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Photosynthesis of the Amazon rainforest plays an important role
in the regional and global carbon cycles, but, despite considerable
in situ and space-based observations, it has been intensely debated
whether there is a dry-season increase in greenness and photosynthesis
of the moist tropical Amazonian forests. Solar-induced chlorophyli
fluorescence (SIF), which is emitted by chlorophyll, has a strong
positive linear relationship with photosynthesis at the canopy scale.
Recent advancements have allowed us to observe SIF globally with
Earth observation satellites. Here we show that forest SIF did not
decrease in the early dry season and increased substantially in the
late dry season and early part of wet season, using SIF data from
the Tropospheric Monitoring Instrument (TROPOMI), which has
unprecedented spatial resolution and near-daily global coverage.
Using in situ CO, eddy flux data, we also show that cloud cover
rarely affects photosynthesis at TROPOMI's midday overpass, a time
when the forest canopy is most often light-saturated. The observed
dry-season increases of forest SIF are not strongly affected by sun-
sensor geometry, which was attributed as creating a pseudo dry-
season green-up in the surface reflectance data. Our results provide
strong evidence that greenness, SIF, and photosynthesis of the trop-
ical Amazonian forest increase during the dry season.

photosynthesis | productivity | MODIS | EVI | geometry

t has been heavily debated among the remote sensing and
ecological research communities whether there is a dry-season
green-up and increase in photosynthesis of the moist tropical
Amazon forest (1-5). The answer to this question has important
implications for understanding Earth’s carbon fluxes and the
impact of climate variability and climate change on those fluxes.
However, a resolution to this debate has been delayed due to
arguments that the geometry between the satellite sensors and
the sun causes a pseudoseasonality in the reflectance data (4, 6).
Traditionally, spaceborne Earth surface reflectance data over
the terrestrial biosphere have been used to calculate vegetation
indices, which are useful for observing changes in canopy “green-
ness” and estimating chlorophyll content at large spatial scales (1,
7). However, vegetation indices do not provide direct information
on the fate of sunlight absorbed by chlorophyll (absorbed photo-
synthetically active radiation [APAR]), whose individual photons
take one of 3 pathways: photosynthesis, heat dissipation, and chlo-
rophyll fluorescence (8). Under favorable conditions, most APAR
is used for photosynthesis, and a small amount (< ~2%) is emitted
by chlorophyll as fluorescence in the red and far-red portion of the
electromagnetic spectrum (~650 nm to 800 nm), which is created
by the deexcitation of absorbed photons in all living plants (9).
Recently, quantification of the emission of solar-induced
chlorophyll fluorescence (SIF) has become feasible from space,
providing ample new opportunities to investigate the functioning
of the photosynthetic machinery from remote sensing platforms
(10-12). SIF retrievals require high spectral resolution and
signal-to-noise ratio, and the only satellite instruments that have
met these requirements were designed for atmospheric remote
sensing, such as the Greenhouse Gases Observing Satellite, Global
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Ozone Monitoring Experiment 2, and Orbiting Carbon Obser-
vatory 2 (13-16). Although the global SIF datasets developed
from these satellite observations have provided valuable insight
into vegetation dynamics on Earth’s surface, their coarse spatial
and temporal resolutions have not sufficiently resolved some
important questions about the spatial distribution and temporal
variability of SIF and photosynthesis on Earth. SIF is not a direct
measure of photosynthesis, but satellite- and in situ-observed SIF
has been shown to have a strong positive linear relationship with
photosynthesis at the canopy scale (13, 15, 17), implying that
changes in canopy SIF indicate changes in photosynthesis in the
same direction (18, 19). The Tropospheric Monitoring Instrument
(TROPOMI), a spectrometer onboard the Sentinel-5 Precursor
satellite launched in October 2017 by the European Space Agency,
enables a step change in SIF research, providing unprecedented
high spatial and temporal resolution SIF observations that can
address many of these important questions (20).

