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Abstract. Since the discovery of a flux of high-energy astrophysical neutrinos, searches for
their origins have focused primarily at TeV-PeV energies. Compared to sub-TeV searches,
high-energy searches benefit from an increase in the neutrino cross section, improved angular
resolution on the neutrino direction, and a reduced background from atmospheric neutrinos
and muons. However, the focus on high energy does not preclude the existence of sub-
TeV neutrino emission where IceCube retains sensitivity. Here we present the first all-flavor
search from IceCube for transient emission of low-energy neutrinos, between 1-100 GeV using
three years of data obtained with the IceCube-DeepCore detector. We find no evidence of
transient neutrino emission in the data, thus leading to a constraint on the volumetric rate of
astrophysical transient sources in the range of ~ 705 — 2301 Gpc =3 yr~! for sources following
a subphotospheric energy spectrum with a mean energy of 100 GeV and a bolometric energy
of 10°2 erg.
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1 Introduction

The past few years have seen the advent of high-energy neutrino astronomy, with the identi-
fication and characterization of a diffuse astrophysical flux of neutrinos at TeV energies and
above [1-3], as well as the first observation of an extragalactic source of such high energy
neutrinos [4, 5]. Neutrinos nevertheless remain some of the most underutilized of the astro-
nomical particle messengers. Their production is theorized in a wide range of astrophysical
scenarios, and may be the only observable signatures of processes in dense regions of the Uni-
verse. The IceCube Neutrino Observatory (IceCube) is composed of a surface array as well
as an in-ice array consisting of ~1 cubic kilometer of instrumented ice located at the South
Pole [6]. Most IceCube searches for astrophysical neutrino emission are optimized for TeV-PeV
energies, relying on the enhanced effective volume (due to the increased cross sections as well
as the longer propagation distances of the secondary particles) of the detector at these high
energies and the steeply falling spectrum of atmospheric neutrino and muon backgrounds. In
the context of considering a ‘stacking’ analysis of sources, a 10-year data study by IceCube
finds evidence for neutrino emission in a set of 4 objects, including TXS0506+056 [7].
Searches for astrophysical sources of neutrinos at sub-TeV energies have been carried out
with Super-Kamiokande [8, 9], as well as with a single year of IceCube data [10]. The analyses
have been predominantly focused on using only v, and the untriggered ‘tabula rasa’ search in
Super-Kamiokande tested for power-law spectra. All searches suffer from significantly larger
background event rates compared to the high-energy searches due to the steeper power laws
that characterize atmospheric background spectra. However, they remain a promising avenue
for the discovery of transient emitters, which are in general not expected to have power law
spectra (|11], see chapter 21). Scenarios that predict flaring neutrino emission which peak in
the 10-100 GeV range along with a suppression of emission at higher energies are of particular
interest. This may occur due to the subphotospheric emission of neutrinos from gamma-ray
bursts (GRBs), wherein the jet is dissipated by inelastic collisions and quasithermal neutrinos
are produced via hadronuclear reactions [12]. Detecting sub-TeV neutrinos from GRBs can



thus delineate the subphotospheric scenario from the more classical case, in which gamma-
rays are attributed to synchrotron emission from nonthermal electrons accelerated at internal
shocks [13]. Neutrino emission that peaks at ~GeV energies is also naturally expected in core
collapse supernovae in which the jets are not energetic enough to break through the stellar
envelope and gamma-ray emission is thus ‘choked’ off [14]. The observed correlation between
long duration GRBs and a small fraction of core-collapse supernovae [15] hints that a larger
number of core collapse supernovae may develop such choked jets. It has been suggested [16]
that neutrino emission from such events occurring within ~10 Mpc should be detectable by
the IceCube-DeepCore sub-array.

This work presents the search for transient emitters of neutrinos at ~GeV energies with
three years of IceCube data and marks the first use of an all-flavor sample of neutrinos at
these low energies for such purposes. While the inferior angular resolution of, and limited
effective volume for, v, (+ 7.) and v, (+ ;) events at high energies (TeV) discourage their
use in high-energy searches [7], in low-energy searches targeting transient emission, they form
an additional signal component that enhances the potential for discovery.

