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ABSTRACT OF THE DISSERTATION 

Evolution of metabolism to reveal metabolic repair 

and to improve engineered microbial production 

 

Samuel Patrick Pontrelli 

Chemical and Biomolecular Engineering 

University of California, Los Angeles, 2018 

James C. Liao, Chair 

 

Harnessing the adaptive nature of cell metabolism presents an opportunity to understand the 

function of biological systems, how they adapt, and how they may respond when challenged. It 

also stands as a tool that can aid in restoring impaired metabolic function caused by engineering 

microbial production. Many studies have demonstrated the ability of the cell to overcome 

metabolite auxotrophies and have elucidated underlying mechanisms. However, these studies 

have primarily focused on mechanisms that directly replace mutant function. In this work, we 

first aim to expand this view by evolving and elucidating more complex adaptive mechanisms. 

As an example, we used a ΔpanD strain of E. coli, a β-alanine auxotroph, to demonstrate that 

entire metabolic pathways can evolve to repair auxotrophy. Using directed strain evolution, we 

showed that E. coli successively evolved three distinct metabolic pathways to synthesize β-

alanine. The first involved significant rewiring and repurposing of the uracil synthesis and 

degradation pathways. The second relied on a gain-of-function mutation in ornithine 

decarboxylase (SpeC) which altered substrate and reaction specificity. The third pathway 

emerged that relies on synthesis of polyamines.  

This work also serves as a demonstration of how metabolism can be evolved to overcome 

impaired metabolic function that may be incurred through engineering microbes for production. 
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As an example, we focused on a modified strain of E. coli that is capable of producing high titers 

of butanol in rich media using an anaerobic, growth-coupled, modified Clostridial CoA-

dependent pathway. For unknown reasons, strain modifications impaired metabolic function. 

Using directed strain evolution, a strain was acquired that has improved growth, titers and 

butanol yields. We further identified several mutations that adapted energy and carbon 

metabolism and optimized expression of pathway enzymes. These works collectively 

demonstrate the elucidation of adaptive mechanisms of cell metabolism and further, they 

demonstrate applications in strain engineering. 
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Overview 
 

Escherichia coli can synthesize all required metabolites from a variety of carbon sources. 

Specific chemical reactions that comprise biosynthetic pathways may be required for formation 

of essential metabolites, and therefore, deleterious growth consequences may arise when these 

reactions are blocked. Metabolism has proven the ability to repair itself from these deleterious 

consequences(1–5). By studying this ability, we can gain insight into the function of biological 

systems, how new functions emerge, and how life may respond when challenged. Further, the 

ability of metabolism to repair stands as an opportunity to enhance bioproduction when 

engineered pathways impair metabolic function. This work aims to demonstrate the mechanisms 

by which E. coli can actively utilize its existing genetic components to overcome metabolic 

damage, and further, how damaged metabolism can be repaired to enhance production of 1-

butanol. Two main works, described within chapters 2 and 3, describe these aims. In both works, 

directed strain evolution plays a critical role, which is discussed in detail below.  

In chapter 2, a ΔpanD strain of E. coli, unable to produce the β-alanine required for synthesis of 

Coenzyme A, is used as an example to demonstrate mechanisms by which new pathways can 

form to overcome metabolite auxotrophy. In this, three distinct metabolic pathways are 

successively evolved to synthesize β-alanine. Here, metabolic pathways emerged using three 

contributing mechanisms i) rewiring of existing metabolic networks, ii) repurposing promiscuous 

enzymes and iii) evolution of new enzyme function. Specific contributing genetic mutations and 

metabolic perturbations are identified to further elucidate how these pathways emerged.  

Within chapter 3, a strain of E. coli designed to produce 1-butanol in minimal media is used to 

demonstrate that metabolism can be repaired to enhance bioproduction. Within this strain, all 
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fermentation pathways are deleted, thus placing the 1-butanol pathway as the sole electron sink. 

While this strategy worked for production of high titers within rich media, neither growth nor 

production was observed within minimal media. Here, the burden of the expressed pathway, 

combined with the altered physiological metabolic flux, impaired metabolic function. With use 

of directed strain evolution, metabolic function was restored, and resulted in increased growth, 

titers, and butanol yields. Causal genetic mutations and metabolic perturbations are identified 

that allow for this improved phenotype. 

The following sections provide a background pertaining to metabolic repair. First, strategies for 

directed strain evolution are discussed and examples are given in which directed strain evolution 

has previously been used in metabolic engineering. Second, promiscuous enzymes and 

underground metabolism are discussed, as well as deleterious consequences that they may 

confer. These physiological components are critical to understanding of this work as they may 

serve as essential components used to restore metabolic function.  
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Directed strain evolution 

Directed strain evolution involves the continuous culturing of a host with a constantly applied 

selection pressure, allowing the accumulation of mutations that give rise to a desired phenotype. 

There are many factors that must be considered when designing a methodology for a directed 

strain evolution experiment. These include growth medium, timescale, mutagenesis rate, culture 

and propagation size, and maintenance of growth phases. These considerations are discussed 

elsewhere(6). The rate of evolution can be accelerated by different strategies that enhance 

mutagenesis. These strategies include chemical mutagenesis(7), UV mutagenesis(8), 

compromising DNA repair mechanisms(9), and implementation of synthetic variable 

mutagenesis mechanisms(10).  

Directed strain evolution stands as a diverse strategy and has previously been employed for 

generating a variety of industrially relevant phenotypes. E. coli and other microbes have been 

evolved to exhibit enhanced tolerances to conditions such as heat(11), pH(12), salt 

concentrations(13), and substrate or product toxicity(8, 14)(15)(16). In one case it was shown 

that improved tolerance to isobutanol also resulted in tolerance to n-butanol and 2-methyl-1-

mutanol(16). However, the same strain showed no improvement in ethanol tolerance and higher 

sensitivity to hexane and chloramphenicol. This demonstrates the existence of evolutionary 

tradeoffs that may come with acquisition of certain phenotypes, and in this case, it must be noted 

that tolerance mechanisms to the tested compounds relies on different reaction mechanisms. 

Directed strain evolution has also been used to enhance growth rates(17), and to evolve E. coli to 

utilize alternating carbon sources, reducing lag caused diauxic growth phases(17).  

Substrate consumption or product formation have also been enhanced using directed strain 

evolution(17)(18)(8, 14).  Increasing product tolerance formed the basis in attempts to improve 
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production of serine and isobutanol(16), as existing titers exceeded toxicity limits for these 

compounds. In the case of isobutanol, increased tolerance did not alter production titers. 

However, enhancing tolerance of serine was quite successful in improving production titers and 

yields(8, 14). Interestingly, two successive studies that both aimed at evolving higher production 

of serine achieved different results using different strategies for enhancing mutagenesis. In one 

example, UV mutagenesis was used to enhance tolerance to 25g/l from 1.6g/l(14). This improved 

production titers 20% to 11.3 g/l. A further study used adaptive laboratory evolution to enhance 

tolerance to 100g/l, and further enhanced titers to 37g/l(14). 

Many directed strain evolution applications for metabolic engineering require the direct coupling 

of fitness and production. Apart from those mentioned above, one innovative strategy to enhance 

production of carotenoids in Saccharomyces cerevisiae exploits the antioxidant properties of 

carotenoids(19) which protect against periodic hydrogen peroxide shocking. However, reliance 

on fitness coupled production greatly limits applications of evolution to production of only a few 

compounds. Several synthetic biology based strategies have been employed to decouple growth 

and production that result in improved titers of a target compound. One strategy, termed 

feedback-regulated evolution (FREP), was developed to employ a molecular sensor to gauge the 

concentration of a target metabolite that in turn alters mutation rates(10). The assembly of 

synthetic transcription factors that serve as actuators of operons that govern a selection 

mechanism allow the ability to evolve certain traits that normally have no natural selection 

mechanism. Unfortunately, this strategy is susceptible to spontaneous mutations that can alter the 

efficacy of synthetic constructs. “Escapees” are cells that recover normal growth by overcoming 

induced stress conditions. While strategies have been developed to prevent the formation of 

escapees(20), one recent example employs a synthetic circuit that controls the expression of a 
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maltose-utilizing enzyme using a biosensor of a target metabolite. Tight coupling of growth and 

production is yielded in a parent strain that is deficient of enzymes required for maltose 

utilization.  

Besides acquiring a specific phenotype, directed strain evolution also offers insight into cell 

physiology that can aid in further engineering efforts. In one example, E. coli was evolved for 

enhanced succinate fermentation(21). E. coli’s native succinate fermentation pathway requires 

carboxylation of phosphoenolpyruvate (PEP) into oxaloacetate (OAA) using PEP carboxylase, 

encoded by ppc. However, the carboxylation reaction catalyzed by Ppc also releases phosphate 

from PEP, which would otherwise yield 1 ATP molecule through conversion of PEP into 

pyruvate. Through evolution, the cell managed to conserve this ATP molecule through two 

adaptations. First, phosphoenolpyruvate carboxykinase, Pck, became the main enzyme 

responsible for the carboxylation reaction. Pck, normally used during gluconeogenesis in the 

decarboxylation direction, here produces ATP in the carboxylation of PEP. Furthermore, a 

mutation inactivated ptsI, part of the phosphotransferase system, which usually functions to 

phosphorylate glucose while simultaneously converting PEP into pyruvate. By doing so, 

glucokinase became the main reaction responsible for phosphorylation of glucose, preventing 

PEP conversion into pyruvate. This step is particularly important for succinate production as 

converting pyruvate back to PEP, required for flux to succinate, requires an expenditure of 2 

ATP molecules.  

Several studies that sequenced genomes of evolved strains have noticed common mutations 

between strains of E. coli that have been evolved for enhanced growth within minimal 

media(22). Most common to these are mutations within RNA polymerase subunits (RNAP), 

rpoB and rpoC, respectively, which alter regulation of a broad range of cellular processes. Small 
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deletions in rpoC have been well characterized(23) that confer systematic transcriptional changes 

including down-regulation of motility, acid resistance, fimbria, and curlin genes. These adaptive 

RNAP mutations are believed to enhance growth in minimal media by decreasing open complex 

longevity. This in turn reduces transcription from promoters with short-lived open complexes 

such as rRNA, and increases transcription of promoters that require longer engagement of 

RNAP. Interestingly, this mutation is also accompanied by a decreased growth rate in rich 

media, presumably caused by decreased transcription of ribosomal units. Observations of 

mutations within these RNA polymerase subunits has been reported 

elsewhere(22)(24)(14)(25)(6)(11)(26). 

Within this work, a strategy was used to accelerate the rate of mutagenesis that relies on mutD5. 

MutD5, a mutant of DNA polymerase III subunit ε, dnaQ, was first identified as a mutator gene 

of E. coli that can induce mutations at frequencies that are 50 to 100 times above wildtype 

levels(27). mutD5 was shown to have two specific point mutations(28) that gave it properties of 

a dominant negative mutant(29), allowing its overexpression to confer a mutator phenotype that 

can later be removed when the gene is extracted. Here, directed strain evolution was carried out 

by subjecting a culture, harboring a plasmid that contains MutD5, to successive serial dilutions 

with a continuously applied selection pressure. More specific details pertaining to each evolution 

strategy are described below.  
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Promiscuous enzymes and spare parts 

In certain cases, E. coli contains genetic material that may serve as spare parts if an essential 

enzyme is damaged. For instance, many enzymes have isozymes that can catalyze the same 

reaction; within E. coli two forms of pyruvate kinase exist. Many enzymes are also promiscuous, 

meaning that they can catalyze the same chemical reaction on different, yet similar substrates. 

One example is the native E. coli 3-hydroxyacid dehydrogenase (YdfG) which can catalyze the 

NADP+ dependent oxidation of L-serine, L-allo-threonine, 3-hydroxypropanoate, among other 

substrates(30). The cell also contains unique biosynthetic pathways that are used to produce the 

same metabolite. For instance, in E. coli, 5-phospho-α-D-ribose 1-diphosphate (PRPP) can be 

synthesized directly from either ribose 1,5-bisphosphate or ribose 5-phosphate. In these 

scenarios, each pathway may serve as a spare part in case one pathway is inhibited. Other works 

have demonstrated the ability of promiscuous enzymes or isozymes to serve as spare parts in 

case an otherwise essential enzyme is missing(4, 5). 

The vast number of unknown chemical reactions that can be catalyzed by known enzymes has 

been referred to as underground metabolism(4, 5). Many secondary activities have been 

discovered and published in public databases such as BRENDA and MetaCyc(31, 32). In E. coli, 

more than 260 secondary, or underground reactions, have been discovered that are outside of 

known metabolic networks(4, 5). It has previously been demonstrated that promiscuous enzymes 

have the capability to be pieced together to form alternative metabolic pathways. In one case, a 

library of E. coli genomic DNA was transformed into strains of ΔpdxB E. coli(33). PdxB, 4-

phosphoerythronate, catalyzes an essential reaction in synthesis of PLP (pyridoxal 5-phosphate) 

and therefore a ΔpdxB strain is a PLP auxotroph. By transforming the genomic DNA library into 

this strain, authors tested the ability for promiscuous enzymes to either replace essential mutant 
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function or to patch unrelated pathways that may form new routes for PLP biosynthesis. As a 

result, several strains were isolated that used the genomic library to patch unrelated metabolic 

pathways and thus restore PLP biosynthesis. While this work demonstrates that the cell contains 

genetic components that have the potential to form new metabolic pathways, it does not 

demonstrate the mechanisms by which existing genetic components can actively adapt to repair 

metabolism.  

Promiscuous enzymes can be repurposed to complement mutant functions, however, many of 

these promiscuous reactions are increasingly being discovered that contribute to metabolite 

damage within the cell(34). Metabolite damage refers to side reactions to metabolites that can 

occur either enzymatically or non-enzymatically to produce wasteful or toxic products. To give 

an example, methylglyoxal is one of the major metabolites that causes metabolite damage(35). 

Methylglyoxal is formed from the spontaneous degradation of glyceraldehyde 3-phosphate and 

dihydroxyacetone phosphate. It is also formed as a side product from triose phosphate isomerase 

during glycolysis(36). Excess methylglyoxal can covalently link with lysine, arginine, and 

cysteine that is either free within the cytosol or bound within a protein(37). Methylglyoxal 

metabolite toxicity therefore presents a major concern for maintenance of optimal metabolic 

function. Another prevalent example is a side reaction of carbon fixing RuBisCO (ribulose-1,5-

bisphosphate carboxylase/oxygenase), which poorly discriminates oxygen and CO2(38). A 2:5 

ratio is present in the consumption of oxygen and CO2, resulting in production of toxic side 

product glycolate-2-phospate rather than the desired 3-phosphoglycerate product(39). When 

engineering high flux metabolic pathways, metabolite damage becomes an increasingly relevant 

concern, as increasing flux and pool sizes of metabolites can exacerbate metabolite damage 

reactions(40). Repair enzymes are being discovered that can reverse metabolite damage. For 
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example, to combat methylglyoxal metabolite damage in E. coli, YhbO and YajL can repair 

glycated proteins including glyceraldehyde-3-phoaphate dehydrogenase and fructose 

bisphosphate aldolase. Strains deficient in yhbO and yajL are sensitive to glucose containing 

media and methylglyoxal(41).  

Promiscuous enzymes exist that may serve as spare parts for metabolic repair mechanisms. 

Further, promiscuous reactions may cause unintended metabolite damage. Therefore, the extent 

and means by which E. coli can actively utilize its existing components to repair damage 

becomes increasingly unclear. Experiments described in this work aim to illustrate the 

mechanisms that govern metabolic repair.  

 

References 

1.  Blank, D., L. Wolf, M. Ackermann, O. K. Silander, The predictability of molecular 

evolution during functional innovation. Proc. Natl. Acad. Sci. U. S. A. 111, 3044–9 

(2014). 

2.  Veeravalli, K., D. Boyd, B. L. Iverson, J. Beckwith, G. Georgiou, Laboratory evolution of 

glutathione biosynthesis reveals natural compensatory pathways. Nat. Chem. Biol. 7, 101–

105 (2011). 

3.  McLoughlin, S. Y., S. D. Copley, A compromise required by gene sharing enables 

survival: Implications for evolution of new enzyme activities. Proc. Natl. Acad. Sci. U. S. 

A. 105, 13497–13502 (2008). 

4.  Guzmán, G. I., J. Utrilla, S. Nurk, E. Brunk, J. M. Monk, A. Ebrahim, Model-driven 

discovery of underground metabolic functions in Escherichia coli. Proc. Natl. Acad. Sci. 



11 

 

112, 929–934 (2014). 

5.  Notebaart, R. A., B. Kintses, A. M. Feist, B. Papp, Underground metabolism: network-

level perspective and biotechnological potential. Curr. Opin. Biotechnol. 49, 108–114 

(2018). 

6.  LaCroix, R. A., T. E. Sandberg, E. J. O’Brien, J. Utrilla, A. Ebrahim, G. I. Guzman, R. 

Szubin, B. O. Palsson, A. M. Feist, Use of adaptive laboratory evolution to discover key 

mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal 

medium. Appl. Environ. Microbiol. 81, 17–30 (2015). 

7.  Lee, C. H., D. L. Gilbertson, I. S. Novella, R. Huerta, E. Domingo, J. J. Holland, Negative 

effects of chemical mutagenesis on the adaptive behavior of vesicular stomatitis virus. J 

Virol. 71, 3636–3640 (1997). 

8.  Mundhada, H., K. Schneider, H. B. Christensen, A. T. Nielsen, Engineering of high yield 

production of L-serine in Escherichia coli. Biotechnol. Bioeng. 113, 807–816 (2016). 

9.  Antonovsky, N., S. Gleizer, E. Noor, Y. Zohar, E. Herz, U. Barenholz, L. Zelcbuch, S. 

Amram, A. Wides, N. Tepper, D. Davidi, Y. Bar-On, T. Bareia, D. G. Wernick, I. Shani, 

S. Malitsky, G. Jona, A. Bar-Even, R. Milo, Sugar Synthesis from CO2 in Escherichia 

coli. Cell. 166, 115–125 (2016). 

10.  Chou, H. H., J. D. Keasling, Programming adaptive control to evolve increased metabolite 

production. Nat. Commun. 4, 2595 (2013). 

