
UC Irvine
ICS Technical Reports

Title
Computing infrastructure issues in distributed communications systems : a survey of
operating system transport system architectures

Permalink
https://escholarship.org/uc/item/6461j50j

Authors
Schmidt, Douglas C.
Suda, Tatsuya

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6461j50j
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

~omputing Infrastructure Issues in
Distributed Communications Systems

_,---

A Survey of Operating System
Transport System Architectures

Technical Report 92-26

Douglas C. Schmidt and Tatsuya Suda

schmidt@ics.uci.edu and suda@ics.uci.edu
Department of Information and Computer Science,

University of California, Irvine,
Irvine, CA 92117, U.S.A.

(714) 856-4105 (phone)
(114) 856-4056 (fax) 1

1This material is based upon work supported by the National Science Foundation under Grant No. NCR-
8907909. This research is also supported in part by the University of California MICRO program.

Contents

1 Introduction

2 OS Transport System Architecture Components
2.1 The OS Network Application Programmatic Interface (OSNAPI)
2.2 The OS Session Architecture (OSSA) .
2.3 The OS Protocol Architecture (OSPA)
2.4 The OS Kernel Architecture (OSKA) .

3 An OS Transport System Architecture Taxonomy
3.1 OS Kernel Architecture Dimensions

3.1.1 The Process Architecture Dimension
3.1.2 The Event Management Dimension
3.1.3 The Virtual Memory Remapping Dimension .

3.2 OS Protocol Architecture Dimensions
3.2.1 The Message Management Dimension
3.2.2 The Multiplexing and Demultiplexing Dimension
3.2.3 The Flow Control Dimension

3.3 Software Quality Dimensions
3.3.1 The Modularity Dimension
3.3.2 The Flexibility and Extensibility Dimension

4 Survey of Existing OS Transport System Architectures
4.1 System Overviews

4.1.1 System V STREAMS
4.1.2 BSD UNIX
4.1.3 x-kernel
4.1.4 The Choices "Conduit framework"
4.1.5 Xinu

4.2 System Comparisons
4.2.1 Comparison of OS Kernel Architecture (OSKA) Dimensions .
4.2.2 Comparison of OS Protocol Architecture (OSPA) Dimensions
4.2.3 Comparison of Software Quality Dimensions

5 Summary

List of Figures

1 Examples of Computing and Communications Infrastructures
2 The OS Transport System Architecture
3 Typical Protocol Graph for Internet and OSI Protocol Families
4 Example Session Graph
5 Horizontal and Vertical Process Architectures
6 Models of Parallelism for Horizontal Process Architecture
7 Models of Parallelism for Vertical Process Architectures
8 Task Parallelism
9 Relationship Between Process Architecture and Parallelism Granularity

1

3
5
6
7
8

8

8
9

16
18
18
18
19
22
22
23
25

27
27
27
30
33
34
36
37
37
38
40

41

2
3
4
7

11
13
15
16
17

10 Layered and Non-Layered Multiplexing and Demultiplexing
11 An Example Stream in System V STREAMS

List of ·Tables

1 OSTSA Taxonomy Template
2 STREAMS Profile
3 BSD UNIX Profile
4 x-kernel Profile
5 Conduit Framework Profile
6 Xinu Profile

11

20
28

9
27
31
33
34
36

Abstract

The performance of distributed applications (such as file transfer, remote login, tele-conferencing,
full-motion video, and scientific visualization) is influenced by several factors that interact in com­
plex ways. In particular, application performance is significantly affected both by communication
infrastructure factors and computing infrastructure factors. Several communication infrastructure
factors include channel speed, bit-error rate, and congestion at intermediate switching nodes. Com­
puting infrastructure factors include (among other things) both protocol processing activities (such
as- connection management, flow control, error detection, and retransmission) and general operating
system factors (such as memory latency, CPU speed, interrupt and context switching overhead, pro­
cess architecture, and message buffering). Due to a several orders of magnitude increase in network
channel speed and an increase in application diversity, performance bottlenecks are shifting from the
network factors to the transport system factors.

This paper defines an abstraction called an "Operating System Transport System Architecture"
(OSTSA) that is used to classify the major components and services in the computing infrastructure.
End-to-end network protocols such as TCP, TP4, VMTP, XTP, and Delta-t typically run on general­
purpose computers, where they utilize various operating system resources such as processors, virtual
memory, and network controllers. The OSTSA provides services that integrate these resources to
support distributed applications running on local and wide area networks.

A taxonomy is presented to evaluate OSTSAs in terms of their support for protocol processing
activities. vVe use this taxonomy to compare and contrast five general-purpose commercial and
experimental operating systems including System V UNIX, BSD UNIX, the x-kernel, Choices, and
Xinu.

1 Introduction

In the past few years, the demand for many kinds of communication services has intensified. Dis­
tributed applications involving voice, video, data, and images are rapidly expanding, and application
requirements and usage patterns are undergoing significant qualitative and quantitative changes. For
instance, multimedia applications such as medical imaging, supercomputer graphics for scientific visu­
alization, and tele-conferencing have communication requirements that differ greatly from traditional
data applications like remote login, email, and file transfer [Che86].

Qualitative changes in application requirements necessitate extremely high throughput (e.g.,
HDTV), strict real-time delivery (e.g., robotics), low delay and low delay jitter (e.g., voice con­
versation), multicast capability (e.g., video-conferencing), and some degree of loss tolerance (e.g.,
hierarchically coded voice and video). In addition, distributed applications impose different network
traffic patterns. For example, some applications generate highly bursty traffic (e.g., variable bit-rate
video applications), some generate continuous traffic (e.g., constant bit-rate video applications), and
others generate short, interactive, transaction-oriented traffic (e.g., network file systems using remote
procedure calls (RPC)).

Quantitative changes in distributed computing usage are also occurring. For instance, in current
workstation environments, local computing activities (e.g., editing and compiling) dominate remote
communications (which consist mostly of network file system operations). In future multimedia
workstation environments, on the other hand, it is expected that remote communication activities
(e.g., audio- and video-conferencing applications) will dominate local computing.

Many researchers, commercial vendors, and standards bodies are working to integrate lightwave
communication technology with general-purpose computer systems. For example, in very high speed
internet (VHSI) [Par90] environments, these distributed systems will consist of high-speed public
access networks linked to high-speed LANs and MANs [Gre91]. Support for multimedia applications
running on these distributed systems is provided by both the communication infrastructure and the
computing infrastructure (see Figure 1).

The communication infrastructure provides mechanisms (e.g., transmission media and the lower
three layers of the ISO OSI network protocols r for transmitting information throughout a network.
The computing infrastructure is more precisely defined as the "OSTSA" (Operating System Transport
System Architecture1) in this paper. It integrates peer-to-peer network protocols into general-purpose
computer host operating systems (containing OS kernel services and hardware devices) to support
diverse user applications running across the communication infrastructures.

The communication infrastructure now exhibits very high transfer rates due to recent advances
in optical transmission technology. Example communication infrastructures include the Fiber Dis­
tributed Data Interface (FDDI), the Distributed Queue Dual Bus (DQDB), and the Asynchronous
Transfer Mode (ATM). These new teclrnologiP;;, coupled with an increase in application diversity)
have shifted performance bottlenecks to the OSTSA computing infrastructure [CJRS89].

The OSTSA computing infrastructure rnw;ists of components that operate at several levels of
abstraction. First, it provides user processes with an interface to end-to-end network protocols such
as TCP, TP4, and/or XTP. These protocols implement various transport service classes that support
communication between distributed user applications. Next, it provides a framework 2 for orches­
trating various resources managed by the OS to support these network protocols. These resources
include hardware devices (such as CPU, primary and secondary storage, and high-speed I/ 0 devices
like network controllers) and software abstractions (such as virtual memory, processes, and protocol

1 An architecture is a design that describes the system components, provides a functional decomposition, and specifies
individual module semantics.

2 A framework is defined as "a design that can be reused" [Zwe91].

1

graphs3).

Computing
Infrastructure

(BSD)

Communication
Infrastructure
(Token Ring)

Computing
Infrastructure

(x-kernel/
Mach)

Communication
Infrastructure
(ATM, X.25)

(DQDB)

Communication
Infrastructure

(FDDI)

Communication
Infrastructure

(Ethernet)

Computing
Infrastructure

(Conduit/
Choices)

Computing
Infrastructure
(STREAMS/

System V)

Figure 1: Examples of Computing and Communications Infrastructures

Next generation OSTSAs must be flexible in order to meet diverse application requirements and to
take advantage of advances in the communication infrastructure. However, existing OSTSAs are the
performance bottleneck in high-speed networks with channel speeds exceeding 100 Mbps [CJRS89].
This bottleneck is manifested by the throughput preservation problem [MS92], where only a limited
fraction of the available network bandwidth is delivered to distributed applications. This situa­
tion results from OSTSA overhead (such as memory-to-memory copying and process management
operations like interrupt handling, context switching, and scheduling) not decreasing as rapidly as
the transmission media channel-speed is increasing. Moreover, the throughput preservation problem
persists despite an increase in CPU speeds.4

This paper presents a taxonomy of the major OSTSA dimensions and compares and contrasts
five general-purpose commercial and experimental OSTSAs (including System V UNIX, BSD UNIX,
x-kernel, Choices, and Xinu)5 along the taxonomy dimensions. vVe focus on general-purpose OST­
SAs in this paper for several reasons. First, they facilitate flexibility and extensibility and thereby

3 A protocol graph is a generalization of a protocol stack; it represents the hierarchical relations between protocols in
one or more protocol suites (OP91J. Figure 3 in Sect.ion 2 depicts an example protocol graph containing certain Internet
and OSI protocols.

4 There are several explanations for this: (1) networks have increased by 5 or 6 orders of magnitude (from kbps
to Gbps), whereas CPU speeds have only increased by 2 or 3 orders of magnitude (from 1 MIP up to 100 MIPS)
(Haa91], (2) network host interfaces in existing systems interrupt the CPU for every packet transmitted (Haa91], and
(3) despite leading to an increase in total MIPS, RISC architectures (such as the SPARC) penalize this interrupt-driven
network communications, since they typically have higher context switching overhead, resulting from the cost of flushing
instruction and data caches and pipelines, storing and retrieving large register windows, etc. [Ste92].

5 This paper describes System V Release 4, 4.3 BSD, x-kernel 3.2, Choices 6.16.91, and Xinu version 7 unless otherwise
noted.

2

OS .Network Application
Programmatic Interface
Open and Close Endpoints

of Application Communication,
Send and Receive Data

OS Session Architecture
Connection Management, Error
Detection and Error Recovery,

Peer-to-Peer Flow and
Congestion Control

Hardware Devices
CPUs, Primary and Secondary
Storage, Network Controllers

Applications

OS Transport System
Architecture

(OSTSA)

OS Protocol Architecture
Protocol, Session, and Message

~-\--+i--1 Management, Layer-to-Layer

Networks
FDDI, DQDB,
ATM, Internet,

Ethernet

Flow Control, Multiplexers and
Demultiplexes

OS Kernel Architecture
Drivers, Processes, Timers,

Virtual Memory, Low-level IPC,
Real-time Scheduling,
Resource Reservation

Figure 2: The OS Transport System Architecture

encourage experimentation. 6 Second, special-purpose solutions (such as off-board processors [KC88]
and VLSI-based hardware implementations [Che89]) may not be adaptive enough to meet multimedia
application requirement diversity. For instance, a special-purpose solution that efficiently supports
one application or type of network is not necessarily appropriate for other applications coexisting
on the same network. Third, even if special multi-processor pool architectures [JSB90] or off-board
processors become widely available, they must still interoperate with the host operating system at
some point. Studies [KC88] have shown that significant host OS and protocol processing overhead
remains, despite using off-board protocol processors like the VMP Network Adapter Board. There­
fore the OSTSA dimensions described in this paper remain an integral part of the overall throughput
preservation problem.

The remainder of the paper is organized as follows: Section 2 describes the OS TS A components in
detail; Section 3 presents a general taxonomy for classifying OSTSAs; Section 4 provides an in-depth
survey of five representative OSTSAs; Section 5 summarizes the paper and outlines several important
open research issues.

2 OS Transport System Architecture Components

Operating System Transport System Architectures (OS TS As) provide a framework that coordinates
various hardware resources (e.g., primary and secondary storage and CPU(s)) and software abstrac-

6 Experimentation is important since there is no clear consensus on precisely how different factors affect OSTSA
performance [PC91]. Controlled empirical experimentation, based on a general-purpose OSTSA, is a useful method for
investigating the impact of various performance factors.

Internet Domain OSI Domain
r----------------------------, r----------------------------,
: I TFTP II NFS 11 FTP I: :1 X.400 11 X.500 II FTAM I:
i RPC/XDR , 1 , 1 ASN.1 r i

: UDP ~ TP4 I ffiPO :
I I
I I

: IP X.25 :
I I

L-------------------- ---------------- --------J

FDDI

Figure 3: Typical Protocol Graph for Internet and OSI Protocol Families

tions (e.g., algorithms and data structures that represent process architectures and protocol graphs)
to support network protocols.

OSTSAs are frequently modeled as virtual machines, representing the different levels of abstrac­
tion they encompass [Tan88, Tan90, Tan92]. Each virtual machine level is characterized by the service
interfaces it exports to the levels surrounding it. Protocol suites like TCP /IP or OSI are implemented
by combining various services offered by the nested OSTSA levels shown in Figure 2.7 The following
paragraphs provide a brief overview of all the OSTSA levels discussed in this paper.

The outermost-level of the OSTSA is the Operating System Network Application Programmatic
Interface (OSNAPI). The OSNAPI provides service interfaces through which user processes (e.g.,
distributed multimedia applications) interact with inner-level OST SA services. The OSN API pro­
vides data-transfer operations (e.g., sending and receiving messages) and control operations (e.g.,
connection establishment and termination) to user applications. The BSD UNIX socket layer is a
representative example of an OSN APL

The second outer-most level of the OSTSA is the Operating System Session8 Architecture (OSSA).
The OSSA provides peer-to-peer network protocol services. These services are associated with proto­
col sessions that contain information used to manage the state of end-to-end network connections. 9

OSSA services include dynamically establishing and terminating network connections, managing pro­
tocol interpreters (e.g., the TCP or XTP finite state machine) for network connections, controlling
peer-to-peer flow and congestion, and providing various error detection and error recovery policies.

The Operating System Protocol Architecture (OSPA) provides services that compose and manage
multiple protocol graphs. These protocol graphs implement protocol suites such as TCP /IP or OSI
(shown in Figure 3). Each layer in the protocol graph consists of one or more network protocols
(e.g., RPC/XDR, TCP, IP, TP4, and CLN P). These services include intra-protocol services (such

7The virtual machine model depicted in Figure 2 is used for descriptive purposes throughout this paper. Its levels
represent an abstraction of the services and interfaces common to many existing OSTSAs, although not all systems
follow such a strict hierarchy, and may bypass or omit certain levels. In particular, OSTSA implementations often
proceed in a monolithic, non-uniform manner for performance reasons (CT90, Ten89] (as Section 3.3.1 discusses below).

8 The term "session" is used throughout the paper to refer to the data structures and subroutines that implement a
network connection. It is not equivalent in meaning to the ISO OSI "session layer."

9 Note that creating a new session only involves processing on the local host (such as dynamically allocating a session
control block and associating it with the appropriate protocol component). Establishing a network connection, on the
other hand, usually involves a message handshake exchange with peer protocols and sessions located on remote hosts.

4

as session management and message management) and inter-protocol services (such as layer-to-layer
flow control and multiplexing and demultiplexing). The primary distinction between the OSSA and
OSPA levels is that OSSA services manage the session state information for a particular network
connection, whereas OSPA services manage multi-layered protocol graphs (with each protocol layer
containing one or more sessions).

The Operating System Kernel Architecture (OSKA) provides services that manage hardware
resources such as primary and secondary storage, CPU(s), and various I/O devices. These services
include concurrent programming abstractions and multi-processing support, timer handling, virtual
memory management, and low-level interprocess communication (IPC). In addition, to support delay­
sensitive user applications, the OSKA may provide mechanisms such as real-time scheduling and
resource reservation [PPA +go, GA91, AH91]. The primary distinction between the OSPA and OSKA
levels is that OSKA services are also utilized by user application programs and other OS subsystems
such as the file system. On the other hand, OSPA services pertain primarily to network protocols
and distributed applications.

At the core of the OSTSA are hardware devices such as CPU(s), memory hierarchies (e.g., instruc­
tion and data caches, main memory, magnetic and optical disks, and magnetic tape), and network
controllers (which are responsible for transmitting bit streams into a network). For instance, Ethernet
network controllers mediate access to the logical link layer, providing services like frame transmission
and reception (e.g., using scatter-read and gather-write and direct memory access (DMA)), deter­
mining link layer addresses, and collision detection. Sections 2.1 through 2.4 discuss each level of the
OSTSA in greater detail.

2.1 The OS Network Application Programmatic Interface (OSNAPI)

The OS Network Application Programmatic Interface (OSNAPI) provides interfaces that enable user
processes (i.e., processes executing in user-space) to access inner-level OSTSA services in order to
exchange data and control messages with peer entities on remote hosts. Example OSNAPis include
BSD sockets [LMKQ89], the System V Transport Layer Interface (TLI) [Sun90], the V kernel's UIO
system [Che87], and the Multifaceted Communications System for the NCUBE [MK91].

OSNAPis provide service interfaces for transferring data. Since operations on network connections
are very similar to operations on files and other I/ 0 devices, OSN API service interfaces often supply
some variant on the standard open, close, read, and write paradigm used by traditional I/O
interfaces. Typical services for sending and receiving data include synchronous and/or asynchronous
I/O, buffered and/or unbuffered I/O, scatter/gather I/O, blocking and/or non-blocking I/O, multi­
priority in-band and/or out-of-band I/O, and multicast and/or broadcast I/O [MK91]. An important
evaluation criteria for an OSNAPI is how efficiently it supports all these different types ofl/O services.

