per-module) 
Event Management (1) absolute, (2) heap, (3) function call 
Virtual Memory Remapping none 

Message Buffering list-based 
Multiplexing/Demultiplexing (1) asynchronous, (2) layered, (3) ND, (4) ND 
Flow Control per-queue 

Modularity ( 1) uniform, (2) low coupling 
Flexibility and (1) multiple, (2) dynamic, (3) LIFO, 
Extensibility ( 4) untyped, ( 5) kernel-space 

Table 2: STREAMS Profile 

Component location also affects performance. Implementing components in user-space may result 
in poor performance due to the "boundary-crossing penalty" [OAHP90] that occurs when processes 
move between user- and kernel-mode (e.g., as the result of a system call). The boundary-crossing 
penalty results from the overhead of demultiplexing, system calls, and context switching operations. 
For example, it requires at least 2 context switches and 3 system calls per-received-message to perform 
demultiplexing in user-space [MRA87]. On the other hand, performance overhead is greatly reduced 
if most OSPA components run in kernel-mode, since kernel data structures may be accessed directly 
(thereby reducing context switch overhead). 

Two mechanisms used to reduce the overhead from crossing the user/kernel boundary are upcalls 
and packet .filters. U pcalls are synchronous communication mechanisms that transfer control upwards 
from server to client [ Atk88, Cla85]. The x-kernel uses up calls as an optimization technique to reduce 
context switching overhead for incoming messages by allowing kernel processes to transform into user 
processes. Packet filters are a kernel resident, protocol independent packet demultiplexer that is used 
to reduce context switching overhead [MRA87]. A packet filter enables a user process to specify to 
the kernel which packet types it wants to receive. The kernel then performs the packet processing 
operations on behalf of the user process. 

4 Survey of Existing OS Transport System Architectures 

This section surveys the OS Transport System Architectures (OSTSA) for the System V UNIX, BSD 
UNIX, x-kernel, Choices, and Xinu operating systems. Section 4.1 gives a brief summary of each 
system. Section 4.2 compares and contrasts each system using the taxonomy dimensions listed in 
Table 1. 

4.1 System Overviews 

This section gives an overview of some significant features (e.g., the software components and process 
architecture) for each surveyed OSTSA. In addition, an OSTSA pro.file corresponding to the taxonomy 
illustrated in Table 1 is presented with each overview. These profiles were derived from articles in 
the open literature andfrom examining the source code, when available. 

4.1.1 System V STREAMS 
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Figure 11: An Example Stream in System V STREAMS 

The System V STREAMS model was originally developed to enhance the portability, reusability, 
and extensibility of the 3th Edition Research UNIX serial-line I/O subsystem [Rit84]. The STREAMS 
design was initially oriented towards terminal drivers. It was later extended to support network pro­
tocols and local IPC, via multiplexor drivers, STREAi'vl pipes, and named FIFOS. The STREAMS 
architecture emphasizes modular components that possess standard interfaces. Many other exper­
imental OSTSAs (such as the x-kernel and the Conduit framework) are heavily influenced by the 
STREAMS architecture. Table 2 illustrates the OSTSA profile for System V UNIX STREAMS. 

As shown in Figure 11, the three main layers in the System V STREAMS architecture include: 
the STREAiVl head, the S'TREA1vl module, and the STREAM driver layer [McG88]. Uniform service 
interfaces exist between each layer. A Stream32 is a full-duplex "protocol processing and data trans­
fer" path between a STREAM head and a STREAM driver. STREAM modules may be inserted 
and/or removed dynamically between the STREAM head and the STREAM driver. These modules 
implement protocol processing services like encryption, compression, reliable message delivery, and 
routing. The following bullets describe the System V STREAMS components in greater detail. 

• STREAM Heads: The STREAM head is a special type of STREAM module. It is situated 
on "top" of a Stream, nearest to the user process. A STREAM head provides a queueing point 
where data and control information is exchanged between a distributed application (running as user 
processes) and a Stream (running in the kernel). The STREAM head is responsible for segmenting 
the user data (which may be produced as a continuous bytestream) into discrete messages. These 
messages flow "downstream" from the STREAM head, though zero or more STREAM modules, to 
the STREAM driver, where they are transmitted by a network controller to the appropriate remote 
host machines. Conversely, the driver also receives incoming messages. These messages then flow 
"upstream" through the modules to the STREAM head, where a user process may wait to retrieve 
them. The STREAM head also performs memory-to-memory copying to move data between a user 
process and kernel (i.e., the System V kernel does not use virtual memory remapping techniques 
in its OSNAPI). Since a STREAM head runs in context of a user process, it may sleep when it is 

32 The uppercase word "STREAMS" refers to the overall System V OSTSA mechanism, whereas the word "Stream" 
refers to a particular path between a user application and a device driver. 
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blocked.33 

• STREAM Modules and Queues: STREAM modules are analogous to "filter'' programs 
in a UNIX shell pipeline. Data flows from a Stream head, through a stack of STREAM modules, to 
a STREAM driver. Each STREAM module performs its protocol processing operations on data it 
receives before sending the data along to the next module. Unlike a UNIX pipeline, however, data is 
passed as discrete messages between modules, rather than as a bytestream. 

User processes may dynamically "push" and/or "pop" STREAM modules from a Stream (how­
ever, modules may only be inserted or removed in a "last-in, first-out" (LIFO) order). Each module 
contains a pair of queues, which are always allocated in read/write pairs (i.e., every STREAM module, 
STREAM driver and STREAM head contains a queue pair). Queues are used for several purposes. 
First, they link STREAM modules together with other STREAM modules (a STREAM driver is 
linked below the "bottom" module of the Stream; likewise, a STREAM head is linked above the 
"top" module of the Stream). Second, they hold lists of messages sorted in priority order (messages 
may be ranked with up to 256 different priority levels). Finally, they contain pointers to a set of sub­
routines that implement the module's processing operations (e.g., encrypting and decrypting data) 
and regulate layer-to-layer flow between modules. 