11.  Tenaillon, O., A. Rodríguez-Verdugo, R. L. Gaut, P. McDonald, A. F. Bennett, A. D. 

Long, B. S. Gaut, The Molecular Diverstiy of Adaptive Convergence. Science (80-. ). 335, 



12 

 

457–462 (2012). 

12.  Hughes, B. S., A. J. Cullum, A. F. Bennett, Evolutionary adaptation to environmental ph 

in experimental lineages ofEscherichia coli. Evolution. 61, 1725–1734 (2007). 

13.  Dhar, R., R. Sägesser, C. Weikert, J. Yuan, A. Wagner, Adaptation of Saccharomyces 

cerevisiae to saline stress through laboratory evolution. J. Evol. Biol. 24, 1135–1153 

(2011). 

14.  Mundhada, H., J. M. Seoane, K. Schneider, A. Koza, H. B. Christensen, T. Klein, P. V. 

Phaneuf, M. Herrgard, A. M. Feist, A. T. Nielsen, Increased production of L-serine in 

Escherichia coli through Adaptive Laboratory Evolution. Metab. Eng. 39, 141–150 

(2017). 

15.  Almario, M. P., L. H. Reyes, K. C. Kao, Evolutionary engineering of Saccharomyces 

cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol. 

Bioeng. 110, 2616–2623 (2013). 

16.  Atsumi, S., T.-Y. Wu, I. M. P. Machado, W.-C. Huang, P.-Y. Chen, M. Pellegrini, J. C. 

Liao, Evolution, genomic analysis, and reconstruction of isobutanol tolerance in 

Escherichia coli. Mol. Syst. Biol. 6, 449 (2010). 

17.  Sandberg, T., C. Lloyd, B. Palsson, A. Feist, Laboratory Evolution to Alternating 

Substrate Environments Yields Distinct Phenotypic and Genetic Adaptive Strategies. 

Appl. Environ. Microbiol. 83, 1–15 (2017). 

18.  Argyros, D. A., S. A. Tripathi, T. F. Barrett, S. R. Rogers, L. F. Feinberg, D. G. Olson, J. 

M. Foden, B. B. Miller, L. R. Lynd, D. A. Hogsett, N. C. Caiazza, High ethanol Titers 



13 

 

from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl. 

Environ. Microbiol. 77, 8288–8294 (2011). 

19.  Reyes, L. H., J. M. Gomez, K. C. Kao, Improving carotenoids production in yeast via 

adaptive laboratory evolution. Metab. Eng. 21, 26–33 (2014). 

20.  Liu, S.-D., Y.-N. Wu, T.-M. Wang, C. Zhang, X.-H. Xing, ACS Synth. Biol., in press, 

doi:10.1021/acssynbio.7b00247. 

21.  Zhang, X., K. Jantama, J. C. Moore, L. R. Jarboe, K. T. Shanmugam, L. O. Ingram, 

Metabolic evolution of energy-conserving pathways for succinate production in 

Escherichia coli. Proc Natl Acad Sci U S A. 106, 20180–20185 (2009). 

22.  Wannier, T. M., A. M. Kunjapur, D. P. Rice, M. J. McDonald, M. M. Desai, G. M. 

Church, Long-term adaptive evolution of genomically recoded Escherichia coli. Doi.Org, 

162834 (2017). 

23.  Conrad, T. M., M. Frazier, A. R. Joyce, B.-K. Cho, E. M. Knight, N. E. Lewis, R. 

Landick, B. O. Palsson, RNA polymerase mutants found through adaptive evolution 

reprogram Escherichia coli for optimal growth in minimal media. Proc. Natl. Acad. Sci. 

107, 20500–20505 (2010). 

24.  Long, C. P., J. E. Gonzalez, A. M. Feist, B. O. Palsson, M. R. Antoniewicz, Fast growth 

phenotype of E. coli K-12 from adaptive laboratory evolution does not require 

intracellular flux rewiring. Metab. Eng. 44, 100–107 (2017). 

25.  Sandberg, T., C. Lloyd, B. Palsson, A. Feist, Laboratory Evolution to Alternating 

Substrate Environments Yields Distinct Phenotypic and Genetic Adaptive Strategies. 83, 



14 

 

1–15 (2017). 

26.  Sandberg, T. E., C. P. Long, J. E. Gonzalez, A. M. Feist, M. R. Antoniewicz, B. O. 

Palsson, Evolution of E. coli on [U-13C]glucose reveals a negligible isotopic influence on 

metabolism and physiology. PLoS One. 11, 1–14 (2016). 

27.  Degnen, G. E., E. C. Cox, Conditional mutator gene in Escherichia coli: isolation, 

mapping, and effector studies. J. Bacteriol. 117, 477–487 (1974). 

28.  Takano, K., Y. Nakabeppu, H. Maki, T. Horiuchi, M. Sekiguchi, Structure and function of 

dnaQ and mutD mutators of Escherichia coli. MGG Mol. Gen. Genet. 205, 9–13 (1986). 

29.  Maruyama, M., T. Horiuchi, H. Maki, M. Sekiguchi, A dominant (mutD5) and a recessive 

(dnaQ49) mutator of Escherichia coli. J. Mol. Biol. 167, 757–771 (1983). 

30.  Fujisawa, H., S. Nagata, H. Misono, Characterization of short-chain 

dehydrogenase/reductase homologues of Escherichia coli (YdfG) and Saccharomyces 

cerevisiae (YMR226C). Biochim. Biophys. Acta - Proteins Proteomics. 1645, 89–94 

(2003). 

31.  Schomburg, I., A. Chang, O. Hofmann, C. Ebeling, F. Ehrentreich, D. Schomburg, 

BRENDA: A resource for enzyme data and metabolic information. Trends Biochem. Sci. 

27, 54–56 (2002). 

32.  Keseler, I. M., J. Collado-Vides, S. Gama-Castro, J. Ingraham, S. Paley, I. T. Paulsen, M. 

Peralta-Gil, P. D. Karp, EcoCyc: A comprehensive database resource for Escherichia coli. 

Nucleic Acids Res. 33, 334–337 (2005). 

33.  Kim, J., J. P. Kershner, Y. Novikov, R. K. Shoemaker, S. D. Copley, Three serendipitous 



15 

 

pathways in E. coli can bypass a block in pyridoxal-5’-phosphate synthesis. Mol. Syst. 

Biol. 6, 436 (2010). 

34.  Linster, C. L., E. Van Schaftingen, A. D. Hanson, Metabolite damage and its repair or pre-

emption. Nat. Chem. Biol. 9, 72–80 (2013). 

35.  Richard, J. P., Acid-Base Catalysis of the Elimination and Isomerization Reactions of 

Triose Phosphates. J. Am. Chem. Soc. 106, 4926–4936 (1984). 

36.  Richard, J. P., Mechanism for the formation of methylglyoxal from triosephosphates. 

Biochem. Soc. Trans. 21, 171–174 (1993). 

37.  Richarme, G., M. Mihoub, J. Dairou, L. Chi Bui, T. Leger, A. Lamouri, Parkinsonism-

associated protein DJ-1/park7 is a major protein deglycase that repairs methylglyoxal- and 

glyoxal-glycated cysteine, arginine, and lysine residues. J. Biol. Chem. 290, 1885–1897 

(2015). 

38.  Erb, T. J., J. Zarzycki, Biochemical and synthetic biology approaches to improve 

photosynthetic CO2-fixation. Curr. Opin. Chem. Biol. 34, 72–79 (2016). 

39.  Walker, B. J., A. VanLoocke, C. J. Bernacchi, D. R. Ort, The Costs of Photorespiration to 

Food Production Now and in the Future. Annu. Rev. Plant Biol. 67, 107–129 (2016). 

40.  Sun, J., J. G. Jeffryes, C. S. Henry, S. D. Bruner, A. D. Hanson, Metabolite damage and 

repair in metabolic engineering design. Metab. Eng. 44, 150–159 (2017). 

41.  Abdallah, J., M. Mihoub, V. Gautier, G. Richarme, The DJ-1 superfamily members YhbO 

and YajL from Escherichia coli repair proteins from glycation by methylglyoxal and 

glyoxal. Biochem. Biophys. Res. Commun. 470, 282–286 (2016). 



16 

 

 

  



17 

 

Chapter 2 :  Metabolic repair through emergence of new pathways 
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Abstract 

Microorganisms can derive all metabolites and cofactors essential for growth from a simple 

carbon source through a highly evolved metabolic system. Damage of pathways may 

significantly affect cell growth and physiology, but the extent to which metabolic pathways can 

repair damage is not well understood. Here we use a ΔpanD (coding for aspartate 1-

decarboxylase) strain of Escherichia coli to demonstrate that the metabolic system can repair 

pathway damage by evolving new metabolic functions and repurposing existing enzymes. The 

ΔpanD strain cannot synthesize β-alanine, which is a required precursor for coenzyme A (CoA).  

Using directed strain evolution, we showed that E. coli repaired this pathway damage using three 

distinct strategies. The first involved significant rewiring and repurposing of the uracil synthesis 

and degradation (Rut) pathways.  The second evolved through the emergence of a novel pathway 

involving a gain-of-function mutation within ornithine decarboxylase (SpeC) to alter both 

reaction and substrate specificity. The mutated enzyme functions as a bifunctional decarboxylase 

and oxidative deaminase to produce 3-aminopropanal from 2,4-diaminobutyrate, with a kcat/km 

improvement over 3000 fold. After deletion of both the Rut and SpeC pathways, yet another 

independent pathway emerged through evolution, demonstrating the vast capacity of metabolic 

repair. 
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Main Text 

Unlike DNA, metabolic systems are not known to possess a repair mechanism. Some key 

reactions in metabolism are catalyzed by isozymes that may serve as spare parts(1) to avoid 

catastrophic consequences in pathway damage: when reactions of a metabolic pathway are 

blocked. Alternatively, promiscuous enzymes may be present to complement a lost 

function(2)(3). Other enzymes are highly specialized and catalyze unique reactions, and when 

damaged may significantly compromise growth and alter physiology. The wide range of possible 

reactions catalyzed by cryptic and promiscuous enzymes has potential to form pathways that can 

restore metabolic function when these specialized reactions are damaged (4). However, the 

mechanisms and extent by which the cell can actively utilize its existing components to repair 

metabolism is poorly understood. Here, we demonstrate that new pathways can be formed with a 

combination of repurposed enzymes and rewired metabolic networks, and with the emergence of 

new biochemical function. We use a ΔpanD strain of E. coli, which is incapable of producing the 

β-alanine required for synthesis of CoA, as an example to show that β-alanine pathway damage 

can be repaired by formation of at least three distinct metabolic pathways. Our results 

demonstrate the intrinsic pliability of biological systems, and that new pathways can form to 

repair damage at the metabolic level.  

Aspartate 1-decarboxylase (PanD), is the only enzyme capable of β-alanine synthesis in 

E. coli. In bacteria, fungi, and plants, β-alanine is a precursor to pantothenate, which is in turn a 

required metabolite for the synthesis of coenzyme A (CoA) in all organisms(5). In animals, β-

alanine is synthesized as a precursor to carnosine, which is found at high concentrations within 

skeletal muscle tissue and the central nervous system and is used for various physiological 
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purposes(6). Without CoA, the cell is incapable of carrying out essential cellular processes that 

include the TCA cycle, fatty acid biosynthesis, and synthesis of acetyl-CoA which is used as a 

building block for many essential compounds(5). Therefore, unless β-alanine or pantothenate are 

supplemented, a ΔpanD strain cannot grow on minimal media alone. Unlike most decarboxylases 

that use pyridoxal-5′-phosphate (PLP) as a cofactor, PanD uses a covalently-bound pyruvoyl 

cofactor(7). PanD is first translated as an inactive protoenzyme that is cleaved into an α and β-

subunit, triggered by the activator PanZ(8). This likely serves as an additional regulatory element 

to control intracellular levels of pantothenate.  

Several other pathways are believed to exist in other organisms to supply β-alanine: 

degradation of propionate into malonic semialdehyde (MSA) and subsequent transamination(9), 

a reductive uracil degradation pathway using dihydrouracil as an intermediate(10), and an 

oxidative degradation of spermine into β-alanine using 3-aminopropanal as an upstream 

precursor(11). However, within E. coli, these pathways are not known to exist.  

We first attempted to repair a ΔpanD mutant by repeatedly passing cultures that contain 

limited amounts of β-alanine. This approach did not yield successful results after 20 passages. 

We then sought to enhance the rate of mutagenesis to generate extensive metabolic innovations 

within a shorter timeframe. This was accomplished by overexpressing a mutator gene, 

mutD5(12), which compromises DNA mismatch repair and proofreading in a dominant negative 

manner.  Within 20 serial dilutions, 12 of 15 independent cultures overcame β-alanine 

auxotrophy with an average number of 283.5 mutations per genome (σ = 148.2, Table 2-1). An 

isolated clonal strain, PS1, was further studied to investigate how the strain repaired the damaged 

β-alanine synthesis pathway. Interestingly, although many amino acid decarboxylases exist 

within E. coli, none emerged with function sufficient to directly complement PanD. Rather, the 
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strain re-routed metabolism though pyrimidine synthesis and uracil degradation pathways (Figure 

2-1A). This was accomplished solely through the modulation of enzyme expression levels rather 

than changing enzyme functions. Four essential mutations were identified that allowed for this 

pathway re-routing. The first two mutations identified are within repressors RutR (L55P) and 

CsiR (S144P) (Figure 2-1A). These mutations enable derepression of the pyrimidine utilization 

(Rut) pathway and 4-aminobutyrate transaminase (GabT), respectively (Figure 2-1B). Together 

these form the core enzymatic constituents of the pathway. The Rut pathway degrades uracil into 

3-hydroxypropionic acid (3HP) as a terminal product(13). However, GabT is a promiscuous 

transaminase that is known to convert MSA, the penultimate metabolite of the Rut pathway, into 

β-alanine(14), and therefore is able to reroute the terminal product of the Rut pathway. Deletion 

of either RutABC or GabT from PS1 abolishes the evolved phenotype, confirming their essential 

contributions (Figure 2-1C).  

The third essential mutation was acquired in the final enzyme of the Rut Pathway(13), 3-

hydroxy acid dehydrogenase, YdfG (K108E), which diminishes but does not abolish the enzyme 

function (Figure 2-1D). While this mutation may serve to redirect the terminal product of the Rut 

pathway to β-alanine, deletion of YdfG from PS1 abolishes the evolved phenotype (Figure 2-1C). 

Because MSA is a toxic intermediate(13), a minor amount of YdfG activity may be essential to 

prevent toxic buildup. GabT provides a thermodynamically reversible transamination between 

MSA and β-alanine, and consequently, we observed toxicity caused by excess β-alanine 

supplementation (Figure 2-1E). We demonstrated the ability of YdfG to relieve this toxicity as 

overexpression within PS1 restores growth with excess β-alanine (Figure 2-1E). 

The fourth significant mutation on Upp (L178P), uracil phosphoribosyltransferase, 

completely abolishes the enzyme activity (Figure 2-1F). Upp catalyzes the synthesis of UMP 
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(uridine 5'-monophosphate), the precursor for all pyrimidine nucleotides, from uracil and PRPP 

(5-phospho-α-D-ribose 1-diphosphate). This reaction recycles the uracil formed as a degradation 

product from nucleic acids(15). Intracellular concentrations of metabolites were compared 

between PS1 and a ΔpanD parent strain and showed decreased concentrations of pyrimidine 

nucleotides within PS1 (Figure 2-41), suggesting that this mutation enables sufficient outflux of 

uracil into the Rut pathway. We attempted to reconstruct the pathway within an unevolved 

ΔpanD strain, but with only overexpression of the Rut operon and GabT. In this strain, additional 

uracil supplementation was required (Figure 2-1G). However, when upp was further deleted, 

growth was observed without additional supplementation (Figure 2-1G). When each of the four 

identified mutations were individually reverted within PS1 the repaired phenotype was either 

weakened or completely abolished (Figure 2-1C).   

To determine whether this same pathway formed in the remaining 11 repaired ΔpanD 

strains, we deleted the genes rutABC from each one. This resulted in an abolished growth 

phenotype within all but two strains, suggesting the existence of additional mechanisms of 

metabolic repair. We then obtained strains that specifically overcame auxotrophy independent of 

uracil and the Rut degradation pathway. A double deletion ΔpanD ΔrutABC mutant was 

subjected to serial dilutions with limiting β-alanine and expression of mutator mutD5. After 85 

dilutions, 4 of 12 independent cultures again repaired β-alanine metabolic pathway damage. 

Genomes of all strains were sequenced to reveal an average of 149 mutations per genome (σ = 

36.1,Table 2-1).  

All double ΔpanD ΔrutABC strains with repaired phenotypes, in addition to the two 

remaining single ΔpanD repaired strains, acquired a mutation within the same residue of 

ornithine decarboxylase, SpeC (G655S or G655A). Deletion of SpeC from any of these strains 
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resulted in complete abolishment of the restored phenotype (Figure 2-2A), demonstrating its 

essentiality. Reversion of the SpeC point mutation was tested in one strain (PR11) and abolished 

the growth phenotype (Figure 2-2A).  

While SpeC normally functions as an ornithine decarboxylase, 2,4-diaminobutyrate 

(24DAB) is a structural homolog of ornithine. The analogous decarboxylation product of 24DAB 

is 1,3-propanediamine, which may serve as an upstream precursor of β-alanine (Figure 2-5). We 

therefore hypothesized that SpeC acquired a mutation that allowed it to expand its substrate 

specificity. However, in vitro assays with purified enzyme revealed that 24DAB decarboxylase 

activity was detected from wildtype SpeC (Figure 2-5), but both mutated SpeC variants 

completely lost this activity. 

Surprisingly, in the absence of 13PDA formation, 24DAB consumption was still 

observed from mutated SpeC variants in vitro. Similar PLP dependent amino acid 

decarboxylases have reported side reactions that result in simultaneous decarboxylation and 

deamination of the α-amino group to yield the respective aldehyde product(16). In this case, 

product formation from 24DAB yields 3-aminopropanal (3AP), which can further be oxidized to 

β-alanine, possibly by betaine-aldehyde dehydrogenase, BetB(17). A coupled in vitro assay of 

purified BetB and SpeC yielded β-alanine from 24DAB (Figure 2-2B) with SpeC variants. 