Supporting control operations is another important OSN API service. Control operations provide
user applications with interfaces for services that do not directly involve data transfer. These services
include establishing and terminating connections (e.g., using in-band and out-of-band signaling),
dynamically configuring protocol graphs (e.g., pushing a System V STREAM module onto a Stream),
and setting and retrieving the values for user-tunable options (e.g., the maximum datagram size and
send/receive buffer sizes).

The OSNAPI level often accounts for a large portion of the overall OSTSA performance overhead.
For example, [HP91] profiled BSD UNIX and determined that 31 percent of the total user-to-user
latency for TCP appliCations resulted from socket layer processing overhead. Likewise, [JSB90]
described how BSD socket processing required 36 percent of the total message processing time for
outgoing messages and 43 percent for incoming messages.

This overhead results from several factors. First, memory-to-memory copying is often performed

5

at the OSN API level, in order to move messages from user-space to kernel-space and vice versa
(Sections 3.1.3 and 3.2.1 discuss mechanisms for reducing this memory copying overhead). Second.
distributed applications typically run in "user-mode," i.e., outside the OS kernel address space.
Therefore, the kernel must perform one or more context switches to transfer messages from the
network device driver interfaces, up through the protocol graph to the OSNAPI-level, where user
applications may be waiting to receive them [MRA87]. [Che87, MK91, HP91] evaluate the function­
ality and performance of alternative OSN AP Is. A thorough discussion of OSN API issues is beyond
the scope of this paper.

2.2 The OS Session Architecture (OSSA)

The OS Session Architecture (OSSA) provides a framework for implementing peer-to-peer network
protocol services that manage the state of protocol sessions. Sessions are used to implement network
connections. Conceptually, the OSSA exists within the framework provided by the OSPA and the
OSKA (described in Sections 2.3 and 2.4, respectively).

The OSSA provides services that include connection management (e.g., opening and closing con­
nections, and reporting and updating connection status information), managing protocol interpreters
(e.g., controlling transitions between states in the TCP finite state machine) for active network con­
nections, controlling peer-to-peer flow and congestion10 (e.g., advertizing the available sliding window
size, and tracking round-trip delays), error detection and recovery (e.g., computing checksums, detect­
ing mis-sequenced or duplicated messages, and performing acknowledgments and retransmissions),
and quality-of-service negotiation (e.g., throughput, delay, error rate, jitter and priority characteris­
tics) with peer sessions entities.

The performance of OSSA services largely depends on the complexity and characteristics of the
protocols they support. For example, [CT90] reports that the complex processing of presentation
layer conversions (which involves encoding and/ or decoding binary messages using the ASN .1 transfer
syntax [HD89]) accounts for over 90 percent of the OSSA overhead. In addition, OSSA performance is
also affected by protocol characteristics such as the transmitted segment size (larger segments decrease
the ratio of header to data overhead and also reduce the number of subroutine calls, interrupts, and
context switches to move messages between protocol layers), peer-to-peer flow and congestion control
algorithms (e.g., sliding window versus rate control), and connection management schemes (e.g.,
implicit timer-based connections vs explicit handshaking).

Recent research has addressed several OSSA-related issues. Avoca [OP90a, B091] used the x­
kernel as a run-time environment to investi~ate the performance characteristics and reuse potential
from using modular, highly-layered protocols and sessions. The Conduit framework [Zwe90, Zwe91]
from the Choices OS is used to investigate t lw applicability of object-oriented programming techniques
such as delegation [ZJ91] and inheritance to 111·t work protocol and session design and implementation.
Finally, the ADAPTIVE system [BSS92] is l"·ing developed to identify OSSA, OSPA, and OSKA
configurations that efficiently support divn''' multimedia applications running on a wide range of
high-speed networks. [PS91, DDK+90] sun·1·v various OSSA issues in greater detail; a thorough
discussion of the issues is beyond the scope of this paper.

10 Different flow control mechanisms are used for different OSTSA levels. For example, peer-to-peer flow control
synchronizes the rate of senders and receivers communicating at the same protocol layer (e.g., between two TCP
connections residing on different hosts); layer-to-layer flow control regulates the amount of data exchanged between
adjacent layers in a protocol graph (e.g., between TCP and IP STREAM modules in System V STREAMS).

6

User-Proc1 User-Proc2 NFS Portmapper

Ethernet FDDI

Figure 4: Example Session Graph

2.3 The OS Protocol Architecture (OSPA)

The previous section described OSSA services that manage the session state information associated
with an active network connection. The OS Protocol Architecture (OSPA), on the other hand,
constitutes a broader framework that supports network computing services that occur within and
between the layers in a protocol graph. Services within a given protocol layer involve creating and
1f:stroying protocol sessions (e.g., in response to a user application performing socket accept or
close system calls in BSD UNIX). Services between adjacent protocol layers involve regulating
layer-to-layer data flow (e.g., the canput subroutine in the System V STREAMS utility library that
determines if there is available space left in a message queue), along with multiplexing/demultiplexing
and encapsulating/de-encapsulating outgoing and incoming messages.

Each network protocol contains one or more OSSA sessions. A session is typically created and
destroyed by an OSPA-level "protocol session management" facility. Figure 4 illustrates a session
graph corresponding to several protocol layers. In the figure, multiple sessions (shown in the ovals)
are encapsulated by protocol components (represented by the rectangles). The OSSA manages the
sessions, whereas the OSPA manages the protocols.

To facilitate interoperability, OSPAs may support multiple protocol suites simultaneously. For
example, the BSD UNIX networking subsystem supports three different OSPAs that implement the
TCP /IP, OSI, and XNS protocol suites [LMKQ89]. The performance of OSPA services depends heav­
ily on how they are integrated with OS Kernel Architecture (OSKA) services [Cla82] (particularly
the process architecture described in Section 3.1.1). OSPA factors that affect overall OSTSA per­
formance overhead involve creating, executing, and synchronizing protocol and session components.
Other potentially expensive OSPA services include message management (e.g., adding and stripping
headers/trailers and fragmenting/reassembling messages) and the multiplexing and demultiplexing
of messages to the appropriate protocol or session.

Section 3.2 describes the OSPA level in greater detail. Section 4 surveys five OSTSAs (System V
UNIX STREAMS [UNI90], the BSD protocol layers [LMKQ89], the x-kernel [HP91], Choices' Conduit
framework [Zwe90], and the Xinu TCP /IP subsystem [Com91b]) that provide different types of OS
Protocol Architectures.

7

2.4 The OS Kernel Architecture (OSKA)

The OSN API, OSSA, and OSPA levels described above ultimately interoperate with the services
provided by the Operating System Kernel Architecture (OSKA). The OSKA provides services such
as virtual memory management (e.g. allocating and deallocating memory objects), concurrent pro­
gramming abstractions for uni- and multi-processors (e.g., creating, scheduling, executing, synchro­
nizing, and destroying heavy-weight or light-weight processes), sending and receiving low-level !PC
messages11 between communicating processes, event management (e.g., registering, canceling, and
invoking subroutines under timer-control), and interrupt handling (e.g., servicing device interrupts
from network controllers and disk controllers).

Many researchers [Cla82, HP91, WM87, CT90] suggest that of all the OSTSA levels, the OSKA
services have the greatest overall impact on end-to-end protocol performance. For example, [PS91]
reports that OSPA and OSSA services generally account for less than 20 percent of all protocol
processing time, and that the remaining time is spent performing OSKA services like interrupt and
event handling, copying data, and process management.

OSKA performance is significantly affected by process management services that include creating,
scheduling, executing, and synchronizing multiple OSKA processes. Process management is generally
time-consuming. For example, [Mul90] states that 36 percent of the overall Amoeba RPC round-trip
delay is related to client and server process scheduling overhead. Interrupt-handling and context
switching are two high-cost process management activities. Interrupts are used by network devices
to inform the OS protocol software that incoming messages are available for higher-layer protocol
processing. Interrupts often lead to a context switch, which represents a major performance penalty
[Cla82]. Another source of context switching overhead occurs from invalidating virtual memory
translation-lookaside buffers [JSB90].

Section 3.1 describes the OSKA level in greater detail. Some representative OSKAs include the
Mach micro-kernel [GDFR90], the x-kernel (the x-kernel provides both OSKA and OSPA services)
[HP91], the V-kernel [Che88], BSD UNIX [LMKQ89] and System V UNIX [Bac86]. [TR85, Gos91,
GL89, ABG+86] describe OSKA issues in further detail.

3 An OS Transport System Architecture Taxonomy

This section classifies OS Transport System Architectures (OSTSAs) by their OS Kernel Architecture
(OSKA) dimensions, OS Protocol Architecture (OSPA) dimensions, and software quality dimensions.
Table 1 depicts the taxonomy used to classify OSTSAs. Note that the OS Session Architecture
(OSSA) and OS Network Application Programmatic Interface (OSNAPI) levels are not included
in the taxonomy. This is because this paper focuses primarily on the OSPA and OSKA services
that support the computing requirements of multiple protocol graphs on source and destination
host machines. The OSNAPI and OSSA services, on the other hand, are primarily concerned with
managing the system call interface to OSPA and OSKA services, and performing the end-to-end
computing aspects of network protocols.

3.1 OS Kernel Architecture Dimensions

The OS Kernel Architecture (OSKA) provides services such as process management, virtual memory,
and timer mechanisms, These services are employed by user application programs and other parts

11 In a message-passing kernel, OSKA IPC is used to exchange messages between local processes [ABG+ 86). These
messages (and memory management scheme used to implement them) differ from the OSPA messages that are encapsu­
lated and de-encapsulated as they move up and down a protocol graph (OSPA messages are described in Section 3.2.1).

8

Categories I Dimensions Subdimensions Alternatives II
Process (1) Concurrency Models single-threaded, LWP, HWP, coroutines
Architecture (2) Proc. Arch. Models vertical, horizontal, hybrid

OS Kernel (3) Parallelism Models layer, directional, connectional, message, task
Architecture Event (1) Timing Relations relative, absolute
Dimensions Management (2) Search Structure array, linked list, heap

(3) Event Notification message passing, function call
Virtual Memory none, bi-directional,
Remapping outgoing-only, incoming-only

Message Buffering list-based, graph-based
Multiplexing and (1) Synchronization synchronous, asynchronous, hybrid

OS Protocol Demultiplexing (2) Layering layered, non-layered
Architecture (3) Search Method sequential-search, hashing, indexing
Dimensions (4) Caching none, single-item, multiple-item

Layer-to-Layer per-queue, per-process
Flow Control

Modularity (1) Interface Uniformity uniform, non-uniform
(2) Data Coupling low coupling, high coupling

Software Flexibility and (1) Protocol Families multiple, single
Quality Extensibility (2) Configuration Time static, dynamic
Dimensions (3) Composition Order static, LIFO, arbitrary

(4) Composition Typing typed, untyped
(5) OSPA Location kernel-space, user-space, off-board

Table 1: OSTSA Taxonomy Template

of the operating system (such as the file subsystem and the OS Protocol Architecture (OSPA)). The
OSPA is built on top of OSKA services that implement the process architecture, event management,
and virtual memory remapping (which uses copy-on-write optimizations to reduce memory-to-memory
copying overhead). Each of these dimensions is described below.

3.1.1 The Process Architecture Dimension

OSKA processes are fundamental operating system abstractions. A process consists of a collection
of resources, along with one or more threads of control [ABG+86]. Process resources include virtual
memory, CPU(s), file and device descriptors, access rights to other OS resources, etc. Threads of
control act as separate instruction pointers within a single virtual address space. 12 Threads maintain
state information (such as a stack of subroutine call activation records) that represents a program in
execution. This st.ate information allows processes and threads to be transparently suspended and
resumed by the OSKA scheduler.

A process architecture is a framework that coordinates the independent execution of multiple
OSKA processes in support of OSTSA protocol processing activities. This framework strongly im­
pacts the performance of an OSTSA. In addition, it also influences the complexity of OSTSA software
development. An effective process architecture makes it easier to design, implement, and modify both
OSTSAs and network protocols without unduly sacrificing efficiency.

The OSN API, OSSA, and OSPA levels perform their services within the context of one or more
cooperating OSKA processes. For example, multiple network connections may concurrently transmit

12 The traditional BSD and System V UNIX OS process only contains a single thread of control. The x-kernel and
Conduit, on the other hand, use multi-threaded processes.

9

and receive messages between peer session entities. Furthermore, within a given session, multiple
protocol processing activities may run concurrently. For example, checksums may be computed in
parallel with locating a session control block and computing round-trip time estimations.

The following section examines several dimensions of process architectures. It describes three dif­
ferent concurrent programming abstractions, compares and contrasts horizontal and vertical process
architecture models, and discusses several ways to map process architectures onto multi-processors.

(1) Concurrent Programming Abstractions: Using separate OSKA processes to program con­
current threads of control is generally simpler than trying to explicitly synchronize and schedule mul­
tiple activities "by hand" (i.e., outside the OSKA process architecture) [BA90]. However, to support
concurrent protocol processing efficiently, the OSKA must minimize the overhead of preempting,
rescheduling, and synchronizing executing processes and serializing access to shared resources.

Several concurrent programming abstractions that form the basis for many OSTSA process ar­
chitectures include heavy-weight processes, light-weight processes, and coroutines [TRG+87]. Each
abstraction entails different types of performance overhead and allows different levels of programmer
control over process management activities like scheduling and synchronization.

• Heavy-Weight Processes: Heavy-weight processes (HWPs) reside in separate virtual ad­
dress spaces within the OS kernel. Synchronizing, scheduling, and sending messages between HWPs
typically requires a context switch. Context switching is a relatively expensive operation, since it
usually requires copying registers and data between main memory and secondary storage, as well as
flushing pipelines and invalidating virtual memory "translation lookaside buffer" caches.

• Light-Weight Processes: Light-weight processes (LWPs) are often referred to as a threads.
Unlike HWPs, multiple LWPs usually share a virtual address space. This sharing reduces the overhead
of thread creation, synchronization, and scheduling, since switching control between LWPs is less
time-consuming than performing a context switch between several HWPs.

• Coroutines: In a coroutine model, the programmer, rather than the OSKA scheduler, ex­
plicitly chooses the next coroutine to run at some synchronization point. 13 With coroutines, the
programmer has the flexibility to schedule processes in any desired manner. The programmer also
has the responsibility, however, to handle all the details of scheduling, notably avoiding starvation
and deadlock. Furthermore, coroutines only support "interleaved execution." This allow only one
process to run at a given time, thereby limiting the benefits of parallel processing.

In order to produce efficient OSTSAs, it is important to match the design of the process archi­
tecture with the appropriate concurrent programming abstraction. In particular, it is essential to
minimize context switching overhead [HP9 l].

(2) Different Process Architecture Models: As shown in Figure .5, there are two basic process
architecture models: horizontal and vertical. 14 These architectures are logically equivalent. In other
words, it is possible to implement the same protocol families (e.g., TCP /IP, OSI, etc.) with either
model. Important differences between the horizontal and vertical approaches involve performance

13 For example, synchronization points occur when coroutine C'1 must "suspend" its activities to allow coroutine C'2
to execute its code. At some later point, coroutine C'2 may "resume" control to coroutine C'1.

14 Different authors use these two terms in different ways. For example, (Haa91] uses the terms in a nearly opposite
sense to describe the HOPS (horizontally oriented protocols) architecture. Haas defines a "vertical" architecture as
one corresponding to a conventionally layered protocol graph such as the ISO OSI reference model (i.e., what we are
calling a "horizontal" architecture). The primary difference between the two usages of these terms stems from whether
one chooses to focus on the layering "cuts" themselves or the components that results from these cuts. Our use of the
horizontal/vertical terminology is consistent with (Cla85, Atk88, OP90a].

10

(1) Horizontal

r,--,, ,-;--,, r,--,,

:0: :0: :[!;]:

:'~~f:/·"
: ~PC/XD~:

/_ -~
~.....-----.-- - ., r - -~
: I UDP I : : I TCP I :
L~ ..JL---~

~------~
: I IP I:

~., -r--~
:~tl::I~:
L ..J L ..J

t Function Calls

t+ Message Queues

User
Processes

Presentation
and Session

Protocols

Transport
Protocols

Network
Protocols

Device
Drivers

Legend

Protocols, Sessions,
and Functions

r------------,
1 Logical and/ or 1

1 Physical Processes I L ___________ J

(2) Vertical

User /Kernel
Boundary

Figure 5: Horizontal and Vertical Process Architectures

(e.g., process management, context switching. and messages-passing overhead) and software design
and implementation complexity (which is related to the OSKA concurrent programming abstraction,
e.g., it is often easier to write complicate concurrent programs with light-weight processes, as opposed
to coroutines).

The process architecture model is orthogonal to multi-processor support, i.e., either vertical or
horizontal process architectures may be implP1nented with single- or multi-threaded uni-processors or
multi-processors. On multi-processors, separa t I' pt·ocesses may execute in parallel, although the extent
to which separate processes actually run in pa 1·;tilel is constrained by synchronization and scheduling
overhead. On uni-processor computers, sornP i'<>rm of "time-slicing" may be used to provide logical
(rather than physical) concurrency.

• Horizontal Process Architectures: Horizontal process architectures correspond closely to
many layered protocol family specifications [At k88]. Figure 5 (1) illustrates a hypothetical horizontal
process architecture where user processes P1, P2, and P3 exchange messages with Sun RPC/XDR
(which, in turn, runs 011 top of the TCP, UDP, and IP protocols). In this model, each protocol layer
is encapsulated in one or more light-weight or heavy-weight processes15 that function as a pipeline for
incoming and outgoing message. Messages flow between the processes as the result of multiplexing

15 Nate that a protocol running in a heavy-weight process typically resides in its own separate address space,

11

and demultiplexing operations. Each protocol layer processes the messages sent to it and then places
them in a message queue for the next layer in the protocol graph. To improve performance, messages
must be moved between processes with a minimal amount of memory-to-memory copying (which can
be difficult if there is no global shared memory, as occurs with separate processing elements in a
transputer architecture [Zit89]).