Two important subroutines in this set are called "put" and "service." A put subroutine runs in 
response to synchronous or asynchronous events (e.g., a user process sending a message downstream 
or a message arriving on a network interface). It performs protocol processing operations (such 
as handling high-priority messages like TCP urgent data) that must be invoked immediately. The 
service subroutine, on the other hand, is used for protocol processing operations that either do 
not execute in a short, fixed amount of time (e.g., performing a three-way handshake to establish a 
peer-to-peer network connection) or that will block (e.g. due to layer-to-layer flow control34 ). 

• STREAM Drivers: Like a STREAM head, a STREAM driver is also a special type of 
STREAM module.35 There are two main categories of STREAM drivers: device drivers and multi­
plexor drivers. Device drivers exist at the "bottom" of a Stream. They typically manage hardware 
devices, and perform activities like handling network controller interrupts and converting raw packets 
into message data structures suitable for upstream modules. 

A multiplexor driver may exist between a STREAM head and a STREAM driver, just like 
a STREAM module. Unlike a STREAM module, however, a multiplexor driver enables multiple 
Streams to link to it from "above" or "below." Multiplexor drivers are used to implement network 
protocols such as TCP and IP that receive data from multiple sources (e.g., different user processes) 
and send data to multiple sources (e.g., different network interfaces). However, the STREAMS 
mechanism has no built-in support for flow control among multiplexor drivers. Therefore, STREAM 
multiplexor drivers require Stream implementors to develop additional "protocol-specific" software 
that performs message multiplexing and demultiplexing and flow control. 

• Messages: Data is passed between STREAM heads, STREAM modules, and STREAM 
drivers in discrete chunks, using a standard abstract data type ( ADT) called a message. A mes­
sage is used to represent both data and control information (a message may have multiple data parts, 

33 STREAM heads block in several situations. One is when a user process performs a "blocking read" while waiting for 
messages to arrive on a network interface. Another occurs from "back-pressure" exerted by layer-to-layer flow control 
from "downstream" modules. 

34 In fact, the distinction between put and service subroutines was made to support flow control (Rit84]. Flow 
control occurs between the two nearest queues in a Stream that contain a service procedure. 

35 For example, unlike STREAM modules, STREAM heads and STREAM drivers cannot be "pushed" or "popped" 
onto a Stream dynamically. 
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but only one control part). J\ilessages are passed upstream and downstream by reference to reduce 
memory-to-memory copying. 

A message is represented by a <message control block, data control block, variable length data 
buffer> three-tuple. This three-tuple facilitates "logical" message duplication (that does not incur 
memory-to-memory copying costs) by sharing a single <data buffer> among <message control block, 
data control block> headers. The variable length data buffer has a default length of 64 bytes, though 
it may be allocated to be any power of two, up to a configuration-defined maximum limit. 

• Process Architecture: System V STREAMS supports a variant of the horizontal process 
architecture. Conceptually, it provides a "process-per-module" architecture, in which one or more 
"logical" processes are associated with each STREAM module's put and service subroutines.36 

However, these subroutines run outside the context of any kernel or user process, and therefore, 
bypass the standard operating system kernel process scheduling mechanism. There are several reasons 
for this behavior. First, early versions of STREAMS did not support concurrent execution, since 
the System V kernel was single-threaded. Second, dedicating a standard kernel process for each 
STREAM module is highly consumptive of memory and CPU resources. For example, supporting a 
large number of modules, each with their own process state, would require many additional kernel 
stacks and process table slots, and would involve context switching overhead when moving messages 
between modules [Rit84]. 

The horizontal, "process-per-module" process architecture is emulated by scheduling and execut­
ing the service subroutines associated with the read/write queues in a STREAM module. Service 
subroutines interact in a coroutine manner. For example, when a queue's service subroutine is run, 
it performs protocol processing operations on all the messages waiting in its queue (note that due 
to multiplexor drivers, messages may have come from multiple upstream or downstream modules). 
By the time a service routine finishes its processing, it will have passed its processed messages to 
the appropriate STREAM components adjacent in the Stream. Any STREAM module that now has 
new messages in its read queue will have its service subroutine executed by a STREAMS scheduling 
mechanism. Note that service procedures are run only at certain times such as just before returning 
from a system call and just before a process is put to sleep. 

One effect of this process architecture design is that the STREAM modules do not exist in the 
context of an OS process. Therefore, put and service subroutines cannot sleep if they must block 
(e.g., due to flow control). If a subroutine detects that it must block, the currently executing put or 
service subroutine must explicitly save its state information before completing its current processing. 
In other words, the STREAMS mechanism has no provision for automatically retaining the state of 
blocked put or service routines. 

4.1.2 BSD UNIX 

BSD UNIX provides an OSTSA framework that supports multiple protocol families. This framework 
was designed originally to support the DARPA TCP /IP protocol family [LMKQ89]. Over time, other 
protocol families (e.g., XNS, and OSI) have been incorporated into the framework [OTWS.5]. BSD 
supports the development of distributed applications that are independent of the underlying OSTSA 

36 Note that the OSF /1 UNIX implementation supports various granularity levels of STREAMS concurrency. From 
finest- to coarsest-grain, these concurrency levels are: ( 1) queue-level (i.e., one light-weight process (LWP) for the 
STREAM module read queue, one LWP for the STREAM module write queue), (2) queue-pair-level (i.e., one LWP 
shared by a STREAM module queue pair), (3) module-level (i.e., one LWP shared across all instances of a STREAM 
module), and ( 4) module-class-level (e.g., one LvVP shared across a particular class of STREAM modules). 
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Process Architecture ( 1) single-threaded, ( 2) vertical 
Event Management (1) relative, (2) linked list, (3) function call 
Virtual Memory Integration none 

Message Buffering list-based 
Mulitplexing/Demultiplexing (1) hybrid, (2) layered, (3) sequential-search, (4) single-item 
Flow Control ND 

Modularity (1) non-uniform, (2) high coupling 
Flexibility and ( 1) multiple, (2) static, (3) static, 
Extensibility ( 4) untyped, ( 5) kernel-space 

Table 3: BSD UNIX Profile 

protocols via a general-purpose OSNAPI called sockets.37 Table 3 illustrates the OSTSA profile for 
BSD UNIX. 