In this work, the analysis has been performed on archival data, however, the possibility
of employing this as an online real-time search (alert system) is being investigated.

2 Detector and event sample

The IceCube Neutrino Observatory consists of roughly 1 cubic kilometer of instrumented
glacial ice located at the South Pole [6]. The detector contains 86 vertical strings each
composed of 60 digital optical modules (DOMs) including a downward facing 10-inch pho-
tomultiplier tube. The DOMSs are deployed from 1.45km to 2.45km below the surface of
the ice mostly in a hexagonal pattern. The largest part of the detector, the in-ice array, is
optimized for neutrinos at ~ TeV — PeV energies and has some sensitivity to the detection
and analysis of neutrinos in the O(100) GeV region. IceCube-DeepCore is the more densely
instrumented region located approximately in the middle of the detector [17]|. It consists of
the most central standard IceCube strings as well as 8 specialized low-energy strings whose
DOMs have a higher quantum efficiency than the regular IceCube DOMs. Hence, this part
of the detector is sensitive to neutrinos at energies down to ~5 GeV.

In this work, we use the GRECO (GeV Reconstructed Events with Containment for
Oscillation) event selection. This selection was originally developed for the tau neutrino
appearance analysis which is labelled as ‘analysis A’ in previous work [18]. The three years

Table 1. Relative fractions of event types for the GRECO dataset for each neutrino flavor (assuming
an atmospheric flux) interacting through charged current (CC), all-flavor neutrinos interacting through
neutral current (NC), atmospheric muons, and accidental events caused purely by detector noise [18].
This is the event distribution used for background in our search.

Event Type Relative Fraction (%)

v, + v, (CC) 57.40
Ve + e (CC) 21.64
vr + v, (CC) 2.90
v (NC) 9.83

I 8.07
pure-noise 0.01
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Figure 1. All sky (47 sr) average neutrino effective area for the GRECO event selection. The effective
area of the previous low-energy transient analysis from IceCube [10], which was only v, is indicated
by the purple dashed line.

of data are obtained from April 2012 through May 2015 and have a livetime of ~2.756 years
(1006 days) and an average rate of 0.87mHz. The effective area for the event sample is
shown in Figure 1, where also the individual contributions for the different neutrino flavors
are indicated. This is compared to the effective area for the previous low-energy transient
point-source search performed with IceCube data [10]. The background to any potential
transient neutrino signal is a combination of atmospheric neutrinos, atmospheric muons, and
PMT /DOM glass/electronics noise events that manage to trigger the array and pass the event
selection. For the GRECO data the relative contributions of each of the major background
types are shown in Table 1.

3 Analysis method

This analysis consists of two parts: a kernel density estimation (KDE) used on the event
times with the purpose of selecting time windows with event densities that are larger than a
threshold defined to exclude background. This is followed by a maximum likelihood analysis
that tests for spatial clustering of the events observed close together in time.

While establishing the performance of the analysis, time scrambled data is used for the
background estimation. This means that we use experimental data obtained with IceCube-
DeepCore but assign random observation times within the run-time of the detector for the
individual events. Using scrambled data ensures that the algorithms and parameters values
are developed and selected without knowledge of the final analysis results.

3.1 Kernel density estimation

The purpose of the time KDE is to identify the regions in time with large densities of events
and thereby select the time windows of interest. Transient sources are expected to emit
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Figure 2. Example of time KDE. The x-axis is unit fraction of one day. Gaussian kernels for
individual events are summed in order to compute the density of events with respect to time. No
normalization is performed as this would change the scale of the y-axis for different numbers of events.

neutrinos primarily within a relatively short amount of time, and therefore the selected time
windows with larger event densities are more likely to contain astrophysical transient emission.
This way, the time KDE functions as a preselection of the most promising events. Thereby
the maximum likelihood analysis is only performed on a small sub-set of the data sample,
which will decrease the computing time.

