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Abstract

Field-testing is an essential yet often resource-intensive step in the development of
high-quality educational assessments. I introduce an innovative method for field-
testing newly written exam items by substituting human examinees with artificially
intelligent (AI) examinees. The proposed approach is demonstrated using 466 four-
option multiple-choice English grammar questions. Pre-trained transformer language
models are fine-tuned based on the 2-parameter logistic (2PL) item response model
to respond like human test-takers. Each AI examinee is associated with a latent ability
u, and the item text is used to predict response selection probabilities for each of the
four response options. For the best modeling approach identified, the overall correla-
tion between the true and predicted 2PL correct response probabilities was .82 (bias
= 0.00, root mean squared error = 0.18). The study results were promising, showing
that item response data generated from AI can be used to calculate item proportion
correct, item discrimination, conduct item calibration with anchors, distractor analy-
sis, dimensionality analysis, and latent trait scoring. However, the proposed approach
did not achieve the level of accuracy obtainable with human examinee response data.
If further refined, potential resource savings in transitioning from human to AI field-
testing could be enormous. AI could shorten the field-testing timeline, prevent exam-
inees from seeing low-quality field-test items in real exams, shorten test lengths, elim-
inate test security, item exposure, and sample size concerns, reduce overall cost, and
help expand the item bank. Example Python code from this study is available on
Github: https://github.com/hotakamaeda/ai_field_testing1
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Introduction

Assessments are integral to education, providing valuable feedback on student learn-

ing progress and guiding enhancements in teaching and curriculum design. To

develop and maintain high-quality educational assessments, field-testing, or pretest-

ing, is necessary to evaluate the quality of test items before they are used for scoring.

In many large-scale assessments, field-testing involves asking a sample of examinees

from the target population to complete unscored field-test items, often embedded

among operational scored items. The quality of the field-test items is evaluated using

a variety of statistical techniques, and is calibrated for future scoring. However, tradi-

tional field-testing methods are often resource-intensive, time-consuming, and can

raise item exposure concerns (AlKhuzaey et al., 2023; Hsu et al., 2018; Jiao &

Lissitz, 2020). In many cases, thousands of examinee test data are needed to conduct

sufficiently accurate analyses (Morizot et al., 2007).

The literature provides successful cases of using collateral information to improve

item parameter calibration efficiency (Mislevy, 1988; Wang & Jiao, 2011). But some

researchers took this idea further by attempting to bypass the field-testing process

altogether. These studies present models that predict item difficulty from various item

text features, such as semantic and syntactic complexity, word and sentence lengths

and counts, word embeddings, and readability indices (see AlKhuzaey et al., 2023;

Benedetto et al., 2023). While some methods relied on expert judgment (Beinborn

et al., 2014; Choi & Moon, 2020; Loukina et al., 2016; Settles et al., 2020), these sub-

jective approaches often suffered from poor inter-rater reliability (i.e., consistency

between multiple judges) and limited reproducibility (AlKhuzaey et al., 2023; Conejo

et al., 2014). Other approaches relied on machine-driven natural language processing

(NLP) techniques to predict item difficulty and/or discrimination (Benedetto et al.,

2020a, 2020b, 2021; Yaneva et al., 2019; Zhou & Tao, 2020). However, the accuracy

of these prediction methods remains limited, and merely estimating item difficulty

and discrimination fails to capture the full scope of traditional field-testing. In addi-

tion, these models often do not replicate the complete human test-taking experience,

such as by excluding the distractor options in their predictions (e.g., Benedetto, 2023;

Benedetto et al., 2021).

An alternative approach to estimating item difficulty has been developed by Lalor

et al. (2019) using artificial intelligence (AI). The researchers corrupted (i.e., altered

or damaged) a random percentage of sentiment analysis data to intentionally create

1,000 sets of training data with varying levels of quality. Training deep learning mod-

els on these data resulted in 1,000 models with varied levels of accuracy in complet-

ing sentiment analysis tasks. They then used these models to generate response data

and fitted item response theory (IRT) models to estimate the difficulty of completing
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each NLP task (also see Rodriguez et al., 2021). Others have used this approach to

estimate item discrimination parameters as well (Byrd & Srivastava, 2022).

Although originally developed in the area of computer science, Lalor et al.’s

(2019) approach could be adapted and applied to field-testing educational assessment

items. This adaptation could lead to the development of AI field-testing that replaces

human examinees with AI examinees, while preserving the natural flow and structure

of traditional human field-testing. Compared to past item difficulty and discrimina-

tion prediction methods (e.g., AlKhuzaey et al., 2023), there is one key major advan-

tage. AI examinees have the potential to simulate the test-taking process and generate

item response data that closely mimic patterns observed in human responses. If suc-

cessful, these AI-generated data could be analyzed in the same ways as traditional

field-test data, offering applications far beyond merely predicting item difficulty.

Therefore, I propose a method of training transformer large-language models (LLMs)

by integrating them with IRT (Lord, 1980) to generate human-like item responses,

which could then be used for field-test analyses. I will briefly introduce some back-

grounds on LLMs and IRT in the upcoming sections. Then, I will evaluate the meth-

ods using data from a large-scale English language assessment program. This article

builds on the preliminary work by Maeda (2023).

