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Macroparticle Theory of a Standing Wave Free-Electron Laser

Two-Beam Accelerator

Ken Takayama*

Institute for Beam Particle Dynamics, University of Houston, Houston, Texas 77204

and Texas Accelerator Center, The Woodlands, Texas 77381

llicha Govil and Andrew M. Sessler

Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720

4 February 1992

Free-electron laser operation is formulated usmg a macroparticle approach

based on a universal gain equation. Microwave excitation in a single cavity is

derived analytically and is given in the form of analytic recursion equations for

a multi-cavity system driven by a sequence of electron bunches. Qualitative and

quantitative insights into the basic excitation and saturation mechanisms are pro­

vided. Stability analysis on a test particle moving around a macroparticle shows

the importance of precise control of bunch spacing.

* On leave from National Laboratory for High Energy Physics in Japan (KEK).
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1. Introduction

A free-electron laser (FEL) in the oscillator mode is a well-known concept in

the optical frequency range [1]. Recently, a collaboration of LBL, LLNL and MIT

has developed by theoretical [2] and numerical simulation [2,3], a microwave FEL

operating in the oscillator mode as a power source for a future linear collider. They

call the FEL a Standing-Wave FEL (SW/FEL) and have noted advantageous fea­

tures of the SW/FEL, as distinguished from that of a FEL operating in the amplifier

mode. Those features, discussed in detail in Ref. 2, consist of improved microwave

aspects as compared to that of earlier version of the Two-Beam Accelerator.

It is well-known that the motion of electrons and spatial evolution of the signal

wave and phase in a FEL are described by the KMR equations [4]. Takayama [5] and

Sessler et al. [6] have shown that in the case of well bunched beams this evolution

can be described by the KMR equations for a single particle which represents a

bunch center, namely, a macroparticle. In Ref. 5, Takayama has developed an idea

which, with the aid of some approximations [7], allows the KMR equations to be

reduced to a universal gain equation (UGE) whose solution can be obtained in a

universal gain function (UGF). We have found an exact analytic solution of the

UGE, which will be presented in Section 2. In Section 3 we will apply this approach

to the microwave FEL. The analytic model is useful for various purposes such as

design of the SW/FEL, parameter search for better performance of the SW/FEL,

and understanding of the over-all characteristics of the SW/FEL. Use of the model

for some studies is made in Sections 4 and 5, but many further uses of the model

will surely be made in further papers and by other workers.

2. Single Cavity Theory

We consider a single-stage FEL operating in an oscillator mode in an over­

sized waveguide with microwave reflectors at both ends. Namely. we consider a

cavity \vr..ich is excited in the T E01 mode with a sequence of transversely wiggling

bunches. The reflectors may simply be metal plates with small holes which allow the

2



electron beam to pass through. The cavity is taken as rectangular, with dimensions

a* x b*. Vie assume a standing wave of angular frequency w s , wave number k s =
[(w s /C)2 _(1r/b*)2P /2 and a cavity length L e satisfying ksLe = 2n1r (n is an integer).

A beam bunched with a slightly different frequency Wb = W s +6.w, enters the cavity

through the end-plate hole. Each bunch, performing wiggle motion caused by a

planar wiggler, starts to couple with the small signal waves. The signal is amplified

while arriving at the far end. There the signal is reflected back to the front end, and

since the cavity length is appropriately chosen, the signal begins FEL interaction

with the next electron bunch. This process is repeated for many macroparticles.

For simplicity, we assume 100% reflection at both ends and neglect wall-losses

and wakes caused by the electron bunches. The bunched beam considered here is an

approximation to a bunched beam of averaged current I, with each bunch having

a small spread in phase.

