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ABSTRACT
We propose a lightweight scheme where the formation of
a data block is changed in such a way that it can tolerate
soft errors significantly better than the baseline. The
key insight behind our work is that CNN weights are
normalized between -1 and 1 after each convolutional
layer, and this leaves one bit unused in half-precision
floating-point representation. By taking advantage of
the unused bit, we create a backup for the most sig-
nificant bit to protect it against the soft errors. Also,
considering the fact that in MLC STT-RAMs the cost
of memory operations (read and write), and reliabil-
ity of a cell are content-dependent (some patterns take
larger current and longer time, while they are more sus-
ceptible to soft error), we rearrange the data block to
minimize the number of costly bit patterns. Combining
these two techniques provides the same level of accuracy
compared to an error-free baseline while improving the
read and write energy by 9% and 6%, respectively.

1. INTRODUCTION
Convolutional neural networks (CNNs) are one of the

most popular deep learning structures. These models
are consisted of many layers with different functional-
ities to perform some tasks that are usually difficult
for the traditional algorithms [1] [2]. CNNs have been
around for many years and studied deeply over 25 years
after LeNet5 was proposed [3]. However, they became
popular when the inventions in computer architectures
paved the way for programmable and massive paral-
lel computation needed by these structures. General-
purpose Graphical processing Units (GP-GPU) allow
the CNN computation to be carried out quickly and eas-
ily thanks to the recent progress on programming mod-
els and architecture advancements [4, 5]. However, the
push from CNN designers to create deeper and larger
models in one hand, and high power consumption of
GPUs on the other hand, motivated the architects to
increase the computation capacity of current platforms
by suggesting new special-purpose accelerators [6, 7].

The CNN computations are inherently parallel, and
they require a large amount of memory due to their

large working set size. One solution to overcome the
problem of larger memory is employing emerging mem-
ory technologies such as STT-RAM or eDRAM. Non-
volatile memories provide higher capacity (4X or more)
at almost the same area [8, 9]. The other appealing
feature of NVMs is called Multi-Level Cell where more
than one bit can be stored in any single cell. More
clearly, by using a more sophisticated circuit, the re-
sistance spectrum of these resistive memories can be
partitioned into more than two regions, and then more
than one bit can be stored in a single cell [10, 11]. This
feature is not free and imposes some major challenges.
The reliability of MLC STT-RAM is lower than that
of SLC, and can be as high as 1.5 × 10−2 to 2 × 10−2

[12]. The lifetime of SLC STT-RAM devices fabricated
so far is less than 4× 1015 cycles, which is very close to
conventional memories. However for MLC STT-RAM,
the larger write current exponentially degrades the life-
time [13]. So, to benefit from the larger capacity of MLC
STT-RAM, the major weaknesses associated with MLC
NVMs such as low reliability, high dynamic power con-
sumption and shorter lifetime must be addressed com-
prehensively.

Fortunately, CNN models are naturally robust to some
level of inaccuracy. In other words, the accuracy of pre-
diction will not significantly drop, if the weights slightly
change either intentionally by the designer to reduce the
space, or by the memory technology substrate which
might not be highly reliable [14, 15]. However, naively
replacing the memory system with a low reliable one
may impact the accuracy; as we will show in the later
sections. Thus, we are seeking for a larger MLC STT-
RAM memory to replace the traditional SRAM memo-
ries while maintaining the prediction accuracy.

In this paper, we propose two simple yet effective
schemes to efficiently tolerate the soft errors and also
at the same time reduce the energy dissipation. The
first scheme which is called Sign-Bit Protection utilizes
an unused bit in half-precision floating-point represen-
tation to duplicate the sign-bit. Based on our experi-
ment sign-bit error is the main contributor to accuracy
loss and, thus must be protected separately. We show
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that protecting the sign bit can be done for free be-
cause we can duplicate it in an unused bit. The key
behind this scheme is that weights are normalized be-
tween -1 and 1 after each convolutional layer, and the
second bit in half-precision floating-point representation
remains unused. This duplication allows us to change
the cell mode from vulnerable MLC mode to safe and
reliability-friendly SLC mode.