When evaluating the KDE, a Gaussian kernel defined by

1 [t — tn|?
K(t,tn,U) = \/ﬂo- exp —W , (31)

is created around the time of each event with a bandwidth ¢ that should correspond to the
neutrino emission time of the astrophysical transient source class under consideration. The
value of t —t,, is the difference between the kernel center and a given event. Since the width of
the time distribution of neutrinos emitted from gamma-ray bursts has yet to be determined,
we assume a bandwidth of 100s corresponding approximately to the gamma-ray emission
time for long duration gamma-ray bursts [19].

The sum of the individual contributions from the kernels is evaluated by

N
Ripp(t,o) =Y K(tty,0), (3.2)
n=1

where N is the total number of events (kernels). All maxima in time, denoted as cluster
centers, are found, and the maxima above a chosen threshold on the value of Rxpg are
selected. A time window with a potential transient (TWPT) of +3 bandwidths (600s) is
created around each cluster center passing the threshold. The threshold is chosen to allow a
given average number of cluster centers per year to pass. One time window is created around
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illustrates that there is a ‘longer tail’ of larger angular resolutions than smaller resolutions. Orange
and purple error bars have been shifted slightly towards smaller and larger values, respectively, in
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each, resulting in an expected average number of time windows per year (this parameter will
be denoted as Nyw pr). In this case, an Ri pp-threshold of 905.80 is chosen corresponding to
Nprwpr =100. A relatively small number of clusters passing the threshold is chosen because
a larger number provides no appreciable improvements in the sensitivity. Figure 2 shows an
example for one day of scrambled data.

3.2 Likelihood Maximization

A maximum likelihood analysis is performed on the events within each selected time window
created based on the time KDE. The likelihood is given by

N
(s + np)N —(nstnp) nsS; nyB;
£lns) = NI € Zl;ll ns + Ny * ns+mny /)’ (3:3)

where the first two factors describe the Poisson distributed probability of observing N events
from the source under consideration. The log-likelihood ratio is then given by

In (i%;) = —ng+ iln ((Zb;g& + 1> . (3.4)

The parameter ng and ny are the numbers of signal and background events within the given
time window, while (n;) is the expected average based on the average background rate and
the size of the time window. The parameter ng refers to the number of signal events being fit
during the maximization. The variables S; and B; are the signal and background probability
distribution functions (PDFs), i.e, the probabilities that the event ¢ within a time window
originates from the source and the background, respectively.




The background PDF B; is assumed to be constant in azimuth, but changes as a function
of the zenith angle of the event i. The value is calculated by

1
G
where P; .enity, is found using a spline with 25 bins in the cos(zenith) distribution of events,
i.e., the background PDF roughly follows the zenith distribution of atmospheric neutrinos
with a small contribution from atmospheric muons, and is based on experimental data.

The signal PDF S; contains spatial information about the potential sources as well as the
events. The expected angular resolutions of the events are estimated from their reconstructed
energies and declinations using a spline of the median angular resolution found from simulated
GRECO events. In this case, the resolution refers to the opening angle between the true and
reconstructed event directions, and the data have been weighted according to the expected
energy spectrum for atmospheric neutrinos described by [20]. Separate splines are employed
for each event type (tracks and cascades) in order to account for the better angular resolutions
of the tracks. In this case, tracks are defined as events with reconstructed track lengths of
at least 50m. The splines are functions of energy and declination for the events. Bins in
declination are distributed linearly in the range -85° to 85°, with bin centers 5° apart. Bins
in energy are logarithmically distributed with an additional bin at higher and /or lower energies
(see Figure 3).

The signal PDF §; is defined as a Kent distribution, i.e., a probability distribution
analogous to the bivariate normal distribution but normalized correctly on a sphere. Assuming
circular angular errors on the events, i.e, angular resolutions in azimuth and zenith are equal,
the Kent distribution takes the form

Si

Bi = Pi,zenith : Pi,azimuth = Pi,zenith ' (35)

i
= ———— exp (Kkj cos(|T —x;l)) - 3.6
A sinh(m) p( 7 (| source Z|)) ( )
Here, |Zsource — Zi|, is the angular distance between the source and the event i. The parameter
K; is the concentration parameter for the distribution, related to the angular resolution of the

events by
1

Ki X —5, (3.7)
g
where the median of the differences between true and reconstructed event directions are used
as the angular resolution. This will be discussed more thoroughly below. The angular extent
of the source is omitted since transient emitters are expected to be point sources.