Horizontal process architectures have several advantages. First, the process architecture corre­
sponds closely to layered protocol specifications like the ISO OSI [Bla91] and Internet [Com9 la]
reference models. This makes it relatively straight-forward to design and implement pratocols in a
horizontal architecture [Atk88]. Second, each protocol component manages its active sessions within
a single process address space. This organization reduces the synchronization required to handle
multiple messages bound for the same active session, since only one process controls a given protocol
component's internal data structures. 16

However, horizontal process architectures have several significant disadvantages. For example,
the amount of available parallelism is rather limited. This is due to the fact that most major proto­
col suites specify only a small number of protocol layers. For example, the Internet reference model
has only four primary layers (e.g., data link, network, transport, application) and the OSI reference
model has just seven layers (e.g., physical, data link, network, transport, session, presentation, appli­
cation). Therefore, the amount of available parallelism is rather limited if there is only a one-to-one
correspondence between processes and protocol components. A more severe disadvantage stems from
the context switching, scheduling, synchronization overhead associated with horizontal process archi­
tectures. Messages flowing up and down between protocol layers incur a large amount of interprocess
communication (IPC) overhead, since in a horizontal architecture, each protocol layer corresponds
to one or more processes. IPC overhead between protocol layers strongly influences overall system
performance and throughput [Cla85]. Due to this overhead, most high-performance OSTSAs avoid
highly-layered horizontal process architectures [CT90].

• Vertical Process Architectures: Vertical process architectures represent a more recent
OSKA structuring approach for OSTSAs [Cla85, Atk88, JSB90). Figure .5 (2) illustrates one hy­
pothetical vertical process architecture that implements the same protocol graph as Figure 5 (1). 17

Unlike the horizontal process architecture example, in this example the OSKA associates a separate
process to each incoming and outgoing message [HP91]. Each process escorts its message through
the protocol graph, delivering it "down" to a network interface or "up" to a user application process.
Since each process resides in its own address space, messages flow through active protocol sessions
via synchronous subroutine calls rather than asynchronous IPC mechanisms (such as the message
queues used by the horizontal model).

Figure 5 (2) also illustrates three different ways that user applications exchange information with
network protocols. Process P1 interacts with an OSN API data queueing endpoint (similar to System
V STREAMS and BSD UNIX), process P.2 uses upcalls running in the same process (similar to the
x-kernel approach), and process P3 uses asynchronous message queues.

Vertical process architectures have several advantages compared to horizontal approaches. First,
there is greater potential for exploiting available parallelism, since every arriving and departing
message is associated with its own process [JSB90]. Increased parallelism also enables improved
processor load balancing (which potentially improves overall OSTSA throughput). 18 For example, if
processes are carefully implemented on a multi-processor, each incoming message may be dispatched

16 One consequence of this architectural design is that multiple messages are serialized at each protocol component.
17 Note, there are other ways to organize a vertical process architecture, one of which (connectional parallelism) is

described below.
18 The actual benefit from load balancing depends heavily on its interaction with cache affinity [VZ91] effects, which

involve the interaction between scheduling policies and instruction and data caches on shared memory multiprocessors.

12

(1) Layer Parallelism

OSNAPI

r------- -------,

: Layer N+l :
L------- _______ J

r------- -------,
: Layer N :
L------- _______ J

r------- -------,

: Layer N-1 : L------- _______ J

1 etwor'
Interface

(2) Directional Parallelism

OSNAPI

r--, r--,
:recv: Layer N+l :send:
L __ J L--J

r--,
:recv: Layer N
L __ J

r--,
:send:
L __ J

r--, r--,
:recv:Layer N-1 :send:
L--J L __ J

l etwor
Interface

Figure 6: Models of Parallelism for Horizontal Process Architecture

to an available processing element. Second, context switches are not required to multiplex and
demultiplex messages between protocol layers. Since protocol layers reside in the same address space,
synchronous subroutine calls are used to communicate between the layers. This is substantially faster
than performing IPC with asynchronous message queues, since exchanging messages between protocol
layers does not incur context switch overhead [HP91]. Finally, the vertical process architecture does
not impose a total ordering on messages bound for the same connection. This is an advantage for
network protocols that require only partial orderings between messages (e.g., the Psync IPC protocol
[PBS89] which uses partial orderings to implement "many-to-many" group communication efficiently)
or that utilize application level framing [CT90] (which is a design principle that maintains application
data unit boundaries throughout lower-layer protocol processing stages).

Vertical process architectures also have several disadvantages. First, performance may suffer if
the OSKA cannot efficiently associate an process with each message. This is particularly problematic
when overall system communication loads are very high (i.e., a large number of messages are arriving
and departing). One potential solution for this problem is to cache processes in a "process pool"
and recycle them for subsequent messages [HP91]. However, these cached processes may sit idle
when overall system communication activity is light, thereby "tying up" OS resources like memory
buffers and process table entries (which may also be needed by other OS subsystems). Second,
increased synchronization overhead and memory contention may occur when complex interactions
occur between messages and sessions at the receiver. For example, multiple messages bound· for the
same higher-layer sessions (e.g., as the result of TCP segmentation or IP message fragmentation at
the sender) must coordinate and synchronize in order to share session state information correctly,
efficiently, and consistently between multiple processes.

13

(3) Mapping Process Architectures onto Multi-Processors: Several forms of multi-processing
have been suggested to develop OSTSAs that effectively support gigabit networks [Zit91, .JSB90,
Haa91, CG91, GKWW89, HEHK92]. This section examines a number of approaches for mapping
horizontal and vertical process architectures onto multiple processing elements (PEs).

To improve the benefits from multi-processing, a parallel implementation of a process architecture
should meet several criteria [.JSB90]. First, the process architecture should be amenable to significant
levels of parallelization. For example, a process architecture that only utilizes two PEs is not as likely
to scale up as well as one that effectively utilizes dozens of PEs (all other factors held equal). Second,
overall throughput will suffer, if too much time is spent coordinating activities between PEs. This
implies that an effective multi-processor architecture should strive to minimize interprocess commu­
nication and synchronization overhead, while taking advantage of cache affinity properties. Finally,
processing loads should be carefully distributed between the multiple PEs to reduce bottlenecks and
"hotspots."

Five models of process architecture parallelism, (1) layer parallelism, (2) directional parallelism,
(3) message parallelism, (4) connectional parallelism, and (5) task parallelism, are illustrated in Fig­
ure 6, 7, and 8 and described below. These five models are differentiated by their granularity, ranging
from "coarse-grained" to "fine-grained." Granularity is determined both by the size of the tasks as­
sociated with each PE and the number of PEs involved. In general, coarse-grained approaches (e.g.,
directional parallelism and connectional parallelism) are simpler to design and implement than the
finer-grain approaches (e.g., message parallelism and task parallelism), since there is less interaction
between the PEs. However, coarse-grain approaches are also less scalable in their degree of potential
parallelism. Determining the conditions under which a particular model is more scalable and efficient
remains an open research question.

• Layer Parallelism: Layer parallelism is a straight-forward implementation of a horizontal
process architecture. In this approach (shown in Figure 6 (1)), a PE is associated with each layer in
the protocol graph. Messages flow through the layers in a pipeline fashion. The primary disadvantages
are that potential parallelism is limited to the number of protocol layers and there is typically high
overhead to move between layers.

• Directional Parallelism: Directional parallelism (shown in Figure 6 (2)) is similar to layer
parallelism, though it dedicates two PEs per-protocol layer, one for sending outgoing messages and
another for receiving incoming messages. This model is also relatively easy to conceptualize and
design, though it provides only a multiplicative increase in parallelism compared to layer parallelism.
Moreover, unless protocol input and output operations are relatively independent, communication
between the sending PE and receiving PE in a protocol component may become a source of overhead.
For example, protocols such as TCP, where acknowledgments for incoming segments are "piggy­
backed" on outgoing data and control messages, require communication and cooperation between
sender and receiver [GKWW89]. Finally, as with layer parallelism, directional parallelism does not
facilitate PE load balancing, since PEs are dedicated to specific protocol processing layers.

• Message Parallelism: Figure 7 (1) depicts message parallelism, which involves associating
a separate PE with each incoming or outgoing message. Compared with the previous two parallelism
models, the advantages of this approach are (l) the degree of parallelism is potentially quite high
(being a function of the number of messages, minus the synchronization overhead and cache affinity
effects), (2) communication over head decreases (since moving between protocol layers may not involve
a context switch), and (3) messages may be more evenly balanced between PEs. However, this model
appears somewhat easier to conceptualize than to implement, due to the complexity and overhead
of synchronizing messages bound for the same higher-layer network connection. For example, the
synchronization overhead resulting from obtaining locks required to gain exclusive access to shared

14

(1) Message Parallelism

OSNAPI

Messages

r--------1r--------1r--------,
I . 11 . I I . I

I 11 I I I

1 j Layer N+i 11 1 I Layer N+i 11 11 Layer N+i I 1
I 11 I I I

: I Layer N I : : I Layer N I : : I Layer N I :
I 11 I I I
11LayerN-l1111 LayerN-l lid LayerN-l 11
L--- ____ ...JL ___ ----...JL ________ ...J

I
I
I
I
I
I
I
I
I
I
I
L-

(2) Connectional Parallelism

I I

~~
I I
I I

I
T
I
I
I

Layer N±l

Layer N

Layer N-1

l etwor {
Interface

I I
I I
I I
I I
I I

I I
I I
I I

I I I
T TT
I I I
I I I
I I I

Figure 7: Models of ParaUelism for Vertical Process Architectures

- _J

resources (e.g., memory buffers or session control blocks) may become a bottleneck when joining
together TCP segments bound for the same higher.-layer session. Moreover, overhead may also occur
from factors such as shared-memory bus contention [JSB90].

• Connectional Parallelism: Connectional parallelism dedicates a separate PE for each ac­
tive connection. Figure 7 (2) illustrates this approach, where connections C'1, C'2, C'3, and C'4 are each
associated with a separate process that is responsible for processing all messages addressed to that
connection. This approach may be useful for servers that have several connections open simultane­
ously [HEHK92]. The degree of parallelism in this approach is a function of the number of active
connections. One drawback is that it is difficult to balance PE loads. For example, a highly active
connection might swamp its PE with excessive work, even though other PEs sit idle at inactive con­
nections. Unlike directional parallelism, synchronization and communication overhead is relatively
low (within a given connection).

•Task Parallelism: Task parallelism is an example of very "fine-grain" parallelism that applies
multiple PEs to perform multiple tasks on a per-message or per-protocol basis. Figure 8 illustrates
an example of task parallelism where multiple processes perform or coordinate several operations
in parallel on a message. These operations include computing checksums (usually performed in
hard ware to improve i;fficiency), decoding an address field in a message header, searching various
tables for protocol and session control blocks, and computing round-trip time estimates. Since most
protocol processing tasks appear to have large amounts of interdependency, it may be difficult to
eliminate memory contention and synchronization overhead. One proposed strategy for alleviating
the overhead from these interdependencies is to pipeline the message processing.[Zit89, GKWW89]

15

OSNAPI

Layer N+ 1

La er N
r- - -,

.-i-~~~~~~,~ I

I

)~::~[
I I I I
L--

Layer N-1

Network
Interface

__ .J

Figure 8: Task Parallelism

Figure 9 plots the relationship between the process architecture models and the five parallelism
models. Layer parallelism appears to be the most coarse-grain approach and task parallelism appears
to be the most fine-grain approach. Note that both layer and directional models have a fixed amount
of parallelism (i.e., corresponding to the number of protocol layers), whereas the parallelism available
in the message and connectional models varies according to the number of messages and connections,
respectively. Finally, it may also be possible to combine these models, forming more complicated ar­
chitectures such as HOPS (horizontally oriented protocols) [Haa91]. Sections 3.2.2 and 3.2.3 examine
the relationship between the process architecture and other OSTSA dimensions such multiplexing,
demultiplexing, and flow control.

3.1.2 The Event Management Dimension

The OSKA event manager provides timing-related services used by both user applications and com­
ponents in other OSTSA levels (i.e., OSNAPf. OSSA, and OSPA). A typical event manager interface
is modeled as an Abstract Data Type (ADT) that provides three basic operations: (1) registering
a subroutine that will execute at some user--.,pPcified time in the future, (2) canceling a previously
registered subroutine, and (3) asynchrono11,,[\· invoking a registered subroutine when its "time-to­
execute" occurs. In order to support real-I i1111• applications, it is important to perform all three of
these services efficiently, with small amou11h of variance (even when there are a large number of
registered subroutines). These services are b11ilt on top of a hardware-interrupt-driven clock mecha­
nism. On each clock tick the event manager checks whether it is time to execute any of the scheduled
events. If one or more events must be run, the event manager invokes the associated subroutines.

At the OSSA level, many network protocols perform time-related operations on active and inactive
network connections, and these operations use the event management services provided by the OSKA.
Some of these operations are driven by timers that are set or canceled in response to protocol-related
events. For example, when a TCP segment is sent, a retransmission handler subroutine is registered
with the event manager. The time to execute is based on a time interval calculated from the TCP

16

Coarse-Grain

Granularity
of Processes
and Tasks

Fine-Grain

Process Architecture

Horizontal

Layer
Parallelism

Directional
Parallelism

Task
Parallelism

Vertical

Connectional
Parallelism

Message
Parallelism

Figure 9: Relationship Between Process Architecture and Parallelism Granularity

round-trip estimate for that connection. vVhen the timer expires, the event manager calls the handler,
which then retransmits the segment. If an acknowledgement for the message arrives before the timer
expires, on the other hand, the handler is canceled.

Timers can also be scheduled to run periodically, in which case they do not correspond directly
to any particular protocol-related event. For example, the SNR transport protocol uses a periodic
interval timer to synchronize sender and receiver state information. In this scheme, a receiver does
not explicitly acknowledge the sender when it receives a message, but instead waits for a periodic
interval timer to expire. At this point, the previously registered handler exchanges the receiver's
complete state information with the sender [NRS90].

Example OSKA event management implementations include delta lists [Com91b], timing wheels
[VL87], and heap-based [BL88] and linked list-based [LMKQ89] callout queues. The following three
primary dimensions classify these different event management mechanisms.

(1) ADT Implementation: There are several common strategies for implementing the event
management Abstract Data Type (ADT). A simple approach is to sort the events by their "time-to­
execute" value and store them in an array [Bac86]. A variant on this approach replaces the array with
a sorted linked list (which reduces the overhead of adding or deleting an arbitrary event handler)
[Com91b]. A third approach uses a heap-based priority queue [BL88]. Using a heap instead of a
sorted list or array reduces the time complexity for inserting or deleting an entry from O(n) to
O(lg n) time. This can save a significant amount of time in a large system where many devices use
the event manager (e.g., terminals and network connections).

(2) Time Relationships: A second aspect of event management involves time relationships, i.e.,
whether relative or absolute timing is used to sequence events. Relative time is typically used with
a sorted array or sorted linked list ADT. Every item in the array or list corresponds to an event
scheduled to occur in the future. Because each item's time is stored relative to the previous item,
the event manager only needs to examine the first element in the array or list on every clock tick
to determine if it should execute the event handler. On the other hand, heap-based approaches use
absolute time, due to the operations required to maintain a heap.

17

(3) Event Notification Mechanism: When a timer expires, the event management mechanism
either calls a registered subroutine with its associated argument [BL88] or it may send a control
message to a port via a message queue [Com91b] (see Section 4.1..5 for additional details).

3.1.3 The Virtual Memory Remapping Dimension

Regardless of the process architecture, achieving efficient network protocol performance requires min­
imizing the amount of memory-to-memory copying performed throughout the OSTSA [WM87]. In
general, memory copying provide an upper bound on user application throughput [CT90]. Choosing
an efficient message management mechanism is one method for reducing copying overhead (see Sec­
tion 3.2.1 below). A related approach uses OSKA virtual memory facilities to avoid expensive data
copying. For example, in situations where data copies would ordinarily be performed19 , the OSKA
remaps virtual memory pages instead, marking them "copy-on-write." Page remapping is particularly
useful for transferring large quantities of data between separate address spaces [YTR+S7].

Several complications arise with page remapping schemes that make them difficult to implement
in practice. First, most page remapping schemes require placing data in contiguous buffers that
begin on page boundaries. Ensuring this alignment restriction may be complicated by other protocol
operations and options such as message de-encapsulation (i.e., stripping headers and trailers as
messages migrate up a protocol graph), presentation layer expansion [CT90] (e.g., uncompressing or
decrypting an incoming message), and variable-size header options. Certain versions of BSD UNIX
support a "trailer option" that places variable-size protocol headers at the end of a message, so that
the fixed-size data portion comes first. This technique facilitates remapping (or at least minimizes
copying) by allowing incoming messages to be aligned on page boundaries. Second, remapping may
not be useful if the remapped page is immediately written upon, since a separate copy must be made
anyway [LMKQ89]. Finally, if messages are small, there may be more overhead in remapping them
(e.g., adjusting page table entries, invalidating translation-lookaside buffers, etc.) compared with
simply copying them in the first place.

3.2 OS Protocol Architecture Dimensions

The OS Protocol Architecture (OSPA) supports intra-protocol (e.g., session graph management, mes­
sage management) and inter-protocol (e.g., protocol graph management, layer-to-layer flow control,
multiplexing and demultiplexing of messages) services that are common to most network protocols.
OSPA services pertain primarily to network protocols and distributed applications (as opposed to
OSKA services that are also utilized by most other OS subsystems).

3.2.1 The Message Management Dimension

Various types of messages are used throughout the OSTSA to exchange data and control information
between local and remote peer entities. Some standard network message management operations
include storing messages in buffers as they are received from network interfaces, prepending and/ or
stripping headers and appending and/ or stripping trailers from messages as they flow through various
protocol layers, storing messages into buffers for transmission or retransmission, fragmenting and
reassembling messages, and reordering messages received out-of-sequence [JSB90].