Additionally, we propose a data reformation scheme
where by manipulating the data, we increase the er-
ror resiliency of the system. The key behind the second
scheme is that some bit patterns are power-friendly and
at the same time they are more robust to soft errors (i.e
in a 2-bit MLC-STT, ”00” is easier to program and also
has higher soft error resiliency [12]), while other pat-
terns are not very robust. We manipulate the content
of the data block by simple operations such as rotation
and rounding to increase the number of reliability- and
power-friendly patterns and minimize the power-hungry
and vulnerable patterns. Combining these two schemes
guarantees the accuracy of prediction to be as good as
the error-free baseline while increasing the energy effi-
ciency.

Our experimental results taken from TensorFlow [16]
platform and SCALE-Sim models [17] show that our
scheme can provide 89% and 97% top-5 accuracy of
prediction for ImageNet and VGG16 while reducing the
read and write energy dissipation by 9% and 6%, respec-
tively. Our scheme needs 2 bits per 16 bits (12.5%) and
2 bits per 64 bits (3.125%) of storage overhead for the
most energy-efficient and the energy-balanced systems,
respectively; while providing the same level of accuracy
compared to the baseline.

2. BACKGROUND
In this section, we provide the required backgrounds

of CNN accelerators and MLC STT-RAM.

2.1 CNN Accelerator
Deep Neural Networks (DNNs) has become a very

reliable solution for addressing many energy constraint
problems over the last few years [18, 19]. Since large
amount of data and computation is required for CNN
operations, using proper hardware for this purpose is in-
evitable. Accelerators are energy-efficient devices that
can carry out simple computation in a very effective
manner. A typical accelerator-based architecture has
been shown in Fig. 2. In this system, a general-purpose
architecture is connected to many Processing Elements
(PE) through a shared medium. There is a DMA engine
that can handle data transfers between main memory,
CPU, and accelerators. In the accelerator side, there
are 3 large buffers holding inputs, weights, and out-
puts. Buffers are responsible for keeping the PEs busy
aiming for higher throughput. PEs are processing com-
ponents that can compute simple functions such as add-
multiply-sum operations. Eyeriss [7] categorizes the sys-
tolic arrays into five classes: Output Stationary (OS),
Weight Stationary, (WS), Input Stationary (IS), Row
Stationary (RS), and No Local Reuse (NLR). The differ-
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Figure 1: Accelerator-based architecture for the
CNNs operation

ence is how tasks are assigned to computing nodes and
how weights and inputs are distributed across the PEs.
For each class weight matrices are differently mapped
to a given MAC unit, and are not replaced until the
computation is completed. These design-choices have
their own advantageous and disadvantageous, however,
without loss of generality, we assume that our baseline
is a weight-stationary system. The insight is that by
keeping the weights more on PEs and not on an NVM
buffer, the system would be more reliable.

2.2 MLC STT-RAM Basics
MLC STT-RAM relies on a magnetic tunneling junc-

tion (MTJ) to store one bit. Basically, an STT-RAM
cell has 2 layers, a free layer, and a reference layer. The
reciprocal magnetic direction of these layers determines
the value stored in each cell. The magnetization direc-
tion of the reference layer is fixed while the other one
can change. To hold a ”0” logic in a cell, a current must
be applied from reference layer to free layer so that the
magnetization direction of the free layer becomes the
same as the fixed layer. This formation, which is called
parallel has the lowest resistance and can represent logic
”0”. The magnetization direction of these two layers can
be managed in such a way that resistance of a cell be-
comes very high representing logic ”1”. This design is
called Single Level Cell (SLC) and is capable of storing
one bit in each cell.

On the other hand, the structure can be extended in
such a way that 2 or even more bits are stored in each
cell. For this purpose, 2 MTJs are stacked to create 4
different and distinct resistances leading to a 2-bit cell
configuration. One MTJ should be sized larger namely
hard bit and the smaller MTJ is called soft bit. Fig. 2
shows the structure of the hard and soft bits.