Previous reports of a simultaneous decarboxylation and deamination reaction involve a net 

reaction that requires the consumption of dissolved oxygen and formation of ammonia and 

hydrogen peroxide(16). We confirmed the presence of this reaction as β-alanine formation was 

detected in a 1:1 ratio with both ammonia and hydrogen peroxide (Figure 2-2CD). 

The native enzyme betaine-aldehyde dehydrogenase, BetB(17), has been reported to have 

secondary activity for converting 3AP to β-alanine. Deletion of BetB abolishes the evolved 
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phenotype, confirming its contribution (Figure 2-2A). BetI, the corresponding repressor of BetB 

is mutated within PR11 (BetI I15F), and a measured increase in expression of BetB demonstrates 

the deleterious consequence of this mutation (Figure 2-2E). Reversion of the BetI mutation also 

diminishes the growth rate of PR11 (Figure 2-2A). Upstream of these reactions within the 

pathway, we suspected that aspartate semialdehyde, a central metabolite essential for lysine, 

threonine, and methionine biosynthesis, may be a direct precursor of an aminotransferase 

reaction that can produce 24DAB directly (Figure 2-2F). A mutation was found on CsiR (Q99G), 

the repressor of GabT, within PR11 to suggest its involvement. An increase in GabT expression 

within PR11 was measured to indicate that CsiR is deleteriously mutated (Figure 2-2E). GabT, 

which functions as a β-alanine aminotransferase within PS1, was determined to contain the 

activity of 24DAB aminotransferase needed within PR11 (Figure 2-6). To further confirm the 

pathway, we proceeded to reconstruct the complete pathway within an unevolved ΔpanD strain. 

GabT, BetB, and SpeC G655S overexpression was sufficient to rescue growth in minimal media 

without β-alanine supplementation (Figure 2-2G). Here, the identified mutations that contributed 

to metabolic repair increase expression of pathway constituents (CsiR and BetI) and alter activity 

(SpeC). 

Activity of the SpeC variants using 24DAB, ornithine, and lysine as substrates were 

tested in vitro. While wildtype SpeC has the simultaneous decarboxylation and oxidative 

deamination activity using ornithine as a substrate (Figure 2-3AC), this activity was almost 

undetectable with 24DAB. The mutations in SpeC (G655S or G655A) increased Kcat and 

decreased Km of this reaction for ornithine and 24DAB (Figure 2-3BC). G655A and G655S 

mutants presented respective 3300 and 640-fold Kcat/Km increases from 24DAB (Figure 2-3C). 

This gain of function may be the key to the metabolic repair. 
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SpeC G655A is the only variant capable of using all three substrates for a coupled 

decarboxylation and deamination reaction (Figure 2-3C, Figure 2-7). On the other hand, wildtype 

SpeC is the only variant capable of a single decarboxylation reaction on all three substrates 

(Figure 2-8), while G655A and G655S variants completely lost the ability to perform this reaction 

on 24DAB and lysine. It appears that metabolic pathway repair takes advantage of the broader 

reactivity and substrate range made available from existing enzymes that may further evolve to 

have a highly specified function. 

We sought to further test the ability of the cell to repair metabolic pathway damage. To 

this end, a ΔpanD ΔrutABC ΔspeC strain was constructed. With additional overexpression of 

mutD5, this strain was evolved for 45 passages to yield 1 of 12 strains that repaired β-alanine 

auxotrophy (Mel6) (Figure 2-9). We were able to identify three essential enzymes. These 

enzymes are arginine decarboxylase (SpeA), S-adenosylmethionine decarboxylase (SpeD), and 

spermidine synthase (SpeE). Deletion of these genes from mel6 abolished the evolved 

phenotype, and further, an increase in expression was measured (Figure 2-10). These enzymes 

normally function to synthesize spermidine within E. coli, suggesting that an additional pathway 

may have formed that degrades polyamines into β-alanine using unknown enzymes. Observing 

the formation of an additional pathway by which β-alanine auxotrophy can be overcome 

illustrates the remarkable capability of the metabolic system to repair damage using only 

endogenous genetic components.  

 To determine the extent of the repair capability, we selected an additional 34 metabolic 

auxotrophs, unable to grow in glucose minimal media (Table 2-2), and subjected them to a 

minimum of 20 serial dilutions with limiting nutritional supplementation, or until the ability to 

grow without supplementation was acquired. These 34 mutants were chosen to represent 
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deficiencies in a broad range of cofactor and amino acid biosynthetic pathways. Seven strains 

acquired the ability to grow without nutritional supplementation (Figure 2-11). These strains all 

recovered readily, requiring a small number of serial dilutions (mean = 3, Figure 2-11) and 

number of mutations (mean = 3,Table 2-1), consistent with previous works demonstrating that 

certain metabolic functions can be easily restored(18). For the remaining 27 strains, we 

overexpressed the mutD5 gene. Of these strains, four (Figure 2-11) gained the ability to grow 

without nutritional supplementation with an average of 446.8 mutations per genome (σ = 

287.5,Table 2-1). These results indicate that metabolic repair can extend to a diverse group of 

metabolic pathways. 

The cell is innately equipped with a vast set of endogenous genetic components that offer 

the potential to repair damaged metabolic pathways. The examples here demonstrate the active 

utilization of these components both by repurposing existing enzymes and by evolving new 

enzymatic function. Pathways to provide β-alanine were repeatedly evolved, demonstrating the 

plasticity of metabolism. Further, the evolved pathways are distinct from all currently known 

routes, indicating how β-alanine can be produced in a diverse number of ways within many 

different organisms. Metabolic pathway repair poses a challenge for the development of robust 

engineered phenotypes and metabolic targeted drugs, however, it also serves as an opportunity 

for the emergence of new biochemical function that can further be exploited in engineering 

microbes for bioproduction.  
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Materials and Methods 
Strains, reagents, and plasmids.  

 All chemicals and reagents were purchased from Sigma-Aldrich unless otherwise noted. 

Escherichia coli single knockouts strains were obtained from the Keio collection(19), and parent 

strain BW25113 was obtained from Thermo-scientific. 

Primers were purchased through Integrated DNA Technologies (IDTdna.com). RBS 

sequences were optimized using RBS Calculator v2.0(20, 21). All PCR reactions were first 

performed using KOD Hot-Start DNA polymerase (EMD Millipore). If these reactions failed, 

reactions were repeated with KOD Xtreme Hot-Start Polymerase (EMD Millipore). Assembly of 

fragments were performed using T4 DNA polymerase (NEB) using the following protocol: Gel 

purified PCR fragments with 20bp overlaps were mixed in equimolar amounts. Approximately 

300ng of the fragment mixture was combined with NEB buffer #2 and 0.3μl T4 polymerase to a 

final volume of 10μl. Reaction was incubated at room temperature for 5 minutes, transformed 

into E. coli XL1Blue (Agilent), and selected on LB agar plates containing appropriate antibiotics. 

Gene deletions on strains were carried out using λ Red recombinase as previously described(22). 

MutD5 gene was obtained by amplifying DnaQ from XL1Red strains (Agilent). His-tagged 

proteins are cloned and expressed within pCDFDuet backbones (Addgene). 

 

Growth conditions  

 Growth curves for PS1, PR11 and Mel6 derived strains were obtained within cultures of 

glucose M9 minimal media: M9 Minimal Salts (Fisher Scientific), 0.4% glucose, 1mM MgSO4, 

0.1mM CaCl2, 1mg/L thiamine. Antibiotics were used at the following concentrations: 
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Kanamycin sulfate 50 μg/mL, disodium carbenicillin (Gold Biotechnology) 100 μg/mL, 

chloramphenicol 20 μg/mL, and spectinomycin (Gold Biotechnology) 100 μg/mL.  

Optical density was measured using Agilent 8453 Spectrophotometer. During phenotypic 

analysis of PS1, PR11and Mel6 (and derivatives), colonies were inoculated into 3ml glucose 

minimal media containing limiting concentrations of β-alanine (1μM) and grown for 24 hours at 

37 °C. Cells were used in a 1:1000 inoculation into selection media containing appropriate 

supplements unless otherwise noted. Growth curves were measured in triplicates.  

 

Evolution of suppressor phenotypes 

 Strains were evolved to overcome various auxotrophies by gradually reducing the 

availability of nutritional supplementation. Mutant strains were inoculated into a preculture of 

LB containing an appropriate antibiotic, grown overnight at 37 °C, and further used to inoculate 

1:100 into minimal medium with a respective carbon source and antibiotic. Strains were passed 

into fresh minimal media at a 1:1000 dilution with limiting supplementation sufficient to 

maintain growth between OD600 0.4 and 0.6. These cultures were diluted daily. If growth 

exceeded OD600 0.6, the amount of nutritional supplementation was reduced two-fold for the 

next dilution. If cultures grew past OD600 1.0, they were passed into minimal media without 

further supplementation. If this culture grew, they were streaked onto minimal media agar plates 

without supplementation. Genotypes of growing colonies were verified using PCR and their 

phenotype was reconfirmed by inoculating directly from the plate into minimal media. Unless 

otherwise specified, four independent cultures of each strain were subjected to serial dilutions. 

Within certain strains, mutation rates were accelerated with use of a mutator plasmid that 

expresses MutD5. MutD5(23) is a dominant negative mutant of DNA polymerase III subunit ε, 

DnaQ, which catalyzes the 3' to 5' proofreading during DNA replication(24).  
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Strains were either evolved for a minimum of 20 dilutions, or until the ability to grow in 

minimal media without supplementation was obtained. Occasionally, the addition of a mutator 

plasmid into a given strain results in the loss of growth within minimal media even with 

nutritional supplementation. If this occurred, the strain was no longer subjected to serial 

dilutions.  

 

Curing Plasmids 

Plasmids were cured using acridine orange. Overnight cultures were made in LB without 

antibiotics. The following day, 1% inoculations were made into fresh LB cultures containing 

2µL of acridine orange (Thermo Fisher) for every 1ml of LB. These were grown overnight at 42 

°C, streaked onto LB plates, and then screened for the correct lack of antibiotic resistance. The 

lack of plasmid was then confirmed through PCR verification. 

 

Quantification of amino acids and polyamines using HPLC 

 Amino acids and polyamines were derivatized using OPA and FMOC reagents (Agilent) 

and analyzed using a Zorbax Eclipse ΑAA HPLC column (5μM beads, 4.6mm x 150 mm). All 

protocols were obtained from Agilent.  

 

GC-MS analysis of MCF derivatives 

 All columns and instruments were purchased from Agilent Technologies. GC-MS data 

was obtained using a 6890/5973 GC/MS and DB-624UI (GC-MS) column. The oven 

temperature was initially set at 60 °C for 2 minutes. Then a ramping of 16 °C/min was applied to 

a gradient reaching 180 °C, followed by a 3 minute hold. Next, a 40 °C/min ramping was applied 

to a gradient reaching 220 °C, followed by a 3 minute hold. The 40 °C/min ramping was again 
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applied to a temperature of 240 °C, followed by a 6 minute hold. The flow through the column 

was held constant at 1.8mL He/min. The injection volume was 2µL and the split ration 20:1. The 

temperature of the inlet was 180 °C and detector set to 250 °C.  

 

Preparation of cell lysate for enzyme assays 

 Respective plasmids were transformed into E. coli BL-21 DE3 (Invitrogen) and grown 

overnight. These cultures were used for a 1% inoculation into LB, grown to mid-log phase, and 

induced using 0.1mM isopropyl-h-D-thiogalactopyranoside (IPTG) overnight at 30 °C. Cells 

were harvested by centrifugation, resuspended into the respective buffer used for enzyme assays 

and lysed using Qiagen TissueLyser II.  

 

YdfG assay 

 Plasmids pALQ82 and pALQ83 were used to amplify wildtype and mutant (K108E) 

enzymes, respectively, within wildtype strain BL21. Standard reaction mixture was composed of 

50mM Tris-HCL buffer (pH 8.5), 0.5mM NADP+ and 5mM 3-hydroxypropionic acid. The 

reaction was started by adding 10μl of cell lysate to 200μL of reaction mixture, and monitoring 

OD340 increase over time using Bio-TEK Powerwave XS plate reader.  

 

Upp assay  

 Plasmids pALQ84 and pALQ85 were used to express wildtype and mutant (L178P), 

respectively, within wildtype strain BL21. This assay was adapted from previous study(25). 

Standard reaction mixture was composed of 50mM Tris-HCL buffer (pH 8.5), 1mM GTP 

(Sigma), 2mM PRPP (Sigma), 2mM Uracil (Sigma), and 50mM MgCl2. Cell lysate was 

normalized to 1.5 mg/mL using Bradford Reagent. Reaction mixture was started by adding 50 
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μL of lysate to 1mL of reaction buffer. The reaction was stopped by the addition of 80 μL of 

reaction mixture to 20 μL of ice cold 100% w/v trichloroacetic acid and vortexed. The mixture 

was kept at -20 °C for 6 hours, centrifuged at maximum speed at 4 °C, and the supernatant was 

collected. Uracil consumption was measured using high-performance liquid chromatography 

(HPLC) previously described(26).  

 

SpeC assay 

 Assay for SpeC is adapted from a previous study(27). Plasmids pALQ142, pALQ143, 

and pALQ173 were used to express his-tagged SpeC variants G655S, wildtype, and G655A, 

respectively. Protein was purified using HisPur Ni-NTA Spin Purification Kit (ThermoFisher). 

Standard reaction mixture contained 100mM PBS (pH 8), 1mM DTT, 1mM GTP, 100μM PLP 

and 20mM ornithine, 2,4-diaminobutyrate or lysine. Reactions were initiated by addition of 30μl 

of enzyme to 1mL of enzyme mixture to reach a final concentration around 0.05mg/ml. 

Concentrations were later normalized using Bradford reagent. Reactions were allowed to proceed 

overnight and were stopped using Whatman Mini-UniPrep Nylon Syringeless Filters. 

Quantification of consumption of 2,4-diaminobutyrate was measured by HPLC using ZORBAX 

Eclipse ΑAA column. Samples were derivatized using OPA and FMOC reagents (Agilent)(28). 

Product formation was later confirmed after MCF derivatization and analysis using GCMS. 

 

GabT assay for 2,4-diaminobutyrate transaminase 

 His-tagged GabT was overexpressed from pALQ144 and purified using HisPur Ni-NTA Spin 

Purification Kit (ThermoFisher). The standard reaction mixture contained 100mM Tris-HCL buffer (pH 

8), 100μM PLP, 20mM 2,4-diaminobutyrate, 20mM α-ketoglutarate and 1mM DTT. The reaction was 

allowed to proceed overnight at room temperature and was stopped using Whatman Mini-UniPrep Nylon 
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Syringeless Filters. Formation of glutamate was measured using ZORBAX Eclipse AAA column on 

HPLC and was further derivitized using MCF derivatization and confirmed on GCMS.  

 

Coupled SpeC and BetB assay 

 Decarboxylase and oxidative deaminase activity of SpeC was measured in a coupled 

reaction with BetB. The reaction mixture contained the following components: 25μg/ml purified 

SpeC, 50µg/ml purified BetB, 1mM GTP, 1mM NAD+, 100μM PLP, 20mM 24DAB or 

ornithine, and 1mM DTT in 100mM pH 8.0 PBS. Increase in OD340 was measured over time at 

37°C. When identifying product formation, the reaction was filtered using Whatman Mini-

UniPrep Nylon Syringeless Filters, derivatized using MCF derivatization, then analyzed using 

GCMS.  

 

Hydrogen peroxide assay  

 Hydrogen peroxide formation was measured simultaneously with β-alanine formation in 

a reaction coupling SpeC, BetB, and Peroxidase from horseradish (Sigma). The peroxidase reacts 

with H2O2, phenol, and 4-aminoantipyrine to produce a colorimetric readout at OD505(29). 3-

aminopropanal is oxidized into β-alanine using BetB with a simultaneous conversion of NAD+ 

into NADH, producing a readout at 340nm. The reaction mixture contained 25µg/ml SpeC 

G655S, 50µg/ml BetB, 1mM GTP, 1mM DTT, 100µM PLP, 1mM NAD+, 20mM 24DAB, 4mM 

phenol, 6mM 4-aminoantipyrine, and approximately 100U/ml peroxidase, in PBS pH 8.0 

100mM. The reaction was allowed to proceed at 37°C. 

 

Ammonia assay  
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 Ammonia formation was measured by coupling SpeC with glutamate dehydrogenase 

(Sigma). Other reactions involving SpeC G655S use GTP as an activator, however, we observed 

that GTP inhibits the activity of glutamate dehydrogenase. Therefore, we used CTP as an 

activator as it has previously been demonstrated to serve this purpose(30). The reaction mixture 

contained 25µg/ml SpeC G655S, 4U/ml glutamate dehydrogenase, 5mM 24DAB, 1mM CTP, 

1mM DTT, 100µM PLP, 20mM αKG, and 1mM NADH. The reaction was allowed to proceed at 

37°C and OD340 was measured over time.  

 

MCF derivitizaion 

 Samples used for GCMS analysis were derivatized using methylchloroformate (MCF) 

derivatization adapted from a previously reported protocol(31). 100μL of sample was added to 

100μL of 2M NaOH. 167μL of methanol was added, followed by 34μL of pyridine, 20μL of 

MCF, and vortexed for 30 seconds. Immediately, another 20μL of MCF was added, followed by 

another 30 seconds of vortexing. 400μL of chloroform was added, followed by an additional 10 

seconds of vortexing. Next, 400μL of 50mM sodium bicarbonate was added, followed by 10 

seconds of vortexing. A glass Pasteur pipette was used to remove the top phase, and 100mg of 

anhydrous sodium sulfate was added to the chloroform solution to bind the remaining water. A 

glass Pasteur pipette was used to transfer the entire dried chloroform solution to a glass vial for 

injection into the GCMS. Samples that were not immediately analyzed were stored at -80 °C. 

 

Genomic sequencing 

Genomic DNA was extracted from relevant samples using Qiagen DNeasy Blood & Tissue 

Kit. All samples were diluted to 0.2 ng/μL using a Qubit measurements. This was used as input 

sample for Nextera XT sample preparation (Illumina). Final libraries were eluted in Qiagen EB 
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buffer with 0.1% Tween 20. The individual sample libraries were normalized to equimolar 

concentrations and diluted to 10nM solution. Samples were sequenced using 100bp SE reads on 

an Illumina HiSeq2000 sequencing system with single end reads to a minimum of 10x coverage, 

average = 42x coverage. 