The concept of a communication domain is central to BSD's multiple protocol family design. 
Domains specify a set of related protocols and an address family. Protocols implement the standard 
domain socket types, e.g., SOCK__STREAM (for reliable byte-stream communication) and SOCKJ)GRAM 

(for unreliable datagram communication). An address family defines an address format (e.g., the 
address size in bytes, number of fields, and order of fields) and a set of subroutines that interpret 
the address format (e.g., to determine which subnet an IP message is intended for). BSD supports 
address families for the UNIX domain, Internet domain, XEROX NS domain, and the OSI domain. 

There are three main layers in the BSD OSTSA design: the socket layer, protocol layer, and 
network interface layer. Like System V STREAMS, well-defined interfaces exist between each layer, 
although BSD generally places less emphasis on making the interfaces uniform.38 A socket performs 
OSNAPI services that are similar to the System V STREAM head.39 The protocol layer coordinates 
algorithms and data structures used to implement the protocol families that BSD supports. The 
network interface layer provides a well-defined software interface to network controllers. The following 
bullets describe the major BSD components in greater detail. 

• The Socket Layer: A socket is a typed object that represents a bi-directional endpoint of 
communication. It serves as a queueing point for data that is transmitted and received between user 
applications (running as user processes) and the protocol layers (running in the kernel). A socket 
descriptor is used to identity an open socket. This descriptor is a small integer that indexes into 
a kernel data structure containing socket-rt> lated information (e.g., send and receive buffer queues, 
the socket type, and the associated protocol la.ver control blocks). vVhen a socket is created, this 
data structure is initialized based on the :-;JH'1·i!ied socket type (e.g., SOCK_$TREAM or SOCKJ)GRAM). 

Socket descriptors share the same name spac•' as UNIX file descriptors. This allows "naive" UNIX 
applications40 to communicate transparentl.v with different types of devices such as remote network 
connections, files, terminals, printers, and tap<' drives. 

37 Sockets augment the standard UNIX local IPC mechanisms: signals and pipes. Unlike pipes and signals, sockets 
allow arbitrary data communication between unrelated processes on local and remote host machines. 

38 Note that there is a difference between having ''well-defined" interfaces and having uniform interfaces. The former 
simply means that data structures are accessed under the control of a subroutine, rather than accessed directly. The 
latter refers to having the same interface at multiple layers in a protocol graph. 

39 The primary difference between sockets and STREAM heads is that STREAM heads support up to 256 levels of 
message priority via the getpmsg and putpmsg system calls. 

40 Naive UNIX applications read from their stcindard input and write to their standard output. 
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• The Protocol Layer: BSD's protocol layer contains multiple protocol .sublayer.s per protocol 
family. For instance, in the Internet protocol family, the TCP sublayer is connected over top of the 
IP sublayer. Each protocol sublayer maintains its own session state information. This session infor­
mation is stored in control blocks, which are used to manage active end-to-end network connections. 
Control blocks that are used in the Internet domain include the inpcb (which stores a connection's 
host addresses and port number) and the tcpcb (which stores the TCP state machine variables such 
as sequence numbers, retransmission timer values, and statistics for network management). Each 
inpcb contains links to sibling inpcbs (which store session information for other active network 
connections in the protocol layer), links to the socket data structure associated with the protocol 
session, and other relevant information (e.g., routing- table entries or network interface addresses). 
The session data structures that represent an active TCP connection consists of a <socket, inpcb, 
tcpcb> three-tuple. 

• The Network Interface Layer: Messages arriving from the network are handled by inter­
rupts rather than separate processes.41 There are two levels of interrupts: SPLNET and SPLIMP. 
SPLNET has higher priority and is generated when a hardware device interrupts (e.g., signaling 
that a message has arrived from a network controller). Hardware interrupts cannot be masked for 
very long without causing other OS devices to timeout and fail. Therefore, a second, lower priority 
software interrupt level named SP LIMP is used to invoke the higher-layer protocol processing. When 
an SPLNET hardware interrupt occurs, the incoming message is placed in the appropriate network 
interface protocol queue (e.g., the queue associated with IP processing). Next, an SPLIMP software 
interrupt is posted, which informs the kernel that higher-layer protocols should be run when the 
interrupt priority level falls below SPLIMP. When the SPLIMP interrupt handler is run, the message 
is removed from the queue and processed to completion by higher-layer protocols. If a message is not 
discarded (a message might be discarded due to a checksum error) by a protocol, it typically ends 
up in a socket receive queue, waiting for a user process to retrieve it. 

• Mbufs: BSD UNIX uses the mbuf data structure to manage messages as they flow between 
protocol layers. An mbuf's representation and its associated operations are similar to a System V 
STREAMS message. Mbuf management operations include subroutines for allocating and freeing 
mbufs and chains of mbufs and for adding and deleting data. These subroutines generally try to 
perform operations that minimize memory coping. 

Mbufs are used for storing lists and chains of incoming messages and outgoing protocol segments, 
as well as other dynamically allocated data structures like the socket data structure. There are two 
primary types of mbufs: .small mbuf.s, which contain 128 bytes (112 bytes of which are used to hold 
actual data), and cluster mbuf.s, which use 1 kbyte pages to minimize fragmentation and reduce 
copying via reference counting. 