Following the macroparticle approach, after the FEL interaction within the

cavity, the normalized signal amplitude e s and rf phase advance 6.i.p at cavity end

(z = L e ) are given by

(1)

(2)

with

b = k w _ 8ks _ ~ ( :s ) ( a;)2,

s=/blz, (' d/ds),

where z is the axial coordinate measured from the cavity front-end /'\, - sin f::>.p rv 1, - f::>.1/J - ,

mc2 is the electron mass energy, ,mc2 the injection energy, e the electron charge,

Zo = 3770., J = 2I/a*b* the averaged current density, a w wiggler-field strength

normalized by wiggler wave-number k w , 8ks = 7 - ks the difference of k s from
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that in vacuum, and yes) the UGF. The universal gain equation determines yes):

y" = ±v'e-2y - (y')2 + e-
2y

- 2(y')2,

with initial conditions,

(D) - 1 albles(D)
y - og ,

K

y'(D) = sin[?/J(D)]e-Y(O),

(3)

(4)

(5)

where e.. (D) is the initial normalized signal amplitude and ?/J(D) is the initial pondera­

motive phase. It is noted that the positive and negative signs of eq. (3) correspond

to the rf phase's negative and positive advance regimes, respectively. Equation (3)

admits an analytic solution which is valid for both cases,

y(s) = ~ log{ e2y(O) + 2 [1 - eY(O) cos ?/J(D)] [1 - cos(s)] + 2eY(O) sin ?/J(D) sines) }. (6)

Using (6), the integration (2) is analytically performed to obtain the change in

signal phase over the length of the cavity:

_ Sc _ ~[ -1 (wtan(sc/2) + 2eY(O)sin?/J(D)) _ -1 (2eY(O)sin"p(D))]
~<p - 2 lui tan lui tan lui '

(7)

where u = e2y(O) - 2eY (O) cos ?/J(D) and w = e2y(O) - 4eY(O) cos ?/J(D) + 4.

Let us consider the next FEL interaction for the same signal where the next

bunch is displaced in time by 2r = 2Lclvp (where V p = wslks) from the first bunch.

The second bunch sees the initial value of the signal amplitude, [es(D)h = [es(Lc)h.

Here the subscript stands for the order of passing of the wave packet through the

cavity. From the definition of ponderomotive phase, "p = (ks+ kw)z -wst +<p(z), we

can write the initial value of ponderomotive phase for the macroparticle representing

the second bunch by

(8)

where ~w is the difference between bunching frequency and synchronous frequency.

Combining these considerations, we obtain a recursion form for succeeding FEL

interaetions,

Yi+l = ~ log{ e
2Yi + 2[1 - e Yi cos?/Jd [1 - cas(sc)] + 2e Y ; sin ?/Ji sine sc) }, (9)
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(10)

(12)

where
i-I

~i = {-(i -1)(2.6.wT) + 'PI(O) + 2:::(tl'Ph} mod h'

k=l

Sc Uk [_I(Wktan(sc/2)+2eYkSin'l/Jk) _1(2e Yk sin'l/Jk)]
(tleph = 2" - IUkl tan IUkl - tan IUkl '

(11)

Here Yi and 'l/Ji stand for the values of UGF and ponderomotive phase, respectively,

at the beginning of the FEL interaction with i-th bunch. From the above results,

one can easily determine how the T EOl mode in a single cavity is excited due to

succeeding FEL interactions; the normalized signal amplitude is given by

'" -[es(Lc)]i = albl eY'+l,

while the energy accumulated per unit length after i-th FEL interaction is given by

a*b* (me?) 2 2
Wi = 2cZo -e- [es(Lc)] i'

",2 a2
w- - (Z J2) w e2Yi+1 (13)

I - 0 2Cf2 a*b* [kw - oks - tU7)(~ )2)2 .

For a typical example, using the parameters listed in table 1, the formulas after

eq. (7) give a= 0.0238m2 and Ibl = 5.4407m-l
. For these values we calculate Yl =

-4.693, and the analytic model estimates the microwave accumulated in the single

cavity as depicted in fig. 1a. The evolution of related parameters is shown in

fig. lb. One may observe two aspects from figs. 1a and b; namely, (i) saturation in

the excitation and, (ii) almost uniform phase advance for i ~ 2.