 

Sequencing data analysis 

 Adapter sequences were removed from reads using Trim Galore! 

(http://www.bioinformatics.babraham.ac.uk/) with quality trimming turned off.  Trimmed reads 

were mapped using BWA-MEM v.0.7.12-r1039(32) to the Escherichia coli str. K-12 substr. 

MG1655 genome (NCBI Accession NC_000913). Variant discovery and filtering was done with 

GATK v 3.7-0-gcfedb67(33) using HaplotypeCaller in GVCF mode with ploidy 1 and ploidy 3 

as needed, followed by GenotypeGVCFs, and finally VariantFiltration setting a minimum QD of 

2. SnpEff(34) was used to determine the context of the variants and predict the functional 

impact.  Additional custom scripts were used to identify variants of interest. 

 

Reverse transcriptase quantitative PCR 

Genomic DNA was purified using Qiagen DNeasy Blood and Tissue Kit for initial 

determination of primer efficiency using Luna Universal qPCR Master Mix. The DNA was 

initially diluted to approximately 1 ng/uL and three additional subsequent serial dilutions were 

used to determine primer efficiency. Primers were designed using Primer3(35) software to have 

annealing temperatures at 60 °C and product sized between 75 and 150bp within their respective 

target gene. Primers are listed below in Table 2-6, and are verified to have efficiency between 90 

and 105%. Gene frr, ribosome-recycling factor, was used as a reference gene(36). 

http://www.bioinformatics.babraham.ac.uk/)
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RNA was purified from cultures of glucose minimal media at OD600 0.4-0.6. These 

cultures were inoculated at 1% with precultures originating from glucose minimal media with 

1μM β-alanine. Approximately 2x108 cells were added to two volumes of Qiagen RNAprotect 

Bacteria Reagent, vortexed and centrifuged. 200µL of 15 mg/mL of lysozyme with 30µL of 

Proteinase K (NEB) was added, and the mixture was shaken at room temperature for 45 minutes. 

RNeasy RNA purification protocol was followed with additional DNase Digestion (Qiagen) step 

to remove genomic DNA. RT-qPCR was performed using Luna Universal One-Step RT-qPCR 

Kit and results were analyzed using Bio-Rad CFX Manager 2.0.  

 

Genomic point mutations 

 Point mutations were introduced using λ-red recombinase system(22). Linear fragments 

were designed similar to those used for gene deletions, which amplify a kanamycin cassette from 

pKD13 that have 50bp overlaps intended for site specific homologous recombination. However, 

to introduce a point mutation, one of the overlaps was extended 400-1000bp and contains a 

mutation that can be introduce in the genome when recombined. Here, the overlap contained a 

wildtype sequence so that when the cassette is recombined several hundred basepairs upstream 

or downstream of a mutated gene, a point mutation will be repaired.  

Briefly, primers were designed that amplify a kanamycin cassette from pKD13 (Table 2-7). 

A 400-1000bp overlap was also amplified from a wildtype BW25113 genome (Table 2-8). These 

were attached using SOE PCR. The target strain, harboring pKD46, was grown overnight at 30 

°C with ampicillin. The next morning, it was inoculated 1% into fresh LB containing ampicillin 

and 1mM L-arabinose and grown until OD600 0.6. This was then washed 3 times in ice cold 

10% glycerol. 400ng of linear fragment were added and the reaction was electroporated. The 

strain was rescued at 37 °C for one hour and then plated onto kanamycin plates. Successful 
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colonies that formed were sequenced around the area of integration using Sanger sequencing to 

verify successful point mutation reversion.  

 

Metabolomic Analysis  

Cultures grown until OD600 = ~1 were harvested for metabolome analysis by fast filtration 

of 10 mL culture broth through PTFE membrane filters (pore size 0.45 µm, diameter 47 mm; 

Millipore, MA, USA). The filter-bound cells were transferred to 2 mL tubes and flash-frozen in 

liquid nitrogen to quench metabolism before storage at -80°C. Metabolite extraction was 

performed by adding 1.8 mL extraction solvent (methanol/water/chloroform in 5:2:2 ratio, 

additionally spiked with 20 µg/mL ribitol and 30 µg/mL camphosulfonic acid as internal 

standards) and incubating at -30°C for 1 h. For each sample, 1.2 mL solvent containing extracted 

metabolites was then mixed with 600 µL ultrapure water, vortexed briefly then centrifuged at 

9390 × g, 4°C for 3 min to separate the aqueous and organic phases. The aqueous phase 

containing hydrophilic metabolites was filtered through syringe-mounted PTFE filter units (pore 

size 0.20 µm; Millipore, MA, USA) then 350 µL and 700µL were taken for GC/MS and LC/MS 

analysis respectively. Residual organic solvent was removed from the samples by centrifugal 

concentration, then the samples were freeze-dried overnight and stored at -80°C until analysis.  

For GC/MS analysis, extracted metabolites were first derivatized by oximation (addition of 

100 µL 20 mg/mL methoxyamine hydrochloride in pyridine, 1200 rpm for 90 min at 30°C) and 

silylation (addition of 50 µL, N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA), 1200 

rpm for 30 min reaction at 37°C). The derivatized samples were analyzed on a GCMS-QP2010 

Ultra (Shimadzu, Kyoto, Japan) with InertCap 5MS/NP column (0.25 mm ID x 30 m, df = 0.25 

μm; GL Sciences, Tokyo, Japan). An alkane standard mix (C8 to C40) was injected prior to 

sample analysis for calculating retention indices. Peak detection, baseline correction and 
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retention time alignment were performed using MetAlign [1] followed by automated peak 

identification with AIoutput2 ver.1.29 [2]. For each sample, peak intensities were normalized to 

the internal standard (ribitol).  

For LC/MS analysis, extracted metabolites were resuspended in 35µL ultrapure water and 

analyzed on a Shimadzu Nexera UHPLC system coupled to LCMS 8030 Plus (Kyoto, Japan) 

using a Mastro C18 reversed phase HPLC column (150 mm × 2.1 mm, particle size 3 μm; 

Shimadzu, Kyoto, Japan) operated in multiple reaction monitoring (MRM) mode. The mobile 

phases were 10 mM tributylamine and 15 mM acetic acid in water (A) and methanol (B). Peak 

identification and quantitation of peak areas were done using the LabSolutions software 

(Shimadzu, Kyoto, Japan). 
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Figures and tables 
 

 

Figure 2-1: Metabolic repair through rewiring of existing metabolic components 

A) A pathway emerged to repair β-alanine pathway damage that repurposed the uracil 

degradation pathway (Rut operon) and GabT. Mutations that contribute to this phenotype are 

noted in red. B) RT-qPCR measurements of GabT and RutA in PS1 compared to wildtype parent 

strain BW25113. Three independent sets of cultures were analyzed, each with three technical 

repeats. C) Growth phenotypes of PS1 with deletion of pathway enzymes or reversion of point 

mutations. D) In vitro specific activity of mutant YdfG compared to wildtype when expressed 

within cell lysate. Measurements were taken from three independent replicate cultures. E) 

Growth of PS1 in minimal media with varying amounts of β-alanine supplementation show that 

excess β-alanine is toxic to PS1. Overexpression of YdfG is able to relieve this toxicity. F) In 

vitro specific activity of mutant Upp expressed within cell lysate shows complete loss of activity. 

Measurements were taken from three independent replicate cultures. G) Growth in minimal 

media of pathway reconstruction. Overexpression of the Rut operon and GabT, noted rut/gabT, 

within a ΔpanD mutant can only rescue growth with uracil supplementation. Further deletion of 
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upp relinquishes the need for uracil supplementation. All growth curves were measured using 

three cultures originating from three separate colonies. Error bars represent standard deviation 
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Figure 2-2: Metabolic repair through evolution of new enzyme function. 

A) Growth in minimal media of evolved strain PR11 with deletion of pathway enzymes or point 

mutation reversions. B) Mass spectrum of β-alanine produced from 24DAB (2,4-

diaminobutyrate) in vitro using a coupled assay with purified SpeC and BetB. C/D) β-alanine, 

NH3, and H2O2 measured from a coupled SpeC and BetB assay show equimolar formation of all 

products. E) Relative gene expression of BetB and GabT in PR11 compared to wildtype parent 

BW25113. F) Illustration of the pathway that formed within PR11 to reroute damaged β-alanine 

biosynthesis. This pathway utilizes a gain of function mutation within ornithine decarboxylase 

(SpeC) that allows a bifunctional decarboxylation and deamination. Relevant mutations are noted 

in red. G) Reconstruction of this pathway to rescue growth of a ΔpanD strain in minimal media 

is accomplished with overexpression of SpeC G655S, GabT, and BetB.   
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Figure 2-3: Altered activity of evolved ornithine decarboxylase 

Two reaction types are observed from ornithine decarboxylase (SpeC) variants on three amino 

acid substrates. One is a single decarboxylation reaction, while the other is a bifunctional 

decarboxylation and deamination reaction. The relevant functional groups are highlighted in red. 

A) Wildtype SpeC can perform the single decarboxylation reaction on any of the three 

substrates, but only has minimal activity for the bifunctional reaction. B) SpeC G655S and 

G655A have high activity for the bifunctional reaction, but lost the ability to perform the single 

decarboxylation on both 24DAB and lysine. C) Enzyme kinetics of the bifunctional reaction 

using each SpeC variant.   
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Figure 2-4: Intracellular metabolite measurements of pyrimidines 

 

Intracellular metabolite measurements comparing PS1 to unevolved parent strain 

BW25113ΔpanD. Polar metabolites were extracted and analyzed by LC/MS using reversed 

phase HPLC coupled by negative mode electrospray ionization (ESI) to a triple-quadrupole mass 

spectrometer. Relative concentrations of pyrimidine nucleotides are significantly diminished 

within the evolved strain PS1. 
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Figure 2-5: Hypothetical pathway using 13PDA as an intermediate 

 

A) A hypothetical pathway that can convert 24DAB (2,4-diaminobutrate) into β-alanine. SpeC 

was assayed for 24DAB decarboxylase activity to produce 1,3-propanediamine. Wildtype SpeC 

can catalyze this reaction, but mutant SpeC variants cannot. B) Mass spectrum of 1,3-

propanediamine formed as a product of this reaction using wildtype SpeC in vitro. 
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Figure 2-6: 24DAB transaminase reaction 

 

Mass spectrum of glutamate formed as a product from 24DAB transaminase using purified GabT 

in vitro. 
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Figure 2-7: Promiscuous decarboxylation deamination reactions from SpeC G655A 

 

In vitro assays using purified SpeC G655A were performed to detect a bifunctional 

decarboxylation and deamination reaction that is coupled with BetB to form the corresponding 

acid products. Substrates A) 2,4-diaminobutyrate (24DAB), B) Ornithine and C) Lysine were 

used. Mass spectra of corresponding product formation D) β-alanine E) 4-aminobutyrate 

(GABA) and F) 5-aminovalerate.   
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Figure 2-8: Promiscuous decarboxylation reactions from wildtype SpeC 

Mass spectra of products formed from in vitro enzymatic reactions catalyzed by wildtype SpeC. 

A) 24DAB decarboxylase B) ornithine decarboxylase C) lysine decarboxylase.  
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Figure 2-9: Growth curve of Mel6 

Growth of evolved triple deletion mutant ΔpanD ΔrutABC ΔspeC strain (Mel6) in minimal 

media. Precultures were grown overnight in minimal media with 0.1μM β-alanine. This was 

inoculated into fresh minimal media 1:1000. 
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Figure 2-10: Polyamine biosynthesis and knockout data from Mel6 

A) Growth in minimal media of Mel6 with various knockouts. With deletion of SpeD, SpeE, or 

SpeA no growth in minimal media is observed. B) RT-qPCR measurements of gene expression 

comparing Mel6 to wildtype parent BW25113. SpeA, SpeD, and SpeE have increased 

expression. C) Illustration of SpeD, SpeE, and SpeA catalyzed reactions used in polyamine 

biosynthesis.  
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Figure 2-11: Large scale evolution using MutD5 

Strains with various damaged pathways that confer metabolic auxotrophies were grown in glucose 

minimal media with sufficient nutritional supplementation to sustain growth between OD600 0.4-0.6. 

Cultures were diluted 1:1000 into fresh minimal media. Every dilution, the amount of nutritional 

supplementation was adjusted to restrict growth of the following passage to remain around OD600 0.4. In 

the event that the culture grew past OD600 of 1.0, it was diluted into minimal media with no 

supplementation. If growth was observed past OD600 of 0.6, it was streaked onto solid media. Resulting 

colonies were tested for a retained growth phenotype in a new liquid minimal media culture. Final 

genotypes were verified using genomic sequencing. Including ΔpanD strains, 35 total auxotrophs were 

tested. (bottom) The number of serial dilutions each set of strains was subjected to with or without a 

mutator plasmid. (top) Growth in minimal media with no supplementation after the noted number of 

serial dilutions. Strains that have repaired phenotypes exhibit growth.   
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Table 2-1: All mutation are listed in an auxiliary file 

All genomic mutations identified using whole genome sequencing on strains that repaired 

damaged metabolic pathways.  

 

 

File submitted as an auxiliary document. 

 

 



52 

 

BW25113ΔargA Ornithine LB pALQ14 Yes 

BW25113ΔargB Arginine LB pALQ14 No 

BW25113ΔargE Ornithine LB pALQ14 No 

BW25113ΔargH Ornithine LB pALQ14 No 

BW25113ΔaroB Chorismate LB pALQ14 No 

BW25113ΔaroC Chorismate LB pALQ14 No 

     

BW25113ΔbioC Biotin LB pALQ14 Yes 

BW25113ΔbioD Biotin LB pALQ14 No 

BW25113ΔcysE Cysteine  LB pALQ14 No 

BW25113ΔglyA Glycine LB n/a Yes 

BW25113ΔhisB Histidine LB pALQ14 No 

BW25113ΔilvC Valine, Leucine, 

Pantothenate, Isoleucine  

LB pALQ14 No 

BW25113ΔilvE Valine LB pALQ14 No 

BW25113ΔmetB Methionine LB pALQ14 No 

BW25113ΔmetE Methionine LB pALQ14 No 

BW25113ΔmetL Homoserine LB n/a Yes 

BW25113ΔnadB NAD LB pALQ14 Yes 

BW25113ΔpabA 4-aminobenzoate LB n/a Yes 

BW25113ΔpanB Pantothenate LB pALQ14 No 

BW25113ΔpanC Pantothenate LB pALQ14 No 

BW25113ΔpanD Pantothenate β-alanine pALQ14 No 

BW25113ΔpdxJ Pyridoxal 5'-phosphate LB pALQ14 No 

BW25113ΔproA Proline LB n/a Yes 

BW25113ΔproB Proline LB n/a Yes 

BW25113ΔproC Proline LB pALQ14 No 

BW25113ΔpurF Purine nucleotides LB pALQ14 No 

BW25113ΔpyrE UMP LB pALQ14 No 

BW25113ΔserA Serine LB pALQ14 No 

BW25113ΔserC Serine LB pALQ14 No 
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Table 2-2: Auxotrophic strains subjected to evolution 

Auxotrophic strains that were subjected to serial dilutions in minimal media with limited 

nutritional supplementation. Listed are the type of nutritional supplementation provided, as well 

as the mutator plasmid used to enhance the rate of mutagenesis. Wildtype strains are BW25113  

BW25113ΔthrB Threonine LB pALQ14 No 

BW25113ΔtrpB Tryptophan LB pALQ14 No 

BW25113ΔtrpD Tryptophan LB pALQ14 No 

BW25113ΔtrpA Tryptophan LB pALQ14 No 

BW25113ΔtyrA Tyrosine, Phenylalanine LB pALQ14 Yes 

BW25113ΔubiG Ubiquinone LB n/a Yes 
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Plasmid Construction of N-terminal His-Tag expression vectors  

Plasmid  Template  Primers 

pALQ143 SpeC 

Insert 

E. coli 

BW25113  

F CCAGGATCCGATGAAATCAATGAATATTGCCGCCA 

R AGCGGTGGCATTACTTCAACACATAACCGTACAACC 

pALQ142 Backbone pCDFDuet F GTTGAAGTAATGCCACCGCTGAGCAATAAC 

R TCATTGATTTCATCGGATCCTGGCTGTGGTGA 

pALQ142 SpeC 

G655S 

PR11 F CCAGGATCCGATGAAATCAATGAATATTGCCGCCA 

R AGCGGTGGCATTACTTCAACACATAACCGTACAACC 

pALQ143 Backbone  pCDFDuet F GTTGAAGTAATGCCACCGCTGAGCAATAAC 

R TCATTGATTTCATCGGATCCTGGCTGTGGTGA 

pALQ144 GabT E. coli 

BW25113  

F CCAGGATCCGATGAACAGCAATAAAGAGTTAATGCAGC 

R AGCGGTGGCACTACTGCTTCGCCTCATCAAAAC 

pALQ144 Backbone pCDFDuet F GAAGCAGTAGTGCCACCGCTGAGCAATAA 

R TTGCTGTTCATCGGATCCTGGCTGTGGTGA 

pALQ153 BetB E. coli 

BW25113  

F CCAGGATCCGATGTCCCGAATGGCAGAACA 

R TCAGCGGTGGCATTAGAATATGGACTGGAATTTAGCCATC 

pALQ153 Backbone  pCDFDuet F GTCCATATTCTAATGCCACCGCTGAGCAATAA 

R TTCGGGACATCGGATCCTGGCTGTGGTG 

 

Table 2-3: Primers used to construct plasmids that express N-terminal His-Tag proteins  
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Plasmid construction of mutator plasmids  

All fragments were amplified for insertion between PLLacO1 directly upstream a 20bp RBS and T1 

terminator.  