• Process Architecture: BSD uses a single-threaded, vertical process architecture residing 
entirely in the kernel. User processes enter the kernel by making a system call. Due to flow control, 
multiple user processes (that are sending data to "lower" protocol layers residing in the kernel) 
may simultaneously be blocked at the socket layer (and are therefore unable to continue processing 
messages down to the network interface layer). However, as incoming messages are passed up to 
"higher" protocol layers only one "process" is permitted to run. 42 

HTwo reasons for using interrupts are (1) they avoid context switching overhead and (2) the BSD kernel is not 
multi-threaded. · 

42 Note that when messages arrive from the network they are handled in the "bottom half" of the BSD kernel, which 
operates outside the context of a standard UNIX user-level process. 
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Process Architecture (1) LWP, (2) vertical (process-per-msg) 
Event Management (1) relative, (2) linked list, (3) function call 
Virtual Memory Remapping complete 

Message Buffering graph-based 
Multiplexing/Demultiplexing (1) synchronous, (2) layered, (3) hashing, (4) single-item 
Flow Control per-process 

Modularity (1) uniform, (2) low coupling 
Flexibility and (1) multiple, (2) dynamic, (3) arbitrary, 
Extensibility ( 4) untyped, ( 5) kernel-space 

Table 4: x-kernel Profile 

4.1.3 x-kernel 

The x-kernel is a modular, extensible OSTSA development environment designed to support OSPA 
and OSSA implementation and experimentation [HP91]. It was also designed to demonstrate that 
layering is not inherently detrimental to network protocol performance [OP90a]. The x-kernel sup­
ports protocol graphs (see Figure 3) that implement a wide range of standard and experimental 
protocol families, including TCP /IP, Sun RPC, Sprite RCP, VMTP, NFS, and Psync [PBS89]. Re­
lationships between protocols are described via the protocol graph. Unlike BSD UNIX, whose OSPA 
is characterized by a static, relatively monolithic protocol graph, the x-kernel supports dynamic, 
highly-layered protocol graphs. Table 4 illustrates the OSTSA profile for the x-kernel. 

The x-kernel's OSPA provides highly uniform interfaces to its services, which manage three fun­
damental software communication abstractions that commonly occur in network protocol graphs 
[HP91]: protocol objects, session objects, and message objects. These abstractions are supported by 
several reusable software components, including a, message manager (an ADT used to encapsulate 
messages that are exchanged between session and protocol objects), a map manager (used for demul­
tiplexing), and an event manager (used for timer-driven activities like TCP's adaptive retransmission 
algorithm). In addition, the x-kernel provides a library containing micro-protocols, which are highly 
modular software components that implement services common to many network protocols such as 
sliding window adaptive retransmission schemes, request/response RPC mechanisms, and "blast" 
algorithms with selective retransmission [OP91]. The following bullets describe the x-kernel's major 
components in greater detail. 

• Protocol Objects: Protocol objects are software abstractions used to implement network 
protocols in the x-kernel. The x-kernel implements a protocol graph by combining one or more protocol 
objects in well-defined ways. A protocol object contains a standard set of subroutines that provide 
uniform interfaces for two major services: first, protocol objects create and destroy session objects 
(described in the next bullet below); second, protocol objects demultiplex message objects onto the 
appropriate higher-layer session objects (the ,r-kernel uses the map manager abstraction to implement 
efficient demultiplexing). The map manager associates external identifiers (e.g., TCP port numbers) 
with internal data structures (e.g., session control blocks). It is implemented by a chained-hashing 
scheme with a single-item cache. 

• Session Objects: A session object maintains state information associated with an end-point 
of a network connection. For example, a session object may store the current state of an active TCP 
finite state machine. Multiple session objects may be associated with a given protocol object (the 
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Process Architecture ( 1) LWP, (2) hybrid (process-per-buffer) 
Event Management ND 
Virtual Memory Integration none 

Message Buffering list-based 
·-

M ulitplexing/Demultiplexing (1) ND, (2) layered, (:3) ND, (4) ND 
Flow Control ND 

Modularity (1) uniform, (2) low coupling 
Flexibility and (1) multiple, (2) dynamic, (3) arbitrary, 
Extensibility ( 4) typed, ( 5) user-space 

Table 5: Conduit Framework Profile 

protocol object dynamically creates and disposes the session objects). Operations on session objects 
primarily involve "layer-to-layer" activities such as exchanging messages between higher-level and 
lower-level sessions. Note that the x-kernel OSPA framework only specifies layer-to-layer operations 
on session objects. In particular, it does not provide any standard support for peer-to-peer OSSA 
activities, such as connection management, error detection, etc.43 

• Message Objects: Message objects are instances of the message manager ADT. Messages 
flow "upwards" or "downwards" through graphs of session and protocol objects. In order to decrease 
memory-to-memory copying and to efficiently implement message operations, message objects are 
represented with a graph-based data structure. This graph-based scheme uses "lazy-evaluation" that 
avoids unnecessary data copying [HMPT89]. It also stores message headers separately from the 
message data to reduce the cost of protocol encapsulation (e.g., prep.ending or stripping headers). 

• Process Architecture: The x-kernel employs a "process-per-message" vertical process ar­
chitecture that resides in the OS kernel. A pool of light-weight processes is cached in the kernel. 
vVhen a message arrives at a network interface, a separate light-weight process is dispatched from the 
pool to shepard it upwards through session objects associated with protocol layers in the protocol 
graph. In general, only one context switch is required to shepard a message throughout the protocol 
graph, regardless of the number of intervening protocol layers. The x-kernel also supports another 
optimization that reduces context switching overhead by allowing user processes to transform into 
kernel process during message output (via system calls) and kernel processes to transform into user 
processes during message input (via upcalls) [Cla85]. 

4.1.4 The Choices "Conduit framework" 

The Conduit framework provides the OSPA. OSSA, and OSNAPI levels for the Choices operating 
system [CRJ87]. Choices is being developed to study how suitable object-oriented techniques are for 
the design and implementation of OS kernel and networking facilities. 44 For example, the design of 
ZOOT (the Choices TCP /IP implementation) uses object-oriented language constructs and design 
methods (e.g., inheritance, dynamic binding, and delegation [ZJ91]) to implement the TCP state 
machine in a highly modular fashion. Together, Choices and the Conduit framework provide a 
general-purpose OSTSA. Table 5 illustrates the OSTSA profile for the Choices Conduit. 