In addition to the Rg ppg-threshold, a threshold is applied to the value of signal events
ns in order to require a minimal amount of spatial clustering (spatial correlation) between the
events within a time window. In this work, the ns-threshold is set to 2. The log-likelihood
ratio defined in Equation 3.4 is maximized with respect to the value of ng and the source
direction, Tsource, included in the Kent distribution. Several distinct directional maxima may
exist, and therefore we perform the maximization once for each event within the time window,
while using the best-fit event position as the initial guess for the position of a possible transient
point source. This ensures that all relevant maxima are found, and subsequently, the largest
maximum passing the ng-threshold is selected.

3.3 Performance

The performance of the analysis is estimated with simulations by injecting simulated signal
events into the scrambled background data. Thereby the uncertainty on the likely source
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Figure 4. Uncertainty of a simulated source position as function of the number of injected neutrinos,
ns. Left panel: The uncertainty decreases with the neutrino mean energy for a fixed declination of
16 degrees. Right panel: Same plot but varying the declination for a fixed mean energy of 100 GeV.

position is found when maximizing the natural log of the likelihood ratio as well as the
sensitivity and discovery potential for the analysis.

For the injection of signal events into the background data, the signal neutrinos are
weighted according to a Dirac spectrum that mimics the shape expected from an astrophysical
transient [12]. The Dirac spectrum is parameterized as

(&)
®(E) =N - -, (3.8)
exT +1
where kT depends on the the mean energy of the neutrinos

Emean
kKT = .
3.15

(3.9)

In this work, we use the mean energies of Fyean = 20 GeV and Eypean =100 GeV as bench-
marks.

The uncertainty on the source position is defined as the difference between the true
injected source position and the likely position found when performing the likelihood maxi-
mization. In this case, only the time windows actually containing the source are considered.
The uncertainty is estimated and the result is shown in Figure 4. The left panel shows that
the uncertainty decreases with the number of signal events ng and with the neutrino energy.
The source position is generally estimated more accurately when more neutrinos from the
source are detected. Higher energy neutrinos are reconstructed better, leading to the events
being observed closer to the true source position. This pattern is also seen in Figure 3 for
the angular resolution splines. The right panel of Figure 4 shows that the uncertainty on the
source position decreases with larger (more positive) values of the source declination, which is
also a result of the event angular resolution being better at larger declinations. The angular
resolutions strongly affects the signal PDF since it is being squared in Equation 3.7 and be-
cause k is included in the exponent in equation 3.6. The central median values of the angular
and energy resolution are used in this transient analysis for each candidate neutrino within
the examined time window(s). While the 68% confidence intervals for the resolutions are not



10
—— Emean = 20 GeV, 90% C.L. Sensitivity 250 —— Emean = 20 GeV, 90% C.L. Sensitivity
" ——— Emean = 20 GeV, 30 Discovery Potential —_ === Emean = 20 GeV, 30 Discovery Potential
< 91 —— Emean = 100 GeV, 90% C.L. Sensitivity rl\‘ —— Emean = 100 GeV, 90% C.L. Sensitivity
g === Emean = 100 GeV, 30 Discovery Potential E 200 === Emean = 100 GeV, 30 Discovery Potential
T ]
© >
()
c
)] O 150
n 7 ~
u— ©
° g
— uy 100
61 -
° ©
£ o
> 5 ~ 50
= w
4 T T T T T T T T T 0 T T T T T T T T T
-80 —60 -40 -20 0 20 40 60 80 -80 -60 -40 =20 0 20 40 60 80
Declination [°] Declination [ °]

Figure 5. Left panel: Event sensitivity and discovery potential for the two different neutrino emission
energies. The number of signal events on the y-axis refers to the average number of injected signal
events. Right panel: The event sensitivity and discovery potential converted to fluences using the
effective area for the GRECO event selection. The peak of the fluence is used as reference point for
the energy (See also Section 4.1).

explicitly used, they reflect the spread of neutrino angular resolutions that are used for the
pseudo-trials necessary to establish the sensitivity to an astrophysical transient source.