To understand these aspects, we proceed to further qualitative discussions on

the recursion eq. (9) by expressing it as,

From eq. (14), we identify a saturation condition beyond which the microwave can

not grow in the cavity and microwave energy goes back into beam energy:

(15)
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Saturation means that a new incoming bunch stays in the accelerating phase. This is

an unavoidable result which occurs due to phase shifting and is one of the notable

features of the SW/FEL. If the magnitude of the right-hand side in eq. (15) is

much smaller than unity, that is, if the signal amplitude at saturation is large, the

condition reduces to

(16)

From the assumption of small initial power, namely eYl ~ 1, we have

Using this we obtain an expression for (~ep)i which is valid for i 2: 2:

(17)

From eq. (8) we know that .,p2 = -(2~WT) +,pI + (~ep)I = -(2b.WT) + (sc + 7r)/2.

This means that the initial ponderomotive phase for the second bunch does not

depend on the initial ponderomotive phase for the first bunch. Then,

(b.eph = Sc _ tan-I [ tan(sc/2) + tan(-~WT) ] = ~WT = -a,
2 I-tan(sc/2)tan(-~wT) (18)

where a = -~WT. As mentioned earlier, numerical iterations of the recursion

equation demonstrate that (.6.ep)i is almost constant for i 2: 2, and is equal to -a.

It seems difficult to prove this for larger values of i by a mathematically simple

approach because Yi and,pi are strongly correlated with each other t.hrough eqs. (9)

and (10). Nevertheless, we Gan ratify these features in an approximate way.

From eq. (10) it turns out that the ponderomotive phase .,pi is a uniformely

varying step function of i for i 2: 2:

.,pi = -(i - 1)(2~wT) + epl(O) + (~eph + (i - 2)(b.WT),

./. 'I I Sc 7r
'f/i = -z a + 2 + 2"'

6
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Here, the case of 0' 2: 0 is ruled out using the stability analysis discussed in Section 4.

Accordingly, we understand that i3at , corresponding to the saturation condition

eq. (16), satisfies

(20)

In addition, it is possible to evaluate approximate forms for Yiut or eYiw , which

is proportional to the signal amplitude. For large signal amplitude eq. (14) can be

simplified to:

eYi +1 = eYi + 2sin(sc/2)cos(lali).

The solution of eq. (21), which is valid for i 2: 2,is given by

(21)

eYi+1 = sinesc/2) { csc I~I sin [(i + 1/2) 10'1] + 1 + 2 cos 10'1 - 4 cos
2 IO'I}, (22)

where eY2 = 2 sin(sc/2) and eY3 = 4sin(sc/2) cos 10'1 are used. Using sin 10'1/2 rv

10'1/2, we have

eYiut+l ~ 2 sinesc/2) [I~I - ~] . (23)

Equations (20) and (23) indicate that the saturation depends on the magnitude of

0'. For the example, for the typical case we know that Y2 = -.706 and 10'1 = 6.00
•

Accordingly, equations (20) and (23) tell us that i lJat = 15 and e2Yiw = 20.0. These

estimates are in fairly good agreement with the exact solution shown in figures 1a

and lb.

3. Multi-Cavity Theory

The single cavity theory can be extended to the multi-cavity system of the

SW/FEL Two-Beam Accelerator in a straightforward manner. Recursion formulas

describing the spatial evolution of energy and ponderomotive phase for macropar­

tides are essentially the same as those in a multi-stage klystron-like FEL (or a

multi-stage FEL in the amplifier mode) which have been already given in Ref. 4.

Accordingly, the recursion formulae in the multi-cavity system which meet the re­

quirement of energy conservation and continuity of beam phase, B = (k lJ +kw )z-w3 t,
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are written as

In+l,i = In,i + e~C;K {([e S (0)]n,i)2 - ([es(Lc)]n,i)2} + (~/)n,i,

7/Jn+l,i = 7/Jn,i - /b(ln,i)ILc + [rp(O)]n+l,i - [rp(O)]n,i,

[rp(O)]n,i = [ep(O)]n,i-l + (~<p)n,i-l'

(24a)

(24b)

(24c)

(24d)

where n stands for the stage or cavity number. Using the definition of y(s), eq. (24d)

reduces to the initial condition of the DGE,

I {
a( In,dl b(In,i)/ }

Yn,i = og ( . )Ib( . )1 + Yn,i-l·a In,l-l In,l-l
(25)

Here, energy replenishment mc2(~/)n,i at the end of each stage is an externally

controlable parameter; for instance, in Ref. 3, it has been chosen to be a constant

value of e :E~'::'t W1,k/(Ii max ).