An effective message manager for networking applications must fulfill several general requirements.
First, it must efficiently support both fixed-size and variable-size allocations and deallocations of

19 Transferring messages from kernel-space to user-space is a common OSN AP I-level operation that often involves
memory-to-memory copies (OAHP90].

18

memory. Network traffic tends to have a bi-modal distribution of sizes, either large messages (e.g.,
for bulk data transfer) or small messages (e.g., for remote login and voice applications). Second,
it must support protocol encapsulation. Encapsulation occurs as messages move up and down a
protocol graph; it involves adding and deleting both headers and trailers to the beginning and end of
a message, respectively. Third, a message manager must also support fragmentation and reassembly.
Finally, it must implement these operations with a minimal amount of data copying.

As mentioned in Section 3.1.3, memory-to-memory copying is a significant source of OSTSA
overhead. Naive implementations that physically copy messages between each layer are far too
expensive. Therefore, message management schemes are optimized to minimize data copying, using
techniques such as buffer-cut-through (passing buffers by reference through multiple protocol layers
[WM89, ZS90]) and copy-on-write schemes (that use lazy evaluation, reference counting, and buffer­
sharing to avoid making unnecessary copies [OAHP90]). 20

Message management schemes are often tuned to work efficiently for different message sizes. For
example, certain schemes are well suited for small- or large-size messages, but not for medium-size
messages. In particular, the BSD message management facility divides its buffers (called mbufs into
small (128 byte) and large (1,024 byte) blocks. This leads to non-uniform performance as incoming
and outgoing messages vary between small and large mbuf sizes [HMPT89]. Different schemes also
vary in their level of support for minimizing data copying and data sharing. For instance, a standard
message management scheme (e.g., used by BSD UNIX and System V) chains multiple pieces of a
message together to form a linked-list of message fragments. Adding data to the front or rear of the list
only involves relinking pointers, and does not require any data copying. An alternative approach uses
a Directed-Acyclic-Graph (DAG)-based message data structure [OAHP90]. This method provides
better support for data sharing between protocol layers, since DAGs allow multiple "parents" to
share a single "child."

3.2.2 The Multiplexing and Demultiplexing Dimension

Multiplexing and demultiplexing are mechanisms used to route messages between sessions in one or
more adjacent protocol layers. Multiplexing is typically performed at the sender's end of a network
connection. It directs outgoing messages from some number of higher-layer sessions onto a smaller
number (usually one) of lower-layer sessions [Ten89]. Demultiplexing performs the inverse task on the
receiver's end by directing incoming messages up to their associated sessions. Nate that multiplexing
and demultiplexing are orthogonal to data copying. In other words, depending on the message
management scheme, messages may not require memory-to-memory data copying as they move up
and down through the protocol layers [OAHP90].

In general, demultiplexing is more complicated than multiplexing as the result of several fac­
tors. First, the sender has knowledge about the entire transfer state [CT90] (e.g., the destination
address 21 of the messages and which network interface to use). For connection-oriented services,
this information may be precomputed at connection establishment time and reused for subsequent
messages destined for the same address. On the other hand, when a network controller receives an
incoming message, it must inspect the message header and perform a lookup operation to determine
which higher-layer protocol should receive the message. This demultiplexing operation may occur sev­
eral times enroute from network controller to user process.22 Second, demultiplexing often requires

20 These schemes may be combined with the virtual memory remapping optimizations described in Section 3.1.3.
21 Addresses indicate which local and/or remote process(es) should receive a particular message. Examples include

port numbers, connection identifiers, and Internet IP addresses.
22 For example, IP messages are demultiplexed on a header field indicating whether the message is bound for TCP,

UDP, or some other higher-layer protocol; likewise, these higher-layer protocols may demultiplex further up to an

19

(1) Layered Multiplexing
and Demultiplexing

I I
1 Network Interface 1
I I

L------------...1

(2) Non-Layered Multiplexing
and Demultiplexing

I I
1 Net work Interface 1
I I L ____________ ...I

Figure 10: Layered and Non-Layered Multiplexing and Demultiplexing

dynamically allocating data structures (e.g., in order to deliver messages addressed to "passively­
opened" connections). Finally, depending on the process architecture, these demultiplexing activities
may exhibit high synchronization and context switching overhead, since multiple processes may need
to be awakened, scheduled, and executed. These factors help explain why receivers, rather than
senders, are often performance bottlenecks in distributed systems [Hol91].

Four important multiplexing and demultiplexing dimensions are synchronous vs asynchronous,
layered vs non-layered, and different search methods, and different caching strategies.

(1) Synchronous vs Asynchronous: Multiplexing and demultiplexing may be either synchronous
or asynchronous. ~Whichever method is chosen strongly relates to whether the OSKA uses a horizontal
or vertical process architecture (see Figure 5). For example, vertical process architectures (like the x­
kernel) typically use synchronous multiplexing and demultiplexing. Since each vertical process resides
in its own separate address space upcalls and subroutine calls may be used to transfer messages up
and down the protocol graph. In this case, the demultiplexing operation simply determines which
higher-layer protocol to invoke; calls from lower-layer protocols block until higher layers complete
their protocol processing.

On the other hand, horizontal process architectures (e.g., Xinu or System V STREAMS) often use
asynchronous multiplexing and demultiplexing that pass messages up and clown the protocol graph
without blocking the sender. This approach requires message queues to buffer data between layers
and may also require additional context switching.

(2) Layered and Non-Layered Multiplexing and Demultiplexing: Multiplexing and demul­
tiplexing route messages between OSPA protocols and sessions. In layered schemes (shown in Fig­
ure 10 (1)), this routing may occur multiple times as messages traverse up or down the protocol graph.
This approach differs from non-layered multiplexing and demultiplexing (shown in Figure 10 (2)),
where the routing decision is performed only once, usually at the lowest-layer of the protocol graph,
e.g., at the network interface layer. The choice between layered and non-layered multiplexing and
demultiplexing has an important impact on both OSTSA performance and modularity.

associated user process.

20

Using layered multiplexing and demultiplexing has several advantages [Ten89]. First, it promotes
modularity, since services offered at one layer may be developed independently from other layers. Sec­
ond, it helps conserve resources (e.g., virtual circuits) by sharing them among higher layer sessions. 23

Finally, layered approaches are useful for coordinating different simultaneous multimedia applications
(e.g., synchronized voice and video streams), since messages are forced to synchronize at each Service
Access Point (SAP) boundary.

The main disadvantages of layered multiplexing and demultiplexing result tram the additional
overhead of performing multiple routing decisions. For example, depending on the OSTSA process
architecture, multiple levels of demultiplexing may lead to high context switching and synchronization
overhead. Layering interactions also often increase jitter, which is detrimental to the performance of
many delay- and jitter-sensitive multimedia applications. Some researchers believe that this overhead
outweights the benefits described in the previous paragraph [Ten89].

Therefore, non-layered multiplexing and demultiplexing has been proposed as an alternative. Non­
layered approaches are beneficial for several reasons. First, they decrease contention from network
connections that are transmitting and receiving from the same protocol component or protocol layer,
because there is less competition for the same lower-layer SAPs [Ten89]. Second, in a horizontal
process architecture, using a non-layered approach will reduce the number of processes and therefore
decrease the total amount of context switching overhead.

However, there are several disadvantages to using a non-layered approach. First, it expands the
degree of demultiplexing at the lowest layer. This violates certain protocol layering assumptions,
since the lowest layer must be able to determine and demultiplex on session identifiers that occur
several logical layers above it in a protocol graph. Second, it increases the number of sessions within
every intermediate protocol layer, since these sessions are replicated and not shared [Ten89]. Finally,
they encourage monolithic, special-purpose implementations that are difficult to maintain and extend
[CT90].

(3) Search Mechanisms: Implement a multiplexing and demultiplexing scheme typically involves
some form of searching. For example, BSD's TCP implementation searches a list of control blocks to
demultiplex incoming messages to their appropriate connection session. The search key is known as
an external identifier (e.g. network addresses, port numbers, and type-of-service field); it is used to
locate some internal capability (e.g., pointers to session state information, protocol control blocks,
and network interfaces). Several popular search algorithms include direct indexing (e.g., using a
connection identifier), sequential-search, ·and hashing.

Certain transport protocols (e.g., TP4 and VMTP) have connection identifiers that may be used
to decrease demultiplexing overhead. For example, these identifiers may be computed at connection
establishment time. This greatly simplifiec; I itP demultiplexing operation by directly indexing into
the associated control block, rather than SP<11Thing on keys in the form of the <source addr .. source
port, destination port> tuple used to iclent ii\ TCP and UDP associations. If a particular protocol
does not support connection identifiers, seq111·1t1 ial-search or hashing may be used instead. Searching
a linked list or table sequentially is simple t() i111plement, though it does not scale up well if there are
a large number of items in the key's search sp;ice (e.g., many open network connections). Therefore,
some form of hashing (such as bucket-chaininu) is often used if many search keys exist [HMPT89].

(4) Caching and List Reorganization: There are several optimizations available for the above
search methods. Optimizations include using single- or multiple-item caches, along with list reorga­
nization heuristics that move recently accessed control blocks to the front of the search list or bucket.

23 For instance, This sharing is useful for leased-line communication links, where it is expensive to reestablish a
dedicated virtual circuit for each transmitted message.

21

If applications form ·'message-trains" (where a sequence of back-to-back messages are destined for
the same higher-level session), then a single-level control block cache is a relatively efficient, straight­
forward implementation [MD91]. On the other hand, single-level caching is not particularly efficient
for applications that do not form message-trains. 24

In general, the different search algorithms and optimizations have a significant impact on overall
OSTSA and protocol performance. Hashing, combined with caching, produces a measurable im­
provement when searching large lists of control blocks (e.g., representing the associated network
connections) [HP9 l].

3.2.3 The Flow Control Dimension

Flow control is a mechanism used by a sender or receiver to regulate the rate of speed and amount
of data that is being transmitted. Flow control is necessary due to resource limitations in an OSTSA
implementation. In particular, an OST SA will not dedicate an infinite amount of memory for servicing
network connections.

There are two kinds of flow control (peer-to-peer and layer-to-layer) that correspond to the dif­
ferent OSTSA levels in which network communication occurs. Peer-to-peer flow control is applied
on a per-connection basis at the OSSA level to avoid transmitting messages faster than the remote
receiver is able to store and process them. 25 For example, at the transport layer, TCP uses a "slid­
ing window" flow control algorithm to regulate the amount of data exchanged between two network
connections.

Layer-to-layer flow control occurs both between and within other OS TS A levels. At the OSN API
level, flow control is usually performed by blocking a user process that attempts to send and/or receive
more data than the inner-level OSPA protocol and session components are capable of handling at
that moment. Within the OSPA level, layer-to-layer flow control is used to prevent higher-layer
protocols from flooding lower-layer protocols with more messages than they are equipped to process
and/or buffer. Two general mechanisms for controlling layer-to-layer flow are per-queue flow control
and per-process flow control. They are described in the bullets below.

• Per-Queue Flow Control: Flow control is often implemented by putting a limit on the
number of messages or number of total bytes that are queued between or within adjacent protocol
layers. For example, a horizontal process architecture (e.g., System V STREAMS) places a limit on
the size of the message queue used to pass information between adjacent protocol layers (or between
the top-most protocol layer and an application program executing as a user process).

• Per-Process Flow Control: Flow control may also be performed on a per-process basis.
For example, in a vertical process architecture (like the x-kernel), an incoming message is discarded
if a light-weight process is not available to shepard it up the protocol graph.

3.3 Software Quality Dimensions

This section examines modularity, flexibility, and extensibility, which are three software quality dimen­
sions related to the design and implementation of Operating System Transport System Architectures
(OSTSAs). Although these quality dimensions are difficult to quantify precisely, they affect the
correctness, performance, portability, maintainability, and reusability of OSTSA software.

24 Note that when determining caching benefits, the "miss ratio" (i.e., how many times the desired external identifier
is not in the cache) represents only part of the overall demultiplexing cost. It is also important to consider how many
list entries must be searched when a cache miss occurs. If search lists are long, the cost of a cache miss may be high.

25 Note that network congestion may also force buffering of data at the OSSA level on the sender.

22

3.3.1 The Modularity Dimension

Modularity is a software quality dimension that promotes reusability, flexibility, and extensibility
[Mey89]. In general, using a modular design aids the software construction process by reducing de­
velopment ·and maintenance costs and increasing system quality. Modularity divides large, complex
systems into smaller, intellectually manageable components [Wir71], and localizes the effects of spec­
ification changes and programmer errors to within well-defined modules26 [Hen80]. Many software
design methodologies emphasize modularity [Mye78, Par72, YC79].

In distributed systems, modularity is often manifested by layered designs and implementations.
In fact, many research projects [Cla85, HP91, Zwe91, OP91, Sha91] propose different approaches
for developing modular and efficient software architectures for distributed OSTSAs. A modular
decomposition of an OSTSA separates system functionality into distinct components or layers. It is
difficult to measure the degree of OS TS A modularity precisely. However, two empirical indicators of
OSTSA modularity include interface uniformity [OP91] (i.e., the uniformity of the service interfaces
exported within and between software components and hierarchical layers) and the degree of data
coupling [Mye78] between components. The following bullets discuss these indicators.

(1) Interface Uniformity: There are two general types of interface uniformity. First, modules
that perform the same abstract services (e.g., connection establishment, flow control, message man­
agement, etc.) possess high uniformity if their service interfaces remain the same regardless of their
service implementations. Second, protocol components in a layered protocol graph may also exhibit
uniformity at their Service Access Points (SAP) (which occur at the boundaries between protocol
layers). In this case, highly uniform interfaces exist if all the SAPs in the protocol graph use the
same service interface. For example, passing a message between the user-process-to-TCP-protocol
SAP boundary would use the same service interface as passing a message between the TCP-protocol­
to-IP-protocol SAP boundary.

Interface uniformity is an important ingredient for building reusable software components for
network protocols. Lack of uniform interfaces makes it difficult to support protocol substitution
(which is the ability to transparently interchange protocols that provide the same class of service
[Bro88]). Furthermore, uniformity enhances simplicity [Com9lb], and it is generally easier to reuse
simple modules that possess standard interfaces [OP91].

(2) Data Coupling: A second modularity indicator involves measuring the degree of data coupling
between software components in an OSTSA. Research suggests that high data coupling between
software components is associated with higher defect rates and higher maintenance costs [HK8la].
Software analysis tools are available to measure data coupling within software systems. For example,
data binding metrics [HB85, SB91, Sel88] are one technique for quantifying the data dependencies
between software system modules. Another technique computes information flow metrics, which
measure the degree of module fan-in and fan-out [HKSlb]. 27

In general, highly-layered and highly-modularized OSTSAs (such as the Conduit framework and
the x-kernel) possess high interface uniformity and low data coupling among their components and
layers. This implies that modules in these systems minimize inter-module data dependencies and
respect layering boundaries. For example, protocol and session objects in the x-kernel only reference

26 A module is defined here as "a software component encapsulating the representation of some abstraction." Modules
may be either stand-alone subroutines or abstract data types (ADTs), which are collections of related data structures
and subroutines that directly update and/or retrieve data structure state information (HK81b].

27 Fan-in measures the number of modules that pass data (via parameters or global variables) into a module. Fan-out
measures the number of modules receiving data from a given module.

23

local variables, and only access lower-layer components via well-defined control interfaces [OP91].
Monolithic OSTSA decompositions, on the other hand, often de-emphasize or ignore layering bound­
aries. This is manifested by lower interface uniformity and higher data coupling.

There are several advantages to organizing and describing OSTSA software in a modular and
layered manner. First, layering enables multiple outer-level OSTSA components (e.g., user processes
and network protocols) to share inner-level services [Fel90] (e.g., process and virtual memory man­
agement, and layer-to-layer flow control mechanisms). Second, viewing OS TS As as virtual machine
levels with well-defined service interfaces enables transparent, incremental enhancement of commu­
nication services [Ten89]. Finally, modular designs generally improve the implementation, testing,
and maintenance of software systems [Par72, Par79, PCW83]. This, in turn, reduces overall develop­
ment effort, facilitates reuse of existing software components, and creates more flexible and extensible
OSTSAs.

There are also several disadvantages of using modular and layered approaches for OSTSAs
[Ten89, CWWS92]. A common criticism of layered implementations is that they introduce too
much overhead, which prevents them from delivering high-speed network bandwidth to applications
[Cla82]. This overhead typically results from several factors. First, modular and highly-layered OST­
SAs incur significant inefficiencies if layering is not carefully structured with the process architecture
[HP91, CWWS92]. In particular, in a horizontal process architecture, the context switching over­
head may be so large that efficiently supporting a highly-layered protocol graph (where each layer is
encapsulated in a separate process) is extremely difficult [B091]. Second, modular systems incur a
performance penalty by encapsulating OSTSA data structures and protocol state information behind
abstract service interfaces. This approach requires protocol processing activities to use subroutine
calls and parameter passing to access desired information. The overhead from encapsulation may be
quite significant for protocol families like TCP /IP, where TCP protocol processing involves a strong
dependency on IP protocol state information. 28 Monolithic implementations avoid this encapsulation
overhead, since information hiding is either non-existent or not strictly followed.

Monolithic implementations are not necessarily always more efficient than modular ones, however.
In fact, carefully designed modular architectures may actually "enhance" performance in several ways.
First, modular OSTSA components are potentially more amenable to efficient parallelization. For
instance, modularity reduces global memory references, thereby reducing memory-bus contention
for shared-memory references and decreasing synchronization overhead. Second, modularity may
facilitate macro-level performance improvements, even if there are increased micro-level performance
penalties (such as additional subroutine-call overhead).