To program a 2-bit MLC STT-RAM, 2 steps are re-
quired. In the first step, the soft bit is programmed and
then the hard bit is realized. More specifically, in the
first step, we can program MTJ either to ”00” or ”11”.
Then in the next step, by applying another pulse, we
can reach to ”01” or ”10”. Fig. 2(b) shows the program
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Figure 2: Multi-level cell STT-RAM. (a) Series MLC MTJ structure; (b) 2-step write operation; (c)
2-step read operation.

process of serial MLC STT-RAM. The solid line is the
indicator of the first step and the dashed line shows the
second step. For example, by applying a high current
pulse to the STT cell, we can reach from ”00” to ”11”.
Then, by applying another pulse, we can work around
the least significant bit.

Read operation in a 2-bit MLC STT is performed as
follows. First, a small current is applied to the cell and
the resistance is compared to a reference value. Based
on the result of comparison another pulse is applied and
the result is then compared against another reference
value. This approach is very similar to a binary search,
where based on the comparison result, we narrow down
the space of the search. As an example, let’s say value
”10” has been stored in the cell. To read the content,
first, we apply a small current and compare either ob-
served resistance or voltage to Vref0. If the system is
not faulty, the result of comparison leads us to apply
the second pulse and compare the result to Vref2. The
results of this comparison tell us the voltage is lower
than Vref2 and higher than VRef0, and the stored value
is realized. The only consideration here is that the size
of the current should be small enough not to change the
value of a cell.

2.3 Reliability of MLC STT-RAM Cells
Process variations and thermal fluctuations in MTJ

switching process are the two main sources of unrelia-
bility and inefficiency in MLC STT-RAM cells. Process
variations persuade deviations of electrical and mag-
netic characteristics of MTJs from their nominal val-
ues and it causes read and write errors of STT-RAM
[12]. Furthermore, thermal fluctuations change the re-
sistance switching process of MTJs, so that it causes
uncertainty of switching time.

Write errors happen when the programming current
is removed before the MTJ switching process is com-
pleted [20]. In SLC cells raising the amplitude of pro-
gramming current reduces the MTJ switching time and
improves the write reliability [21]. But in MLC cells,
since the resistance difference between hard and soft
bits is low, raising the amplitude of programming cur-

rent in soft transition may cause flipping the resistance
state of the large MTJ and overwriting the value held
by the cell.

Sensing error and read disturbance are the two main
sources of read operation failures in MLC STT-RAMs
[12]. Sensing error happens when MTJ resistance state
can not be verified before ending the sensing period due
to the small or false sense margin. In MLC STT-RAM
the sense margin between adjacent states is smaller and
therefore distinction between the resistance of states is
harder than that of SLC.

Read disturbance occurs when the read current changes
the resistance state of MTJ. This is also exacerbated
with thermal fluctuations. In MLC STT-RAM cells
since the probability of read disturbance is very low,
it is ignored in most analysis [12].

3. RELATED WORK
This section presents an overview of recent works on

designing energy-efficient on-chip memory for CNN ac-
celerators. Most of the computations in CNNs/DNNs
are based on matrix/vector multiplications and addi-
tions. There exist a considerable body of literature on
performing these computations efficiently in hardware
via GPUs [4], FPGA devices [22] and custom ASIC de-
vices [6, 7, 23]. There have been studies to investigate
memory footprint reduction through pruning between
layers in neural networks [24, 25]. Some works reduced
the precision of network’s parameters to lower the num-
ber of required bits [26]. However, works that reduce
the precision policies can degrade the CNN accuracy.
Authors in [27] take advantage of error resiliency of ma-
chine learning application and tried to design energy-
efficient accelerators. They employ a hybrid SLC/MLC
memory to address the reliability issues of MLC sys-
tem. More clearly, some cells are written in MLC mode
and the rest in SLC mode selectively with the aim of in-
creasing the total reliability. The clear weakness of such
a design is that effective capacity of memory system is
reduced and the whole potential of MLC design is not
unleashed. In our architecture, we do not sacrifice the
capacity at all, and all cells operate in MLC mode.
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NVM-based neural network accelerator has been the
subject of research in [28, 29, 30, 31, 32]. These NVM-
based accelerators usually focus on the fully connected
layers to evaluate their idea. This is because a fully
connected layer has much more weights than a convolu-
tional layer and managing this amount of data is more
important than convolutional layer weights. It must be
noted that, in some works NVM is used as the logic not
necessarily as the memory component.