43 The Avoca project builds upon the basic x-kernel facilities to provide these peer-to-peer services (B091]. 
44 Choices and the Conduit are written using C++. All the other surveyed systems are written in C. 
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There are three major components in the Conduit framework: Conduits4s, Conduit ivfessages, 
and Conduit Addresses. The Conduit is a bi-directional communication abstraction, similar to a 
System V STREAM module. It exports operations that allow other Conduits to link together with it 
and to exchange messages with adjacently linked Conduits. Conduit ?vfessages are the typed objects 
exchanged between Conduits. Conduit Addresses are utilized by Conduits to determine where to 
send a Conduit Message. All three components are described briefly in the following bullets. 

• Conduits: A Conduit provides the basis for implementing an end-to-end network protocol 
such as TCP or TP4. It is represented as a C++ base class providing two sets of fundamental 
operations that may be redefined by subsequent subclasses. The first set of operations implement 
network protocol graphs by connecting and disconnecting Conduits. The second set of operations 
enable messages to be inserted into the "top" and "bottom" of a Conduit. A Conduit has two ends 
for processing data and control messages: the top end corresponds to messages flowing down from 
the application; the bottom end corresponds to messages flowing up from the network interface. 

• Conduit Subclasses: The Conduit framework uses C++'s inheritance and dynamic binding 
mechanisms to represent the commonality between the Conduit base class and its various subclasses. 
These subclasses are specializations of abstract network protocol classes such as Virtual Circuits and 
Datagrams. Therefore, the Conduit framework defines two subclasses that provide additional services 
and interfaces: VirtuaLCircui t_Condui t and Datagram_Condui t. Both subclasses export the con­
nect, disconnect, and message insertion services inherited from the Conduit base class. However, they 
also extend their class interface by supplying operations that implement their additional services. For 
example, VirtuaLCircuit_Conduits provide an interface for managing peer-to-peer "sliding win­
dow" flow control. They also specify other properities associated with virtual circuit protocols such 
as reliable, in-order, unduplicated data delivery. These two subclasses are themselves used as base 
classes for further subclass specialization, resulting in TCP _Conduits and Ethernet_Condui ts. 

• Conduit Messages: All messages that flow between Conduits have a particular message 
type. The message type indicates the contents of a message (e.g., its header and data format), and 
specifies the operations it may perform. Messages are represented by a C++ base class that provides 
a foundation for subsequent inherited subclasses. 'Different message subclasses are associated with 
different Conduit subclasses (that in turn represent different network protocols). For example, there 
are IP ...Message and TCP ...Message subclasses that correspond to the IP Conduits and TCP Conduits, 
respectively. Conduit messages subclasses may also encapsulate other messages. For instance, an IP 
message contains a TCP message in its data portion. 

• Conduit Addresses: The Conduit framework uses addresses to determine where to send 
Conduit messages. The two main types of addresses are explicit and implicit. Explicit addresses 
are used for entities like Internet IP addresses or port numbers, which have a "well-known" format. 
Implicit addresses are used by connection-oriented protocols to identify session control blocks that are 
related to active network connections. For example, a TCP connection descriptor is identified by its 
"association," which consists of a <local port, local address, remote port, remote address> four-tuple. 

• Process Architecture: The relationship of OSKA processes to Conduits and Conduit mes­
sages is not uniformly specified in the Conduit framework. Subsequent versions may use "walker­
processes," which are similar to the x-kernel "process-per-message" mechanism. Each walker-process 
shepards one message ltP or down the protocol graph. Depending on flow control, a user process may 
be able to walk outgoing messages most of the way down the protocol graph. In this scheme, there are 

45 In the discussion below, the "Conduit framework" refers to the overall OSTSA, whereas "Conduit" corresponds to 
an abstract data type (ADT) used to construct and coordinate various network protocols. 
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Process Architecture (1) HWP, (2) horizontal (process(es)-per-protocol) 
Event Management ( 1) relative, (2) linked list, (3) message passing 
Virtual Memory Remapping none 

Message Buffering list-based 
Multiplexing/Demultiplexing (1) asynchronous, (2) layered, (3) sequential-search, (4) none 
Flow Control per-queue 

Modularity (1) uniform, (2) low coupling 
Flexibility and ( 1) multiple, ( 2) static, ( 3) static, 
Extensibility ( 4) untyped, ( 5) kernel-space 

Table 6: Xinu Profile 

as many processes as there are flow control buffers in the chain of events between the application and 
network interface layer. In addition, one extra process is also required to transfer messages between 
Conduits that do not contain any buffers, and hence may not block due to flow control. 

4.1.5 Xinu 

The Xinu network computing software was developed as the OSPA for the Xinu OS [Com9lb]. It is 
intended primarily as a pedagogical tool, emphasizing clarity of design and implementation over high­
performance. Xinu currently supports the entire TCP /IP protocol family, including ARP, ICMP, IP, 
UDP, TCP, and SNMP [Com9la]. By default, Xinu is configured to support gateway operations, 
implementing multiple device drivers, Internet routing and network management. Table 6 illustrates 
the OSTSA profile for the Xinu operating system. 

To enhance system clarity and to simplify the OSPA design, the Xinu TCP /IP process architec­
ture uses one or more separate heavy-weight processes (HvVP) to implement each TCP /IP protocol 
component that requires timer-driven processing. The main components in the Xinu system are 
ports, queues, messages, and processes (e.g., for TCP input, output, and timer protocols, and the IP 
protocol). The following bullets describe these components in more detail. 

• Ports and Message-Passing: Each major protocol process in Xinu's TCP /IP design exe­
cutes in one or more separate HWP address spaces. Therefore, some form of synchronous or asyn­
chronous mechanisms are provided for interprocess communication (IPC). The two main IPC mech­
anisms in Xinu are asynchronous ports and synrhronous message-passing. 