 

PLLacO1 AATTGTGAGCGGATAACAATTGACATTGTGAGCGGATAACAAGATACTGAGC

ACATCAGCAGGACGCACTGACC 

RBS GAATTCATTAAAGAGGAGAAAG 

T1 

Terminator 

AGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTA

TCTGTTGT 

    

Insert  Template Primers 

MutD5 XL1 Red 

(Agilent) 

F AGAGGAGAAAGATGAGCACTGCAATTACACGCC 

R TTGATGCCTTTATGCTCGCCAGAGGCA 

Table 2-4: Primers used in the construction of plasmids that harbor mutator genes  
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Strains 

BW25113 rrnBT14 DlacZWJ16 hsdR514 DaraBADAH33 DrhaBADLD78 
 

PS1 BW25113 ΔpanD Evolved to grow in minimal media 
 

PR11 BW25113 ΔpanDΔrutABC Evolved to grow in minimal media 
 

Mel6 BW25113 ΔpanDΔrutABCΔspeC Evolved to grow in minimal 

media 

 

 

Plasmid Promotor Genes Origin/ 

Antibiotic 

pALQ9 PLLacO1 mutD5 (XL1 Red, Agilent) ColE1/Kanr 

pALQ68 PLLacO1 gabT (E. coli) p15A/Specr 

pALQ78 PLLacO1 RutABCDEF  (E. coli) ColE1/Ampr 

pALQ82 PLLacO1 ydfG  (E. coli) p15A/Ampr 

pALQ83 PLLacO1 ydfG D263V (E. coli) p15A/Ampr 

pALQ84 PLLacO1 upp  (E. coli) colA/Kanr 

pALQ85 PLLacO1 upp L178P  (E. coli) colA/Kanr 

pALQ142 pT7 speC His  (E. coli) CDF/Specr 

pALQ143 pT7 speC G655S His  (E. coli) CDF/Specr 

pALQ144 pT7 gabT His (E. coli) CDF/Specr 

pALQ146 PLLacO1 betB gabT  (E. coli) ColA/Kanr 

pALQ153 pT7 betB His (E. coli) CDF/Specr 

pALQ173 pT7 speC G655A His  (E. coli) CDF/Specr 

Table 2-5:  Strain and plasmid designations used in this work  
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Genes Direction Primer Sequence 

RutA F CGGCGCAGATCACTTTCATG 

R GCACGGGGAAAAGCGATTTT 

BetB F GGGCAATCTGGATCGGGTAG 

R CGTTGCGTGAAACGTCCTTT 

GabT F TGAAGACGGCGATCACAACA 

R CGCAGCACGTTGTAATACGG 

Frr F GTTGCAGTACGTAACGTGCG 

R CAGCGCCGCTTCAATTTTCT 

SpeA F AGTTGCAGTACCTGAGTCGC 

 R AGGGTTCGGGTAAATGGCAG 

SpeE F TCCGGGTAGGTATGTACGCA 

 R AGTGAAGAACCGGTTGACCC 

SpeD F GATAGGATCGGTGCAGTCGG 

 R GCGCTTTAAGCTGGTGATCG 

 

 

Table 2-6: Primer sequences used for RT-qPCR. 

All product sizes are between 70-150bp and have a measured efficiency between 90-150%. 
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Table 2-7: Primers used to amplify a kanamycin cassette from pKD13 using PCR 

The formed amplicon contains overlaps that are homologous to specific sites within the genome.  

  

Primers used for amplification of pKD13 kanamycin cassette   

Gene Target strain  Primers 

RutR PS1 F AGTGGACTAAACGGTCAAAACAGTTGCACATAAAA

CATGCATTCCGGGGATCCGTCGACC 

R CTTCTGCACTCTCATCGCGCTGTAGGCTGGAGCTGC

TTCG 

CsiR PS1 F AGGCGATGGCTGGCAATTAAATTCCGGGGATCCGT

CGACC 

R AATTTATCCGGGGCAAGTGTTGCGTATTCCGGAAG

AGTAGTGTAGGCTGGAGCTGCTTCG 

YdfG PS1 F CTGCCGGGTTATTGCTTGTCATTCCGGGGATCCGTC

GACC 

R TCTTGCTTGTGAGTGAGTTAACTGCATGAGTCTACC

ACTTTGTAGGCTGGAGCTGCTTCG 

Upp  PS1 F CTCTGTATTATGTGTTATAGGCGCTTTACTCAAAAA

AAAGATTCCGGGGATCCGTCGACC 

R CAAAATCTTTGGTACGAAATAAAGAATAAAAATTG

TAGGCTGGAGCTGCTTCG 

SpeC PR11 F CAAACGGTCATAATAAGAAAATCAAACAAATTCCG

GGGATCCGTCGACC 

R GCACTAGCGTTGATAAAAGGGCCGATGACCACAAG

AGTTCTGTAGGCTGGAGCTGCTTCG 

CsiR PR11 F AGGCGATGGCTGGCAATTAAATTCCGGGGATCCGT

CGACC 

R AATTTATCCGGGGCAAGTGTTGCGTATTCCGGAAG

AGTAGTGTAGGCTGGAGCTGCTTCG 

BetI PR11  F AATAGTAACAATAACAGTGGGGATACTGATTCCGG

GGATCCGTCGACC 

R TGATTTTGTCCTTTTCCCTGCTGTGTGAAAGGTCTGT

CATTGTAGGCTGGAGCTGCTTC  



59 

 

 

 

Gene Target 

strain  

Primers 

RutR PS1 F GCGCGATGAGAGTGCAGAAG 

R CTGCCAGCATCTCCATACAGAA 

CsiR PS1 F TTACGGGAAGCTCTTTCGCAA 

R TTAATTGCCAGCCATCGCCT 

YdfG PS1 F GTTAAAAGACGAACTGGGAGATAATCTG 

R GACAAGCAATAACCCGGCAG 

Upp  PS1 F ATTTTTATTCTTTATTTCGTACCAAAGATTTTG 

R AGCCGGTACCGTACTTCCA 

SpeC PR11 F AGGAGATGGCGTGCATCGGG 

R TTGTTTGATTTTCTTATTATGACCGTTTG 

CsiR PR11 F TTACGGGAAGCTCTTTCGCAA 

R TTAATTGCCAGCCATCGCCT 

BetI PR11  F AGCAGACCATTTTTGTCCCTGA 

R CAGTATCCCCACTGTTATTGTTACTATT 

 

Table 2-8: Primers used to amplify genomic regions used for point mutations 

Primers used to amplify 400-1000bp regions of BW25113 genomic DNA. These were then used 

as templates to SOE with linear pKD13 amplicons to create linear fragments used for point 

mutation reversions.  

  



60 

 

References 

1.  Reed, J. L., T. D. Vo, C. H. Schilling, B. O. Palsson, An expanded genome-scale model of 

Escherichia coli K-12 ( i JR904 GSM / GPR ). genome Biol. 4, 1–12 (2003). 

2.  Guzmán, G. I., J. Utrilla, S. Nurk, E. Brunk, J. M. Monk, A. Ebrahim, Model-driven 

discovery of underground metabolic functions in Escherichia coli. Proc. Natl. Acad. Sci. 

112, 929–934 (2014). 

3.  Tawfik, O. K. and D. S., Enzyme Promiscuity: A Mechanistic and Evolutionary 

Perspective. Annu. Rev. Biochem. 79, 471–505 (2010). 

4.  Kim, J., J. P. Kershner, Y. Novikov, R. K. Shoemaker, S. D. Copley, Three serendipitous 

pathways in E. coli can bypass a block in pyridoxal-5’-phosphate synthesis. Mol. Syst. 

Biol. 6, 436 (2010). 

5.  Webb, M. E., G. Smith, C. Abell, Biosynthesis of pantothenate. Nat. Prod. Rep. 21, 695–

721 (2004). 

6.  Boldyrev, A. A., Carnosine: new concept for the function of an old molecule. Biochem. 

Biokhimii͡ a. 77, 313–26 (2012). 

7.  Joanne, W. M.,  and G. M. Brown, Purification and Properties of L-Aspartate-α-

decarboxylase , That Catalyzes the Formation of β-Alanine in Escherichia. J. Biol. Chem. 

254, 8074–8082 (1979). 

8.  Nozaki, S., M. E. Webb, H. Niki, An activator for pyruvoyl-dependent l-aspartate α-

decarboxylase is conserved in a small group of the γ-proteobacteria including Escherichia 



61 

 

coli. Microbiologyopen. 1, 298–310 (2012). 

9.  Rathinasabapathi, B., Propionate, a source of β-alanine, is an inhibitor of β-alanine 

methylation in Limonium latifolium, Plumbaginaceae. J. Plant Physiol. 159, 671–674 

(2002). 

10.  Fritzson, P., The catabolism of C14-labeled uracil, dihydrouracil, and β-ureidopropionic 

acid in rat liver slices. J. Biol. Chem. 226, 223–228 (1956). 

11.  White, W. H., P. L. Gunyuzlu, J. H. Toyn, Saccharomyces cerevisiae Is Capable of de 

Novo Pantothenic Acid Biosynthesis Involving a Novel Pathway of beta-Alanine 

Production from Spermine. J. Biol. Chem. 276, 10794–10800 (2001). 

12.  Maruyama, M., T. Horiuchi, H. Maki, M. Sekiguchi, A dominant (mutD5) and a recessive 

(dnaQ49) mutator of Escherichia coli. J. Mol. Biol. 167, 757–771 (1983). 

13.  Kim, K. S., J. G. Pelton, W. B. Inwood, U. Andersen, S. Kustu, D. E. Wemmer, The Rut 

pathway for pyrimidine degradation: Novel chemistry and toxicity problems. J. Bacteriol. 

192, 4089–4102 (2010). 

14.  Borodina, I., K. R. Kildegaard, N. B. Jensen, T. H. Blicher, J. Maury, S. Sherstyk, K. 

Schneider, P. Lamosa, M. J. Herrgård, I. Rosenstand, F. Öberg, J. Forster, J. Nielsen, 

Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in 

Saccharomyces cerevisiae via β-alanine. Metab. Eng. 27, 57–64 (2015). 

15.  Andersen, P. S., J. M. Smith, B. Mygind, Characterization of the upp gene encoding uracil 

phosphoribosyltransferase of Eschevichia coli K12. FEBS J. 204, 51–56 (1992). 



62 

 

16.  Bertoldi, M., V. Carbone, C. B. Voltattorni, S. Neurologiche, C. Biologica, C. Nazionale, 

C. Internazionale, V. Pansini, Ornithine and glutamate decarboxylases catalyse an 

oxidative deamination of their α-methyl substrates. Biochem. J. 512, 509–512 (1999). 

17.  Incharoensakdi, A., N. Matsuda, T. Hibino, Y. Meng, H. Ishikawa, A. Hara, T. Funaguma, 

T. Takabe, T. Takabe, Overproduction of spinach betaine aldehyde dehydrogenase in 

Escherichia coli. Eur. J. Biochem. 7023, 7015–7023 (2000). 

18.  Blank, D., L. Wolf, M. Ackermann, O. K. Silander, The predictability of molecular 

evolution during functional innovation. Proc. Natl. Acad. Sci. U. S. A. 111, 3044–9 

(2014). 

19.  Baba, T., T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. a Datsenko, M. 

Tomita, B. L. Wanner, H. Mori, Mol. Syst. Biol., in press, doi:10.1038/msb4100050. 

20.  Espah Borujeni, A., A. S. Channarasappa, H. M. Salis, Translation rate is controlled by 

coupled trade-offs between site accessibility, selective RNA unfolding and sliding at 

upstream standby sites. Nucleic Acids Res. 42, 2646–2659 (2014). 

21.  Salis, H. M., E. A. Mirsky, C. A. Voigt, Automated design of synthetic ribosome binding 

sites to control protein expression. Nat. Biotechnol. 27, 946–50 (2009). 

22.  Datsenko, K. a, B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia 

coli K-12 using PCR products. Proc. Natl. Acad. Sci. U. S. A. 97, 6640–6645 (2000). 

23.  Degnen, G. E., E. C. Cox, Conditional mutator gene in Escherichia coli: isolation, 

mapping, and effector studies. J. Bacteriol. 117, 477–487 (1974). 



63 

 

24.  Livingston, D., Deoxyribonucleaic Acid Polymerase III of Escherichia coli. J. Biol. Chem. 

250, 489–497 (1975). 

25.  Jensen, K. F., B. Mygind, Different oligomeric states are involved in the allosteric 

behavior of uracil phosphoribosyltransferase from Escherichia coli. Eur. J. Biochem. 645, 

637–645 (1996). 

26.  Wernick, D. G., S. P. Pontrelli, A. W. Pollock, J. C. Liao, Sustainable biorefining in 

wastewater by engineered extreme alkaliphile Bacillus marmarensis. Sci. Rep. 6, 20224 

(2016). 

27.  Canellakis, E. S.,  a a Paterakis, S. C. Huang, C. a Panagiotidis, D. a Kyriakidis, 

Identification, cloning, and nucleotide sequencing of the ornithine decarboxylase antizyme 

gene of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 90, 7129–7133 (1993). 

28.  Choi, K. Y., D. G. Wernick, C. a. Tat, J. C. Liao, Consolidated conversion of protein 

waste into biofuels and ammonia using Bacillus subtilis. Metab. Eng. 23, 53–61 (2014). 

29.  Kaminaga, Y., J. Schnepp, G. Peel, C. M. Kish, G. Ben-Nissan, D. Weiss, I. Orlova, O. 

Lavie, D. Rhodes, K. Wood, D. M. Porterfield, A. J. L. Cooper, J. V. Schloss, E. 

Pichersky, A. Vainstein, N. Dudareva, Plant phenylacetaldehyde synthase is a bifunctional 

homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J. 

Biol. Chem. 281, 23357–23366 (2006). 

30.  Applebaum, D. M., J. C. Dunlap, D. R. Morris, Comparison of the Biosynthetic and 

Biodegradative Ornithine Decarboxylases of Escherichia coli. Biochemistry. 16, 1580–

1584 (1977). 



64 

 

31.  Smart, K. F., R. B. M. Aggio, J. R. Van Houtte, S. G. Villas-bôas, Analytical platform for 

metabolome analysis of microbial cells using methyl chloroformate derivatization 

followed by gas chromatography – mass spectrometry. Nat. Protoc. 5 (2010), 

doi:10.1038/nprot.2010.108. 

32.  Li, H., R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler 

transform. Bioinformatics. 26, 589–595 (2010). 

33.  McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. 

Garimella, D. Altshuler, S. Gabriel, M. Daly, M. A. DePristo, The Genome Analysis 

Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. 

Proc. Int. Conf. Intellect. Capital, Knowl. Manag. Organ. Learn. 20, 254–260 (2009). 

34.  Cingolani, P., A. Platts, L. L. Wang, M. Coon, T. Nguyen, L. Wang, S. J. Land, X. Lu, D. 

M. Ruden, A program for annotating and predicting the effects of single nucleotide 

polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; 

iso-2; iso-3. Fly (Austin). 6, 80–92 (2012). 

35.  Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B. C. Faircloth, M. Remm, S. G. 

Rozen, Primer3-new capabilities and interfaces. Nucleic Acids Res. 40, 1–12 (2012). 

36.  Liu, M., T. Durfee, J. E. Cabrera, K. Zhao, D. J. Jin, F. R. Blattner, Global transcriptional 

programs reveal a carbon source foraging strategy by Escherichia coli. J. Biol. Chem. 280, 

15921–15927 (2005). 

 

  



65 

 

Chapter 3 :  Directed strain evolution restructures metabolism for 

1-butanol production in minimal media  
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Abstract 
Engineering a microbial strain for production sometimes entails metabolic modifications that 

impair essential physiological processes for growth or production. Restoring these functions may 

require amending a variety of non-obvious physiological networks, and thus, rational design 

strategies may not be practical. Here we demonstrate that growth and production may be restored 

by evolution that repairs impaired metabolic function. Previously, high titers of butanol 

production were achieved by Escherichia coli using a growth-coupled, modified Clostridial 

CoA-dependent pathway after all native fermentative pathways were deleted. However, 

production was only observed in rich media. Native metabolic function of the host was unable to 

support growth and production in minimal media. We use directed strain evolution to repair this 

phenotype and observed improved growth, titers and butanol yields. We further used genomics, 

metabolomics and proteomics to identify several underlying mutations and metabolic 

perturbations that allow metabolism to repair: mutations in the ArcAB two-component system 

and integration host factor (IHF) tune expression of enzymes within central carbon metabolism 

and alter energy metabolism to result in increased butanol yields. A mutation in pcnB resulted in 

decreased relative plasmid copy numbers and pathway enzymes to balance resource utilization. 

Increases in glycolysis and biosynthetic enzymes, as well as decreases in degradation pathways, 

were also observed. These results demonstrate that metabolic impairment caused by strain 

engineering can be repaired using directed strain evolution, and further, they illustrate the diverse 

strategies that may underlie such repair.  
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Introduction 
Engineering microbes for production sometimes require extensive modifications, which may 

perturb essential physiological processes and impair growth. Coupling between growth and 

production has proven to be an effective way to address this problem.  One example of this is a 

previously constructed butanol producing strain of E. coli. Within this system, all native 

fermentation pathways were deleted: alcohol dehydrogenase (adhE), lactate dehydrogenase 

(ldhA), and fumarate reductase (frdBC). As a result, no electron sink is available under anaerobic 

conditions and growth is not possible. A modified Clostridial CoA-dependent pathway was 

introduced in which NAD+ can be regenerated, 1-butanol is established as the sole electron sink, 

and growth and 1-butanol production are coupled under anaerobic conditions (Figure 3-1a). 

Production using this system as a starting platform has realized titers of 18.3 g/l in anaerobic 

batch fermentation(1). However, growth and production in minimal media are severely 

restricted.   

In minimal media, a major shift in cell resources occurs as all metabolites and cofactors must be 

synthesized de novo. As such, the physiological modifications used to enhance butanol 

production likely impair metabolic function in conjunction with the redistribution of cell 

resources. The underlying physiological causes of a severely weakened phenotype are unknown. 

In this case, rational engineering strategies aimed at restoring impaired metabolic function is not 

practical. Nutritional supplements or other operational strategies can be employed to augment the 

production phenotype in lean media(2)(3)(4)(5). However, these strategies are costly and do not 

shed light on the underlying causes of the problem. 