Background on Transformer Language Models

Introduced by Vaswani et al. (2017), the transformer neural network revolutionized

NLP. Unlike recurrent neural networks, transformers utilize attention mechanisms,

allowing them to consider all positions in an input sequence simultaneously. This par-

allelization significantly accelerated training and made transformers highly scalable.

Transformer language models like Bidirectional Encoder Representations from

Transformers (BERT; Devlin et al., 2018) are pre-trained on large amounts of cor-

pora. Since they are available open-access, users can download pre-trained models

and customize them on specific downstream tasks. Input text is first tokenized and

converted into word embeddings, which results in a numeric vector for each word or

part of a word. These numerical representations of text are passed through the enco-

der layers of the transformers neural network, where the final layer is often fine-tuned

to complete a specific NLP task. These include language translation, text summariza-

tion, question answering, sentiment analysis, or regression.

Transformers have become the backbone of contemporary NLP models, facilitat-

ing nuanced understanding of context and semantic relationships within language

data, and achieving state-of-the-art performance on benchmarks. They excel in cap-

turing the contextual meaning of long texts and can differentiate between various

definitions of the same word (see Devlin et al., 2018).

In this article, the pre-trained DeBERTa-v3-large transformer language model

(He et al., 2021) was used. DeBERTa (He et al., 2020) is an enhanced variant of the

BERT (Devlin et al., 2018) and RoBERTa models (Liu et al., 2019). Each word in

DeBERTa is associated with two vectors that independently represent its content and
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positioning. The attention weights between words are also calculated separately for

their content and positioning. This allows, for example, for DeBERTa to learn that

word ‘‘artificial’’ is highly associated with ‘‘intelligence’’ when they occur next to

each other, unlike when there are other words between them. More recently, the

training efficiency of DeBERTa was enhanced by utilizing replaced token detection

techniques rather than masked language modeling. The resulting model was named

DeBERTa-v3, which has 304 million parameters (He et al., 2021).

Background on Psychometric Theories

IRT is widely used for measuring latent abilities in educational assessment (Lord,

1980). Let Xij = 1 and Xij = 0 denote a correct and an incorrect response on a dichoto-

mous item i for examinee j, respectively. A commonly used unidimensional IRT

model is the 2-parameter logistic (2PL) model (Birnbaum, 1968), which expresses

the probability of correct response as

Pij = P Xij = 1juj

� �
=

exp½1:7ai uj � bi

� �
�

1 + exp 1:7ai uj � bi

� �� � ð1Þ

where uj is the latent ability level for examinee j, ai is the item discrimination para-

meter, bi is the item difficulty parameter, and 1.7 is a scaling factor. The ai para-

meter is analogous to item-total correlations in classical test theory (CTT; Spearman,

1987), and bi is comparable to item proportion correct. The 2PL model can also be

re-written using an intercept parameter di = � 1:7aibi. The 2PL model assumes

monotonicity, unidimensionality, and local independence. Monotonicity is met when

Pij is a non-decreasing function of u. The unidimensionality assumption requires that

all test items measure only one latent trait, which is one of the core factors of a valid

assessment (De Ayala & Hertzog, 1991; Haladyna & Rodriguez, 2013). The local

independence assumption states that once u is accounted for, item response patterns

are uncorrelated to each other. Given these assumptions, the log likelihood of a

response vector of n items for examinee j is

Xn

i = 1

XijlnPij + 1� Xij

� �
ln 1� Pij

� �� �
ð2Þ

The u that maximizes this log likelihood is the maximum-likelihood estimate (MLE)

of ability, represented as û. Unlike in CTT where the sum score is the estimate of the

true score, using u allows invariance of ability, so multiple examinees taking a differ-

ent set of items can be scored on the same score scale (Wu et al., 2016). A good item

is one that has a high ai and a bi that matches the examinee’s u, which will substan-

tially lower the standard error of û. Therefore, a healthy item bank will contain items

with a variety of difficulty levels so the exams can accommodate both high and low

performers. For more details on IRT, see Baker (2001) and Lord and Novick (2008).

For applications of IRT in machine learning, see Martı́nez-Plumed et al. (2016).
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Proposed AI Field-Testing Methodology

The proposed method requires a scenario with (a) a substantial number of previously

field-tested and calibrated items accompanied by their item text, (b) a new set of

field-test items that currently lack data aside from their text, and (c) these two groups

of items are consistent in overall design variations and measurement constructs. The

overall flow of AI field-testing is shown in Figure 1.

Process Item Text Data

I use English grammar multiple-choice items from a real large-scale assessment to

illustrate the proposed approach. These items assess skills to apply or edit English

grammar usage, capitalization, punctuation, and spelling. The stems of these items

can vary greatly. For example, they may state, ‘‘Choose the sentence that is

Figure 1. Flowchart of AI Field-Testing.
Note. Using latent ability u randomly generated for every LLM, the response selection probabilities of

training items are calculated. Along with its item text, multiple LLMs are fine-tuned individually. Fine-

tuned models are used to generate item responses using only the item text. Finally, item calibration and

other psychometric analyses are conducted on the generated responses. AI = artificial intelligence;

LLM = large-language model.
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punctuated correctly’’ or ‘‘Choose the correct word to replace the underlined word in

the sentence.’’ The design inconsistencies in the stem may add unnecessary chal-

lenges for LLMs to understand the text. Therefore, the item text data are restructured.