A Xinu port is a fixed-length rendezvous JH>i11t. They are used in several places in the Xinu archi­
tecture (e.g., to queue incoming segments !wt 11Pen the IP process and the TCP process). Although 
ports exist independently of any process, p 1' >«Psses use them to synchronize and communicate by 
en-queueing and de-queueing messages. Porh 11se semaphores to guarantee mutual exclusion. If the 
port is full, send operations will block a produn 1· process (e.g., a user process sending data to a TCP 
process). Likewise, if the port is empty, receive operations will block a consumer process (e.g., a TCP 
input process that is awaiting the arrival of IP messages to process). 

Xinu's message-passing scheme combines two mechanisms: (1) a synchronous notification mech­
anism that uses procedure calls to send a message directly from one process to another and (2) a 
separate queue that buffers variable-sized messages. :Message-passing is also used for several purposes 
(e.g., to deliver incoming messages from the network interface to the IP process). 
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There are two main distinction between ports and message-passing. First, ports provide a general­
purpose queueing point for variable-sized messages, but message-passing only transmits a small 4-byte 
notification to a process (which might indicate that a separate queue now contains new messages). 
Second, ports allow asynchronous IPC, since a sending process can enqueue the message into the port 
and continue executing it protocol activities (as long as the port is not completely full). Message­
passing, on the other hand, are synchronous, since processes performing a message-passing send or 
receive block until the other process completes the rendezvous. 

•Protocol Decomposition and Process Architecture: Xinu's process architecture is tightly 
coupled to its protocol decomposition. Xinu employs multiple HWPs to implement the TCP /IP pro­
tocol family. The processes are scheduled by the Xinu OS scheduler. As with System V STREAMS 
modules, processes are scheduled to run when messages become available on ports and queues shared 
between two ffWPs. The main processes are the IP process, the TCP input and output processes, 
and the TCP timer process, which are described in the following paragraphs. 

The IP process reads and writes to multiple input and output queues (one for each network device 
interface). 46 It also has an input and output port used to store incoming and outgoing TCP segments. 
These queues and ports allow the various protocol processes to run concurrently. 

The TCP input and output processes share access to TCP Transmission Control Blocks (TCBs ). 
There is one TCB per active connection. TCBs serve the same purpose as the BSD inpcb and tcpcb 
data structures described in Section 4.1.2. the TCP input and output operations are performed by 
two separate processes that run concurrently. The TCP output process handles segmentation and 
data transmission. The TCP input process handles reassembly and demultiplexing. 

The TCP timer process handles asynchronous event management for all the TCP /IP protocols. 
For example, it schedules retransmission timeouts by inserting an "event" (i.e., the delay time, a 
message to be sent, and a port to send it to) into a delta-list. If the delay time expires before the 
event is canceled, the timer process sends the message to the specified port. 

In addition to these TCP /IP processes, each user-level application is also associated with its own 
HvVP. In the Xinu architecture, application processes are distinct from the kernel processes (unlike 
the x-kernel, where user-level processes may migrate into kernel space and vice versa). This approach 
leads to higher synchronization overhead, however, since multiple context switches are required to 
move messages from kernel-space to user-space. 

• Message Management: Xinu's message management is similar to BSD UNIX's mbufs. It 
uses a hybrid scheme that support both large datagrams and linked lists of small buffers. Xinu pre­
allocates many small buffers that hold a single message and several larger buffers for large messages. 
Physical data copies are generally only performed when reassembling large messages at the IP layer. 

4.2 System Comparisons 

This section compares and contrasts the five surveyed OSTSAs by the taxonomy dimensions and 
alternatives presented in Table 1. 

4.2.1 Comparison of OS Kernel Architecture (OSKA) Dimensions 

In this section we compare the five operating systems according to the OSKA dimensions described 
in Section 3 1 . 

46 Since ICMP and UDP are relatively simple protocols, they run in the context of the IP process. 
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The Process Architecture Dimension: The surveyed OSTSAs cover a range of process archi­
tectures, although none of the surveyed OSTSAs provide comprehensive multi-processor support. 47 

BSD UNIX and System V STREAMS have a single-threaded OSKA. Concurrent programming ab­
stractions a,re provided by light-weight process facilities in the Conduit framework and the x-kernel, 
and by heavy-weight processes in Xinu. 

System V STREAMS and Xinu use variants of the horizontal process architecture. System V 
STREAMS uses a "virtual process-per-module" approach.48 Xinu's implementation uses a "heavy­
weight process( es )-per-protocol" scheme, where each TCP /IP protocol component runs in one or 
more heavy-weight processes. 

The x-kernel and BSD UNIX use variants of the vertical process architecture. The x-kernel 
uses a pure "process-per-message" approach that supports highly-layered protocol graphs without 
incurring excessive context switching and IPC overhead. BSD UNIX uses a vertical approach that 
behaves differently depending on whether messages are flowing "up" or "down" through a protocol 
graph. BSD allows multiple processes into the kernel for outgoing messages, but only one process for 
incoming messages. 

The Conduit framework uses a hybrid "process-per-buffer" approach, which is a cross between 
"process-per-message" and "process-per-module." Each Conduit with a flow control buffer is associ­
ated with a separate light-weight process. 

The Event Management Dimension: BSD UNIX and x-kernel store pointers to subroutines in 
callout lists. This allow arbitrary subroutines to be called when a timer expires. System V maintains 
a heap-based callout table, rather than a sorted list or array. Xinu stores control messages on a 
delta-list, and passes a message to the appropriate pre-registered port if the timer associated with 
event expires. 

The Virtual Memory Remapping Dimension: Recent versions of x-kernel provide virtual 
memory remapping [OAHP90]. Xinu, the Conduit framework, System V STREAMS and BSD UNIX, 
on the other hand, do not provide this support. 

4.2.2 Comparison of OS Protocol Architecture (OSPA) Dimensions 

In this section we compare the five operating systems according to the OSPA dimensions described 
in Section 3.2. 