The latter point is exemplified by several empirical benchmarks performed using the x-kernel.
These findings illustrate that efficient protocols may be created from modular, layered, and reusable
software components if the process architecture minimizes context switching overhead and the mes­
sage management scheme minimizes memory-to-memory copying (especially for large blocks of mem­
ory) [HP91J. For example, [HP91] demonstrated how the x-kernel's highly-layered OSTSA outper­
formed BSD's more monolithic OSTSA in terms of latency and throughput. Likewise, [OP90a]
implemented the Sprite RPC protocol in the .r-kernel using an efficient, highly-layered design that
significantly outperformed the original monolithic Sprite implementation. One reason for the improve­
ment was that the highly-layered x-kernel implementation allowed incoming and outgoing messages
to bypass unnecessary layers of protocol processing (e.g., skipping the IP layer when messages are
bound for hosts on a local subnet).

28 For instance, TCP uses the IP pseudo-header for checksum calculations.

24

3.3.2 The Flexibility and Extensibility Dimension

As described in Section 2.3, the OS Protocol Architecture (OSPA) manages software components
that implement protocols, sessions, and messages. The OSPA design generally determines the overall
flexibility and extensibility of an OSTSA. 29 The flexibility of an OSPA is characterized by how easily
existing components may be recombined to form new configurations, and extensibility is characterized
by how easily new components and services may be added to the OSPA. As discussed below, OSPA
flexibility and extensibility dimensions involve support for multiple protocol families, various OSPA
component composition mechanisms (e.g., component configuration time, component composition
order, and whether typed or untyped component composition is supported), and OSPA component
locations within the OSTSA.

(1) Support for Multiple Protocol Families: A protocol family is a collection of network
protocols that share related communications syntax (e.g., addressing formats), semantics (e.g., in­
terpretation of standard control messages), and operations (e.g., checksum computation algorithms).
Many different protocol families exist, such as SNA, TCP /IP, XNS, and OSI.

Support for multiple protocol families is becoming increasingly important for both interoperabil­
ity and performance reasons. Obviously, an OSPA that supports TCP /IP, OSI, XNS, and SNA will
be able to communicate with far more host machines than an OSPA that only supports one protocol
family. Moreover, different protocol families offer different types of services that favor certain applica­
tions while compromising performance for others [vVM87]. In any layered protocol family it is difficult
to achieve good performance at layer N without efficient support from layers below N. Therefore,
application and network performance may decrease when protocol families are not designed to meet
their specific requirements [OP90b]. For example, the TCP /IP protocol family does not specify a
low-latency RPC service, which makes it difficult to efficiently support request/response-style appli­
cations (such as implementing a distributed file server on a LAN containing diskless workstations).

Some OSPAs support only a limited number of protocol families. For instance the V-kernel
[Che88] only supports VMTP, Xinu [Com91b] only supports TCP /IP, and early versions of Amoeba
[TRS+9o, KvRvST91] only supported its high-performance RPC protocol graph. If only one protocol
family is supported, then various special-purpose optimizations (e.g., coding the protocols in assembly
language [RST89]) may be used to improve performance. On the other hand,· more flexible and
extensible OSPA designs are required to support multiple protocol families. For example, System V
STREAMS, BSD UNIX, the x-kernel, and the Conduit framework all provide general-purpose OSPAs
that support multiple protocol families.

(2) OSPA Component Configuration Time: OSPA components (e.g., representing protocols,
sessions, and messages.) may be configured and/ or reconfigured either statically or dynamically.
Static configuration takes place at operating system boot time. In this case, the OSPA component
configuration is "hard-coded," and available communication services are based only upon pre-ordained
alternatives. Both BSD UNIX30 and Xinu support static OSTSA composition. For example, user
application programs that use the Internet protocol family on BSD UNIX may only select between
the TCP and UDP transport protocols.

Dynamically configured OSPAs, on the other hand, compose some or all of their components while
the system is running. A common method for supporting dynamic composition is to provide user
applications with OSN API control operations that modify the OSPA protocol graph. For example,

29 Since an OSKA typically supports other OS subsystems besides network computing, they are usually more difficult
to change than the OSPA.

30 This paper focuses on 4.3 BSD UNIX. 4.4 BSD incorporates a more flexible OSPA composition mechanism similar
to System V UNIX STREAMS. However, the 4.4 BSD design is still in flux.

25

System V STREAMS allows user applications to link and/or unlink protocol components (called
STREAM modules) via the ioctl system call. In addition, support for the dynamic linking and
loading of executable code is useful for increasing extensibility.

The main advantage of statically configured OSPAs is that they may run very efficiently, since
they are able to make assumptions about component ordering. For example, the BSD UNIX OSPA
tightly couples the TCP and IP layers, which enables it to place header fields (such as the source
and destination IP network addresses) at fixed-offsets in an mbttf message. On the other hand,
dynamically configured OSPAs require more complex mechanisms to process messages whose header
fields may contain a variable number of addresses, stored at variable offsets in the message headers.31

The main disadvantage of statically configured OSPAs is that they are inflexible. For instance,
after any modifications, OSPA code must be recompiled, relinked, and restarted; carrying out these
activities may require system downtime. Moreover, adding complicated extensions often requires
changes to the design of OSPA software components and application programs. For example, when
OSI and XNS support was added to the BSD UNIX kernel, many modifications were required to
kernel- and user-level source code and system call interfaces [OTW85].

Dynamic configurations have several advantages over static configurations. First, they enhance
flexibility and extensibility by enabling "dynamically tailoring" of OSPA components that selectively
adapt to user application requirements and particular network environments. OSPA configurations
may be specified by applications or they may be based upon dynamically changing feedback on
network congestion, CPU load, and resource availability of networks and hosts [Sti92, Tsc91]. In
addition, the ability to modify an OSPA at run-time may be important for systems that must be
"highly available" (e.g., systems such as an airline reservation system or telephone switching systems
that cannot tolerate downtime).

(3) OSPA Component Composition Order: OSPAs that support dynamic configuration must
provide some form of user interface to enable inserting and/or removing components. Two general
approaches are to either allow components to be added or subtracted in an arbitrary order, or to
enforce some constraints on the order such as "last-in, first-out" (LIFO). The x-kernel and Con­
duit framework provide OSPAs that support arbitrary component composition orders. System V
STREAMS, on the other hand, only supports LIFO composition orders.

(4) Typed versus Untyped Component Composition: OSPAs supporting dynamic configu­
ration may also provide either typed or unt,yped component composition. Typed composition is used
to ensure that components are composed together in meaningful ways. This prevents, for instance,
a TCP protocol component from being accidentally attached directly to an Ethernet driver, instead
of an IP component. The Conduit framework is an example of a system that provides typed compo­
sition. Conversely, most OSPAs do not haw ~tandard facilities to ensure that arbitrary component
combinations are semantically valid.

(5) OSPA Component Location: OSP,\ rnmponents may be implemented inside the OS kernel,
in user-space, in off-board processors, or in ~<llllE' hybrid combination of these. Component location
affects flexibility and extensibility, since it is generally harder to debug, develop, port, modify, and
maintain OS kernel code, compared with code written in user-space [Cla82]. For example, when the
OS runs in kernel-mode there is generally no protection against run-time errors. Therefore, erroneous
kernel code may cause .the entire OS to crash, whereas erroneous code running in user-mode only
causes the associated user program to crash.

31 Variable-offset headers may be necessary because the particular set of higher-layer protocol addresses is not known
until a message arrives at the bottom of a protocol graph [OP91].

26

Process Architecture (1) Coroutines, (2) horizontal (process-per-module)
Event Management (1) absolute, (2) heap, (3) function call
Virtual Memory Remapping none

Message Buffering list-based
Multiplexing/Demultiplexing (1) asynchronous, (2) layered, (3) ND, (4) ND
Flow Control per-queue

Modularity (1) uniform, (2) low coupling
Flexibility and (1) multiple, (2) dynamic, (3) LIFO,
Extensibility (4) untyped, (5) kernel-space

Table 2: STREAMS Profile

Component location also affects performance. Implementing components in user-space may result
in poor performance due to the "boundary-crossing penalty" [OAHP90] that occurs when processes
move between user- and kernel-mode (e.g., as the result of a system call). The boundary-crossing
penalty results from the overhead of demultiplexing, system calls, and context switching operations.
For example, it requires at least 2 context switches and 3 system calls per-received-message to perform
demultiplexing in user-space [MRA87]. On the other hand, performance overhead is greatly reduced
if most OSPA components run in kernel-mode, since kernel data structures may be accessed directly
(thereby reducing context switch overhead).

Two mechanisms used to reduce the overhead from crossing the user/kernel boundary are upcalls
and packet .filters. U pcalls are synchronous communication mechanisms that transfer control upwards
from server to client [Atk88, Cla85]. The x-kernel uses up calls as an optimization technique to reduce
context switching overhead for incoming messages by allowing kernel processes to transform into user
processes. Packet filters are a kernel resident, protocol independent packet demultiplexer that is used
to reduce context switching overhead [MRA87]. A packet filter enables a user process to specify to
the kernel which packet types it wants to receive. The kernel then performs the packet processing
operations on behalf of the user process.

4 Survey of Existing OS Transport System Architectures

This section surveys the OS Transport System Architectures (OSTSA) for the System V UNIX, BSD
UNIX, x-kernel, Choices, and Xinu operating systems. Section 4.1 gives a brief summary of each
system. Section 4.2 compares and contrasts each system using the taxonomy dimensions listed in
Table 1.

4.1 System Overviews

This section gives an overview of some significant features (e.g., the software components and process
architecture) for each surveyed OSTSA. In addition, an OSTSA pro.file corresponding to the taxonomy
illustrated in Table 1 is presented with each overview. These profiles were derived from articles in
the open literature andfrom examining the source code, when available.

4.1.1 System V STREAMS

27

r-----,
: User :
:Proces~
t_ ___ _

User
f\ern·er • •

r-----,
: User :
:rrocess:
t_ ____ ...J

r-----,
: User :
:rrocess: ____ ...)

;- -i STREAM;- -i
1WRQ1 Module 1RDQ 1
t_ __ ...J t_ __ ...J

r- --, STREAM r- --,
IWRQI IRDQI
1 1 Driver 1 1 t_ ___ ...J [. ___ ...)

Figure 11: An Example Stream in System V STREAMS

The System V STREAMS model was originally developed to enhance the portability, reusability,
and extensibility of the 3th Edition Research UNIX serial-line I/O subsystem [Rit84]. The STREAMS
design was initially oriented towards terminal drivers. It was later extended to support network pro­
tocols and local IPC, via multiplexor drivers, STREAi'vl pipes, and named FIFOS. The STREAMS
architecture emphasizes modular components that possess standard interfaces. Many other exper­
imental OSTSAs (such as the x-kernel and the Conduit framework) are heavily influenced by the
STREAMS architecture. Table 2 illustrates the OSTSA profile for System V UNIX STREAMS.

As shown in Figure 11, the three main layers in the System V STREAMS architecture include:
the STREAiVl head, the S'TREA1vl module, and the STREAM driver layer [McG88]. Uniform service
interfaces exist between each layer. A Stream32 is a full-duplex "protocol processing and data trans­
fer" path between a STREAM head and a STREAM driver. STREAM modules may be inserted
and/or removed dynamically between the STREAM head and the STREAM driver. These modules
implement protocol processing services like encryption, compression, reliable message delivery, and
routing. The following bullets describe the System V STREAMS components in greater detail.

• STREAM Heads: The STREAM head is a special type of STREAM module. It is situated
on "top" of a Stream, nearest to the user process. A STREAM head provides a queueing point
where data and control information is exchanged between a distributed application (running as user
processes) and a Stream (running in the kernel). The STREAM head is responsible for segmenting
the user data (which may be produced as a continuous bytestream) into discrete messages. These
messages flow "downstream" from the STREAM head, though zero or more STREAM modules, to
the STREAM driver, where they are transmitted by a network controller to the appropriate remote
host machines. Conversely, the driver also receives incoming messages. These messages then flow
"upstream" through the modules to the STREAM head, where a user process may wait to retrieve
them. The STREAM head also performs memory-to-memory copying to move data between a user
process and kernel (i.e., the System V kernel does not use virtual memory remapping techniques
in its OSNAPI). Since a STREAM head runs in context of a user process, it may sleep when it is

32 The uppercase word "STREAMS" refers to the overall System V OSTSA mechanism, whereas the word "Stream"
refers to a particular path between a user application and a device driver.

28

blocked.33

• STREAM Modules and Queues: STREAM modules are analogous to "filter'' programs
in a UNIX shell pipeline. Data flows from a Stream head, through a stack of STREAM modules, to
a STREAM driver. Each STREAM module performs its protocol processing operations on data it
receives before sending the data along to the next module. Unlike a UNIX pipeline, however, data is
passed as discrete messages between modules, rather than as a bytestream.

User processes may dynamically "push" and/or "pop" STREAM modules from a Stream (how­
ever, modules may only be inserted or removed in a "last-in, first-out" (LIFO) order). Each module
contains a pair of queues, which are always allocated in read/write pairs (i.e., every STREAM module,
STREAM driver and STREAM head contains a queue pair). Queues are used for several purposes.
First, they link STREAM modules together with other STREAM modules (a STREAM driver is
linked below the "bottom" module of the Stream; likewise, a STREAM head is linked above the
"top" module of the Stream). Second, they hold lists of messages sorted in priority order (messages
may be ranked with up to 256 different priority levels). Finally, they contain pointers to a set of sub­
routines that implement the module's processing operations (e.g., encrypting and decrypting data)
and regulate layer-to-layer flow between modules.

Two important subroutines in this set are called "put" and "service." A put subroutine runs in
response to synchronous or asynchronous events (e.g., a user process sending a message downstream
or a message arriving on a network interface). It performs protocol processing operations (such
as handling high-priority messages like TCP urgent data) that must be invoked immediately. The
service subroutine, on the other hand, is used for protocol processing operations that either do
not execute in a short, fixed amount of time (e.g., performing a three-way handshake to establish a
peer-to-peer network connection) or that will block (e.g. due to layer-to-layer flow control34).

• STREAM Drivers: Like a STREAM head, a STREAM driver is also a special type of
STREAM module.35 There are two main categories of STREAM drivers: device drivers and multi­
plexor drivers. Device drivers exist at the "bottom" of a Stream. They typically manage hardware
devices, and perform activities like handling network controller interrupts and converting raw packets
into message data structures suitable for upstream modules.

A multiplexor driver may exist between a STREAM head and a STREAM driver, just like
a STREAM module. Unlike a STREAM module, however, a multiplexor driver enables multiple
Streams to link to it from "above" or "below." Multiplexor drivers are used to implement network
protocols such as TCP and IP that receive data from multiple sources (e.g., different user processes)
and send data to multiple sources (e.g., different network interfaces). However, the STREAMS
mechanism has no built-in support for flow control among multiplexor drivers. Therefore, STREAM
multiplexor drivers require Stream implementors to develop additional "protocol-specific" software
that performs message multiplexing and demultiplexing and flow control.

• Messages: Data is passed between STREAM heads, STREAM modules, and STREAM
drivers in discrete chunks, using a standard abstract data type (ADT) called a message. A mes­
sage is used to represent both data and control information (a message may have multiple data parts,

33 STREAM heads block in several situations. One is when a user process performs a "blocking read" while waiting for
messages to arrive on a network interface. Another occurs from "back-pressure" exerted by layer-to-layer flow control
from "downstream" modules.

34 In fact, the distinction between put and service subroutines was made to support flow control (Rit84]. Flow
control occurs between the two nearest queues in a Stream that contain a service procedure.

35 For example, unlike STREAM modules, STREAM heads and STREAM drivers cannot be "pushed" or "popped"
onto a Stream dynamically.

29

but only one control part). J\ilessages are passed upstream and downstream by reference to reduce
memory-to-memory copying.

A message is represented by a <message control block, data control block, variable length data
buffer> three-tuple. This three-tuple facilitates "logical" message duplication (that does not incur
memory-to-memory copying costs) by sharing a single <data buffer> among <message control block,
data control block> headers. The variable length data buffer has a default length of 64 bytes, though
it may be allocated to be any power of two, up to a configuration-defined maximum limit.

• Process Architecture: System V STREAMS supports a variant of the horizontal process
architecture. Conceptually, it provides a "process-per-module" architecture, in which one or more
"logical" processes are associated with each STREAM module's put and service subroutines.36

However, these subroutines run outside the context of any kernel or user process, and therefore,
bypass the standard operating system kernel process scheduling mechanism. There are several reasons
for this behavior. First, early versions of STREAMS did not support concurrent execution, since
the System V kernel was single-threaded. Second, dedicating a standard kernel process for each
STREAM module is highly consumptive of memory and CPU resources. For example, supporting a
large number of modules, each with their own process state, would require many additional kernel
stacks and process table slots, and would involve context switching overhead when moving messages
between modules [Rit84].

The horizontal, "process-per-module" process architecture is emulated by scheduling and execut­
ing the service subroutines associated with the read/write queues in a STREAM module. Service
subroutines interact in a coroutine manner. For example, when a queue's service subroutine is run,
it performs protocol processing operations on all the messages waiting in its queue (note that due
to multiplexor drivers, messages may have come from multiple upstream or downstream modules).
By the time a service routine finishes its processing, it will have passed its processed messages to
the appropriate STREAM components adjacent in the Stream. Any STREAM module that now has
new messages in its read queue will have its service subroutine executed by a STREAMS scheduling
mechanism. Note that service procedures are run only at certain times such as just before returning
from a system call and just before a process is put to sleep.

One effect of this process architecture design is that the STREAM modules do not exist in the
context of an OS process. Therefore, put and service subroutines cannot sleep if they must block
(e.g., due to flow control). If a subroutine detects that it must block, the currently executing put or
service subroutine must explicitly save its state information before completing its current processing.
In other words, the STREAMS mechanism has no provision for automatically retaining the state of
blocked put or service routines.