First, the item response option text is modified to be compatible with a stem that

states ‘‘Choose the sentence(s) with correct grammar usage’’ (i.e., if not already

compatible). The option text is reworded appropriately to one or more complete sen-

tences with or without any grammatical errors (see Figure 2). Then, because now the

stem is identical for all items, we can remove the stem from the input text data, and

use the target label to guide the LLMs to find the sentences with correct grammar

(see next section). Removing the stem also limits the data consumed by LLMs and

speeds up the training. Note that to apply AI field-testing to other types of items, the

item text processing procedure may need considerable adjustments.

Calculate Conditional IRT Probabilities

A total of 61 AI examinee ability levels uj of 3.0, 2.9, 2.8, . . . 23.0 are assigned to

individual 61 LLMs, which span the majority of the target population ability distri-

bution u;N(m, s2), where m = 0 and s2 = 1. As LLMs take a long duration to fine-

tune, limiting the number of models to 61 was a strategy to enhance the training effi-

ciency. For every training item i, where the multiple-choice options are represented

by k, calculate conditional probability of correct response option c based on the 2PL

model: Pijk = c = Pij. Then, calculate the conditional probability of selecting each

Figure 2. Example Restructuring of Multiple-Choice Question Text for LLM Consumption.
Note. LLMs were trained to identify whether sentences follow correct or incorrect English grammar. LLM

= large-language model.
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distractor (i.e., incorrect) option k 6¼ c. This can be based on marginal proportion of

human examinees that selected each distracter response option Dijk 6¼c

Pijk 6¼c =
Dijk 6¼cP
k Dijk 6¼c

(1� Pijk = c) ð3Þ

Therefore, the selection probabilities sum to
P

k

Pijk = 1 within item i and examinee j.

Although the nominal response model (Bock, 1972) could be used in this step to esti-

mate the distractor selection probabilities with more precision, this is a rather com-

plex and inconvenient model that most testing programs do not use to score

examinees.

Fine-Tune Transformers With Item Options as ‘‘Separate_’’ Sequence Inputs

The item option text is tokenized and used to fine-tune the DeBERTa-v3-large trans-

former neural network (He et al., 2021) for a regression task, using Pijk as the target

label (i.e., the output). In extending the pre-trained language model, I augment the

network by adding an extra fully connected layer, which serves as the new output

layer. Adhering to the fine-tuning principles outlined in Devlin et al.’s (2018) study,

I utilize the initial output of the pre-trained language model, corresponding to the

special token ‘‘[CLS].’’ This is the sole output utilized for regression and classifica-

tion tasks. The additional output layer consists of a single neuron, and the weights

for connections with the preceding layer are randomly initialized. Throughout the

fine-tuning process, both the weights of the additional layer and the internal weights

of the pre-trained language model are updated.

A softmax function exp lð Þ=
P

exp(lk) is applied to the four output logits for each

item, which ensures that the predicted selection probabilities sum to
P

k

P̂ijk = 1 within

item i and model j. Since I am predicting probabilities, cross-entropy loss (CEL) is

used to quantify and minimize the distance between the true and predicted probability

distributions:

CELj = �
X

ik

Pijk log P̂ijk

� �
+ 1� Pijk

� �
log 1� P̂ijk

� �� �
ð4Þ

This modeling approach is named the ‘‘Separate_’’ method.

Alternative Method: ‘‘Concatenate_’’ the Item Options

Instead of inputting the four option texts for each item separately, an alternative is to

concatenate them into a single input sequence using a separator special token

‘‘[SEP]’’ between each option. The advantage may be that this gives the model the

entire context of the item text for each response option prediction. We can still pre-

dict four individual selection probabilities by outputting four values per text
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sequence (i.e., item). However, one issue is that there is no direct way for the model

to know which output value is associated with each option. A solution to this could

be to input items in the training data with multiple duplications, each time reordering

item option text and target probabilities. This way, the model may learn the connec-

tion between the item option text and probabilities based on their locations. As short

hand, the model with no duplication in the training data is named ‘‘Concatenate_1,’’

and models with items repeated in the training data 4 and 24 times are named

‘‘Concatenate_4’’ and ‘‘Concatenate_24,’’ respectively. Concatenate_4 option text is

ordered like 1234, 3412, 2143, and 4321, so each option is positioned at all four

locations exactly once. Repeating each item 24 times with Concatenate_24 is the

maximum possible ways that four options can be ordered (4 3 3 3 2 3 1 = 24).

Otherwise, the fine-tuning process is identical to the Separate_ method.