The x-kernel generally specifies the service interfaces for all its OSPA components more compre­
hensively than the other surveyed OSTSAs. For example, it provides uniform interfaces for operations 
that manage protocol, session, and message objects. In addition, it also specifies uniform interfaces 
and provides implementations for event management, and multiplexing and demultiplexing. System 
V STREAMS, on the other hand, only specifies various types of STREAM module interfaces and 
components. For example, every STREAM module contains a read/write queue pair and also uses 
certain standard subroutines to regulate layer- to-layer flow. The Conduit framework does not stip­
ulate a Conduit's internal structure at all. In particular, sessions, multiplexing, and demultiplexing 
are not systematically specified by the Conduit framework. 

The Message Management Dimension: System V STREAMS messages and BSD mbufs use a 
linear-list-based approach. The x-kernel, on the other hand, uses a graph-based approach. Since the x­
kernel is designed to support highly-layered protocol graphs, it requires the more complex graph-based 

47 Although some commercial versions of STREAMS (e.g., OSF /1) provide multi-threaded, light-weight process 
implementations. 

48 As described in Section 4.1.1, the standard System V STREAMS approach is "virtual" because it does not allocate 
a "real" OS process per module. 
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buffering scheme to efficiently handle the additional encapsulation and minimize memory-to-memory 
copying between layers. 

The Multiplexing and Demultiplexing Dimension: The five OSTSAs possess a wide range of 
multiplexing and demultiplexing strategies. The x-kernel provides the most comprehensive support 
for these operations. It provides an efficient hashing-based mechanism, with a single-item cached 
that is optimized for different address sizes in a highly-layered protocol graph. The other systems 
provide less systematic mechanisms. 

For example, the Conduit framework and System V STREAMS leave the design and implemen­
tation of multiplexing and demultiplexing to implementors of its Conduit subclasses. However, for 
outgoing messages, the Conduit framework involves an extra multiplexing operation compared to the 
x-kernel scheme. In x-kernel, outgoing messages simply make a subroutine call to transfer messages 
flowing downward from session object to session object. A Conduit, on the other hand, searches for 
the session object connection descriptor associated with the lower-level conduit. Xinu moves messages 
between protocol components using either ports or message-passing. 

BSD UNIX's multiplexing and demultiplexing mechanisms differ according to protocol sublayer 
and protocol family. For instance, the IP layer uses the 8-bit IP message type-of-service field to index 
into an array containing 256 entries that correspond to higher-layer protocol control structures. 
On the other hand, BSD's TCP implementation uses sequential-search with a one-item cache to 
demultiplex incoming messages to the appropriate connection session. As described in Section 3.2.2, 
this implementation is inefficient for applications that do not form message-trains [MD91]. 

The Flow Control Dimension: Most OSTSAs do not provide uniform flow control mechanisms. 
System V STREAMS is an exception. Flow control between modules is voluntary, though each 
STREAM module contains high and low "watermarks" to manage flow control between its adjacent 
neighbors. Downstream flow control operates from the "bottom up." If all STREAM modules on 
a Stream cooperate, it is possible to apply "back-pressure" all the way up a stack of STREAM 
modules to the user process. For example, if the network is too congested to accept new messages 
(or if messages are being sent by a process faster than they can be transmitted), STREAM driver 
queues fill up first. If messages continue flowing from upstream modules, the first module above the 
driver that has a service subroutine will fill up next. This process continues all the way up to the 
STREAM head. "Back-enabling" (i.e., causing previously block service subroutines to execute) is 
used to unblock flow controlled queues when congestion subsides. 

In BSD UNIX, flow control occurs at several places throughout the OSPA. At the socket level, flow 
control is voluntary, using the "high and low watermark fields" stored in the socket data structure. If 
the act of performing a send operation would exceed a socket's high water mark, the BSD kernel puts 
the sending process to sleep. Unlike System V, BSD UNIX has no standard mechanism for apply 
back-pressure between the OSPA protocol su blayers; it simply discards messages when its buffers 
become overwhelmed. At the network interface layer, queues are used to buffer messages between 
the network controllers and the lowest-level protocol (e.g., IP). The queues have a maximum length 
that serves as a simple form of flow control. For example, subsequent incoming messages are dropped 
if these queues become full. 

In Xinu, flow control is provided by ports that use semaphores to synchronize senders and receivers 
(e.g., writing to a full port blocks a process, as does reading from an empty port). For operations 
that cannot block (such as network interface subroutines that run at hardware interrupt levels) a 
subroutine tests whether a send or receive will block. This allows messages to be discarded if they 
cannot be handled promptly. 

The x-kernel and the Conduit framework provide less-uniform flow control support. The x-kernel 
supplies very coarse-grained flow control by discarding a message if there are no light-weight processes 
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available to shepard it up the protocol graph. The Conduit framework does not provide a standard 
mechanism to manage flow control between modules in a given stack of Conduits. Each Conduit 
hands a message up or down to its neighbor. If the neighbor is unable to accept the message, the 
operation either blocks or returns an error code (in which case the inserter may either dump the 
message or save it for later). This approach allows particular Conduit to decide whether it is a 
"message-dumping" entity or a "patiently-blocking" entity. 

4.2.3 Comparison of Software Quality Dimensions 

The OSPA for System V, the x-kernel, and Choices operating systems were are all explicitly developed 
to simplify and improve network protocol software development and maintenance. In particular, the 
Conduit framework uses object-oriented techniques like inheritance, dynamic binding, and delegation 
to increase protocol component reuse. In the following, we discuss dimensions described in Section 3.3. 

The Modularity Dimension: The OSPAs for System V STREAMS, the x-kernel, and the Con­
duit framework are all highly modular. The STREAMS design emphasizes uniform interfaces between 
processing components in a Stream. For example, the same put and service interface is used to 
pass messages between a STREAM head, STREAM modules, and a STREAM driver. 