Previously, directed strain evolution has been employed to adapt cells to altered environmental 

conditions. With a continuous selection pressure, directed strain evolution offers an efficient 
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strategy to address system-wide, non-obvious physiological factors that can lead to metabolic 

innovation by the cells. Some examples include improving product or substrate toxicity(6)(7), 

thermotolerance(8), elongation of growth phase(9), growth using alternative 

substrates(10)(11)(12) (reduce to one cite), enhancing function of native pathways(13), and 

replacing native glycolysis with a synthetic non-oxidative glycolysis pathway(14). Directed 

strain evolution has also been used to repair damaged metabolic function that confers metabolite 

auxotrophy(15–17). 

Here, we demonstrate the use of directed strain evolution to restore metabolic impairment of the 

1-butanol producing strain (JCL166) in minimal media. Our strategy employs a mutator gene 

MutD5(18), which enhances the rate of accumulation of genomic mutations over time. While 

MutD5 results in a large number of mutations, it also allows innovative adaptations to occur 

within a shorter timeframe. We utilize genomic sequencing, proteomics and metabolomics to 

identify causal mutations and metabolic perturbations. As a result, we have identified several 

mutations that aid in balancing electron supply for altered product formation, decreased 

expression of pathway enzymes, and increased expression of biosynthetic processes.  
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Results 
 

Evolving growth in minimal media 

All strains used in this study for production of butanol are deficient in native E. coli fermentation 

pathways. JCL166 (ΔadhEΔldhAΔfrdBC) with the expression of the modified Clostridial butanol 

pathway (JCL166B)(Figure 3-1a), has previously been demonstrated to produce 6.5g/l of 1-

butanol after 72 hours(19). The high production titers were only observed in rich media, and 

severely reduced growth and production is observed in minimal media. Although other strain 

modifications previously improved titers further, certain modifications interfered with the 

efficacy of our evolution strategy, as discussed below. Therefore, JCL166B was chosen as a 

starting point for our efforts to enable production of butanol in minimal media. Owing to 

nutritional limitations in minimal media, we initially hypothesized that lack of growth was 

caused by insufficient expression of pathway enzymes. To test this, specific activity of pathway 

enzymes in cell lysate was compared between JCL166B in rich and minimal media (Figure 3-1b). 

These results demonstrate that enzyme activity is similar regardless of media composition, and 

suggest that other factors must be responsible for lack of growth and production.  

We therefore attempted to evolve JCL166B using directed strain evolution to gradually reduce 

the amount of nutritional supplementation required for growth. Our evolution strategy involves 

the use of mutator gene mutD5 (Figure 3-1c). MutD5, a dominant negative mutant of DnaQ(20), 

encodes for DNA pol III subunit ε which catalyzes 3’ to 5’ exonuclease activity in proofreading 

during DNA replication(21). With overexpression of MutD5, mutations accumulate with every 

division cycle and are increased. This effectively increased the rate of evolution. Previously 

reported modifications to improve butanol titers involved deletion of pta, encoding for phosphate 



70 

 

acetyltransferase. However, it was previously demonstrated that deletion of pta improves DNA 

replication fidelity and directly negates the increased mutagenesis rate conferred by 

overexpression of MutD5(22). Further, overexpression of formate dehydrogenase (FDH) from 

Candida boidinii was employed to oxidize formate produced in the anaerobic conversion of 

pyruvate into acetyl-CoA. This increased NADH supply for enhancing butanol formation. 

Because overexpression of the previously published plasmid containing FDH would introduce 

plasmid stability issues alongside overexpression of the additional MutD5 plasmid, and because 

the pta deletion would interfere with the efficacy of MutD5, we chose JCL166B as the base 

strain and these further modifications were employed following evolution.  

Strains of JCL166B were constructed to express the butanol pathway (Table 3-1), along with 

mutator gene mutD5. These strains were inoculated into rich media in anaerobic conditions. 

Cultures were then subjected to successive serial dilutions with decreasing nutritional 

supplementation that limits growth to OD600 0.4-0.6 (Figure 3-1c). Growth without nutritional 

supplementation, with only minimal media remaining, was observed after 5 successive serial 

dilutions (Figure 3-2a). However, the growth phenotype was weak. Therefore, these strains were 

further evolved for an additional 25 serial dilutions.  

After 30 serial dilutions, a significant improvement of both growth and production was observed 

(Figure 3-2a). As expected, production of 1-butanol increased over the course of evolution in 

correlation with growth, and reached a plateau of 600mg/l in 24 hours by the 16th dilution. To 

verify that growth remains dependent on the butanol pathway, all plasmids were cured from the 

evolved strain to reveal a complete abolishment of the phenotype (Figure 3-2b).  

Mutator plasmid pALQ32 was cured from a culture subjected to 16 serial dilutions, and clonal 

strains were individually tested for their evolved phenotype (Figure 3-2c). Growth and production 
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varied between these colonies, however, butanol production remained correlated with growth. 

Further, byproduct formation of acetate and formate also correlated with growth. On the 

contrary, little or no ethanol, lactate, or succinate were produced from any culture to verify that 

the native fermentation pathways were absent and do not contribute to the evolved phenotype.  

Of the 24 colonies that have variable growth phenotypes, butanol yields are also positively 

correlated with growth (Figure 3-2f). For the other byproducts, yields of formate and acetate 

remained relatively constant as growth improved, while the yield of butyrate decreased. While E. 

coli has no annotated butyryl-CoA transferase that can produce butyrate, a number of CoA 

transferases that catalyze this reaction on different substrates likely have unknown substrate 

promiscuity. Such enzymes exist within other organisms. The formation of butyrate and butanol 

each have different energy requirements. Commencing with the condensation of 2 acetyl-CoA 

into acetoacetyl-CoA, 4 additional NADH are required for production of 1 butanol molecule, 

while only 2 NADH are required for production of 1 butyrate molecule. This shift in byproduct 

formation suggests the presence of mutations that increase the supply of electrons in the 

catabolism of glucose into acetyl-CoA.  

The best producing colony, BP1, was isolated for further study and improvement. Previous 

studies have employed two rational modifications to further enhance butanol production using 

this pathway(19). Formate is produced as a byproduct of butanol in anaerobic conditions from 

native pyruvate formate-lyase, PflB. Formate dehydrogenase (FDH) oxidizes this excess formate 

into carbon dioxide while producing a molecule of NADH. We overexpressed NAD+ dependent 

FDH from Candida boidinii to enhance the oxidation of formate(23). Further, pta was deleted, 

encoding for phosphate acetyltransferase, which catalyzes the first reaction in the degradation of 

acetyl-CoA into acetate. This effectively enhances acetyl-CoA pool sizes for further downstream 
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conversion into 1-butanol. Together, these modifications raised titers from 0.960mg/l to 2g/l in 

96 hours (Figure 3-2d). Curiously, comparing production of butanol in rich media between 

JCL166B and BP1, titers were markedly decreased from BP1 (Figure 3-2e). This is consistent 

with other evolutionary studies, which identified mutations that offer advantages for growth in 

minimal media that decrease growth in rich media(24). 

 

Genomic sequencing reveals mutations in anaerobic redox metabolism 

To investigate how energy metabolism was being altered by evolution, as well as other mutations 

that contribute to the augmented phenotype, BP1 was sequenced to reveal 113 mutations that 

include 5 insertions and 2 deletions (Table 3-2Table 3-3). 89 coding regions were mutated in 

total that include 56 non-synonymous mutations. Two stop codons were found in 

uncharacterized genes ycaK and yfdT.  Of four frameshift mutations, one was found on 

uncharacterized protein yfjH. Two of the observed frameshift mutations were observed on 

enzymes involved with anaerobic redox metabolism: fdnH, encoding for a subunit of formate 

dehydrogenase N, and hyaF, encoding for a subunit of hydrogenase-1. 

Anaerobic respiration in E. coli can proceed in the presence of several external electron 

acceptors: nitrate, dimethyl sulfoxide (DMSO), trimethylamine-N-oxide (TMAO), and fumarate. 

All respiratory chains in E. coli are comprised of dehydrogenases and are linked to terminal 

reductases or oxidases by a quinone pool. Because a variety of each of these components exists 

in E. coli, a large diversity in the composition of respiratory chains is observed, which are 

responsive to different environmental factors. Formate dehydrogenase N and hydrogenase-1 

respectively oxidize formate or H2 into CO2 or H+, while donating an electron to a membrane 
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bound quinone. Anaerobic fermentation in wildtype strains can use fumarate as a terminal 

acceptor with fumarate reductase. However, this enzyme is deleted in JCL166B. Here, no other 

electron acceptor is available. Therefore, the presence of deleterious mutations in formate 

dehydrogenase N and hydrogenase-1 likely confer beneficial effects by preventing excess 

electrons from being dumped into the respiratory chain.  

The fourth frameshift mutation was found in barA, encoding for a sensory histidine kinase of the 

BarA/UvrY two-component signal transduction system. This two component system plays a 

regulatory role in concert with the carbon storage regulator (csr), composed of the two non-

coding RNAs csrB and csrC(25). These non-coding RNAs in turn react with multiple copies of 

the RNA binding protein CsrA(26), which has been shown to regulate either directly, or 

indirectly, a large number of enzymes involved with carbon metabolism, biofilm formation, 

motility, biofilm formation, and protein uptake(27). We speculate that this mutation relates to the 

adapted phenotype in BP1 as it has been shown that formate acts as a direct activator of the 

BarA/UvrY transduction system(27). Native anaerobic fermentation is here disrupted both 

through deletions in JCL166B and frameshift mutations in fdhH and hyaF. These alterations 

likely cause altered formate concentrations and may confer unintended damage to the 

BarA/UvrY global regulatory system, which may be mitigated by the frameshift mutation in 

barA.  

 

Optimized carbon and energy metabolism through mutations in redox regulators  

Two mutated genes in BP1, ifhB (T98C, M33T) and arcB (C315A, N105K), are both involved in 

regulation of a large number of genes used for growth in anaerobic conditions(28)(29)(30). We 
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speculated that these genes play a role in adapting anaerobic redox metabolism of BP1 for 

growth in minimal media.  

Global regulation of enzymes involved in anaerobic redox metabolism is largely controlled by 

the ArcAB two-component system, which senses oxygen limitations and elicits a system wide 

response. ArcB is a constitutively expressed, membrane bound sensory histidine kinase that 

phosphorylates DNA-binding transcriptional regulator ArcA during anaerobic or microaerobic 

conditions(31). This two component system is known to be responsible for regulation of a wide 

range of enzymes and metabolic processes that include the TCA cycle, glyoxylate shunt, and 

fatty acid degradation(32). It has been shown that the genetic disruption of arcB causes 

systematic deviations in response to the availability of oxygen, and it is believed that responses 

generated by the ArcAB system are initiated solely by the ArcB sensor protein(33). The point 

mutation observed on ArcB in BP1 was reverted to the wildtype sequence (BP1 WTarcB) and a 

reduced growth rate was observed, demonstrating the importance of this mutation (Figure 3-3a). 

To determine whether this mutation conferred a total loss of function of ArcB, we further deleted 

it from BP1 (BP1 ΔarcB). The resulting growth phenotype of this strain is decreased in a similar 

manner to growth with the reverted wildtype ArcB sequence (Figure 3-3a). These results indicate 

that the mutation on ArcB confers a beneficial physiological effect without destroying enzyme 

function.  

The other mutated gene, ihfB, encodes for a polypeptide that forms the integration host factor 

(IHF) of E. coli along with polypeptide IhfA. IHF binds to DNA at site-specific locations to 

induce sharp bends into the DNA backbone, and plays a role in DNA replication, recombination 

and transcription regulation(34)(30). Many genes have been identified that have altered 

regulation when IHF is deleted in E. coli(30). In anaerobic conditions, IHF has been shown to 
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alter regulation of many genes that contribute to energy metabolism. Notably, the expression of 

pflB, encoding for pyruvate formate-lyase, has been shown to be dependent on IHF in anaerobic 

conditions(29). To determine whether the mutation in ihfB confers a beneficial growth phenotype 

to BP1, it was reverted to the wildtype sequence in BP1 (BP1 WTihfB). Further, ihfB was deleted 

from BP1(BP1 ΔihfB). The resulting growth phenotypes are significantly decreased compared to 

BP1 (Figure 3-3c), demonstrating that the mutation contributes to the evolved phenotype without 

destroying the function of IhfB. 

To test how these mutations may be affecting butanol production in BP1, we set to determine the 

effect of these mutations on the expression of genes in central carbon metabolism using RT-

qPCR. Expression of operons in the TCA cycle and glycolysis were compared between JCL166B 

and BP1 after growth in minimal media. As shown in Figure 3-3a, 12 of 28, of these operons 

exhibited significant expression differences after evolution (log2 ratio ≥ 1 or ≤ -1). To determine 

whether genes with significant expression changes are influenced by the arcB (C315A) mutation, 

gene expression was compared between BP1, BP1 ΔarcB, and BP1 WTarcB (Figure 3-3c). 

Similarly, to determine if these expression changes are caused by the ifhB (T98C) mutation, gene 

expression was compared between BP1, BP1 ΔihfB, and BP1 WTihfB (Figure 3-3d). As 

observed in Figure 3-3cd, all significantly perturbed genes comparing BP1 to BP1 WTarcB or 

BP1 WTihfB have increased expression, suggesting that these mutations aid in increasing 

activity of central carbon metabolism. To verify this increase in activity, we measured specific 

activity of glycolytic enzymes within cell lysate in both JCL166B and BP1 and determined that 

reactions within glycolysis are increased (Figure 3-7cd).  

Interestingly, expression of the aceEF operon, encoding for two subunits of pyruvate 

dehydrogenase (PDH) was dependent on the presence of mutated sequences of both ihfB and 
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arcB (Figure 3-3cd). Gene expression measurements of aceEF were repeated in BP1 and all 

arcB and ihfB derivatives for comparison to JCL166B (Figure 3-4ab) to confirm that both the 

arcB and ihfB mutations are required to alter expression of aceE from wildtype levels. The 

products of AceEF encode for two subunits of PDH in addition to the third subunit, lipoamide 

dehydrogenase, Lpd. Under anaerobic conditions, the primary conversion of pyruvate to acetyl 

CoA is catalyzed by PflB, pyruvate formate-lyase. PDH produces acetyl-CoA and NADH as 

products, while PflB produces acetyl-CoA and formate. Usage of PflB under anaerobic 

conditions is preferred by the cell because formate can act as an electron acceptor, negating the 

need to produce excess fermentation products for use as an electron sink. Besides PDH and PflB, 

two other genes are capable of converting pyruvate into acetate or acetyl-CoA: pyruvate oxidase 

(PoxB) and 2-ketobutyrate formate-lyase (TdcE). These genes were all measured comparing 

JCL166B with BP1 and only aceE has increased expression (Figure 3-3b), suggesting that it may 

be conferring beneficial physiological effects that extend beyond increased conversion of 

pyruvate into acetyl-CoA.  

The use of PDH serves advantageous for improving butanol production because additional 

NADH can be produced to balance the stoichiometric conversion of glucose into butanol. In the 

conversion of pyruvate into acetyl-CoA, if only PflB is used and only formate is produced, then 

there will be an electron deficiency for butanol production and theoretically only butyrate will be 

formed:  

1 glucose + 2 CoA ➔ 2 acetyl-CoA + 2 formate + 2 NADH 

2 acetyl-CoA + 2 NADH ➔ 1 buryrate + 2 CoA 

The net reaction becomes: 1 glucose + ➔ 2 formate + butyrate 
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However, if these additional formate are oxidized to produce NADH, then butanol formation 

should increase: 

1 glucose + 2 CoA ➔ 2 acetyl-CoA + 4 NADH + 2 CO2
 

2-acetyl-CoA + 4 NADH ➔ 1 butanol + 2 CoA 

The net reaction becomes:  1 glucose ➔ 1 butanol + 2 CO2 

Any increased NADH supplied by PDH upregulation can therefore aid in conversion of butyrate 

into butanol. It is important to note that PDH has been shown to have decreased activity under 

anaerobic conditions as it is inhibited by high NADH/NAD+ ratios. Further, formate is still 

being produced as a major biproduct. This suggests that the activity of PDH likely only 

supplements pyruvate formate-lyase in conversion of pyruvate to acetyl-CoA. 

To validate that mutations within arcB and ihfB contribute to the altered byproduct formation 

observed within BP1, product formation was compared between JCL166B, BP1, BP1 ΔarcB and 

BP1 ΔihfB (Figure 3-4cde). These results confirm a 2-fold increase of butanol yield in BP1 

compared to JCL166B, with a 1.7-fold decrease in butyrate yield. Within BP1 WTarcB and BP1 

WTihfB, a decrease in butanol yield is observed, suggesting a lack of sufficient reducing power. 

Increased byproduct formation was observed in acetate rather than butyrate, which requires the 

same amount of reducing equivalents.  

JCL166B, without expression of FDH, was here and previously demonstrated to produce butanol 

in rich media(19)(Figure 3-2e). These results demonstrate that FDH is neither essential for growth 

nor butanol production. While our results suggest that further oxidation of formate into NADH 

aids in a robust growth phenotype, additional overexpression of FDH within JCL166B 
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(JCL166F) is not sufficient to rescue growth in minimal media (Figure 3-3a). These results 

suggest that other physiological factors contribute to metabolic impairment.  

 

Redistribution of carbon resources through altered pathway expression 

 

We further aimed to isolate additional physiological factors that contribute to the robust growth 

of BP1. We compared activity of butanol pathway enzymes before and after evolution. Specific 

activity of enzymes within cell lysate was measured after 24 hours of anaerobic growth. AtoB, 

Hbd and Crt show a decrease in specific activity (Figure 3-5a). We suspected that this 

observation is due to an alteration in plasmid copy number. ColE1 plasmids, as well as ColE1 

derivatives that include ColA, are a class of Pol I-dependent plasmids whose replication relies 

solely on host-encoded proteins(35). Genomic sequencing showed a mutation in pcnB (Plasmid 

Copy Number B) (G632A, R312H), which encodes for poly(A) polymerase I (Pol I). It has been 

reported that even though pcnB deletion strains show no growth defects, they are defective for 

plasmid maintenance with ColE1 origins(36). As a result, ColE1 related plasmids show 

instability in pcnB deletion mutants and exhibit decreased copy numbers. We therefore suspected 

that the mutation in pcnB (G632A) may alter or diminish the copy number of the pathway 

plasmids. 