For the purpose of investigating spatial and temporal evolution of the beam

and excited microwaves, a perfect energy replenishment is assumed; each bunch (or

macroparticle) enters into the next cavity with the initially assumed energy Iffic2.

This simplification elminates eq. (24a) and the logarithmic term of eq. (25) from

the recursion relations. For a typical example with i max = 20 and n max = 20,

the remaining recursion formulas give very interesting results. Except for the first

bunch, the spacial and temporal evolution of FEL parameters is almost identical in

each cavity, as seen in figs. 2a and b. This feature is a characteristic of microwave

FELs with low input power.

4. Stability Analysis

Stability of a beam bunch has been a key issue in multistage FELs because

bunches propagate with a periodic transient process such as rapidly increasing rf

capturing. We are concerned about whether or not a bunch can maintain tight

bunching over many stages. To analyze the stability in a multistage klystron-like
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FEL, the stability equation [8] has been derived based on the macroparticle ap­

proach. The equation is still valid for the present FEL in the oscillator mode and

is given by

~~,i + (~s)~~ (es]n,i cos 1/1n,i(S )(n,i = 0, (26)

where ~n,i stands for the oscillation amplitude of an electron moving around the

i-th macropartic1e (or bunch center) in the n-th cavity. Unlike the case of a FEL in

the amplifier mode, here 1/1n,i(s) does not change by a large amount within a cavity

except for i = 1; in fact, 1~1/1n,il = -Sc + (~ep)n,i ~ 7r/2 for i > 2.

The stability is uniquely determined by the restoring coefficient which is pro­

portional to es cos 1/1. As discussed in Sections 2 and 3, [es]n,i and 1/1n,i do not

depend on n but i alone; [es]n,i is always positive and sinusoidally changing with

ij meanwhile, 1/1n,i is a linearly varying step function of i. The macroparticle can

be expected to be stable for ItPn,i I < 7r/2. This condition is equivalent to requiring

liQ + -T + 'II ::; 'I· If Q is a negative number then stability ocurrs only for i > I~I·

By choosing an appopriate Q, we can have stability even for the first bunch. In

contrast, the case of Q ~ 0 yields instability, even in the head of t.he beam, since

es cos tP < O. Thus it turns out that bunch spacing with a slightly different frequency

from w s , that is, a non-zero Q is crucial for bunch stability.

For comparison, typical examples of Q > 0 and Q < 0 are shown in fig. 3 as

functions of i for the first cavity. One finds that defocusing ocurrs when Q > 0,

as expected. If Q is not sufficiently negative, the first few bunches are defocused.

Even for a proper choice of Q (i.e., sufficiently negative) the focusing is weak for

the first bunches since the field es is small. In the macropartic1e model it is not

possible to determine the seriousness of this phenomenon, but in Ref. 2 multiparticle

simulations showed that the matter is not serious. This result is quite reasonable,

for weak focusing, or even defocusing, of the first few bunches will reduce their

contribution to es , but soon the increasing es will strongly focus the rest of the

bunches. Thus, the results obtained with the macropartic1e model are applicable to

real (multipartic1e) bunches even when the first few are defocused.

9



5. Comparison with Previous Work

The results are now compared with previously reported work in Ref. 2. The

continuous model of a standing-wave FEL, which has been developed in the Carte­

sian form of the signal field a = a 6 eirp = (an Oi) (where a 6 = es .J2c/w6 ) under

the assumptions of continuous energy recovery and slightly detuned bunch spacing,

tells us that the beam phase evolves linearly with i, that is, () = (3(2L c )i (where

(3 = -D.w/vp = 0:/L c ). The linear dependence of beam phase on i leads to a linearly

varying rf phase: <p = 1r /2 - (3L c i. Then, we have

'l/J = () + <p = (3L ci + 1r /2. (27)

(28)

The above poderomotive phase expression is in agreement with the corresponding

'l/Ji in the present paper. Necessarily, this gives the same saturation pulse length,

L p = 1r/1(31, in both theories.