Some authors have focused on energy-efficient STT-
RAM. They employed some techniques in both circuit
and architecture levels [33, 34, 35]. These works have
fixed the high write energy of STT-RAM while con-
serving the accuracy of read and write operations. Au-
thors in [14] proposed embedding STT-RAM devices
into neural networks as neurons. This work claimed
that magnetic tunnel junctions can be interpreted as a
stochastic memresistive synapse for neuromorphic sys-
tems. Another method employed by [36] proposed a
quality-configurable single-level cell STT-RAM memory
array. It stores data with different accuracy level based
on the application requirement. All of mentioned tech-
niques, are designed for special purposes and can not
be used in a general neural network accelerators.

Authors in [37] have applied a precision-tunable MLC
STT-RAM buffer for energy-efficient general-purpose
neural network accelerators. This work leverages error
resilience feature of neural networks to tolerate the re-
liability issues in MLC STT-RAMs. In this work 16-bit
fixed-point number system is used for representing data
and weights. Our works is built on top of this work and
further improves the reliability.

4. MOTIVATION
There are 2 motivations behind this work. The first

motivation is that limited range of weights leads to a
situation where all covered numbers in the IEEE half-
precision floating-point representation are not used. This
leaves us some unused bits in the representation to be
used as backup for other cell. By carefully deciding
what bits to backup, we can improve the reliability of
the system. The second observation is that MLC STT
programming process is asymmetric. Two bit patterns
”11” and ”00” require less power to program while pat-
terns ”10” and ”01” are energy-hungry. This feature can
be exploited to enhance the energy efficiency of the sys-
tem by increasing the number of ”11” and ”00” through
data manipulations. In the following subsections, we
first investigate these two observations with more de-
tails and then propose two schemes to exploit them.

4.1 Limited Range of Weights
Many previous works noticed that weights in CNNs

span in a short ranges [38]. That has been the insight
behind many pruning and quantization schemes [24, 25,
39]. According to these works weights are limited be-
tween -1 and 1 [38], because after any convolutional
layers a weight normalization is performed. Having this
observation in mind, we show that the second bit of the
numbers is never be used. For better understanding, we

show this phenomena through an example.
Fig. 4 shows 4 special numbers: ”-1.0”, ”+1.0”, ”+1.99”,

and ”+2.0” in full-precision floating-point representa-
tion. The first two rows in the figure represents ”-1.0”,
and ”1.0”; the largest numbers required by CNN. The
first bit indicates the sign; negative in the first row and
positive in the second row. Then in the exponent re-
gion, all bits are selected, but the second bit. These 2
cases show the biggest numbers that can be obtained
when the second bit is unused. Fortunately, if we do
not use the second bit, we can successfully cover any
number between -1 and 1 because the largest numbers
are already covered. Also, to cover any number between
-1 and 1, we need to either reduce the exponent, or in-
crease the mantissa, which in both case the second bit
remains untouched.

If the same exponent as the two previous ones is used
(e.g. ”01111111”), and if a non-zero value for the man-
tissa is picked, the number would have a value greater
than 1 or less than -1, as it is a case in the third row of
the example. So, we can conclude that for any number
between -1 and 1, the second bit will not be used, and
it can be a good candidate to be borrowed to host the
sign bit. The very first number that utilizes the second
is ”+2.0”, as shown in the last row, which is not used
in CNNs anyway. More clearly, when the second bit
is one, the exponent value is 27=128 that needs to be
subtracted from the bias which is 127. While the bits
in mantissa part are all zero, the mantissa value would
be 1.0. Hence, 1.0× 2128−127 = 2.

Note that while the second bit is not used, the first bit
is used frequently. Because there is roughly even num-
ber of negative and positive numbers in the weights and
parameters of CNNs. Therefore, we run into a situation
where the pattern ”10”, and ”00” happens a lot in the
first two bits. If the number is positive, we have ”00”,
which is reliable to be saved. However, if the number
is negative, we get pattern ”10”, which is highly vulner-
able to error and also needs a huge amount of power
during the programming. Later, we show how we can
utilize the second bit to store the weights safely.