Here we report and analyze TROPOMI SIF data from March
2018 to June 2019 over the Amazon. TROPOMTI’s high spatial
and temporal resolution reveals previously unknown details on
the spatial distribution of SIF in the Amazon (Fig. 1 A-C) and
enables us to track SIF for forests and nonforests over time (Fig.
2A and SI Appendix, Figs. S1-S4). We show evidence that there is
an overall dry-season increase in photosynthesis by Amazonian
forests (Fig. 24), where there was relatively little change in SIF
in the early dry season (June through July), but a substantial
increase in SIF in the late dry season (September through October)
(Figs. 1 A-C and 24). Middle dry-season TROPOMI SIF in
Fig. 1B, a point in time when the difference between forest and
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Fig. 1. SIF, forest cover, and precipitation in the Amazon Basin. SIF during the (A) early, (B) middle, and (C) late dry season. (D) Middle minus early dry-season

SIF. (E) Late minus middle dry-season SIF. (F) Percentage forest cover in each TROPOMI 0.05° pixel. (G) Total precipitation March 2018 to February 2019. (H)
Number of months with <100 mm of precipitation. (/) First month with <100 mm precipitation.

nonforest SIF is greatest, mimics the percentage of forest cover
in each TROPOMI grid cell shown in Fig. 1F. The Amazon
River and its tributaries in the northern part of the basin are also
evident in Fig. 1 A-C where surface water induces low SIF val-
ues. Wet-season SIF for seasonally moist forests (<2,000 mm mean
annual precipitation [MAP]) was higher than SIF for moist forests
(>2,000 mm MAP), which indicated that perhaps the productivity
of seasonally moist forests was water-limited (Fig. 2). The ~2,000-
mm MAP threshold has previously been found to determine
whether water is a factor limiting photosynthesis in tropical
forests (21).

For nonforest in the Amazon, SIF declined considerably in the
early dry season (SI Appendix, Figs. S1 and S4), especially in the

22394 | www.pnas.org/cgi/doi/10.1073/pnas.1908157116

cropland region of central Bolivia and in the arc of deforestation
in the Brazilian states of Acre, Ronddnia, and Mato Grosso (Fig.
1D). In the late dry season, nonforest SIF continually increased.
There were some hotspots where SIF decreased during the late
dry season, notably in the Serra do Cachimbo Mountain region,
the plains of the Brazilian state of Roraima, and the deforested
areas in the vicinity of Santarém and Altamira (Fig. 1E).

In forests, the dry-season increase in SIF can be attributed to
the loss of old leaves, the flushing of new leaves, and an increase
in canopy chlorophyll content, which has been observed using in
situ litterfall traps, tower-based time lapse photography, and
satellite-based vegetation indices (1, 22, 23). For nonforest lands
in the arc of deforestation, the decrease in SIF can be attributed to the

Doughty et al.
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Fig. 2. Amazon forest SIF, photosynthesis, PAR, precipitation, and temperature. (A) TROPOMI SIF for moist and seasonally moist forest (>2,000 mm

and <2,000 mm MAP), and 5-y mean GPP at the K83 moist forest flux tower

site. (B) TROPOMI SIF for moist and seasonally moist forest, and BRDF-corrected

EVI from MCD43A4 for moist and seasonally moist forest. (C) Basin-wide PAR at the top of the atmosphere (TOA), the top of the canopy (TOC), and the

difference between the 2 (APAR), and 5-y means of TOA, TOC, and APAR from

the K83 flux tower site. (D) Basin-wide mean precipitation and temperature. Points

are 16-d means. Shaded areas represent the early, middle, and late dry season. The dashed line approximates when TROPOMI's phase angles are lowest.

harvest of crops and senescence of pasture, and the late dry-season
increase in SIF is likely due to the early growth of pastures and
crops such as maize, rice, sorghum, and soybean (24). At the basin
scale, late dry-season SIF for moist and seasonally moist forest in-
creased through October (Fig. 24) despite decreased solar radiation
in the canopy (PARtoc) (Fig. 2C) (25), which indicated that in-
creased canopy chlorophyll content and photosynthesis drove dry-
season increases in SIF and not PARtoc. TROPOMI SIF in the
Amazon forest was remarkably consistent with in situ observations
of increased dry-season photosynthesis in the moist tropical Amazon
forest from the K83 CO, eddy flux tower (Fig. 24), which is rep-
resentative of dry-season observations of photosynthesis from the
other moist tropical forest eddy flux tower sites in the Amazon (23).