Meanwhile, substituting the dominant term in eq. (23), exp(Yiul )~ 'i~c (using

sin(sc/2) ~ sc/2 and 0: = L c(3), into eq. (13), we obtain a formula for energy

deposited per unit length at saturation,

vv;. = ZoP(aw /,? (2.)
1141 2ca* b* (32·

This agrees with the expression for energy deposited per unit length derived from

eq. (32) of Ref. 2 where the coupling coefficient D x is assumed to be 1/2 and a

missing factor of 1/16 is introduced [9].

In addition, the result of the stability analysis is consistent with the conclusion

reached in Ref. 2. Thus, most of the results which have been obtained in the

continuous model are reproduced in the present approach, where we have taken

cavities with finite length.

6. Summary and Conclusions

As mentioned earlier, the analytic macroparticle theory relies on two important

assumptions, a w ~ 1 and EryI, ~ 1 where 8imc2 is energy loss per cavity. There­

fore, its validity depends simply on the reasonability of these assumptions. A large
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a w is in general accompanied with large beam energy for a fixed rf frequency. Such

large beam energy is likely to reduce the relative size of energy loss, b,Iy. In addi­

tion, the energy conservation law tells us that the change in energy is proportional

to the amplified power, namely, 12
. Accordingly, it is expected that the validity of

the macroparticle theory improves inversely proportional to 12
, because the drift

coefficient in beam phase is an inverse-funtion of ,2. This is confirmed by compar­

ison with the solution of numerically integrated KMR equations. Figure 4 depicts

the ponderomotive phase evolution of the saturation bunch, the 15-th macroparti­

de, through several cavities for three different values of current. As expected, the

agreement between the numerical and analytical results is better for lower beam

currents.

We have obtained a fully analytic FEL theory for a well-prebunched beam.

Since the theory takes account of basic aspects of discreteness such as the finite

size of cavity, the obtained result clearly elucidates the dependence of the FEL

performance on these parameters.

Error sensitivity analysis of a multistage FEL, using the macro-particle theory

is of great interest. This will be given in a forthcoming paper. For the purpose of

further confirming the theory, an experiment in which (say) a single stage is driven

by a well-bunched beam is most desirable.
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Table 1 FEL parameters

Injected beam current I 0.6kA

Injection beam energy (normalized) I 24.81

Normalized wiggler amplitude aw 6.926

Wiggler wave length 27r/kw 0.26m

Cavity length L c 9.2cm

RF frequency w s /27r 17.1GHz

Bunch spacing parameter 2~WT 12°

Initial RF energy per unit lenght W(O) 1.7 X 10-5 J /m

Waveguide dimension a* x b* 0.1 x 0.03m2
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Figure Captions

Fig.la Normalized signal amplitude, es , in the first cavity. The analytical result

(eq. 6) is shown by a solid line. Numerical simulation result with a macroparticle

is indicated by a broken line.

Fig.lb Ponderomotive phase 'l/Ji ,of succeeding macroparticles at the start of the first

cavity, and rf phase advance through the cavity, llepi ,for succeeding macroparticles.

The analytical results (eqs. 10 and 11) are shown by the solid lines and numerical

results with a macroparticle are given by the broken lines.

Fig.2a Energy deposited, Wi, and ponderomotive phase, 'l/Ji, for the 10-th cavity.

Fig.2b Energy deposited, Wi, and ponderomotive phase, 'l/Ji, for the 20-th cavity.

Fig.3 Restoring coefficient, eYi cos'l/Ji, for succeeding macroparticles in the first

cavity, for various values of 0'.

Fig.4 Evolution of the ponderomotive phase for the 15-th macroparticle, 'l/Jn,lS,

as a function of cavity number for three different values of current, namely, 100

Amps, 600 Amps (the typical case), and 2 kAmps. The numerical results with a

macroparticle are given by the broken lines.
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