4.2 MLC STT Programming Asymmetry
As mentioned in the previous section, when an MLC

STT-RAM is programmed, patterns ”00” and ”11” need
one iteration to finish, while patterns ”10” and ”01” re-
quire two iterations (Fig. 2). Basically, in the first
iteration, either the cell is programmed into ”00” and
”11”, and then either the process is stopped or another
step is taken to put the cell into ”01” or ”10”. This
way, we can claim that MLC STT-RAM programming is
content-dependent. At 2-bit granularity, patterns ”11”
and ”00” consume less power, and patterns ”10” and
”01” are slow and consume high power. Therefore the
power consumption can be reduced, if any scheme can
manipulate the data block in such a way that it gets
fewer number of ”01” and ”10”. Interestingly, the pat-
terns ”11” and ”00” are also more resilient to soft errors.
Because these 2 states are the base states and thus the
cell has higher stability. In other words, patterns ”11”
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1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0

Exponent Mantissa

Figure 3: IEEE standard 754 floating-point representation. First bit is sign bit, the next 8 bits are
exponents, and the rest are mantissa. There are 4 different numbers: -1, 1, 1.99, and 2 in full-precision
floating-point representation.

and ”00” are both power- and reliability-friendly.
In the next section, we show how by employing simple

operations the number of vulnerable bits can be reduced
in the CNNs to better tolerate soft errors and also re-
duce the power consumption both at the same time.

5. THE PROPOSED SCHEME

5.1 Schemes
We rely on the fact that the second most significant

bit is always unused and can be utilized to save the
sign bit (MSB) bit. Also, for STT-RAM, programming
hard bit takes one iteration and soft bits takes up two
iterations. Our goal is twofold; first protecting the MSB
bit and second reforming the bit stream in such a way
that number of ”10” and ”01” are reduced.

In this regard, we introduce three reformations as
follows: 1) No Change, 2) Rotate Right by One, and
3) Rounding to Nearest. The first operation is called
No Change because weights are written as is. The sec-
ond operation is called Rotate Right by One, where the
weight is rotated by one to the right. This can help
when some patterns such as ”10XXX01” appears in the
bit stream and by rotating one bit, error-resilient pat-
terns will place next to each other 110XXX0. Finally,
the third operation tries to round the weight to the
nearest MLC-friendly value.

In order to figure out how many bits are required to
be taken for rounding, we conduct an experiment where
1 million random numbers between -1 and 1 are gener-
ated. In this experiment, we flip one bit at a time and
measure the error rate based on Error Sum of Squares
(SSE). Fig. 4 shows the SSE when different bit posi-
tions in half-precision floating-point are flipped. As can
be seen from the figure, the last 4 bits have small impact
and the SSE rate is very low. We limit the area where
this scheme is applied to, because if we expand this area
further (from last 4 digits to last 8 digits), the accuracy
of classification will drop drastically. Based on our ex-
periment to maintain the accuracy, it is best to select
only the last 4 digits to be rounded. So, we take the
last four bits and try to round them to an MLC-friendly
value. To do so, since there are 4 MLC-friendly values
(”0000”, ”0011”, ”1100”, and ”1111”) in a 4-bit stream,
we divide the 16 possible values into 4 classes uniformly
and remap each to one the MLC-friendly value. The
rounding process is shown in Tab. 1. As can be seen

Table 1: Rounding the bit patterns to MLC-
friendly values.

Values Rounded
0000 0001 0010 0011 0000

0100 0101 0110 0111 0011

1000 1001 1010 1011 1100

1100 1101 1110 1111 1111

the first 4 values are assigned to ”0000” and so on.
For better understanding, we explain each scheme by

an example shown in Tab. 2 and Fig. 5. In our example
we take three weights and try to reduce the number of
soft bits.

The first example in the Tab. 2 is ”0.004222”. By
looking at the binary representation in half-precision
floating-point, we can see that patterns ”00”, ”01”, ”10”,
and ”11” occur 3, 3, 0, and 2 times, respectively. Then
we sum up number of ”11” and ”00” after applying each
three reformation schemes to compare with summation
of ”10” and ”01”. As can be seen from the last column
in the table, we better to write this value unchanged as
none of the other scheme is helpful.