4.1.2 BSD UNIX

BSD UNIX provides an OSTSA framework that supports multiple protocol families. This framework
was designed originally to support the DARPA TCP /IP protocol family [LMKQ89]. Over time, other
protocol families (e.g., XNS, and OSI) have been incorporated into the framework [OTWS.5]. BSD
supports the development of distributed applications that are independent of the underlying OSTSA

36 Note that the OSF /1 UNIX implementation supports various granularity levels of STREAMS concurrency. From
finest- to coarsest-grain, these concurrency levels are: (1) queue-level (i.e., one light-weight process (LWP) for the
STREAM module read queue, one LWP for the STREAM module write queue), (2) queue-pair-level (i.e., one LWP
shared by a STREAM module queue pair), (3) module-level (i.e., one LWP shared across all instances of a STREAM
module), and (4) module-class-level (e.g., one LvVP shared across a particular class of STREAM modules).

30

Process Architecture (1) single-threaded, (2) vertical
Event Management (1) relative, (2) linked list, (3) function call
Virtual Memory Integration none

Message Buffering list-based
Mulitplexing/Demultiplexing (1) hybrid, (2) layered, (3) sequential-search, (4) single-item
Flow Control ND

Modularity (1) non-uniform, (2) high coupling
Flexibility and (1) multiple, (2) static, (3) static,
Extensibility (4) untyped, (5) kernel-space

Table 3: BSD UNIX Profile

protocols via a general-purpose OSNAPI called sockets.37 Table 3 illustrates the OSTSA profile for
BSD UNIX.

The concept of a communication domain is central to BSD's multiple protocol family design.
Domains specify a set of related protocols and an address family. Protocols implement the standard
domain socket types, e.g., SOCK__STREAM (for reliable byte-stream communication) and SOCKJ)GRAM

(for unreliable datagram communication). An address family defines an address format (e.g., the
address size in bytes, number of fields, and order of fields) and a set of subroutines that interpret
the address format (e.g., to determine which subnet an IP message is intended for). BSD supports
address families for the UNIX domain, Internet domain, XEROX NS domain, and the OSI domain.

There are three main layers in the BSD OSTSA design: the socket layer, protocol layer, and
network interface layer. Like System V STREAMS, well-defined interfaces exist between each layer,
although BSD generally places less emphasis on making the interfaces uniform.38 A socket performs
OSNAPI services that are similar to the System V STREAM head.39 The protocol layer coordinates
algorithms and data structures used to implement the protocol families that BSD supports. The
network interface layer provides a well-defined software interface to network controllers. The following
bullets describe the major BSD components in greater detail.

• The Socket Layer: A socket is a typed object that represents a bi-directional endpoint of
communication. It serves as a queueing point for data that is transmitted and received between user
applications (running as user processes) and the protocol layers (running in the kernel). A socket
descriptor is used to identity an open socket. This descriptor is a small integer that indexes into
a kernel data structure containing socket-rt> lated information (e.g., send and receive buffer queues,
the socket type, and the associated protocol la.ver control blocks). vVhen a socket is created, this
data structure is initialized based on the :-;JH'1·i!ied socket type (e.g., SOCK_$TREAM or SOCKJ)GRAM).

Socket descriptors share the same name spac•' as UNIX file descriptors. This allows "naive" UNIX
applications40 to communicate transparentl.v with different types of devices such as remote network
connections, files, terminals, printers, and tap<' drives.

37 Sockets augment the standard UNIX local IPC mechanisms: signals and pipes. Unlike pipes and signals, sockets
allow arbitrary data communication between unrelated processes on local and remote host machines.

38 Note that there is a difference between having ''well-defined" interfaces and having uniform interfaces. The former
simply means that data structures are accessed under the control of a subroutine, rather than accessed directly. The
latter refers to having the same interface at multiple layers in a protocol graph.

39 The primary difference between sockets and STREAM heads is that STREAM heads support up to 256 levels of
message priority via the getpmsg and putpmsg system calls.

40 Naive UNIX applications read from their stcindard input and write to their standard output.

31

• The Protocol Layer: BSD's protocol layer contains multiple protocol .sublayer.s per protocol
family. For instance, in the Internet protocol family, the TCP sublayer is connected over top of the
IP sublayer. Each protocol sublayer maintains its own session state information. This session infor­
mation is stored in control blocks, which are used to manage active end-to-end network connections.
Control blocks that are used in the Internet domain include the inpcb (which stores a connection's
host addresses and port number) and the tcpcb (which stores the TCP state machine variables such
as sequence numbers, retransmission timer values, and statistics for network management). Each
inpcb contains links to sibling inpcbs (which store session information for other active network
connections in the protocol layer), links to the socket data structure associated with the protocol
session, and other relevant information (e.g., routing- table entries or network interface addresses).
The session data structures that represent an active TCP connection consists of a <socket, inpcb,
tcpcb> three-tuple.

• The Network Interface Layer: Messages arriving from the network are handled by inter­
rupts rather than separate processes.41 There are two levels of interrupts: SPLNET and SPLIMP.
SPLNET has higher priority and is generated when a hardware device interrupts (e.g., signaling
that a message has arrived from a network controller). Hardware interrupts cannot be masked for
very long without causing other OS devices to timeout and fail. Therefore, a second, lower priority
software interrupt level named SP LIMP is used to invoke the higher-layer protocol processing. When
an SPLNET hardware interrupt occurs, the incoming message is placed in the appropriate network
interface protocol queue (e.g., the queue associated with IP processing). Next, an SPLIMP software
interrupt is posted, which informs the kernel that higher-layer protocols should be run when the
interrupt priority level falls below SPLIMP. When the SPLIMP interrupt handler is run, the message
is removed from the queue and processed to completion by higher-layer protocols. If a message is not
discarded (a message might be discarded due to a checksum error) by a protocol, it typically ends
up in a socket receive queue, waiting for a user process to retrieve it.

• Mbufs: BSD UNIX uses the mbuf data structure to manage messages as they flow between
protocol layers. An mbuf's representation and its associated operations are similar to a System V
STREAMS message. Mbuf management operations include subroutines for allocating and freeing
mbufs and chains of mbufs and for adding and deleting data. These subroutines generally try to
perform operations that minimize memory coping.

Mbufs are used for storing lists and chains of incoming messages and outgoing protocol segments,
as well as other dynamically allocated data structures like the socket data structure. There are two
primary types of mbufs: .small mbuf.s, which contain 128 bytes (112 bytes of which are used to hold
actual data), and cluster mbuf.s, which use 1 kbyte pages to minimize fragmentation and reduce
copying via reference counting.

• Process Architecture: BSD uses a single-threaded, vertical process architecture residing
entirely in the kernel. User processes enter the kernel by making a system call. Due to flow control,
multiple user processes (that are sending data to "lower" protocol layers residing in the kernel)
may simultaneously be blocked at the socket layer (and are therefore unable to continue processing
messages down to the network interface layer). However, as incoming messages are passed up to
"higher" protocol layers only one "process" is permitted to run. 42

HTwo reasons for using interrupts are (1) they avoid context switching overhead and (2) the BSD kernel is not
multi-threaded. ·

42 Note that when messages arrive from the network they are handled in the "bottom half" of the BSD kernel, which
operates outside the context of a standard UNIX user-level process.

32

Process Architecture (1) LWP, (2) vertical (process-per-msg)
Event Management (1) relative, (2) linked list, (3) function call
Virtual Memory Remapping complete

Message Buffering graph-based
Multiplexing/Demultiplexing (1) synchronous, (2) layered, (3) hashing, (4) single-item
Flow Control per-process

Modularity (1) uniform, (2) low coupling
Flexibility and (1) multiple, (2) dynamic, (3) arbitrary,
Extensibility (4) untyped, (5) kernel-space

Table 4: x-kernel Profile

4.1.3 x-kernel

The x-kernel is a modular, extensible OSTSA development environment designed to support OSPA
and OSSA implementation and experimentation [HP91]. It was also designed to demonstrate that
layering is not inherently detrimental to network protocol performance [OP90a]. The x-kernel sup­
ports protocol graphs (see Figure 3) that implement a wide range of standard and experimental
protocol families, including TCP /IP, Sun RPC, Sprite RCP, VMTP, NFS, and Psync [PBS89]. Re­
lationships between protocols are described via the protocol graph. Unlike BSD UNIX, whose OSPA
is characterized by a static, relatively monolithic protocol graph, the x-kernel supports dynamic,
highly-layered protocol graphs. Table 4 illustrates the OSTSA profile for the x-kernel.

The x-kernel's OSPA provides highly uniform interfaces to its services, which manage three fun­
damental software communication abstractions that commonly occur in network protocol graphs
[HP91]: protocol objects, session objects, and message objects. These abstractions are supported by
several reusable software components, including a, message manager (an ADT used to encapsulate
messages that are exchanged between session and protocol objects), a map manager (used for demul­
tiplexing), and an event manager (used for timer-driven activities like TCP's adaptive retransmission
algorithm). In addition, the x-kernel provides a library containing micro-protocols, which are highly
modular software components that implement services common to many network protocols such as
sliding window adaptive retransmission schemes, request/response RPC mechanisms, and "blast"
algorithms with selective retransmission [OP91]. The following bullets describe the x-kernel's major
components in greater detail.

• Protocol Objects: Protocol objects are software abstractions used to implement network
protocols in the x-kernel. The x-kernel implements a protocol graph by combining one or more protocol
objects in well-defined ways. A protocol object contains a standard set of subroutines that provide
uniform interfaces for two major services: first, protocol objects create and destroy session objects
(described in the next bullet below); second, protocol objects demultiplex message objects onto the
appropriate higher-layer session objects (the ,r-kernel uses the map manager abstraction to implement
efficient demultiplexing). The map manager associates external identifiers (e.g., TCP port numbers)
with internal data structures (e.g., session control blocks). It is implemented by a chained-hashing
scheme with a single-item cache.

• Session Objects: A session object maintains state information associated with an end-point
of a network connection. For example, a session object may store the current state of an active TCP
finite state machine. Multiple session objects may be associated with a given protocol object (the

33

Process Architecture (1) LWP, (2) hybrid (process-per-buffer)
Event Management ND
Virtual Memory Integration none

Message Buffering list-based
·-

M ulitplexing/Demultiplexing (1) ND, (2) layered, (:3) ND, (4) ND
Flow Control ND

Modularity (1) uniform, (2) low coupling
Flexibility and (1) multiple, (2) dynamic, (3) arbitrary,
Extensibility (4) typed, (5) user-space

Table 5: Conduit Framework Profile

protocol object dynamically creates and disposes the session objects). Operations on session objects
primarily involve "layer-to-layer" activities such as exchanging messages between higher-level and
lower-level sessions. Note that the x-kernel OSPA framework only specifies layer-to-layer operations
on session objects. In particular, it does not provide any standard support for peer-to-peer OSSA
activities, such as connection management, error detection, etc.43

• Message Objects: Message objects are instances of the message manager ADT. Messages
flow "upwards" or "downwards" through graphs of session and protocol objects. In order to decrease
memory-to-memory copying and to efficiently implement message operations, message objects are
represented with a graph-based data structure. This graph-based scheme uses "lazy-evaluation" that
avoids unnecessary data copying [HMPT89]. It also stores message headers separately from the
message data to reduce the cost of protocol encapsulation (e.g., prep.ending or stripping headers).

• Process Architecture: The x-kernel employs a "process-per-message" vertical process ar­
chitecture that resides in the OS kernel. A pool of light-weight processes is cached in the kernel.
vVhen a message arrives at a network interface, a separate light-weight process is dispatched from the
pool to shepard it upwards through session objects associated with protocol layers in the protocol
graph. In general, only one context switch is required to shepard a message throughout the protocol
graph, regardless of the number of intervening protocol layers. The x-kernel also supports another
optimization that reduces context switching overhead by allowing user processes to transform into
kernel process during message output (via system calls) and kernel processes to transform into user
processes during message input (via upcalls) [Cla85].

4.1.4 The Choices "Conduit framework"

The Conduit framework provides the OSPA. OSSA, and OSNAPI levels for the Choices operating
system [CRJ87]. Choices is being developed to study how suitable object-oriented techniques are for
the design and implementation of OS kernel and networking facilities. 44 For example, the design of
ZOOT (the Choices TCP /IP implementation) uses object-oriented language constructs and design
methods (e.g., inheritance, dynamic binding, and delegation [ZJ91]) to implement the TCP state
machine in a highly modular fashion. Together, Choices and the Conduit framework provide a
general-purpose OSTSA. Table 5 illustrates the OSTSA profile for the Choices Conduit.

43 The Avoca project builds upon the basic x-kernel facilities to provide these peer-to-peer services (B091].
44 Choices and the Conduit are written using C++. All the other surveyed systems are written in C.

34

There are three major components in the Conduit framework: Conduits4s, Conduit ivfessages,
and Conduit Addresses. The Conduit is a bi-directional communication abstraction, similar to a
System V STREAM module. It exports operations that allow other Conduits to link together with it
and to exchange messages with adjacently linked Conduits. Conduit ?vfessages are the typed objects
exchanged between Conduits. Conduit Addresses are utilized by Conduits to determine where to
send a Conduit Message. All three components are described briefly in the following bullets.

• Conduits: A Conduit provides the basis for implementing an end-to-end network protocol
such as TCP or TP4. It is represented as a C++ base class providing two sets of fundamental
operations that may be redefined by subsequent subclasses. The first set of operations implement
network protocol graphs by connecting and disconnecting Conduits. The second set of operations
enable messages to be inserted into the "top" and "bottom" of a Conduit. A Conduit has two ends
for processing data and control messages: the top end corresponds to messages flowing down from
the application; the bottom end corresponds to messages flowing up from the network interface.

• Conduit Subclasses: The Conduit framework uses C++'s inheritance and dynamic binding
mechanisms to represent the commonality between the Conduit base class and its various subclasses.
These subclasses are specializations of abstract network protocol classes such as Virtual Circuits and
Datagrams. Therefore, the Conduit framework defines two subclasses that provide additional services
and interfaces: VirtuaLCircui t_Condui t and Datagram_Condui t. Both subclasses export the con­
nect, disconnect, and message insertion services inherited from the Conduit base class. However, they
also extend their class interface by supplying operations that implement their additional services. For
example, VirtuaLCircuit_Conduits provide an interface for managing peer-to-peer "sliding win­
dow" flow control. They also specify other properities associated with virtual circuit protocols such
as reliable, in-order, unduplicated data delivery. These two subclasses are themselves used as base
classes for further subclass specialization, resulting in TCP _Conduits and Ethernet_Condui ts.

• Conduit Messages: All messages that flow between Conduits have a particular message
type. The message type indicates the contents of a message (e.g., its header and data format), and
specifies the operations it may perform. Messages are represented by a C++ base class that provides
a foundation for subsequent inherited subclasses. 'Different message subclasses are associated with
different Conduit subclasses (that in turn represent different network protocols). For example, there
are IP ...Message and TCP ...Message subclasses that correspond to the IP Conduits and TCP Conduits,
respectively. Conduit messages subclasses may also encapsulate other messages. For instance, an IP
message contains a TCP message in its data portion.

• Conduit Addresses: The Conduit framework uses addresses to determine where to send
Conduit messages. The two main types of addresses are explicit and implicit. Explicit addresses
are used for entities like Internet IP addresses or port numbers, which have a "well-known" format.
Implicit addresses are used by connection-oriented protocols to identify session control blocks that are
related to active network connections. For example, a TCP connection descriptor is identified by its
"association," which consists of a <local port, local address, remote port, remote address> four-tuple.

• Process Architecture: The relationship of OSKA processes to Conduits and Conduit mes­
sages is not uniformly specified in the Conduit framework. Subsequent versions may use "walker­
processes," which are similar to the x-kernel "process-per-message" mechanism. Each walker-process
shepards one message ltP or down the protocol graph. Depending on flow control, a user process may
be able to walk outgoing messages most of the way down the protocol graph. In this scheme, there are

45 In the discussion below, the "Conduit framework" refers to the overall OSTSA, whereas "Conduit" corresponds to
an abstract data type (ADT) used to construct and coordinate various network protocols.

35

Process Architecture (1) HWP, (2) horizontal (process(es)-per-protocol)
Event Management (1) relative, (2) linked list, (3) message passing
Virtual Memory Remapping none

Message Buffering list-based
Multiplexing/Demultiplexing (1) asynchronous, (2) layered, (3) sequential-search, (4) none
Flow Control per-queue

Modularity (1) uniform, (2) low coupling
Flexibility and (1) multiple, (2) static, (3) static,
Extensibility (4) untyped, (5) kernel-space

Table 6: Xinu Profile

as many processes as there are flow control buffers in the chain of events between the application and
network interface layer. In addition, one extra process is also required to transfer messages between
Conduits that do not contain any buffers, and hence may not block due to flow control.

4.1.5 Xinu

The Xinu network computing software was developed as the OSPA for the Xinu OS [Com9lb]. It is
intended primarily as a pedagogical tool, emphasizing clarity of design and implementation over high­
performance. Xinu currently supports the entire TCP /IP protocol family, including ARP, ICMP, IP,
UDP, TCP, and SNMP [Com9la]. By default, Xinu is configured to support gateway operations,
implementing multiple device drivers, Internet routing and network management. Table 6 illustrates
the OSTSA profile for the Xinu operating system.

To enhance system clarity and to simplify the OSPA design, the Xinu TCP /IP process architec­
ture uses one or more separate heavy-weight processes (HvVP) to implement each TCP /IP protocol
component that requires timer-driven processing. The main components in the Xinu system are
ports, queues, messages, and processes (e.g., for TCP input, output, and timer protocols, and the IP
protocol). The following bullets describe these components in more detail.

• Ports and Message-Passing: Each major protocol process in Xinu's TCP /IP design exe­
cutes in one or more separate HWP address spaces. Therefore, some form of synchronous or asyn­
chronous mechanisms are provided for interprocess communication (IPC). The two main IPC mech­
anisms in Xinu are asynchronous ports and synrhronous message-passing.