Generate Item Responses

For every training and field-test item i, use the fine-tuned LLM to obtain predicted

probabilities P̂ijk . Then, from the pool of 61 LLMs, sample AI examinees with

replacement weighted by j(m, s2, uj), which is the normal density of u. Finally, gen-

erate item responses based on P̂ijk . Note that I refer to the LLM as an ‘‘AI exami-

nee’’ when it generates responses, because that is the point where the model can be

treated like a human examinee. Although it may be possible to avoid generating any

responses by directly using P̂ijk for analyses such as item calibration, being able to

use generated responses in existing field-testing workflows is practical and

convenient.

Methods

Using real data, I simulate a scenario where I have a large number of previously cali-

brated items that can be used as training data, and wish to field-test a smaller set of

new items that do not yet have any data, other than their text. Statistics previously

obtained from real field-testing were treated as true values. Results from multiple

modeling approaches were compared. Example Python code from this study is avail-

able on Github: https://github.com/hotakamaeda/ai_field_testing1

Assessment Data

The study included 466 items from a large-scale English language arts and literacy

exam item bank. All items were four-option multiple-choice items used to assess 3rd

to 8th and 11th grade students’ skills to apply or edit English grammar usage, capita-

lization, punctuation, and spelling. These items have been previously field-tested

among grade-appropriate students from the United States (mean student N per item =

3,161). Items have been calibrated on a vertical scale with the 2PL model.
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The items were randomly divided into about 85% training (n = 396) and 15%

field-test items (n = 70). The training items are analogous to scored operational items

that are calibrated and available in the item bank. They were used to train the LLMs,

and also served as anchor items for calibration. The field-test items take the role of

new items that are not available for training the LLMs. They were used to evaluate

the performance of the trained models. See Table 1 for the number of items in each

grade level. This table also shows mg and s2
g, which are the mean and variance of u

for grade g, respectively, assumed to be equal to their respective estimates derived

from past human examinee data.

Separate_ and Concatenate_ Modeling Approaches

The DeBERTa-v3-large LLMs (He et al., 2021) were fine-tuned for the Separate_,

Concatenate_1, Concatenate_4, and Concatenate_24 modeling approaches, each for

all 61 ability levels uj of 3.0, 2.9, 2.8 . . . 23.0 (i.e., 4 3 61 = 244 models in total).

To improve the efficiency of fine-tuning 61 models for each approach, I took advan-

tage of the fact that, for example, the difference of a model with u = 3 and u = 2:9
was miniscule. Initially, the LLM was fine-tuned to have u = 3 with high epochs,

then were later incrementally modified with low epochs while lowering u by 0.1

each time. This technique substantially lowered the total number of epochs and train-

ing time needed to train all LLMs. AdamW optimizer (Loshchilov & Hutter, 2017)

was used to minimize the CEL between the target and predicted probabilities (James

et al., 2023). Fine-tuning was completed on a single NVIDIA A10G Tensor Core

24GB graphics processor, using the pytorch Python library (Paszke et al., 2019).

Hyperparameters are shown in Table 2.

To create a representative item response data set for each grade level, LLMs were

sampled with replacement 10,000 times weighted with probabilities j(mg, s2
g , uj).

Table 1. Number of Items and True Ability Distribution for Each Examinee Grade.

Grade
level

Number of
training items

Number of
field-test items

m (ability
mean)

s2 (ability
variance)

3 50 8 20.88 0.61
4 50 7 20.51 0.68
5 50 12 20.14 0.70
6 48 9 0.06 0.67
7 57 7 0.26 0.74
8 49 11 0.44 0.73
11 92 16 0.78 0.95
All 396 70 0.00 1.00

Note. The ability mean and variance were obtained from past human examinee data using items included

in the study. For easier interpretation, ability scaling has been adjusted so that the overall mean is 0 and

variance is 1.
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This represents the normal density of uj for mean and variance of u for grade g (see

Table 1). Probability resampling from 61 LLMs was more efficient than training

10,000 LLMs for every grade level. Although sample size of 1,000 is typically suffi-

cient for estimating the 2PL model (Morizot et al., 2007), it was computationally

cost-effective to raise the sample size to 10,000 for increased statistical precision.

Item response data were generated based on P̂ijk for all training and field-test items.

‘‘Simulated_Human’’ Field-Testing Approach

Human field-testing was simulated as a point of comparison. Unlike AI, human

examinees have a practical limit to the number of items they can respond to, which

also limits the number of respondents per item.

Every field-test item was taken by 1,000 simulated human examinees with u ran-

domly generated from N (mg , s2
g), where m and s2 were based on the grade level g of

that field-test item (see Table 1). Item responses were generated directly from Pijk .

Simulated human examinees also responded to a random 40 training items associated

with the respective grade level of the field-test item. In other words, this simulates a

field-test setting where human examinees take grade-appropriate field-test items

embedded within 40 other operational items.

IRT Calibration and CTT Analysis

For the Separate_, Concatenate_, and Simulated_Human approaches, field-test items

were calibrated to the 2PL model one item at a time using the data set with the match-

ing grade level. Mean and variance of u were freely estimated. Available training

Table 2. Model Training Data Size and Hyperparameters.