The next example in Tab. 2 is 0.020614 where the
binary representation has 2, 4, 1, and 1 bit patterns of
”00”,”01”, ”10”, and ”11”, respectively. However, if we
rotate the bit-stream by one, as shown in the third row
of the table, we can see that the number of soft bits is
reduced from 5 to 3. Hence, in this situation, storing
the weight in shifted format is the best option.

Finally, the last example in the Tab. 2 is 0.0004982.
As can be seen from the table, the number of ”00” and
”11” for No Change mode and Rotate mode are 4 and
4. Since CNNs are robust to inaccuracies, we round
the last four digits to the nearest MLC friendly value
based on the Tab. 1 mapping. For this particular ex-
ample, since the last four digits are ”0101”, we round it
to ”0011”. Doing so leads us to the situation where the
number of soft bits is reduced to 2.

5.2 Overhead Analysis and Metadata
We have to maintain some metadata to determine the

mode of each weight (NoChange, Rotate, and Round).
The metadata itself has to be stored in our STT-RAM
memory, which is unreliable. Losing meta-data may
cause a severe damage, because rotate may change the

5
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Table 2: Examples for selection between 3 schemes (NoChange, Rotate, and Round).
Weight Binary Operation 00 01 10 11 Best

0.004222 00 01 11 00 01 01 00 11
NoChange 00 01 11 00 01 01 00 11 3 3 0 2 X

Rotate 00 10 11 10 00 10 10 01 2 1 4 1
Round 00 01 11 00 01 01 00 00 4 3 0 1

0.020614 00 10 01 01 01 00 01 11
NoChange 00 10 01 01 01 00 01 11 2 4 1 1

Rotate 00 11 00 10 10 10 00 11 3 0 3 2 X
Round 00 10 01 01 01 00 00 11 3 3 1 1

0.0004982 00 01 00 00 00 01 01 01
NoChange 00 01 00 00 00 01 01 01 4 4 0 0

Rotate 00 10 10 00 00 00 10 10 4 0 4 0
Round 00 01 00 00 00 01 00 11 5 2 0 1 X

absolute value of the floating-point representation sig-
nificantly. To overcome this difficulty, rather than hav-
ing four schemes to utilize the 2-bit metadata, we pro-
posed three schemes to store the metadata into a tri-
level MLC, not a 2-bit MLC. As shown by many previ-
ous works, tri-level MLC is very reliable (close to SLC)
[12]. As a matter of fact, tri-level STT provides better
error rate by sacrificing the information density; three
states can be realized by tri-level STT and not by four.
Using tri-level STT it is guaranteed that our metadata
is safe and we will not impose any malfunction issues.

From storage overhead point of view, we need to store
2 bits per each 16-bit weight leading to the overhead of
12.5%. To reduce this overhead, we propose a grouping-
based approach where weights are wrapped together
and the best scheme is realized for each block of the
wights. For example, we can apply our scheme at the
granularity of four, where the three proposed schemes
are examined for 4 weights together. Grouping weights
together may slightly reduce the chance of finding the
best scheme, however, can reduce the storage overhead
significantly.
Putting them all together It must be noted that
when we are rotating and rounding the weights, it is
kept local. In other words, we apply to rotate scheme
to each weight and count the soft and hard bits. At the
same time, we count the soft bit when there is no change
and when the rounding is applied to each weight. Then,
we sum the number of soft bits together resulted from

NoChanage/rotate/rounding to each weight separately.
Finally, we chose the best scheme to be used as the final
mode for the block.

Fig. 5 shows the final format of bit stream for the
three examples shown in the Tab. 2. For the first case,
only the sign bit is protected by duplication to the sec-
ond bit. For the second case, in addition to protecting
the sign bit, we rotate the bitstream by 1 to the right
and then write the weight into the buffer. Finally, in
the case of rounding, the last two cells are manged to
store the nearest number. Tab. 3 shows the storage
overhead for different granularity. As can be seen, the
overhead can be reduced to less than 1%.