The x-kernel emphasizes a single uniform protocol interface for its protocol, session, and message 
objects. In particular, its protocol objects dictate a "connection-setup" paradigm for all the supported 
network protocols (even connectionless protocols like UDP and IP) to achieve uniformity. Note that 
enforcing this degree of uniformity penalizes connectionless protocols to some extent, since sending 
a connectionless datagram in the x-kernel requires explicitly opening and closing a session in each 
protocol graph layer. 

The Conduit framework avoids this "single uniform interface" penalty by providing several uni­
form interfaces, which are related by inheritance to the Conduit base class. Each interface differs in 
accordance to the abstract "class" of protocol involved. For instance, VirtuaLCircui t_ Conduits 
have a different interface from the Datagram_Condui ts, although they are related to the common 
Conduit base class. 

Xinu uses uniform interfaces to reduce design and implementation complexity. For example, the 
local host interface and network interfaces use the same IP queueing structures. However, the Xinu 
system's modularization is tightly coupled to the TCP /IP architecture. For example, the subrou­
tines implementing TCP correspond to states in the TCP finite state machine (e.g., tcpestablished, 
tcpclosewai t, tcplisten, etc.), making it difficult to directly reuse these interfaces for other pro­
tocol suites. 

BSD UNIX does not emphasize uniform interfaces throughout the OSTSA. Its OSPA has uniform 
interfaces only for certain subroutines that form the boundary between the socket layer and the 
protocol layer. However, the system is not designed to facilitate reuse between communication domains 
(e.g., each domain has incompatible address family formats [LMKQ89]). Although protocol sublayers 
have well-defined interfaces, these interfaces are not uniform between the layers. For example, a 
different interface is used for passing messages between the TCP and IP protocols than is used to 
pass messages between the IP protocol and network interfaces. 

The Flexibility and Extensibility Dimension: All the surveyed OSPAs support multiple pro­
tocol families, with the exception of Xinu (which only supports the TCP /IP protocol family). In ad­
dition, System V STREAMS, the x-kernel, and the Conduit framework all support dynamic protocol 
graph reconfigurations. In System V, user processes manipulate Stream configurations dynamically 
by "pushing" and "popping" STREAM modules [UNI90]. STREAM modules can only be composed 
in a "last-in, first-out" (LIFO) order, however. The Conduit framework and the x-kernel, on the 
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other hand, do not impose this restriction. They both allow arbitrary OSPA configurations, which 
are supported by automated tools. The x-kernel provides a graphical user interface for specifying 
OSPA component ordering. It also allows higher-layer protocols to dynamically open lower-layer 
session objects. This allows a form of "late binding," since the particular characteristics of session 
object returned at run-time can vary [HP91]. The Conduit framework provides a name server that 
manages registered Conduits and enables Conduits to be attached together dynamically to form new 
communication abstractions [Zwe91]. 

Neither BSD UNIX nor Xinu provide any means to dynamically reconfigure the protocol graph, 
so protocol ordering relationships are completely established at system boot-time. It is not possible 
to reconfigure the OSPA while the system is running. 

The Conduit framework is the only OSTSA that supports typed OSPA composition. Typed com­
position ensures that Conduits are joined dynamically in a meaningful manner. It uses a handshake 
scheme called "double-dispatch" when linking two Conduit together. Double-dispatching is a mecha­
nism that allows two Conduits to determine each other's type. It is used to check that both Conduits 
belong to the same "family" of Conduit subclasses. On the other hand, neither the x-kernel nor 
System V STREAMS provide type-checked component composition. 

Finally, with the exception of the Conduit framework, all OSPAs are implemented in the kernel, 
in order to improve performance. The Conduit framework runs in user-space, to improve its flexibility 
and extensibility by end-users. 

5 Summary 

Distributed application performance is influenced by multiple factors that interact in complicated 
ways. These factors involve the communication infrastructure as well as the computing infrastructure. 
Due to improvements in the communication infrastructure, the computing infrastructure is now the 
bottleneck for distributed applications running on high-speed networks. In particular, end-to-end 
user application performance depends heavily on how efficiently the computing infrastructure moves 
messages through protocol graphs. 

This paper describes a virtual machine model (known as the OS Transport System Architecture 
(OSTSA)) that illustrates the levels of abstraction and services in the computing infrastructure. A 
taxonomy of the OSTSA levels is created and used to compare and contrast different alternatives that 
are found in five existing commercial and experimental operating systems. An important observation 
from these comparisons are that most existing operating systems lack explicit, efficient support for 
real-time operations and parallel protocol processing. 

Our research group at University of Ca Ii fo rnia, Irvine is currently using this taxonomy to organize 
our research on OSTSA designs that an' h()t h highly modularity and efficient [BSS92]. We are 
developing an environment for analyzing a11d 1'xperimenting with various strategies for incorporating 
network protocols over top of high-speed cu111111 nnication links. In order to support the development 
of protocol designs that precisely meet mult i111Pdia application requirements and underlying network 
characteristics, we are developing a systern called ADAPTIVE, which stands for "A Dynamically 
Assembled Protocol Transformation, Integration, and Validation Environment." Using ADAPTIVE, 
we are attempting to match diverse multimedia applications to a wide range of network characteristics. 

Based upon our survey of the literature and existing systems, we view the following as important 
open research issues: 

• Which OSTSA levels most impact on distributed system performance? Furthermore, how 
should OSTSAs be structured in order to increase their flexibility, extensibility, and perfor-
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mance? For example, which choices from among the taxonomy dimensions and alternatives 
most improve overall communication performance? 

• Which process architecture and parallelism models result in the highest performance, and under 
what conditions (e.g., application requirements and network characteristics) are certain models 
preferred? 

• Which OSTSA profiles are best suited for multimedia applications running in high-speed net­
work environments? Moreover, what are the appropriate design strategies and implementa­
tion techniques required to provide integrated support for multimedia applications that run on 
general-purpose workstation operating systems? 
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