A Xinu port is a fixed-length rendezvous JH>i11t. They are used in several places in the Xinu archi­
tecture (e.g., to queue incoming segments !wt 11Pen the IP process and the TCP process). Although
ports exist independently of any process, p 1' >«Psses use them to synchronize and communicate by
en-queueing and de-queueing messages. Porh 11se semaphores to guarantee mutual exclusion. If the
port is full, send operations will block a produn 1· process (e.g., a user process sending data to a TCP
process). Likewise, if the port is empty, receive operations will block a consumer process (e.g., a TCP
input process that is awaiting the arrival of IP messages to process).

Xinu's message-passing scheme combines two mechanisms: (1) a synchronous notification mech­
anism that uses procedure calls to send a message directly from one process to another and (2) a
separate queue that buffers variable-sized messages. :Message-passing is also used for several purposes
(e.g., to deliver incoming messages from the network interface to the IP process).

36

There are two main distinction between ports and message-passing. First, ports provide a general­
purpose queueing point for variable-sized messages, but message-passing only transmits a small 4-byte
notification to a process (which might indicate that a separate queue now contains new messages).
Second, ports allow asynchronous IPC, since a sending process can enqueue the message into the port
and continue executing it protocol activities (as long as the port is not completely full). Message­
passing, on the other hand, are synchronous, since processes performing a message-passing send or
receive block until the other process completes the rendezvous.

•Protocol Decomposition and Process Architecture: Xinu's process architecture is tightly
coupled to its protocol decomposition. Xinu employs multiple HWPs to implement the TCP /IP pro­
tocol family. The processes are scheduled by the Xinu OS scheduler. As with System V STREAMS
modules, processes are scheduled to run when messages become available on ports and queues shared
between two ffWPs. The main processes are the IP process, the TCP input and output processes,
and the TCP timer process, which are described in the following paragraphs.

The IP process reads and writes to multiple input and output queues (one for each network device
interface). 46 It also has an input and output port used to store incoming and outgoing TCP segments.
These queues and ports allow the various protocol processes to run concurrently.

The TCP input and output processes share access to TCP Transmission Control Blocks (TCBs).
There is one TCB per active connection. TCBs serve the same purpose as the BSD inpcb and tcpcb
data structures described in Section 4.1.2. the TCP input and output operations are performed by
two separate processes that run concurrently. The TCP output process handles segmentation and
data transmission. The TCP input process handles reassembly and demultiplexing.

The TCP timer process handles asynchronous event management for all the TCP /IP protocols.
For example, it schedules retransmission timeouts by inserting an "event" (i.e., the delay time, a
message to be sent, and a port to send it to) into a delta-list. If the delay time expires before the
event is canceled, the timer process sends the message to the specified port.

In addition to these TCP /IP processes, each user-level application is also associated with its own
HvVP. In the Xinu architecture, application processes are distinct from the kernel processes (unlike
the x-kernel, where user-level processes may migrate into kernel space and vice versa). This approach
leads to higher synchronization overhead, however, since multiple context switches are required to
move messages from kernel-space to user-space.

• Message Management: Xinu's message management is similar to BSD UNIX's mbufs. It
uses a hybrid scheme that support both large datagrams and linked lists of small buffers. Xinu pre­
allocates many small buffers that hold a single message and several larger buffers for large messages.
Physical data copies are generally only performed when reassembling large messages at the IP layer.

4.2 System Comparisons

This section compares and contrasts the five surveyed OSTSAs by the taxonomy dimensions and
alternatives presented in Table 1.

4.2.1 Comparison of OS Kernel Architecture (OSKA) Dimensions

In this section we compare the five operating systems according to the OSKA dimensions described
in Section 3 1 .

46 Since ICMP and UDP are relatively simple protocols, they run in the context of the IP process.

37

The Process Architecture Dimension: The surveyed OSTSAs cover a range of process archi­
tectures, although none of the surveyed OSTSAs provide comprehensive multi-processor support. 47

BSD UNIX and System V STREAMS have a single-threaded OSKA. Concurrent programming ab­
stractions a,re provided by light-weight process facilities in the Conduit framework and the x-kernel,
and by heavy-weight processes in Xinu.

System V STREAMS and Xinu use variants of the horizontal process architecture. System V
STREAMS uses a "virtual process-per-module" approach.48 Xinu's implementation uses a "heavy­
weight process(es)-per-protocol" scheme, where each TCP /IP protocol component runs in one or
more heavy-weight processes.

The x-kernel and BSD UNIX use variants of the vertical process architecture. The x-kernel
uses a pure "process-per-message" approach that supports highly-layered protocol graphs without
incurring excessive context switching and IPC overhead. BSD UNIX uses a vertical approach that
behaves differently depending on whether messages are flowing "up" or "down" through a protocol
graph. BSD allows multiple processes into the kernel for outgoing messages, but only one process for
incoming messages.

The Conduit framework uses a hybrid "process-per-buffer" approach, which is a cross between
"process-per-message" and "process-per-module." Each Conduit with a flow control buffer is associ­
ated with a separate light-weight process.

The Event Management Dimension: BSD UNIX and x-kernel store pointers to subroutines in
callout lists. This allow arbitrary subroutines to be called when a timer expires. System V maintains
a heap-based callout table, rather than a sorted list or array. Xinu stores control messages on a
delta-list, and passes a message to the appropriate pre-registered port if the timer associated with
event expires.

The Virtual Memory Remapping Dimension: Recent versions of x-kernel provide virtual
memory remapping [OAHP90]. Xinu, the Conduit framework, System V STREAMS and BSD UNIX,
on the other hand, do not provide this support.

4.2.2 Comparison of OS Protocol Architecture (OSPA) Dimensions

In this section we compare the five operating systems according to the OSPA dimensions described
in Section 3.2.

The x-kernel generally specifies the service interfaces for all its OSPA components more compre­
hensively than the other surveyed OSTSAs. For example, it provides uniform interfaces for operations
that manage protocol, session, and message objects. In addition, it also specifies uniform interfaces
and provides implementations for event management, and multiplexing and demultiplexing. System
V STREAMS, on the other hand, only specifies various types of STREAM module interfaces and
components. For example, every STREAM module contains a read/write queue pair and also uses
certain standard subroutines to regulate layer- to-layer flow. The Conduit framework does not stip­
ulate a Conduit's internal structure at all. In particular, sessions, multiplexing, and demultiplexing
are not systematically specified by the Conduit framework.

The Message Management Dimension: System V STREAMS messages and BSD mbufs use a
linear-list-based approach. The x-kernel, on the other hand, uses a graph-based approach. Since the x­
kernel is designed to support highly-layered protocol graphs, it requires the more complex graph-based

47 Although some commercial versions of STREAMS (e.g., OSF /1) provide multi-threaded, light-weight process
implementations.

48 As described in Section 4.1.1, the standard System V STREAMS approach is "virtual" because it does not allocate
a "real" OS process per module.

38

buffering scheme to efficiently handle the additional encapsulation and minimize memory-to-memory
copying between layers.

The Multiplexing and Demultiplexing Dimension: The five OSTSAs possess a wide range of
multiplexing and demultiplexing strategies. The x-kernel provides the most comprehensive support
for these operations. It provides an efficient hashing-based mechanism, with a single-item cached
that is optimized for different address sizes in a highly-layered protocol graph. The other systems
provide less systematic mechanisms.

For example, the Conduit framework and System V STREAMS leave the design and implemen­
tation of multiplexing and demultiplexing to implementors of its Conduit subclasses. However, for
outgoing messages, the Conduit framework involves an extra multiplexing operation compared to the
x-kernel scheme. In x-kernel, outgoing messages simply make a subroutine call to transfer messages
flowing downward from session object to session object. A Conduit, on the other hand, searches for
the session object connection descriptor associated with the lower-level conduit. Xinu moves messages
between protocol components using either ports or message-passing.

BSD UNIX's multiplexing and demultiplexing mechanisms differ according to protocol sublayer
and protocol family. For instance, the IP layer uses the 8-bit IP message type-of-service field to index
into an array containing 256 entries that correspond to higher-layer protocol control structures.
On the other hand, BSD's TCP implementation uses sequential-search with a one-item cache to
demultiplex incoming messages to the appropriate connection session. As described in Section 3.2.2,
this implementation is inefficient for applications that do not form message-trains [MD91].

The Flow Control Dimension: Most OSTSAs do not provide uniform flow control mechanisms.
System V STREAMS is an exception. Flow control between modules is voluntary, though each
STREAM module contains high and low "watermarks" to manage flow control between its adjacent
neighbors. Downstream flow control operates from the "bottom up." If all STREAM modules on
a Stream cooperate, it is possible to apply "back-pressure" all the way up a stack of STREAM
modules to the user process. For example, if the network is too congested to accept new messages
(or if messages are being sent by a process faster than they can be transmitted), STREAM driver
queues fill up first. If messages continue flowing from upstream modules, the first module above the
driver that has a service subroutine will fill up next. This process continues all the way up to the
STREAM head. "Back-enabling" (i.e., causing previously block service subroutines to execute) is
used to unblock flow controlled queues when congestion subsides.

In BSD UNIX, flow control occurs at several places throughout the OSPA. At the socket level, flow
control is voluntary, using the "high and low watermark fields" stored in the socket data structure. If
the act of performing a send operation would exceed a socket's high water mark, the BSD kernel puts
the sending process to sleep. Unlike System V, BSD UNIX has no standard mechanism for apply
back-pressure between the OSPA protocol su blayers; it simply discards messages when its buffers
become overwhelmed. At the network interface layer, queues are used to buffer messages between
the network controllers and the lowest-level protocol (e.g., IP). The queues have a maximum length
that serves as a simple form of flow control. For example, subsequent incoming messages are dropped
if these queues become full.

In Xinu, flow control is provided by ports that use semaphores to synchronize senders and receivers
(e.g., writing to a full port blocks a process, as does reading from an empty port). For operations
that cannot block (such as network interface subroutines that run at hardware interrupt levels) a
subroutine tests whether a send or receive will block. This allows messages to be discarded if they
cannot be handled promptly.

The x-kernel and the Conduit framework provide less-uniform flow control support. The x-kernel
supplies very coarse-grained flow control by discarding a message if there are no light-weight processes

39

available to shepard it up the protocol graph. The Conduit framework does not provide a standard
mechanism to manage flow control between modules in a given stack of Conduits. Each Conduit
hands a message up or down to its neighbor. If the neighbor is unable to accept the message, the
operation either blocks or returns an error code (in which case the inserter may either dump the
message or save it for later). This approach allows particular Conduit to decide whether it is a
"message-dumping" entity or a "patiently-blocking" entity.

4.2.3 Comparison of Software Quality Dimensions

The OSPA for System V, the x-kernel, and Choices operating systems were are all explicitly developed
to simplify and improve network protocol software development and maintenance. In particular, the
Conduit framework uses object-oriented techniques like inheritance, dynamic binding, and delegation
to increase protocol component reuse. In the following, we discuss dimensions described in Section 3.3.

The Modularity Dimension: The OSPAs for System V STREAMS, the x-kernel, and the Con­
duit framework are all highly modular. The STREAMS design emphasizes uniform interfaces between
processing components in a Stream. For example, the same put and service interface is used to
pass messages between a STREAM head, STREAM modules, and a STREAM driver.

The x-kernel emphasizes a single uniform protocol interface for its protocol, session, and message
objects. In particular, its protocol objects dictate a "connection-setup" paradigm for all the supported
network protocols (even connectionless protocols like UDP and IP) to achieve uniformity. Note that
enforcing this degree of uniformity penalizes connectionless protocols to some extent, since sending
a connectionless datagram in the x-kernel requires explicitly opening and closing a session in each
protocol graph layer.

The Conduit framework avoids this "single uniform interface" penalty by providing several uni­
form interfaces, which are related by inheritance to the Conduit base class. Each interface differs in
accordance to the abstract "class" of protocol involved. For instance, VirtuaLCircui t_ Conduits
have a different interface from the Datagram_Condui ts, although they are related to the common
Conduit base class.

Xinu uses uniform interfaces to reduce design and implementation complexity. For example, the
local host interface and network interfaces use the same IP queueing structures. However, the Xinu
system's modularization is tightly coupled to the TCP /IP architecture. For example, the subrou­
tines implementing TCP correspond to states in the TCP finite state machine (e.g., tcpestablished,
tcpclosewai t, tcplisten, etc.), making it difficult to directly reuse these interfaces for other pro­
tocol suites.

BSD UNIX does not emphasize uniform interfaces throughout the OSTSA. Its OSPA has uniform
interfaces only for certain subroutines that form the boundary between the socket layer and the
protocol layer. However, the system is not designed to facilitate reuse between communication domains
(e.g., each domain has incompatible address family formats [LMKQ89]). Although protocol sublayers
have well-defined interfaces, these interfaces are not uniform between the layers. For example, a
different interface is used for passing messages between the TCP and IP protocols than is used to
pass messages between the IP protocol and network interfaces.

The Flexibility and Extensibility Dimension: All the surveyed OSPAs support multiple pro­
tocol families, with the exception of Xinu (which only supports the TCP /IP protocol family). In ad­
dition, System V STREAMS, the x-kernel, and the Conduit framework all support dynamic protocol
graph reconfigurations. In System V, user processes manipulate Stream configurations dynamically
by "pushing" and "popping" STREAM modules [UNI90]. STREAM modules can only be composed
in a "last-in, first-out" (LIFO) order, however. The Conduit framework and the x-kernel, on the

40

other hand, do not impose this restriction. They both allow arbitrary OSPA configurations, which
are supported by automated tools. The x-kernel provides a graphical user interface for specifying
OSPA component ordering. It also allows higher-layer protocols to dynamically open lower-layer
session objects. This allows a form of "late binding," since the particular characteristics of session
object returned at run-time can vary [HP91]. The Conduit framework provides a name server that
manages registered Conduits and enables Conduits to be attached together dynamically to form new
communication abstractions [Zwe91].

Neither BSD UNIX nor Xinu provide any means to dynamically reconfigure the protocol graph,
so protocol ordering relationships are completely established at system boot-time. It is not possible
to reconfigure the OSPA while the system is running.

The Conduit framework is the only OSTSA that supports typed OSPA composition. Typed com­
position ensures that Conduits are joined dynamically in a meaningful manner. It uses a handshake
scheme called "double-dispatch" when linking two Conduit together. Double-dispatching is a mecha­
nism that allows two Conduits to determine each other's type. It is used to check that both Conduits
belong to the same "family" of Conduit subclasses. On the other hand, neither the x-kernel nor
System V STREAMS provide type-checked component composition.

Finally, with the exception of the Conduit framework, all OSPAs are implemented in the kernel,
in order to improve performance. The Conduit framework runs in user-space, to improve its flexibility
and extensibility by end-users.

5 Summary

Distributed application performance is influenced by multiple factors that interact in complicated
ways. These factors involve the communication infrastructure as well as the computing infrastructure.
Due to improvements in the communication infrastructure, the computing infrastructure is now the
bottleneck for distributed applications running on high-speed networks. In particular, end-to-end
user application performance depends heavily on how efficiently the computing infrastructure moves
messages through protocol graphs.

This paper describes a virtual machine model (known as the OS Transport System Architecture
(OSTSA)) that illustrates the levels of abstraction and services in the computing infrastructure. A
taxonomy of the OSTSA levels is created and used to compare and contrast different alternatives that
are found in five existing commercial and experimental operating systems. An important observation
from these comparisons are that most existing operating systems lack explicit, efficient support for
real-time operations and parallel protocol processing.

Our research group at University of Ca Ii fo rnia, Irvine is currently using this taxonomy to organize
our research on OSTSA designs that an' h()t h highly modularity and efficient [BSS92]. We are
developing an environment for analyzing a11d 1'xperimenting with various strategies for incorporating
network protocols over top of high-speed cu111111 nnication links. In order to support the development
of protocol designs that precisely meet mult i111Pdia application requirements and underlying network
characteristics, we are developing a systern called ADAPTIVE, which stands for "A Dynamically
Assembled Protocol Transformation, Integration, and Validation Environment." Using ADAPTIVE,
we are attempting to match diverse multimedia applications to a wide range of network characteristics.

Based upon our survey of the literature and existing systems, we view the following as important
open research issues:

• Which OSTSA levels most impact on distributed system performance? Furthermore, how
should OSTSAs be structured in order to increase their flexibility, extensibility, and perfor-

41

mance? For example, which choices from among the taxonomy dimensions and alternatives
most improve overall communication performance?

• Which process architecture and parallelism models result in the highest performance, and under
what conditions (e.g., application requirements and network characteristics) are certain models
preferred?

• Which OSTSA profiles are best suited for multimedia applications running in high-speed net­
work environments? Moreover, what are the appropriate design strategies and implementa­
tion techniques required to provide integrated support for multimedia applications that run on
general-purpose workstation operating systems?

42

References

[ABG+86] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach: A
New Kernel Foundation for UNIX Development. In Proceedings of the Summer 1986
USENIX Technical Conference and Exhibition, June 1986.

[AH91] David Anderson and George Homsy. A Continuous Media I/O Server and Its Synchro­
nization Mechanism. IEEE Computer, pages 51-57, October 1991.

[Atk88] M. Stella Atkins. Experiments in SR with Different Upcall Program Structures. ACiVI
Transactions on Computer Systems, 6(4):365-392, November 1988.

[BA90] M. Ben-Ari. Principles of Concurrent and Distributed Programming. Prentice Hall
International Series in Computer Science, 1990.

[Bac86] Maurice J. Bach. The Design of the UNIX Operating System. Prentice Hall, Englewood
Cliffs, NJ, 1986.

[BL88] Ronald E. Barkley and T. Paul Lee. A Heap-Based Callout Implementation to Meet
Real-Time Needs. In Usenix 1988 Summer Conference, pages 213-222, June 1988.

[Bla91] U. Black. OSI: A Model for Computer Communications Standards. Prentice Hall,
Englewood Cliffs, New .Jersey, 1991.