Model Training
step

Training data
observation count

Learning
rate

Weight
decay

Batch
size

Epochs

Separate_ Initial 396 4e-6 0.2 16 10
Final 396 1e-6 0.2 16 2

Concatenate_1 Initial 396 7e-6 0.2 4 4
Final 396 1e-6 0.2 4 2

Concatenate_4 Initial 1,584 7e-6 0.2 4 15
Final 1,584 1e-6 0.2 4 2

Concatenate_24 Initial 9,504 7e-6 0.2 4 5
Final 9,504 1e-6 0.2 4 1

Predicted_2PL 2PL a 396 1e-6 0.1 4 2
2PL d 396 1e-6 0.1 4 2

Note. The ‘‘Initial’’ training step is when the model is initially trained to have a u of 3 with a relatively high

epoch. Then, this initial model was incrementally modified, lowering the u by 0.1 each time using the

hyperparameters listed in the ‘‘Final’’ training steps. 2PL = 2-parameter logistic model.
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items were anchored (i.e., fixed) on the true item parameters ai and bi so the field-test

items are calibrated on the same scale as the training items. Calibration was com-

pleted using the mirt R package (Chalmers, 2012). In addition, proportion correct,

item-total correlation (i.e., Pearson r), distractor selection proportion, and distractor

discrimination were calculated for each field-test item (Haladyna & Rodriguez,

2013), again using the data set with the matching grade level.

‘‘Predicted_2PL’’ a and d Parameters Modeling Approach

As an additional baseline comparison, the 2PL a and d parameters were predicted

directly from the item text using DeBERTa-v3-large (He et al., 2021). This method is

an attempt to replicate common difficulty prediction approaches found in the recent

literature (AlKhuzaey et al., 2023; Benedetto, 2023; Benedetto et al., 2023). For each

item, the four options were concatenated with the ‘‘[SEP]’’ separator special token,

with the correct option text always in the first position. The mean squared error loss

was minimized when fine-tuning the model. The 2PL b parameter was calculated

based on the 2PL a and d by b = � d=1:7a. This baseline modeling approach was

named ‘‘Predicted_2PL.’’ Compared to Separate_ and Concatenate_ approaches,

Predicted_2PL uses the same training data, but is much simpler as it only requires

two models (i.e., one for a and another for d) and skips the item response generation

and calibration steps.

Latent Ability Estimation

To evaluate ability estimation accuracy, I generated a separate set of item response

data to simulate a future scenario where field-test items have become operational

scored items. A total of 10,000 simulated human examinees with ability sampled

from u;N (0, 1) responded to 40 random field-test items, where the items responses

were generated from Pij. Examinees were scored with MLE bounded within [24, 4]

using the estimated 2PL parameters. Resulting estimates û were compared across all

modeling approaches.

Evaluation

Statistics obtained from prior field-testing with real human examinees were treated as

the true values. These were compared to the estimates obtained from Separate_,

Concatenate_1, Concatenate_4, Concatenate_4, Predicted_2PL, and Simulated_Human

approaches. Mean signed bias (i.e., mean of estimate minus true), root mean squared

error (RMSE), and Pearson correlations (r) were calculated for every estimate.
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Results

Figure 3 shows the CEL values for the modeling approaches using the field-test items

(evaluation data). Concatenate_1 clearly performed poorly, as it nearly consistently

had the highest loss. Concatenate_4 and Concatenate_24 were nearly indistinguish-

able, despite Concatenate_24 requiring six times the amount of training data and

time. The Separate_ method had the lowest CEL for all u. Therefore, Concatenate_1

and Concatenate_24 models will be omitted from here on, and the focus will be on

Separate_ and Concatenate_4.

The positive slopes in Figure 4 confirm that AI examinee u influenced the prob-

ability of answering items correctly, as intended. However, slopes for the field-test

items for Concatenate_4 and Separate_ were less steep than the training items and

farther from the true Pijk , which may indicate some overfitting and the limited gener-

alizability of the trained models. Separate_ had a steeper slope that was closer to the

truth compared to Concatenate_4.

Table 3 presents the summary comparisons of all selection probabilities, IRT

parameters, and CTT statistics calculated among field-test items for all approaches.

For both Concatenate_4 and Separate_, mean of P̂ijk and mean of Pijk were equiva-

lent. Estimated statistics from Concatenate_4 and Separate_ all resulted in positive

correlations with the true values. Separate_ approach was superior to Concatenate_4

Figure 3. The Cross-Entropy Loss of the Field-Test Items, Based on the 61 Models for Each
of the Four Modeling Approaches.
Note. The Separate_ method was clearly superior throughout the entire range of u.
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from nearly all perspectives (i.e., lower bias and RMSE, higher correlation).

However, compared to Simulated_Human, the correlations were consistently lower

and RMSE was consistently higher for every statistic. An exception was for distrac-

tor discrimination, where Concatenate_4 (r = .29) and Separate_ (r = .33) had a

higher correlation than Simulated_Human (r = .17). This may be a result of the study

design, where the distractor correlations with u were not simulated among the

Simulated_Human group. Estimated statistics from Simulated_Human were all

nearly unbiased. The Predicted_2PL baseline approach performed well in identifying

the mean of the 2PL parameters, but the estimates had very narrow variances. For

example, Predicted_2PL d had a SD of 0.09, even though the true SD was 1.17. This

was sufficient, however, for a relatively accurate estimation of u. But this method

may not be useful for identifying poor quality items as it treats all items as having

nearly identical parameters.