The relative plasmid copy number was measured using qPCR and compared between JCL166B 

and evolved strain BP1. As anticipated, after evolution there was roughly a 4-fold decrease in 

plasmid copy number of pEL11 and a 5-fold decrease in pIM8 (Figure 3-5b). This observation 

can explain the diminished activity of butanol enzymes. To verify that the mutation in PcnB is 

the cause of this diminished plasmid copy number, we reverted the point mutation in PcnB (BP1 
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WTpcnB) and measured the relative plasmid copy number as well. This subsequently restored 

levels of plasmid to match those of unevolved parent JCL166B (fFigure 3-5b). BP1 WTpcnB 

also exhibited a reduced growth rate compared to BP1 in minimal media (Figure 3-3a). 

The presence of plasmids that overexpress butanol pathway enzymes forces a large amount of de 

novo synthesized amino acids and nucleotides to be used to maintain high protein expression 

levels and plasmid copy numbers. In general, it has been observed that enzymes involved with 

protein synthesis, as well as synthesis of nucleotides, are decreased within cells growing in rich 

media in response to the surplus of sufficient building blocks(37). These results suggest that by 

modulating the concentration of intracellular plasmids, this burden is deceased to allow for 

carbon flux to be redirected toward synthesis of compounds essential for growth 

 

Metabolic perturbations optimize carbon usage 

To evaluate systematic perturbations that contribute to butanol production in minimal media, we 

used both metabolomic and proteomic analysis to compare BP1 with JCL166B. Ion pair 

LC/MS/MS was used for obtaining the metabolome profiles for JCL166B and BP1. A total of 44 

metabolites with significantly perturbed values (P ≤ 0.05) were annotated (Figure 3-6a). This 

data was subjected to principal component analysis and showed that JCL166B and BP1 

separated by PC1 (68.9%), while the PC2 (10.2%) separated between the replicates within each 

strain. 

Of the significantly reduced metabolites are nucleosides uridine, thymidine, cytidine, and 

guanosine. In addition to this are other nucleotide monophosphates and diphosphates such as 

CDP, CMP, ADP, GMP, AMP and UMP. Relative concentrations of nucleotides of BP1 
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compared to JCL166B are listed in Figure 3-6B. As shown, nucleotides with decreasing 

phosphorylation have deceased relative concentrations, corresponding to a relative increase in 

adenosyl energy charge. The physiological effects of energy charge are based on the ratio of 

these nucleotides(38), and an increase in energy charge is an indicator that overall metabolism 

supports greater biosynthetic processes.  

Lactate and succinate showed increased measurements within BP1. While native fermentation 

pathways are deleted, several other enzymes can produce these metabolites. Specifically, 

succinate can be produced from basal activity of the glyoxylate shunt, and lactate can be 

produced using membrane bound, FAD dependent lactate dehydrogenase (Dld). Contributions of 

lactate and succinate fermentation to the growth phenotype of BP1 was shown to be negligible as 

no growth was observed after pathway plasmids were cured (Figure 3-2b). 

Using the tandem mass tagging (TMT) quantitative proteomics, we have identified 1874 

proteins. Of which, 1847 proteins are quantifiable. Measured proteins were categorized by 

biological process, molecular function, and usage within specific metabolic pathways by cross 

referencing them within the EcoCyc database. Protein functionality groups are listed in Figure 

3-4A, and the number of proteins that had significantly increased reads ( > 1.5 fold increased) 

compared between JCL166B and BP1 were noted. Consistent with expectations and the observed 

increase in energy charge, levels of proteins involved in biosynthetic processes were increased in 

BP1. These include amino acid biosynthetic processes and fatty acid biosynthesis (Figure 3-7ab). 

On the contrary, proteins involved in catabolic processes have relatively higher levels in 

JCL166B including β-oxidation and various amino acid degradation pathways (Figure 3-7a). Also 

consistent with previous analysis, aceE and aceF showed respective increases of 1.61 fold, 1.57 

fold.  
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Metabolomic measurements show that concentrations of CoA were decreased, suggesting that 

excess CoA is likely being utilized within the CoA dependent butanol pathway. This is supported 

by measurements of acetyl-CoA and butanoyl-CoA, the only two butanol pathway intermediates 

detected, which both showed significantly increased concentrations in BP1. A previous report 

that improved titers of butanol in rich media did so by increasing the expression of AdhE2, 

which released free CoA from the pathway to improve pathway recycling. It was also 

hypothesized that by supplying additional CoA, flux could be increased through the pathway. 

Within BP1, aspartate 1-decarboxylase (PanD) shows a 2.1 fold increase in protein level. PanD 

has been shown to be the rate limiting enzyme in synthesis of pantothenate, a CoA precursor. 

Increases in pantothenate were measured in BP1, suggesting an adaptive mechanism to increase 

the supply of CoA for function of the butanol pathway.   
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Discussion 
While deletion of native fermentation pathways results in high-titer production of butanol in rich 

media, this major systematic modification impaired metabolic function required for growth 

coupled production in minimal media. To restore metabolic function, we employed an evolution 

based strategy with an enhanced rate of mutagenesis conferred by mutator MutD5. Following 

evolution and further engineering, butanol production of 2g/l was achieved. Interestingly, 

evolution also resulted in increased butanol yields and decreased butanol titers, which suggest 

alterations to energy metabolism.  

Genome sequencing was performed to identify mutations in BP1 that may contribute to altered 

energy metabolism or other factors that contribute to growth. Mutations in ihfB and arcB were 

identified that work in combination to upregulate expression of pyruvate dehydrogenase (PDH). 

An increase in PDH activity is able to increase supply of NADH as an alternative to formate 

production with PflB. Reversion of either of these mutations causes significant decreases in 

butanol yields, supporting the notion that PDH affects growth and byproduct formation.  

It is not apparent as to why increased NADH supply improves the growth phenotype. 

Nevertheless, because additional overexpression of FDH (JCL166F) is further unable to grow in 

minimal media, we can conclude that other factors likely contribute to the robust growth 

phenotype of BP1.  

A mutation in pcnB was observed that decreased copy numbers of plasmids containing butanol 

pathway enzymes. This mutation effectively reduced the activity of these enzymes. 

Overexpression of these enzymes is likely burdensome to the cell as all amino acids must be 

synthesized de novo. Therefore, this mutation allows a preservation of amino acids and other 

resources that can be redirected towards cell division and homeostasis.  
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These results demonstrate the utility of directed strain evolution for addressing non-obvious 

factors that impair metabolic function. These results also demonstrate that directed strain 

evolution has potential to be used for reducing byproduct formation and enhancing production 

yields. Further, by elucidating the underlying strategies used by the cell, we are able to observe 

important considerations that can aid in further rational engineering approaches. 
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Materials and Methods  
 

Reagents 

T4 DNA polymerase was purchased from New England Biolabs (Ipswich, MA). KOD Xtreme 

DNA polymerase and Bugbuster were from EMD Millipore (Billerica MA). Kapa HiFi was from 

Kapa Biosciences (Wilmington, MA). Oligonucleotides were purchased from IDT (San Diego, 

CA). All chemicals were purchase from Fisher Scientific (Pittsburg, PA) or Sigma-Aldrich (St. 

Louis, MO). 

Bacterial Strains 

A list of strains and plasmids are listed in table 1. XL1-Blue and XL1-Red were purchased from 

Agilent Technologies (Santa Clara, CA). Strain JCL166 was acquired from previous studies(39). 

 

Plasmid and strain construction. 

A list of plasmids are listed in table 1. RBS sequences were designed using the Salis RBS 

calculator(40).  All fragments were amplified with Kapa HiFi or KOD Xtreme and subjected to 

further digestion with DPN1 to remove methylated DNA template. Fragments were designed 

with 20bp overlaps. Fragments were assembled using T4 DNA polymerase using the following 

protocol: Fragments are pooled in equimolar concentrations with a final concentration between 

30-80µl. 8.7µl of this mixture was mixed with 1µl of NEB buffer #2, and 0.3 µl of T4 DNA 

polymerase. The reaction was incubated at room temperature for 10 minutes and the entire 

reaction mixture was transformed into XL1-Blue. Plasmid sequences were further verified using 

Sanger sequencing with Laragen (Culver City, CA). MutD5 was acquired by amplifying the 
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DnaQ gene from XL1-Red. Gene deletions were performed using λ-Red recombination as 

previously described(41). 

Media and Growth Conditions.  

Strains were routinely cultured in LB broth. Commercial 5x M9 salts were used as the basis for 

minimal media with final concentrations of 0.4g/l of glucose and 2mM MgSO4, 0.1mMCaCl2, 

1ml/L thymine.  

Minimal media growth conditions are as follows: Cultures were placed into Vacutainer serum 

tubes or for larger cultures, Wheaton Glass Serum Bottles. The bottles were topped and crimped, 

then a needle (21G by 1 ½ in.; BD) paired with a Millipore polyethersulfone (PES) 0.22 µm 

filter was inserted through the rubber stopper of the serum bottle. The bottles were placed in an 

anaerobic transfer chamber where the oxygen in the headspace and medium was purged by 

repeated cycles of vacuuming and filling with nitrogen and hydrogen. The needles were removed 

from the stoppers inside the anaerobic chamber. 

Evolution  

Parent strains were transformed with pALQ32. Single colonies were precultured in LB and 

grown overnight at 37C. 1:100 inoculations were made into minimal media in anaerobic 

conditions containing appropriate antibiotics and 0.1mM of isopropyl-β-D-thiogalactopyranoside 

(IPTG). Cultures were provided with minimal amounts of supplementation so that the culture 

could grow to an OD600 of 0.4-0.6 in 24 hours. This culture was used to inoculate fresh media 

with limiting supplementation at 1:100. This process continued until a desired growth phenotype 

was observed.  

Quantification of mutation rate  
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The mutation rate of pALQ32 was determined by observing the increase in rifampicin resistance. 

JCL16 with and without pALQ32 were grown in LB overnight with 0.1mM IPTG and plated the 

next day onto LB agar plates containing 100μl/ml rifampicin. Corresponding fold increases in 

CFU formation were used to determine the increased rate of mutagenesis when grown with 

pALQ32. 

Butanol production  

Individual colonies were used to inoculate 3ml of LB overnight preculture containing appropriate 

antibiotics. This culture was used to inoculate 3ml of minimal media in vacutainer tubes and 

immediately made anaerobic. Media contained antibiotics (carbenicillin 100 μg/ml, kanamycin 

50μg/ml, and chloramphenicol 50μg/ml), 4g/l glucose and 0.1mM IPTG. The culture was grown 

at 37C. Every 24 hours, the pH was adjusted to pH 7 using 10M NaOH, and 4g/l of glucose was 

added.  

Quantification of metabolites 

Alcohols were quantified using GC (gas chromatography) with flame ionization detection. 

Agilent 6890N with 6850 autosampler. Culture samples were centrifuged at 6000rpm for 5 

minutes. Supernatant was injected directly into the GC using 1-propanol as an internal standard. 

Detailed procedures are described previously(42).  

Glucose and organic acids were quantified using HPLC with Aminex HPX-87H column (Bio-

Rad) with 30mM H2SO4. Detailed procedures are described previously(43). 

Enzyme assays  
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Cell extracts were prepared in aerobic conditions. Cells were collected by centrifugation. The 

pellets were lysed using Bugbuster Protein Extraction Reagent (Millipore). The lysate was 

centrifuged at 13,200 rpm, 10 minutes, 4ºC and the supernatant was collected for enzyme assays.  

 

All enzyme assays were performed spectrophotometrically using the Biotek Powerwave XS 

microplate reader at 30ºC aerobically. Reaction mixture volumes were 150 µL. Protein 

concentrations were determined using a Bradford assay. All assays were initiated by the addition 

of the cell extract. 

 

Enolase assay. The enolase activity was measured by the increase in absorption at 240 nm, 

corresponding to the formation of phosphoenol pyruvate (PEP). The reaction mixture contained 

87 mM Tris-HCl, pH 8.0, 100 mM KCl, 1 mM Mg SO4, and 1 mM 2-phosphoglycerate. 

 

Aldolase assay. The aldolase activity was measured by an increase in absorption at 340 nm. The 

reaction mixture contained 100 mM Tris-HCl, pH 8.0, 0.5 mM NAD+, triose phosphate 

isomerase (1 unit/reaction), glyceraldehyde-3-phosphate dehydrogenase (2 units/reaction), and 5 

mM fructose-1,6-bisphosphate.  

 

Glucokinase assay. The glucokinase activity was measured by an increase in absorption at 340 

nm. The reaction mixture contained 100 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 1 mM ATP, 0.4 

mM NADP+, glucose-6-phosphate dehydrogenase (0.2 units/reaction), and 20 mM glucose. 
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Phosphoglucose isomerase assay. The phosphoglucose isomerase activity was measured by an 

increase in absorption at 340 nm. The reaction mixture contained 100 mM Tris-HCl, pH 8.0, 3 

mM MgCl2, 0.2 mM NADP+, glucose-6-phosphate dehydrogenase (0.2 units/reaction), and 0.3 

mM fructose-6-phosphate.  

 

Phosphofructokinase assay. The phosphofructokinase activity was measured by a decrease in 

absorption at 340 nm. The reaction mixture contained 100 mM Tris-HCl, pH 8.0, 0.4 mM 

NADH, 1 mM ATP, 10 mM MgCl2, 2 mM NH4Cl, aldolase (0.2 units/reaction), triose 

phosphate isomerase (1 unit/reaction), glycerophosphate dehydrogenase (2 units/reaction) and 5 

mM fructose-6-phosphate. 

 

Phosphoglyceromutase assay. The phosphoglyceromutase activity was measured by a decrease 

in absorption at 340 nm. The reaction mixture contained 100 mM Tris-HCl, pH 7.0, 20 mM KCl, 

5 mM MgSO4, 2 mM ADP, 0.4 mM NADH, enolase (2 units/reaction), pyruvate kinase (4 

units/reaction), lactate dehydrogenase (4 units/reaction), and 2 mM 3-phosphoglycerate. 

 

Glyceraldehyde-3-phosphate dehydrogenase assay. The glyceraldehyde-3-phosphate 

dehydrogenase activity was measured by an increase in absorption at 340 nm. The reaction 

mixture contained 100 mM potassium phosphate buffer, pH 7.6, 1 mM NAD+ and 1 mM 

glyceraldehyde-3-phosphate. 
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Phosphoglycerate kinase assay. The phosphoglycerate kinase activity was measured by a 

decrease in absorption at 340 nm. The reaction mixture contained 100 mM Tris-HCl, pH 7.5, 2 

mM MgSO4, 1 mM ATP, 0.5 mM NADH, 1 mM 3-phosphoglycerate, and glyceraldehyde-3-

phosphate dehydrogenase (5 units/reaction). 

 

AtoB assay. The AtoB activity was measured by the decrease in absorption at 303 nm, 

corresponding to the absorption bond enolate complex formed by acetoacetyl-CoA and Mg2+. 

The reaction mixture contained 100 mM Tris-HCl, pH 8.0, 10 mM MgSO4, 0.2 mM acetoacetyl-

CoA, and 0.2 mM CoA.  

 

Crt assay. The Crt activity was measured by the decrease in absorption at 263 nm, corresponding 

to the disruption of the α-β unsaturation of crotonyl-CoA. The reaction mixture contained 100 

mM Tris-HCl, pH 7.5 and 0.1 mM crotonyl-CoA.  

 

Ter assay. The Ter activity was measured by a decrease in absorption at 340 nm. The reaction 

mixture contained 100 mM potassium phosphate buffer, pH 6.2, 0.2 mM NADH, and 0.2 mM 

crotonyl-CoA. 
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Hbd assay. The Hbd activity was measured by a decrease in absorption at 340 nm. The reaction 

mixture contained 100 mM 3-(N-morpholino) propanesulfonic acid (MOPS), pH 7.0, 0.2 mM 

NADH, and 0.2 mM acetoacetyl-CoA.  

 

DNA Sequencing 

Genomic DNA was purified using a Qiagen DNAeasy Blood and Tissue Kit. DNA 

concentrations were normalized to 1ng/µl using a Qubit fluorescent reader. This was used as 

input DNA for Illumina Nextera XT DNA Sample Preparation. Resulting libraries were pooled a 

5nM. Libraries were sequenced on Illumina 3000 with 100bp single end reads to a minimum of 

10x coverage, and an average of 42x coverage. The adapter sequences were removed from reads 

using Trim Galore! (http://www.bioinformatics.babraham.ac.uk/) with quality trimming turned 

off. Trimmed reads were mapped using BWA-MEM v.0.7.12-r1039 (Li 2013) to the Escherichia 

coli str. K-12 substr. MG1655 genome (NCBI Accession NC_000913). Variant discovery and 

filtering was done with GATK v 3.7-0-gcfedb67(44) using HaplotypeCaller in GVCF mode with 

ploidy 1, followed by GenotypeGVCFs, and finally VariantFiltration setting a minimum QD of 

2.  SnpEff[45] was used to determine the context of the variants and predict the functional 

impact. Additional custom scripts were used to identify important variants. 

Metabolite Sampling and Extraction 

After cultivating strains for 24 hours, three OD600 units of cells were collected by fast filtration, 

using 47 mm diameter nylon membrane with pore size 0.45 µm (Millipore, MA, USA), for 

intracellular metabolome analysis. Cells were quenched by liquid nitrogen immediately and then 

stored at -80 °C until extraction. Extraction was performed by addition of 1.8 mL extraction 
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solvent (methanol/water/chloroform = 5:2:2 v/v/v) with internal standard (+)-10 camphorsulfonic 

acid (25 μg/L) to the filter in 2 mL sampling tube. The sampling tubes were incubated at -30 °C 

for 1 hour, after which 1050 µL of solution was collected and added to 525 µL of ultrapure 

water. After vortexing, the solution was centrifuged at 4 °C, 10,000 rpm for 5 min to separate 

polar and non-polar phase. 700 µL of the upper polar phase was then transferred to a new tube 

via syringe filtration (0.2 µm PTFE hydrophilic membrane, Millipore, MA, USA). Methanol in 

the samples was removed by centrifugal concentration for about 2 hours after which the samples 

were lyophilized by freeze drying overnight. Samples were stored at -80 °C till analysis. 