[B091] Don Batory and Sean W. O'Malley. The Design and Implementation of Hierarchical
Software Systems Using Reusable Components. Technical Report TR 91-22, Depart­
ment of Computer Sciences, University of Texas at Austin, Austin, Texas., June 1991.

[Bro88] Laurence M. Brown. Networking Architecture and Protocol. In UNIX System Software
Readings, pages 81-107. AT&T Unix Pacific Co. Ltd, 1988.

[BSS92] Donald F. Box, Douglas C. Schmidt, and Tatsuya Suda. Alternative Approaches to
ATM/Internet Interoperation. In IEEE Workshop on the Architecture and Implemen­
tation of High Performance Communication Subsystems, pages 1-5. IEEE, 1992.

[CG91] David R. Cheriton and Hendrik A. Goosen. Paradigm: A highly scalable shared-memory
multicomputer architecture. IEEE Computer, 24(2):33-46, February 1991.

[Che86] David R. Cheriton. VMTP: A Transport Protocol for the Next Generation of Com­
munication Systems. In SIGC'Oi'vli'vl Symposium on Communications Architectures and
Protocols, pages 406-415, Stowe. VT, August 1986. ACM.

[Che87] David R. Cheriton. UIO: A lT niform I/O System Interface for Distributed Systems.
AC1vl Transactions on Computer Systems, 5(1):12-46, February 1987.

[Che88] David R. Cheriton. The V Distributed System. Comm1mications of the AC1Vl, 31(3),
March 1988.

[Che89] Greg Chesson. XTP /PE Design Considerations. In Proceedings of the 1st International
Workshop on High-Speed Networks, May 1989.

[CJRS89] · David D. Clark, Van Jacobson, John Romkey, and Howard Salwen. An Analysis of
TCP Processing Overhead. IEEE Communications ivlagazine, 27(6):23-29, June 1989.

43

[Cla82]

[Cla85]

[Com91a]

[Com91b]

[CRJ87]

[CT90]

David D. Clark. Modularity and Efficiency in Protocol Implementation. Network In­
formation Center RFC 817, pages 1 -26, July 1982.

David D. Clark. The Structuring of Systems Using Upcalls. In Proceedings of the Tenth
Symposium on Operating Systems Principles, Shark Is., WA, 1985.

Douglas E. Comer. Internetworking with TCP /IP Vol I: Principles Protocols, and
Architecture, 2nd edition. Prentice Hall, Englewood Cliffs, NJ, 1991.

Douglas E. Comer. Internetworking with TCP /IP Vol II: Design, Implementation, and
Internals. Prentice Hall, Englewood Cliffs, NJ, 1991.

Roy Campbell, Vincent Russo, and Gary Johnson. The Design of a Multiprocessor
Operating System. In USENIX C++ Conference Proceedings, pages 109-126. USENIX
Association, November 1987.

David D. Clark and David L. Tennenhouse. Architectural Considerations for a New
Generation of Protocols. In SIGCOMJ\!J Symposium on Communications Architectures
and Protocols, pages 200-208, Philadelphia, PA, September 1990. ACM.

[CWWS92] Jon Crowcroft, Ian Wakeman, Zheng Wang, and Dejan Sirovica. Is Layering Harmful?
IEEE Network Magazine, January 1992.

[DDK+9o] Willibald A. Doeringer, Doug Dykeman, Matthias Kaiserswerth, Bernd Werner Meister,
Harry Rudin, and Robin Williamson. A Survey of Light-Weight Transport Protocols
for High-Speed Networks. IEEE Transactions on Communication, 38(11):2025-2039,
November 1990.

[Fel90] David C. Feldmeier. Multiplexing Issues in Communications System Design. In SIG­
C01\!J11;J Symposium on Communications Architectures and Protocols, pages 209-219,
Philadelphia, PA, September 1990. ACM.

[GA91] Ramesh Govindan and David P. Anderson. Scheduling and IPC Mechanisms for Con­
tirrnous Media. In Proceedings of the Thirteenth ACM Symposium on Operating Systems
Principles, pages 68-80, October 1991.

[GDFR90] David Golub, Randall Dean, Alessandro Farin, and Richard Rashid. Unix as an appli­
cation program. In U.seni:c 1.9.90 Summer Conference, pages 87-95, June 1990.

[GKWW89] D. Giarrizzo, M. Kaiserswerth. T Wield, and R. Williamson. High-Speed Parallel Pro­
tocol Implementations. In Proc£rdings of the 1st International Workshop on High-Speed
Networks, pages 165-180, May I 0!·-i9.

[GL89] Karen D. Gordon and Cathy J. Linn. Strategic Defense System Distributed Operating
System R&D Review and Recommendations. Technical Report IDA Paper P-2142,
Institute for Defense Analyses, April 1989.

[Gos91] A. Goscinski. Distributed Operating Systems: the Logical Design. Addison-Wesley,
Reading, Mass, 1991.

[Gre91] Paul E. Green. The Future of Fiber-Optic Computer Networks. IEEE Computer, pages
78-87, September 1991.

44

[Haa91] Zygmunt Haas. A Protocol Structure for High-Speed Communication Over Broadband
ISDN. IEEE Network Alagazine, pages 64-70, January 1991.

[HB85] D. H. Hutchens and V. R. Basili. System structure analysis: Clustering with data
bindings. IEEE Transaction.son Software Engineering, SE-11(8):749-757, 1985.

[HD89] Christian Huitema and Assem Doghri. A High Speed Approach for the OSI Presen­
tation Protocol. In H. Rudin and Robin Williamson, editors, Protocols for High Speed
Networks. IFIP, North-Holland, 1989.

[HEHK92] Bernd Hofmann, Wolfgang Effelsberg, Thomas Held, and Hartmut Konig. On the
Parallel Implementation of OSI Protocols. In Proceedings of the IEEE Workshop on
the Architecture and Implementation of High Performance Communication Subsystems,
February 1992.

[Hen80] Kathryn L. Heninger. Specifying Software Requirements for Complex Systems: New
Techniques and their Application. IEEE Transactions on Software Engineering, SE-
6(1):2-13, January 1980.

[HK81a] S. Henry and D. Kafura. Software quality metrics based on interconnectivity . .Journal
of Systems and Software, 2(2):121-131, 1981.

[HK81b] S. Henry and D. Kafura. Software structure metrics based on information flow. IEEE
Transactions on Software Engineerings, 1981.

[HMPT89] Norman C. Hutchinson, Shivakant Mishra, Larry L. Peterson, and Vicraj T. Thomas.
Tools for Implementing Network Protocols. Software Practice and Experience,
19(9):895-916, September 1989.

[Hol91] Gerald J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
Englewood Cliffs, NJ, 1991.

[HP91] Norman C. Hutchinson and Larry L. Peterson. The x-kernel: An Architecture for Imple­
menting Network Protocols. IEEE Transactions on Software Engineering, 17(1):64-76,
January 1991.

[JSB90] Jiraj Jain, Mischa Schwartz, and Theodore Bashkow. Transport Protocol Processing
at GBPS Rates. In SIGC011Jivl Symposium on Communications Architectures and
Protocols, pages 188-199, Philadelphia, PA, September 1990. ACM.

[KC88] Hemant Kanakia and David R. Cheriton. The VMP Network Adapter Board (NAB):
High-Performance Network Communication for Multiprocessors. In SIGCOMM Sym­
posium on Communications Architectures and Protocols, pages 175-187, Stanford, CA,
August 1988. ACM.

[KvRvST91] M. F. Kaashoek, Robbert van Renesse, Hans van Staveren, and A. S. Tanenbaum.
FLIP: an Internetwork Protocol for Supporting Distributed Systems. Technical report,
Department of Mathematics and Computer Science, Vrije Universiteit, July 1991.

[LMKQ89] S. J. Leffler, M.K. McKusick, M.J. Karels, and J.S. Quarterman. The Design and
Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley, 1989.

45

[McG88]

[MD91]

[Mey89]

[MK91]

[MRA87]

[MS92]

[Mul90]

[Mye78]

[NRS90]

[OAHP90]

[OP90a]

[OP90b]

[OP91]

[OTW85]

[Par72]

[Par79]

[Par90]

Gilbert J. McGrath. Streams Technology. In UNIX System Software Readings, pages
c!9-79. AT&T Unix Pacific Co. Ltd, 1988.

Paul E. McKenney and Ken F. Dove. Effieient Demultiplexing of Incoming TCP Pack­
ets. Technical Report SQN TR92-01, Sequent Computer Systems, Inc., December 1991.

Bertrand Meyer. Object Oriented Software Construction. Prentice Hall, Englewood
Cliffs, NJ, 1989.

Maria D. Maggio and David W. Krumme. A Flexible System Call Interface for Inter­
process Communication in a Distributed Memory Multicomputer. Operating Systems
Review, 25(2):4-21, April 1991.

Jeffrey C. Mogul, Richard F. Rashid, and Michal J. Accetta. The Packet Filter: an
Efficient Mechanism for User-level Network Code. In The Proceedings of the 11th Sym­
posium on Operating System Principles, November 1987.

H. E. Meleis and D. N. Serpanos. Memory Management in High-Speed Communication
Subsystems. In Proceedings of the IEEE Workshop on the Architecture and Implemen­
tation of High Performance Commzmication Subsystems, February 1992.

Sape J. Mullender. Distributed Systems. ACM Press, 1990.

Glenford. J. Myers. Composite/Structured Design. Van Nostrand Reinhold, 1978.

A. N. Netravali, W. D. Roome, and K. Sabnani. Design and Implementation of a High
Speed Transport Protocol. IEEE Transactions on Communications, 1990.

Sean W. O'Malley, Mark B. Abbott, Norman C. Hutchinson, and Larry L. Peterson. A
Transparent Blast Facility . .Journal of Internetworking, 1(2), December 1990.

Sean W. O'Malley and Larry L. Peterson. A Highly Layered Architecture for High-Speed
Networks. In Proceedings of the 2nd International Workshop on High-Speed Networks,
November 1990.

Sean W. O'Malley and Larry L. Peterson. A New Methodology for Designing Network
Software. Technical Report ·TR 90-29, Department of Computer Science, University of
Arizona, Tucson, Ariz., August l 990.

Sean W. O'Malley and Larry L. Peterson. A Dynamic Network Architecture. Technical
report, Department of Comput''" ~cience, University of Arizona, Tucson, Ariz., October
1991.

J. O'Toole, C. Torek, and M. \\,,isPr. Implementing the XNS Protocol for 4.2 BSD. In
Proceedings of the 1985 Win ff r· I SEN IX Conference, pages 90-97, 1985.

David L. Parnas. On the Criteria To Be Used in Decomposing Systems into Modules.
Communication8 of the ACM, 15(12), December 1972.

David L. Parnas. Designing Software for Ease of Extension and Contraction. IEEE
Transactions on Software Engineering, March 1979.

Gurudatta Parulkar. The Next Generation of Internetworking. AO\!J Computer C01n­
munication Review, 20(1):18-43, January 1990.

46

[PBS89] Larry L. Peterson, Nick Buchholz, and Richard D. Schlichting. Preserving and Using
Context Information in Interprocess Communication. ACM Transactions on Computer
Systems, 7(3):217-246, August 1989.

[PC91] Gee-Swee Poo and Boon-Ping Chai. Modularity Versus Efficiency in OSI System Im­
plementations. In Proceeding8 of the Conference on Computer Communication8 (IEEE
Infocom), pages 9.50-959, Bal Harbour, FL, April 1991. IEEE.

[PCW83] David L. Parnas, P.C. Clements, and D.M. Weiss. Enhancing Reusability with In­
formation Hiding. ITT Proceeding of the Workshop on Reusability in Programming,
1983.

[PPA +go] Joseph C. Pasquale, George C. Polyzos, Eric W. Anderson, Kevin R. Fall, Jonathan S.
Kay, Vachaspathi P. Kompella, Scott R. McMullan, and Dipti Ranganathan. Network
and Operating System Support for Multimedia Applications. Technical Report ?? ,
University of California, San Diego, 1990.

[PS91] Thomas F. La Porta and Mischa Schwartz. Architectures, Features, and Implementation
of High-Speed Transport Protocols. IEEE Network Jvlagazine, pages 14-22, May 1991.

[Rit84] Dennis Ritchie. A Stream Input-Output System. AT&T Bell Lab8 Technical Journal,
63(8):311-324, October 1984.

[RST89] R. Van Renesse, H. Van Staveren, and A. S. Tanenbaum. Performance of the Amoeba
Distributed Operating System. Software - Practice and Experience, 19:223-234, March
1989.

[SB91] Richard W. Selby and V. R. Basili. Analyzing Error-Prone System Coupling and Co­
hesion. IEEE Transaction8 on Software Engineering, 17(2):141-1.52, February 1991.

[Sel88] Richard W. Selby. Generating Hierarchical System Descriptions for Software Error Lo­
calization. In Lee J. White, editor, Second Work8hop on Software Testing, Verification,
and Analy8is, pages 89-97. IEEE Computer Society, 1988.

[Sha91] A. Udaya Shankar. Modular Design Principles for Protocols with an Application to the
Transport Layer. Proceedings of the IEEE, pages 1687-1707, December 1991.

[Ste92] Peter Steenkiste. Analysis of the Nectar Communication Processor. In Proceedings
of the IEEE Work8hop on the Architeclttre and Implementation of High Performance
Communication Subsy8tems, February 1992.

[Sti92] Burkhard Stiller. PROCOM: A Manager for an Efficient Transport System. In Pro­
ceeding8 of the IEEE Workshop on the Architect1tre and Implementation of High Per­
formance Communication S"ub8ystems, February 1992.

[Sun90] Sun Microsystems. Tr<tn8port Level Interface Programming, April 1990.

[Tan88] Andrew S. Tanenbaum. Computer Networks (Second Edition). Prentice Hall, Engle­
wood Cliffs, NJ, 1988.

[Tan90] Andrew S. Tanenbaum. Structured Computer Organization (Third Edition). Prentice
Hall, Englewood Cliffs, NJ, 1990.

47

[Tan92] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, Englewood Cliffs,
NJ, 1992.

[Ten89] David L. Tennenhouse. Layered Multiplexing Considered Harmful. In Proceedings of
the 1st International Workshop on High-Speed Networks, May 1989.

[TR85] Andrew S. Tanenbaum and Robbert Van Renesse. Distributed Operating Systems.
AC1VI Computing Surveys, 17(4):419-470, December 1985.

[TRG+87] Avadis Tevanian, Richard Rashid, David Golub, David Black, Eric Cooper, and Michael
Young. Mach Threads and the Unix Kernel: The Bat tel for Control. Technical Report
CMS-CS-87-149, Carnegie Mellon University, August 1987.

[TRS+9o] Andrew S. Tanenbaum, Robbert Van Renesse, Hans Van Staveren, Gregory J. Sharp,
Sape J. Mullender, Jack Jansen, and Guido Van Rossum. Experiences with the Amoeba
Distributed Operating System. Communications of the ACM, 33(12):46-63, December
1990.

[Tsc91] Christian Tschudin. Flexible Protocol Stacks. In SIGCOMlvl Symposium on Commu­
nications Architectures and Protocols, pages 197-205, Zurich Switzerland, September
1991. ACM.

[UNI90] UNIX Software Operations. UNIX System V Release 4 Programmer's Guide:
STREA1v!S. Prentice Hall, 1990.

[VL87] George Varghese and Tony Lauck. Hashed and Hierarchical Timing Wheels: Data
Structures for the Efficient Implementation of a Timer Facility. In The Proceedings of
the 1 lth Symposium on Operating System Principles, November 1987.

[VZ91] Raj Vaswani and John Zahorjan. The Implications of Cache Affinity on Processor
Scheduling for Multiprogrammed, Shared Memory Multiprocessors. In Proceedings of
the 13th Symposium on Operating System Principles, pages 26-40, Pacific Grove, CA,
October 1991. ACM.

[Wir71] Niklaus Wirth. Program Development by Stepwise Refinement. Communications of the
ACM, 14(4):221-227, April 1971.

[WM87] Richard W. Watson and Sandy A. Ma.mrak. Gaining Efficiency in Transport Services
by Appropriate Design and Implementation Choices. ACivl Transactions on Computer
Systems, 5(2):97-120, May 1981.

[WM89] C. Murray Woodside and .J. Ramiro Montealegre. The Effect of Buffering Strategies on
Protocol Execution Performance. IEEE Transactions on Communications, 37(6):545-
554, June 1989.

[YC79] Edward Yourdan and Larry L. Constantine. Structured Design. Prentice Hall, 1979.

[YTR+87] Michael Young, Avadis Tevanian, Richard Rashid, David Golub, Jeffrey Eppinger,
Jonathan Chew, William Bolosky, David Black, and Robert Baron. The Duality of
Memory and Communication in the implementation of a Multiprocessor Operating

·System. In The Proceedings of the 11th Symposium on Operating System Principles,
November 1987.

48

[Zit89]

[Zit91]

[ZJ91]

[ZS90]

[Zwe90]

[Zwe91]

Martina Zitterbart. High-Speed Protocol Implementations Based on a Multiprocessor­
Architecture. In Proceedings of the 1st International Workshop on High-Speed Networks,
pages 151-163, May 1989.

Martina Zitterbart. High-Speed Transport Components. IEEE Network Afogazine,
pages .54-63, January 1991.

Jonathan M. Zweig and Ralph Johnson. Delegation in C++. Journal of Object-Oriented
Programming, pages 31-34, November/December 1991.

Xi Zhang and Aruna P. Seneviratne. An Efficient Implementation of High-Speed Pro­
tocol without Data Copying. In Proceedings of the 15th Conference on Local Computer
Networks, pages 443-450, Minneapolis, MN, October 1990. IEEE.

Jonathan M. Zweig. The Conduit: a Communication Abstraction inc++. In USENIX
C++ Conference Proceedings, pages 191-203. USENIX Association, April 1990.

Jonathan M. Zweig. An Object-Oriented Framework for Implementing Network Proto­
cols. Master's thesis, University of illinois at Urbana-Champaign, 1991.

49