Separate_ Approach Item-Level Results

Figures 5 and 6 show the item-level results of Separate_, which reveal more details

about its performance. A key limitation of Separate_ was that in 11 of the 70 field-

test items, the 2PL a estimation failed catastrophically, and resulted in estimates of

Figure 4. Difference in Slopes for Training and Field-Test Items for Concatenate_4 and
Separate_ May Indicates the Limited Generalizability of the Trained Models.
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Table 3. Estimation of IRT and CTT Statistics.

Statistic Model M SD Bias RMSE r

Pijk True 0.25 0.24
Concatenate_4 0.25 0.20 0.00 0.16 .77
Separate_ 0.25 0.21 0.00 0.14 .83

2PL Pij (Pijk = c) True 0.50 0.31
Concatenate_4 0.45 0.24 0.04 0.21 .74
Separate_ 0.50 0.25 0.00 0.18 .82

2PL u (ability) True 0.00 1.01
Simulated_Human 0.01 1.08 0.01 0.41 .92
Predicted_2PL 0.04 0.76 0.04 0.45 .91
Concatenate_4 0.51 1.43 0.50 0.89 .87
Separate_ 0.26 1.25 0.26 0.62 .90

2PL a (discrimination) True 0.55 0.25
Simulated_Human 0.56 0.25 0.01 0.06 .97
Predicted_2PL 0.62 0.08 0.07 0.26 .04
Concatenate_4 0.27 0.24 20.28 0.36 .53
Separate_ 0.34 0.22 20.21 0.31 .50

2PL b (difficulty) True 0.16 1.19
Simulated_Human 0.13 1.18 20.03 0.15 .99
Predicted_2PL 0.00 0.08 20.16 1.16 .42
Concatenate_4 0.49 1.79 0.32 1.93 .22
Separate_ 0.22 1.42 0.06 1.76 .08

2PL d (intercept) True 0.17 1.17
Simulated_Human 0.18 1.17 0.00 0.06 1.00
Predicted_2PL 0.01 0.09 20.17 0.26 .43
Concatenate_4 20.27 0.73 20.44 0.36 .73
Separate_ 20.13 0.64 20.30 0.31 .71

Proportion correct True 0.51 0.16
Simulated_Human 0.52 0.15 0.01 0.03 .99
Concatenate_4 0.45 0.14 20.06 0.17 .42
Separate_ 0.51 0.14 0.01 0.15 .49

Item-total correlation True 0.31 0.10
Simulated_Human 0.22 0.10 20.09 0.10 .93
Concatenate_4 0.17 0.14 20.15 0.20 .41
Separate_ 0.21 0.12 20.11 0.16 .44

Distractor selection
proportion

True 0.16 0.09
Simulated_Human 0.16 0.09 0.00 0.01 .99
Concatenate_4 0.18 0.10 0.02 0.10 .46
Separate_ 0.16 0.09 0.00 0.10 .42

Distractor discrimination True 20.15 0.08
Simulated_Human 20.18 0.07 20.03 0.10 .17
Concatenate_4 20.09 0.08 0.06 0.12 .29
Separate_ 20.12 0.08 0.04 0.10 .33

Note. The 2PL b parameter is bounded between [23, 3] as some items had extreme values. 2PL = 2-

parameter logistic model; RMSE = root mean squared error; IRT = item response theory; CTT =

classical test theory.
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near zero or negative, regardless of the true value (see Figure 5). This meant that, for

example, two AI examinees with u of 3 and 23 had similar probabilities of answer-

ing these items correctly. This resulted in an underestimated 2PL a and d and erratic

2PL b. For example, the 2PL b estimates bounded between [23, 3] had bias = 0.06,

RMSE = 1.76, and r = .08, but improved substantially without those 11 problematic

items: bias = 20.23, RMSE = 0.92, and r = .59. Similarly, estimates of 2PL Pij

improve from bias = 0.00, RMSE = 0.18, and r = .82 to bias = 20.02, RMSE = 0.16,

and r = .88. These problematic items are also visible in Figure 6, where P̂ij was

nearly independent of u and Pij.

Dimensionality

Unidimensionality is fundamental to test validity (Nunnally & Bernstein, 1994).

Dimensionality of the AI examinee item response data was examined. Given that the

target probabilities used to fine-tune the LLMs were generated from a unidimensional

2PL model, we can expect the generated responses to be unidimensional as well.