In this work, we define the test statistic (T'S) as the largest value of the maximized
natural log of the likelihood ratios for either observed data or a background-only hypothesis.
Owing to the fact that Wilks’ theorem is not satisfied for this analysis we are unable to define
an analytical expression for the TS distributions. Therefore, the background TS distribution
used to establish the sensitivity and discovery potential for this analysis is generated from
scrambled trials, where a scrambled trial corresponds to a year of time scrambled data. This
motivates an estimation of a discovery potential at a 3o significance rather than at the more
traditional 50 due to computational challenges. Additionally, a 3o discovery potential is
further motivated by the possibility of using this analysis for sending transient astrophysical
alerts [21-23], in which case 30 is a reasonable threshold.

Figure 5 shows the 90% sensitivity and 3o discovery potential for the analysis in terms of
the number of observed signal events as well as fluence. The 90% sensitivity is defined as the
signal strength that results in 90% of the scrambled trials containing signal having a value of
the TS equal to or larger than the median background TS. The 3¢ discovery potential requires
the median of the scrambled trials containing signal to coincide with the 30 background TS
value. The sensitivity in terms of the number of signal events is slightly worse around the
horizon, since the background rate at those declinations is higher. The sensitivity in terms
of the fluence is better for larger declinations due to the effective area of the detector being
better in the Northern Sky.

For a source emitting neutrinos with a mean energy of Feqn = 20 GeV located at a
declination of 16°, it was found that increasing the number of time windows considered (when
ns threshold is fixed to 2) does not significantly improve sensitivity (which plateaus at ~8
signal events). However, the computation time is significantly increased, motivating us to
consider not more than 100 windows on average per trial. The sensitivity when the average
number of time windows considered is fixed to 100, is also not significantly affected by the
ns threshold (the sensitivity improves from 7.8 to 7.6 signal events when the ng threshold is
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Figure 6. Comparison between the discovery potential using the actual event rate and using a rate
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source with a mean energy of 100 GeV with a normal background rate and with an increased rate.
Similarly, the blue points in the ratio plot corresponds to the ratio between the discovery potentials
with normal rate and increased rate for a source with a mean energy of 20 GeV.

varied from 1.5 to 4.0), which is therefore kept fixed at 2 in order to require a minimum of
spatial clustering between the events.

The background rate is not constant as a function of the azimuth angle due to the
detector geometry having slightly different atmospheric muon rejection efficiency and neutrino
acceptance, and is also not constant in time as a result of seasonal temperature variations in
the atmosphere. In order to account for the fluctuations in time and azimuth, the discovery
potential is estimated with an increased background rate of 15%. The result of an increase in
the background is shown in Figure 6, where the discovery potential is worsened by less than

5%.

4 Results

We used blind analysis techniques for GRECO data collected between April 2012 and May
2015. The unblinded results are presented in this section.

4.1 Unscrambled results

When unscrambling the three years of GRECO data we find 300 cluster centers above the
Ry pp-threshold resulting in 300 time windows. After applying the ns-threshold, 267 time
windows remain. The comparison between the TS for the best-fit signal and source position
and the TS distribution for three years of scrambled background data is shown in Figure 7.
The 30 TS value for the background distribution is indicated by the black dashed line. The
best-fit T'S value is smaller than the 30 TS for background, and hence, this analysis reveals
no transient neutrino emission from point sources in the data.

Since no transient neutrino emission from point sources was found in the data, we place
upper limits on the volumetric rate (p) of the transient phenomena in the local universe. The
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discovery potential and sensitivity are given in terms of peak fluence, which is given by

o & dN
E%®, = dz——— ¢ NG 4.1
/0 Z47Td%(z) dz ¢ ’ (41)

where the parameter £ is the bolometric energy of the source and N(z) describes the number
of expected sources within redshift z and is parameterized as

47

d3(z), (42)

N(Z) = prsky

with T" being the livetime of the data used and f,, denotes the fraction of the sky considered.