6. METHODOLOGY
Classification Accuracy We use Google Tensorflow
[16] to evaluate two states of the art models: VGG16
and Inception V3. The input dataset to these models
is ImageNet and we use transfer learning to train the
models. The network is trained for 30 epochs, and the
batch size of 100 is used.
Error model In order to model the error induced by
the MLC STT-RAM substrate, we use the previously
proposed model [40]. In this model, read and write
error rates are separated and faults are injected accord-
ingly. To inject the errors, we assume all ”00” and ”11”
are immune to soft errors because these two states are
highly stable. However, for ”01” and ”10”, we use a
uniform fault injector to flip a bit. The probability of
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Figure 5: Final state of bit-stream for selecting the reliable weights

Table 3: Storage overhead for different granularity
Granularity Overhead
1 2 bits/1 weight=16 bits = 0.125
2 2 bits/ 2 weights = 32 bits=0.0625
4 2 bits / 4 weights = 64 bits=0.03125
8 2 bits /8 weights= 128 bits=0.015625
16 2 bits /16 weights = 256 bits=0.0078125

fault injections are taken from Ref. [12] and are in the
range of 1.5 × 10−2 to 2 × 10−2 [12]. To incorporate
the error model, we read all pre-trained weights and
inject faults to the entire dataset. Then we store the
pre-train weights to be used during the inference. We
do not retrain the model because faults happen at the
inference time by the memory substrate, and they will
not be detected because of error detection complexity.
So, it is not feasible to fine-tune the network after faults
happen. Therefore, to be fair, we do not retrain the net-
work. Finally, we report the accuracy of classification
to judge between different systems.
Energy model We use NVSim [41] to evaluate the
energy consumption of the proposed system. We also
use the per bit energy cost reported in Tab. 4 to obtain
the soft and hard bits cost of read and write operations.
Bandwidth Model SCALESim [17] is used to calcu-
late the bandwidth of our systolic array. This simulator
faithfully models a systolic array where all buffers are
of the type of double-buffer.

7. EVALUATED RESULTS
In this section, we study the impact of our schemes

on two models: VGG16 and Inception V3. Also, we
show the results for 5 different granularity: 1, 2, 4, 8,

and 16 words.
Bit count comparison Number of bit patterns have
direct relation with power consumption and performance.
In this experiment, we count how often different pat-
terns are occurred. Fig. 6 shows the bit count for 6 dif-
ferent systems, baseline plus the proposed scheme with
5 different granularity. We show the results separately
for VGG16 and Inception V3. As can be seen from the
figure, Granularity 1 shows a higher number of ”00”and
”11”. As we increase the granularity, the number of ”11”
and ”00” patterns decreases. However, the drop is not
very significant, we only lose 5% of these patterns if we
increase the granularity from 1 to 16. Note that as the
granularity increases, the storage overhead goes down
as exhibited in Tab. 3.

Fig. 6 shows that in VGG16 the ”01” pattern in-
creases as the granularity increases, while in Inception
V3 we observe the opposite trend; pattern ”01” stays
the same, but pattern ”10” increases.
Energy Consumption Fig. 8 (left), shows the en-
ergy consumption for different granularity and for read
and write operations. Compared to the baseline all dif-
ferent granularity consume less energy. For example for
Granularity 1 of VGG16, the read energy consumption
is reduced by 8%, and for the largest granularity, the
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Table 4: Soft and hard bits cost of reading and writing.
SLC STT-RAM MLC STT-RAM Hybrid

Read latency (cycle) 13 19 Soft: 14, Hard: 20
Write latency (cycle) 49 90 Soft: 50, Hard: 95
Read energy (nJ) 0.415 0.424 Soft: 0.427, Hard: 0.579
Write energy (nJ) 0.876 1.859 Soft: 1.084, Hard: 2.653
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Figure 6: Bit count for 6 different systems, baseline and the proposed scheme with 5 different
granularity.