Field-test item response data from a randomly generated 5,000 AI examinees from all

grade levels were used. The first four eigenvalues for both the Separate_ (5.34, 0.28,

0.21, and 0.19) and Concatenate_4 (4.44, 0.23, 0.21, and 0.21) showed a sharp drop

Figure 5. Separate_ Modeling Approach Can Fail Catastrophically for Some Items, Resulting
in an Underestimated 2PL a and d, and Erratic b (2PL b Is Shown Bounded Within [23, 3]).
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after the first value, which strongly indicated that these set of items were unidimen-

sional (Cattell, 1966). Using the lavaan R package (Rosseel, 2012), confirmatory fac-

tor analysis (CFA) was conducted to confirm that the test was unidimensional

(Bandalos & Finney, 2018). The estimator = ‘‘WLSMV’’ option was used as recom-

mended for ordered categorical variables (Flora & Curran, 2004; Rhemtulla et al.,

2012). Based on conventional standards (Hu & Bentler, 1999), fit statistics all indi-

cated nearly perfect fit to the unidimensional CFA model for the Separate_ approach,

x2(2,345) = 2,301.2, p = .74, Tucker-Lewis index (TLI) = 1.001, CFI = 1.000, RMSE

= .000, standardized root mean square residual (SRMR) = .021. Concatenate_4 had a

marginally worse fit, but still very good, x2(2,345) = 2,441.59, p = .080, TLI = .997,

CFI = .997, RMSE = .003, SRMR = .023. Standardized factor loadings for Separate_

ranged from 20.16 to 0.59 (M = 0.31, SD = 0.18). Standardized factor loadings for

Concatenate_4 ranged from 20.11 to 0.74 (M = 0.26, SD = 0.20).

Figure 6. Separate_ Modeling Approach Used to Estimate Field-Test Item 2PL Pij

(Conditional Probability of Correct Response).
Note. Every line and color represent one of 70 field-test items. Each line shows 61 models strung

together with u ranging from 3 to 23. Each line begins with u = 23 and ends with u = 3. Perfect model

fit would show a straight 45� positive slope for every item. Lines with nearly zero or negative slope are

items with catastrophic modeling failure, where P̂ij was nearly independent of u and Pij.
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Discussion

The ultimate goal of AI field-testing is to enhance the efficiency of field-testing by

completely replacing human examinees with AI counterparts, and generate item

response data that can be used for various statistical evaluations of item quality that

are essential in traditional field-testing. The proposed approaches integrated LLMs

and IRT to train AI to mimic human responses to English grammar multiple-choice

items. The current study demonstrated that IRT- and CTT-based statistics calculated

using AI item responses showed moderate resemblance of those obtained from human

examinees. Latent ability estimation based on item parameter estimates from AI

field-testing was similar to ability estimates based on the ‘‘true’’ item parameters that

were originally used to fine-tune the AI models. AI-generated responses may also

have the potential to be used for dimensionality analyses, which is typically plagued

with data sparseness issues in computerized adaptive tests (Bulut & Kim, 2021).

Unlike AI, human examinees are limited in the number of items they can com-

plete. This also lowers the sample size for each field-test item. These two factors limit

the quality of human examinee item response data. Regardless, the study showed that

human field-testing is still superior to AI field-testing for accurately calibrating items

or calculating item statistics. One reason may be because the item text had to be

reformatted for LLM consumption, including a complete elimination of the stem text.

This was necessary as these items were not originally designed to be processed by

LLMs. Past studies show that simple changes to the item text can change the item dif-

ficulty noticeably (Byrd & Srivastava, 2022). Especially considering AI examinees

cannot think or feel like humans do, there may always be an inherent gap between

how AI and humans respond to exam items.

Among the AI field-testing methods included in the article, the Separate_ method

performed far more accurately than Concatenate_1, Concatenate_4, and

Concatenate_24. Furthermore, Separate_ is more convenient than Concatenate_

approaches as it takes less training time, can handle longer input sequence text, and

can elegantly accommodate items with varying numbers of response options.

Importantly, the proposed approaches preserved the core structure of traditional

field-testing by replacing human examinees with AI counterparts, allowing most

analyses and calibration procedures to proceed as usual. This seamless integration

into existing workflows not only offers convenience and practicality but also makes

the technology more accessible, which may help stakeholders better understand and

accept it. Building this understanding and trust is crucial for the successful adoption

of new technologies like AI in education (Aloisi, 2023; Nazaretsky et al., 2022; Qin

et al., 2020).

Trust in AI may also be closely tied to the widespread concerns about AI bias and

ethics (Bolukbasi et al., 2016; Caliskan et al., 2017; Hassija et al., 2023; Morales

et al., 2023). Before AI field-testing can be confidently applied in high-stakes exams,

it is essential to develop and implement robust methods to mitigate AI bias. In psy-

chometrics, item bias against examinees based on their background is typically iden-

tified through differential item functioning (DIF) analysis (Holland & Wainer, 1993).
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As DIF was not addressed in the current article, research is needed to integrate it into

the AI field-testing framework.

Another key issue was how AI examinees’ response behavior to the training items

and field-test items was fundamentally different (see Figure 4). This mattered as

training items were used as anchors during calibration. This likely had a negative

effect on all 2PL parameter estimations. A solution could be to make an initial

mutually exclusive distinction of three item groups: (a) calibrated training items, (b)

calibrated anchors, and (c) new field-test items. This approach to avoid using training

items as anchors may eliminate some issues. Another option may be to fix the AI u

to its true values, which eliminates the need for anchor items. Other alternatives

could be to raise training item sample size, or adjust training hyperparameters so that

the model is more generalizable to the field-test items.