Since this work is a full sky search, fs, =1. The factor %e*N (2) in Equation 4.1 is a measure

of the probability of having the closest transient neutrino source at redshift z.
The relationship between the luminosity distance dy and the comoving distance d,. is

du(z) = (1+ 2)de(2), (4.3)

where the comoving distance [24] can be expressed as

do(z) = /O ’ H(CZ,)dz', (4.4)

with ¢ being the speed of light and H(z) is the Hubble parameter that takes the form

H(z)? = H§ (14 2)*Qp + Qa) (4.5)

by assuming a matter and dark energy dominated universe without curvature. In this work,
we adopt the value 74.03 + 1.42kms~! Mpc~! for the Hubble expansion rate based on the

~10 -
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potential. Left panel shows result based on sources with a mean energy of 20 GeV, while right panel
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recent local universe measurements [25]. The cosmological parameters are taken to be Qy; =
0.3 and Q24 = 0.7, respectively.

The probability distribution describing the closest transient neutrino source with respect
to redshift is then found by combining Equations 4.2 and 4.4 and differentiating with respect

to the redshift. This yields

dN c
— = T4 d?. 4.
dz ﬂ-H(Z) ¢ (46)

By combining Equations 4.1, 4.3, and 4.6 we obtain

o0 £ c
E%®, = d T4 d%(2)e NG
/0 a1+ 222" T H() c(z)e

oo 1
— AT - .N@E.
P c5/0 dz(1+z)2H(z)e

Finally, by using Equations 4.2, 4.4, and 4.7 we get

o0 1 4T (% ¢
EQ(I)Z, = 0T - — 0T — B . 4.
pTe /o G arae) exP( T /0 )" > (48)

From Equation 4.8 correlated values of the volumetric rate and the bolometric energy are
found. The result is shown in Figure 8, where the 30 discovery potentials for the data with a
15% increase of rate have been used in order to account for the systematic uncertainties arising
when assuming a constant background rate in time and azimuth. The discovery potential in
terms of fluence varies with the declination of the source as seen in Figure 5, and consequently
the volumetric rate is declination dependent as well.

4.2 Systematic uncertainties

We have estimated the systematic uncertainties on the sensitivities by considering simulated
data based upon different ice models [27] and DOM efficiency [6], i.e., the optical efficiency
for a DOM to detect a photon. In these calculations, the most conservative ice models, i.e.,
the models resulting in the largest possible uncertainties, have been used.
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The systematic uncertainty on the sensitivity for a source following a subphotospheric
energy spectrum with a mean energy of 100 GeV is just above 25% for downgoing neutrinos
and around 17% for upgoing events. The largest contribution arises due to the uncertainty on
the model describing the bulk ice, e.g., different assumptions for the photon scattering and
absorption within the bulk ice.

The systematic uncertainties for the spectrum with mean energy 20 GeV is slightly
smaller, ~20% for downgoing and ~15% for upgoing neutrino events. In this case, the uncer-
tainty on the DOM efficiency is the dominant factor.

5 Conclusion and Outlook

This analysis has been performed on three years of GRECO data as an offline astrophysical
search. This is the first all-flavor low-energy transient source search from IceCube and no
astrophysical point sources were found. Upper limits of ~ 705 — 2301 Gpc™2 yr~! have been
placed on the volumetric rate of the transient neutrino sources, assuming neutrino spectra
consistent with that from subphotospheric emission with flare times of up to approximately
600s, a mean neutrino energy of 100 GeV, and a bolometric energy of 10°2 ergs. Effectively,
this applies to gamma-ray bursts following the criteria described. Systematic uncertainties
have been included, by using discovery potentials calculated based on varying parameters as
described above, ultimately making the limit more conservative.

The analysis presented here is a potentially powerful tool for a real-time alert system.
The ability to complement /extend the existing high-energy real-time alerts from IceCube,
down to ~ 10 GeV with an all-flavor neutrino selection opens up a new and relatively unex-
plored energy regime for the contribution of neutrinos to multimessenger astronomy. Bene-
fiting future online, and offline, analyses will be improvements in the angular reconstruction
algorithms for low-energy neutrino events as well as improved multi-PMT photon sensors
which will be deployed within IceCube as part of the IceCube Upgrade [28] construction in
the early to mid 2020s. A multimessenger campaign centered around an alert system with
such improvements may render neutrino emission from high luminosity GRBs identifiable (see
Figure 8) in the near future.
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