Lyophilized samples were dissolved in 50 µL of ultrapure water for ion-pair liquid 

chromatography mass spectrometry (IP-LC/QqQ-MS) analysis. 

Intracellular sample analysis using IP-LC/QqQ-MS:  

IP-LC/QqQ-MS analysis was carried out using Shimadzu Nexera UHPLC system coupled with 

LCMS 8030 Plus (Shimadzu Corp., Kyoto, Japan). The column used was CERI (Chemicals 

Evaluation and Research Institute, Tokyo, Japan) L-column 2 ODS (150 mm × 2.1 mm, particle 

size 3 µm). The mobile phase (A) was 10 mM tributylamine and 15 mM acetic acid in ultrapure 

water whereas mobile phase (B) was methanol. The column oven temperature was 45 °C. The 

flow rate was 0.2 mL/min and the concentration of B was increased from 0% to 15% from 1.0 to 

1.5 min, 15% to 50% from 3.0 to 8.0 min and 50% to 100% from 8.0 to 10.0 min, and held until 

11.5 min. From 11.5 min, the concentration was decreased to 0% and held until 17 min. Negative 

ion mode was used for mass analysis. Injection volume was 3 µL and probe position was +1.5 

mm. Desolvation line temperature and heat block temperature was 250 °C and 400 °C, 

respectively, nebulizer gas flow was 2 L/min and drying gas flow was 15 L/min. Analysis was 

performed with multiple reaction monitoring (MRM). The raw data obtained was converted to 
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analysis base file (abf) format by using freely available file format converter (Reifycs Inc., 

Tokyo, Japan). MRMPROBS (Tsugawa, et al., 2013) was used for automatic peak picking and 

for calculation of peak area. The peaks were normalized by internal standard (+)-10 

camphorsulfonic acid. 

Multivariate analysis 

  SIMCA-P+ version 13 (Umetrics, Umeå, Sweden) was used for principal component 

analysis (PCA). Metabolome data was mean centered to unit variance and transformation was 

not performed. Heatmap of the annotated metabolites was obtained using Multiexperiment 

Viewer Version 4.9, freely available for download at http://mev.tm4.org/. Hierarchical cluster 

analysis was obtained based on Pearson correlation with gene leaf optimization and complete 

linkage clustering. 

Proteomics  

RT-qPCR  

Bacterial samples were harvested and immediately mixed with Qiagen RNA Protect bacterial 

reagent as per the manufacturers instructions. RNA was purified using RNeasy purification kit 

with additional DNase digestion step as per the manufacturer’s instructions. Purified RNA was 

eluted in 10mM EDTA. Luna Universal One-Step RT-qPCR Kit (NEB) was used to measure all 

RNA samples. Primers are listed below in table 2, and are verified to have efficiency between 90 

and 105%. Gene frr, ribosome-recycling factor, was used as a reference gene[46]. Results were 

analyzed using Bio-Rad CFX Manager 2.0. 
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Figures 
 

 

a) Illustration of the Clostridial CoA-dependent butanol pathway. Native fermentation 

pathways are deleted, forcing the cell to utilize the butanol pathway as a sole electron 

sink under anaerobic conditions. 

b) Specific activity of enzymes in the butanol pathway are measured and compared between 

JCL166B grown in rich media (blue) and minimal media (yellow)  

c) The evolution strategy involves anaerobic successive serial dilutions with decreasing 

nutritional supplementation until growth is observed within minimal media.  

d) Illustration of pALQ32, which contains mutator gene MutD5. 
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Figure 3-1: Overview of butanol pathway and evolution strategy 
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a) Growth and butanol production over the course of evolution. After 5 serial dilutions 

JCL166B obtained the ability to grow on minimal media. After additional dilutions, 

growth and butanol production both improved.  

b) Curing the plasmids that harbor butanol enzymes abolishes the growth phenotype in 

minimal media.  
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Figure 3-2: Growth and production phenotypes after evolution 
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c) MutD5 was cured from an evolved strain. Individual clonal strains were tested for growth 

and production. Increased growth phenotypes were correlated with increased byproduct 

formation and butanol production. 

d) After deletion of pta and overexpression of Fdh (pCS138) in clonal strain BP1Δpta fdh, 

2g/l of butanol was produced after 96 hours.  

e) Production of BP1 in rich media is lessened compared to production before evolution by 

JCL166B. 

f) Product yields, product ratios, and glucose consumption from clonal evolved strains 

plotted against increasing OD600. 
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Figure 3-3: Specific growth rates and gene expression 

a) Specific growth rate of JCL166B, BP1 and all derivatives. BP1 with deletions of arcB 

(BP1 ΔarcB) or ifhB (BP1 ΔihfB). BP1 with wildtype sequence of arcB (BP1 WTarcB), 

ihfB (BP1 WTihfB), or pcnB (BP1 WTpcnB). 

b) Relative mRNA abundance (measured by RT-qPCR) of genes within central carbon 

metabolism comparing BP1 to JCL166B. Red bars represent enzymes with significantly 

increased expression, while blue bars represent those with decreased expression. The 

gray bars represent those insignificantly changed. Cutoff is set with a log2 ratio of 1.  
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c) Enzymes with significantly perturbed expression in BP1 compared to JCL166B are tested 

to see if the expression change is due to the point mutation observed in either arcB or 

ihfB. C) Gene expression of BP1 (blue) and BP1ΔarcB (white) are normalized to BP1 

WTarcB. D) Gene expression of BP1 (blue) and BP1ΔihfB (white) are normalized to BP1 

WTihfB.  
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A/B) – Relative expression of aceE between JCL166B and BP1 derivatives. Results show that 

increased aceE expression is dependent on mutations in both IhfB and ArcB.  

C/D/E) – Byproduct yields after 24 hours production in minimal media 
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Figure 3-5: Altered plasmid copy number and pathway expression in BP1 

 

a) Specific activity of butanol pathway enzymes measured within cell lysate of BP1 and 

JCL166B  

b) Relative plasmid copy number of pEL11 and pIM8 within BP1 compared to JCL166B. 

Plasmid copy numbers are decreased within BP1. BP1 WTpcnB (reversion of pcnB to 

wildtype sequence) restores plasmid levels to match JCL166B.  

 

  5

JCL166B BP1

(µMol/min/mg protein)

AtoB 9.41 ± 0.39 2.76 ± 0.39

Hbd 0.78 ± 0.10 0.15 ± 0.01

Crt 49.2 ± 9.8 33.5 ± 0.43

Ter 2.76 ± 0.16 3.46 ± 0.56
-6
-5
-4
-3
-2
-1
0
1
2

BP1 BP1 
WTpcnB

Series1

Series2fo
ld

 c
h

an
ge

 in
 c

o
p

y 
n

u
m

b
er

 o
ve

r 
JC

L1
6

6
BBA

pEL11
pIM8



100 

 

 

Figure 3-6: Metabolomic analysis of BP1 

a) Relative intracellular metabolites comparing BP1 to JCL166B. All 44 metabolites that are 

significantly perturbed (P ≤ 0.05) are listed.  

b) Relative intensities of nucleotides comparing BP1 to JCL166B.  

c) Change in nucleotide energy charge after evolution in BP1 shows 26% increasing 

adenosyl energy charge. 
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a) Proteins with increased expression in JCL166B and BP1 are grouped by functionality. 

b) Average protein level changes of enzymes within various amino acid biosynthetic 

pathways in BP1 compared to JCL166B. 

No of proteins*

Functionality 
Higher in 
JCL166B

Higher in 
BP1

Total 
proteins

Whole genome 129 152 1741

All biosynthetic processes 12 47 390

Amino acid biosynthesis 5 28 89

fatty acid biosynthesis 0 2 14

Nucleotide metabolism 1 2 68

Catabolic processes 37 11 223

β-oxidation 6 1 10

DNA binding 8 18 231

DNA replication 1 3 44

Oxidoreductase 23 23 228

Transporter 7 9 100

*Number of proteins with greater than 1.5 fold increase
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Figure 3-7: Proteomic analysis of BP1 and glycolysis enzyme activity 
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c) Relative specific activity of glycolytic enzymes in BP1 compared to JCL166B shows an 

increase in activity after evolution.  

d) Specific activity of glycolytic enzymes within cell lysate of JCL166B and BP1 
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Table 3-1: Plasmids and strains used in this work 
 

Strains  Reference 

JCL166 
BW25113/F’ [traD36 proAB+ lacIqZΔM15 (Tetr)] ΔldhA 

ΔadhE ΔfrdBC 
[19] 

JCL166B JCL166/pEL11/pIM8 This work 

JCL166F JCL166/pEL11/pIM8 /pCS138 This work 

BP1 JCL166B evolved to function in minimal media This work 

BP1Δpta fdh BP1Δpta/pCS138 This work 

BP1 ΔarcB BP1ΔarcB This work 

BP1 WTarcB BP1 with wildtype arcB sequence This work 

BP1 ΔihfB BP1ΔihfB This work 

BP1 WTihfB BP1 with wildtype ihfB sequence This work 

BP1 WTpcnB BP1 with wildtype pcnB sequence This work 

   

Plasmids   

pALQ32 PLlacO1::mutD5 pSC101 ori Specr  

pEL11 PLlacO1::atoBEC-adhE2CA-crtCA-hbdCA ColE1 ori Ampr [19] 

pIM8 PLlacO1::terTD Cola ori Kanr [19] 

pCS138 PLlacO1:: fdhCB pSC101 ori Cmr [19] 
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Table 3-2: Primers used for RT-PCR 

fumC ACCGCCGAGTAATTCACTGG 

  CGAATTCCCGCTGGCTATCT 

idc CTCTGGTGCACAAAGGCAAC 

  TCGATCAGTTCACCGCCAAA 

gltA GTCACTGTGCATTTCGCTCC 

  TCCGTCTTCCATGTTCACCG 

acnA TTGGTACTGACTCGCACACC 

  TCTGCTTCGATCCCACCAAC 

acnB AAATGGCTGGCGAATCCTGA 

  GAGCACACAGGATTGGCTCT 

mdh CAGGTTTTTCACGATGCCGG 

  AAGGCGCAGATGTCGTTCTT 

fumA CCCAGACCAAGATTTTGCGC 

  AAGGGAATGAGCACGGTCAG 

fumB GATGCTTGATGCTCTGCTGC 

  TGATCATGCTGGCGAAAGGT 

sucB TTTGAAAAACGCCACGGCAT 

  TTCCGGGTAACGTTTCAGGG 

sucC GCGATGGGTACGATGGACAT 

  ACGCTTCGGTTACACGTTCT 

sdhA CCGACCAAAGTTACCGGTCA 

  TTAGCGCCGTGTACCGATAC 

aceE CTCCGGTTCTATCCTGCGTC 

  CAGCATGTTCCAGCGTTCAC 

pflB CTGAGTCGGGATAGCGTCAC 

  CCTGGCTGTTGACCTGGTAG 

poxB CGTTGCAGGGCTTCATCAAC 

  GACACAAACTTTGCCCGCAT 

frr TGGATGGCATTGTCGTGGAA 

  ATCGGACGCCATAATCGCTT 

pgi AGCTCTGCGTCCGTACAAAA 

  CAAGAACAGCGTGGTTTCCG 

gapA GCTCGTAAACACATCACCGC 

  CGATGTCCTGGCCAGCATAT 

pgk CTTGTGCCGCGATAAAGGTG 

  ATGGTGGCTATCGTTGGTGG 

fbaA AGAGCGGGTTAGCAGCAAAT 

  GCAGACGTTGTACAACACCG 

tpiA GGCTGAGCAAACAGTTCTGC 

  AAATCTGCAACTCCGGCTCA 

pfkA AAAAACGTGGTATCGACGCG 

  GGAAGCCCATTTCGGTCAGA 
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pfkB TCCCCGTCGCTACTGTAGAA 

  ATACTGCTCACCGCTTGCTT 

gpmM GCACGCCAGTCGGGATATTA 

  ATCATCGCTGCACACGGTAA 

gpmA TCTGCAACCGGAAATGAGCT 

  GATGGTGTCGTATTTGCCGC 

eno CTTTCACAGTTTTCGCGCCA 

  ACATCGCTGAACTGAACGGT 

pykA GTACGCTGAACCTGACTGCT 

  GCAGATTAACCGCTTCGCTG 

pykF ATCCGTGCACGTAAAGTCGT 

  CGTCAGTACCGTCGAGGATG 

tdcE GAATCGACTGGGTAGGGACG 

  TCGACGGTGAATATCCGCAG 

 

 

  



106 

 

Table 3-3: Mutations in BP1 

Position Reference Alternate Mutation Type Gene Residue change  

4514230 C T non-synonymous fecB Glu27Lys 

4467419 A G intergenic  
4442349 A AG intergenic  
4389447 A G non-synonymous psd Ile305Thr 

4304171 A G non-synonymous ytcA Leu78Pro 

4250594 A G intergenic  
4234120 C T synonymous pgi Asn121Asn 

4233494 A G intergenic  
4214221 T C intergenic  
4154289 T C non-synonymous argE Ile187Val 

4154275 G A synonymous argE Gly191Gly 

4073641 C T intergenic  
4030338 T C non-synonymous fadB Lys212Glu 

3861296 A G non-synonymous glvG Val231Ala 

3840009 T C intergenic  
3787593 A G synonymous envC Glu252Glu 

3720309 AT A intergenic  
3698666 A G synonymous bcsG Val151Val 

3681691 T C non-synonymous yhjJ Ile84Val 

3584679 G A intergenic  
3413071 T C non-synonymous envR Lys132Arg 

3352711 G T non-synonymous arcB Asn105Lys 

3330165 C T synonymous dacB Tyr401Tyr 

3249169 T C synonymous yqjC Arg67Arg 

3212398 T C non-synonymous dnaG Met431Thr 

3205051 T A non-synonymous plsY Trp120Arg 

3197632 A G synonymous glnE Gly670Gly 

3192194 C T intergenic  
3189871 G A intergenic  
3155282 C T intergenic  
3073957 C A intergenic  
3031570 C T synonymous uacT Ser68Ser 

3018689 T C non-synonymous ygfK Ile877Thr 

2916214 A AG frameshift barA Leu388fs 

2884230 T C intergenic  
2784674 A G non-synonymous ypjC Val113Ala 

2768451 G A non-synonymous yfjP Gly248Ser 

2757982 A AT frameshift yfjH Leu207fs 

2757730 T C non-synonymous yfjH Thr291Ala 
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2712176 T C non-synonymous trmN Asn197Asp 

2709467 A G synonymous rpoE Asp182Asp 

2698979 T A non-synonymous yfhH Leu74Gln 

2690054 T C non-synonymous glrK Thr349Ala 

2598177 A G non-synonymous bamC Val230Ala 

2572607 A T non-synonymous eutD Met300Lys 

2543967 A G synonymous ucpA Arg219Arg 

2508833 C T synonymous glk Leu198Leu 

2476124 G A stop gained yfdT Trp84* 

2368763 T C non-synonymous arnA Val242Ala 

2360707 G A synonymous rhmD Ala236Ala 

2284682 A C non-synonymous yejM Ile103Leu 

2137719 T C intergenic  
2130550 T C non-synonymous wcaD Asn110Ser 

2108903 T C non-synonymous wzxB Ser228Gly 

1878882 A G synonymous yoaJ Lys3Lys 

1852869 A G non-synonymous ydjE Ser371Pro 

1814698 C T non-synonymous katE Arg278Cys 

1803680 T C non-synonymous arpB Leu196Ser 

1613671 T C non-synonymous sad Asn345Asp 

1611933 C T intergenic  
1583403 A G synonymous ydeO Tyr95Tyr 

1577667 G T non-synonymous yddA Ala559Glu 

1554486 A T non-synonymous maeA Leu395Gln 

1551003 CG C frameshift fdnH Ala183fs 

1545608 T C non-synonymous yddK Tyr36Cys 

1531486 G T synonymous yncI Ala300Ala 

1524223 T C non-synonymous yncE Val306Ala 

1492909 A G non-synonymous trg Tyr147Cys 

1459344 A G synonymous paaH Glu97Glu 

1444291 A G non-synonymous ydbH Asp414Gly 

1440176 T A,C synonymous ydbK Ala203Ala 

1415744 C T non-synonymous recE Ser548Asn 

1398582 T C non-synonymous uspE Asn14Ser 

1385439 G A non-synonymous ycjX Met441Ile 

1369783 A G non-synonymous pspE Tyr32Cys 

1307059 T A non-synonymous yciU Asp31Val 

1295208 G A non-synonymous insZ Leu39Phe 

1288160 G A synonymous purU Ala155Ala 

1231716 T A synonymous umuC Ser177Ser 

1192294 A T non-synonymous hflD Ile113Asn 
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1189403 T C non-synonymous phoQ Asp125Gly 

1118261 A G synonymous yceI Asn72Asn 

1036863 G GC frameshift hyaF Leu40fs 

1005001 A G synonymous pyrD Gly78Gly 

994065 A G synonymous ssuC Tyr256Tyr 

974213 A G non-synonymous smtA Glu226Gly 

963925 T C non-synonymous ihfB Met33Thr 

959997 T C synonymous aroA Leu396Leu 

949881 C T stop gained ycaK Gln72* 

893474 G A intergenic  
864043 T C synonymous fsaA Arg134Arg 

724138 A G non-synonymous kdpD Phe93Leu 

659226 A T intergenic  
655916 G A non-synonymous dcuC Ala18Val 

627875 C A non-synonymous entB Ala61Asp 

602206 T C non-synonymous pheP Val83Ala 

522807 C T synonymous ybbP Leu798Leu 

506465 A C non-synonymous ushA Thr518Pro 

480998 A G intergenic  
470464 T C non-synonymous mdlA Ser532Pro 

469224 T C synonymous mdlA Ala118Ala 

454086 A G non-synonymous yajG Ser28Pro 

325640 C T synonymous betA Ala536Ala 

320050 C T intergenic  
317391 T C intergenic  
300003 A C non-synonymous paoC Leu311Arg 

280248 G A non-synonymous insX Leu39Phe 

263683 T C intergenic  
236830 T C intergenic  
231010 G A intergenic  
164886 A G non-synonymous mrcB Lys53Glu 

158495 C T non-synonymous pcnB Arg211His 

112255 A T non-synonymous zapD Asp115Glu 
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