While this article primarily presented a simulation study, simulated data were used

sparingly. Simulated data were employed to create the Simulated_Human group and

to assess the accuracy of latent ability estimation across all modeling approaches.

However, the item parameters and statistics, the mean and standard deviation of u for

both the overall group and individual grades, and the item text were all derived

directly from an ongoing large-scale assessment program. Notably, the data used for

fine-tuning the LLMs consisted entirely of real data. In other words, the study was

conducted on real AI examinees, rather than simulated ones.

The current article used relatively simple English grammar multiple-choice items

to illustrate and evaluate AI field-testing. Answering these items required only the

knowledge of the English language, which made them exceptionally appropriate for

testing English-based LLMs. In the literature, evidence shows that LLMs can be

trained to answer mathematical problems (Xu et al., 2024) or medical items that

require knowledge and reasoning (Singhal et al., 2023). Whether the proposed tech-

niques can generalize to these other item types will need further context-specific

investigation.

The literature provides examples of using NLP to handle varied item types. For

instance, Settles et al. (2020) employed machine learning algorithms to generate an

entire English language assessment. They first determined vocabulary difficulty

using word frequency, word character lengths, and expert judgment. Next, they

ranked passage difficulty based on average word and sentence length, word fre-

quency, pre-labeled online passages, and expert evaluations. The predicted vocabu-

lary and passage difficulty were then used to generate five item formats assessing

listening, speaking, reading, and writing skills. Their use of multiple techniques high-

lights key considerations for predicting the difficulty of items with varied formats.

Benedetto (2023) may have reported the most comprehensive quantitative com-

parison of modern item difficulty prediction methods. The author compared BERT

(Devlin et al., 2018) and DistilBERT (Sanh et al., 2019) transformers with random

forest regression models that utilize linguistic features, readability indices, term

frequency—inverse document frequency (Manning et al., 2008), and word2vec

embeddings (Mikolov et al., 2013). Transformers were the most predictive of item
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difficulty. However, the accuracy depended heavily on the exam type, where R2 ran-

ged from .19 to .62 with LLMs trained on 4,000 to over 100,000 items. Increasing

the number of training items improved the R2. The best performing BERT models

from Benedetto (2023) were partially replicated in the current study with the

Predicted_2PL approach. Predicting the 2PL b parameter with Predicted_2PL had an

R2 of .18. This relatively poor performance is likely due to the low item sample size

and the particular type of items used in the current article. The results of the current

study may improve drastically if models are trained on more data.

Limitations

The proposed method uses item text to predict IRT selection probabilities with

regression. An alternative would be to predict the response selection categories

instead, which was Lalor et al.’s (2019) approach. Predicting responses was substan-

tially less convenient and less efficient than 2PL probabilities. However, if the ulti-

mate goal is to mimic all aspects of human response behavior, training LLMs directly

based on raw human examinee response data could be a necessary future direction, as

many nuanced patterns are not captured by the 2PL model. This is evident in the

extremely good fit of the unidimensional CFA to the AI examinee response data, sug-

gesting that minor multidimensionality was lost in the process.

Similarly, I did not directly compare AI and human examinee item response pat-

terns in this article. Rather, I compared item-level statistics obtained from such

responses, such as proportion correct or the item parameters. Although these compari-

sons were sufficient in showing the model performance, comparing responses directly

could be the ideal approach.

Furthermore, the parameters and statistics obtained from prior field-testing with

real humans were treated as true values. In reality, these were estimates as well. This

limitation likely inflated the accuracy of the Simulated_Human approach. The cur-

rent article used English grammar multiple-choice questions to demonstrate the effec-

tiveness of AI field-testing. However, English literacy exams are often not limited to

these types of items or content. Research is necessary to develop LLMs that can

respond to various types of items, or methods to integrate multiple LLMs that are

designed to respond to specific item types. Incorporating additional text features in

the LLM (e.g., item word count) may be another route to enhancing the approach,

which may further close the distance between AI and human item response behavior.

Conclusion

This article presented an innovative approach of replacing human examinees with AI

examinees for field-testing newly written exam items. The study demonstrated that

AI item response data can be used to calculate item statistics and conduct item cali-

bration, distractor analysis, dimensionality analysis, and latent trait scoring. Although

AI field-testing still fell short of the accuracy of item calibration and analyses that
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were performed with human examinee response data, the potential resource savings

in transitioning from human to AI field-testing cannot be understated. AI could

shorten the field-testing timeline, prevent human examinees from seeing low-quality

field-test items in real exams, shorten test lengths, eliminate item exposure, test secu-

rity, and sample size concerns, and reduce the overall cost. In the era of generative

AI, the research on automatic item generation may tend to far outpace the rate at

which items can be field-tested, which could result in a bottleneck. A strategic com-

bination of automatic item generation and AI field-testing may enable an extremely

efficient expansion of the item bank. Researchers are encouraged to explore methods

to enhance AI examinees to be more reflective of human examinee behavior, as well

as generalize its capabilities to handle various types of items.
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