read energy is reduced by 7%. On the other hand, for
Inception V3, the reduction of read energy is almost
8%, while the write energy is reduced by 5%. It must
be noted similar to bit count results, when the granular-
ity increases the gain degrades. This is due to the fact
that fewer blocks are found to apply any scheme but
NoChange, and the system is similar to the baseline.
Classification Accuracy Fig. 8 (right) compares
the accuracy for four different systems: 1) Unprotected
Baseline, 2) Baseline+Rounding, 3) Baseline+Rotate
and 4) Baseline+Rounding+Rotate (hybrid). Also, in
this figure, the accuracy of both models in the error-
free scenario are shown with dotted lines. When the
system is unprotected (first bar) the classification ac-
curacy significantly drops from 0.97 and 0.88 to 0.69
and 0.74, respectively. Now, we add our scheme one by
one to the system to observe their impact. First, we
include the rounding in the second bar. When round-
ing is added to the baseline the accuracy increase 12%,
11%, respectively. Then, the rotate scheme is added
to the baseline. As the result of including this scheme,
the accuracy boosts up to 0.84 and 0.89. This scheme is
slightly better than the rounding scheme independently.

Finally, the hybrid scheme is applied to the system.
Hybrid here refers to a system where the best of (NoChange,
Roatate and Rounding) is picked up. For the hybrid
system, the classification accuracy reaches to the level
of error-free scenario. Our hybrid scheme provides as
good as accuracy compared to the error-free baseline.
However, system 2 and 3 do slightly poorer than the
error-free baseline. This figure shows that we can re-
duce the storage overhead further by applying only one
scheme, but with lower accuracy.
Bandwidth Fig. 9 demonstrates the bandwidth of

memory sub-system for two cases: off-chip and on-chip
traffics. Since there are many layers in each network,
and there are 3 separate buffers in a systolic array, we re-
port the maximum bandwidth for off- and on-chip traf-
fic for top-3 layers in terms of bandwidth to account
for the worst-case scenario. Also, the size of on-chip
memory is varied from 256 KB to 2048 KB (ratio of
4). The system with 256 KB is an SRAM-based design,
the rest are representative of a system equipped with
MLC STT-RAM. For both cases (off-chip and on-chip),
the required bandwidth is reduced significantly. For in-
stance, In Conv11 layer of VGG16, the bandwidth is
reduced from 25.5 bytes per cycle to roughly 17.1 bytes
per cycle. The Inception V3 enjoys more from larger
MLC STT-RAM buffers, and the required maximum
bandwidth drops to 10 bytes per cycle with STT-RAM
size of 2048 KB.

For the case of VGG16 on-chip traffic, the MLC STT-
RAM is quite useful. The on-chip traffic is reduced
by 24% for Con12. The on-chip bandwidth stays the
same for two layers and slightly reduced for one layer
in Inception V3. Although the on-chip traffic is larger
than the off-chip, but one can observe the advantages
of the MLC STT-RAM.

8. CONCLUSION
CNNs are becoming more and more popular due to

their high accuracy and robustness. Newer models need
larger memory to store their weights on-chip. To avoid
the costly off-chip transactions, one solution is to in-
crease memory capacity by employing emerging mem-
ory technology such as MLC STT-RAM. To address
problems such as reliability and high dynamic power
consummation associated with MLC STT-RAM, we pro-
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Figure 8: Accuracy for four different systems: 1) unprotected baseline, 2) Baseline+Rounding, 3)
baseline+rotate and 4) baseline+rounding+rotate (hybrid).

pose a simple yet effective scheme to concurrently in-
crease their reliability and reduce power consumption.
Our hybrid scheme leverages from the fact that read
and write operations are content-dependent, and thus
data manipulation can impact the access time. In this
regard, we devise a rounding and rotating mechanism to
change the data block in such a way that the number of
error-resilient patterns increases and at the same time
the number of high-power patterns decreases. We chose
the best option among the pure baseline, rotated, and
rounding format solutions to achieve the highest level of
reliability and accuracy. To overcome the difficulty of
metadata management, we propose a grouping mech-
anism that combines some blocks together to further
reduces the storage overhead. Our experimental results
show that we can maintain the same level of accuracy
as the baseline while reducing the read and write energy
consumption by 9% and 6%, respectively.
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