Two previous studies claimed that the geometry between the sat-
ellite sensors and the sun affects the surface reflectance data, and
thus the green-up during the dry season as shown by vegetation in-
dices is a data artifact inducing false seasonality (4, 6). Is it possible
that the seasonality of TROPOMI SIF in the Amazon is an artifact of
sun-sensor geometry? TROPOMI has a wide swath of 2,600 km with
daily, near-global coverage, and the satellite has a 16-d repeat cycle,
meaning that, every 17 d, the satellite’s nadir and swath footprint are
nearly identical. The phase angle of each sounding, which is the angle
between the axes from the sounding to the sun and to TROPOMTI’s
sensor, varies along the swath. Each sounding along the swath also
has a different footprint size, with the smallest footprint at nadir
(3.5 x 7 km) and the largest at the edges of the swath (14 x 7 km).

SIF retrievals are sensitive to the phase angle, with higher SIF
values at low phase angles when TROPOMI observes more-directly
illuminated parts of the canopy (Fig. 3) (20). TROPOMI’s viewing
angle for any location is most comparable every 17 d, when the
footprint of the satellite track and local solar overpass time are
nearly identical because of their vicinity to the equator. Thus, we

Doughty et al.

investigated whether TROPOMI SIF has seasonality when viewing
angle is held relatively constant by evaluating SIF for each satellite
track and found that each track has the same seasonal pattern (S/
Appendix, Figs. S1-S4). Although we are not able to account for
changes in solar illumination with this strategy, we can assume
that the viewing geometry alone does not alter the observed sea-
sonality. One possible explanation for the observed seasonality in
TROPOMI SIF is that the decreasing zenith angle of the sun in the
dry season causes TROPOMI phase angles to likewise decrease (SI
Appendix, Fig. SS). However, we found that SIF increased during
the dry season across all phase angles and that the increase was
larger than what could be explained by phase angle alone (Fig. 4
and ST Appendix, Figs. S6-S8). Furthermore, if phase angle was
driving the observed seasonality in SIF, then we would expect SIF

QF y =.0.71 = 0.01x + 0.0001x"2

1.5

SIF gaily (mW/m2/sr/nm)
0.5 1.0
T

0.0

0 20 40 60 80
Phase Angle (absolute)

Fig. 3. Relationship between phase angle and TROPOMI SIF,j,. Points are

1,000,000 random samples from all soundings (n = 22,876,383) in the Amazon
Basin during 7 March 2018 to 29 June 2019.
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Fig. 4.  TROPOMI SIFgaiy, and SIFinstan: at different phase angles for the Amazon forest. Areas shaded in gray represent the early (E), middle (M), and late (L)
dry seasons. The dashed line approximates when TROPOMI's phase angles are lowest. These trends were also illustrated for moist and seasonally moist forest
with greater than and less than 2,000-mm MAP and for nonforest in S/ Appendix, Figs. S6-5S8. Dates represent the first day of TROPOMI's 16-d revisit cycle. Tick
marks are every 16 d, and labels are every 32 d. The complete date range represented is 7 March 2018 to 29 June 2019.

to decrease after the phase angles of the TROPOMI soundings
reached their minimum. However, SIF increased for several
weeks after TROPOMI phase angles began increasing and despite
increased cloud cover (Fig. 2). We also found a significant and
strong relationship between TROPOMI SIF and bidirectional
reflectance distribution function (BRDF)-corrected enhanced
vegetation index (EVI) from Moderate Resolution Imaging
Spectroradiometer (MODIS) MCD43A4 for moist and seasonally
moist forest (R* = 0.82 and 0.93, respectively), and between
TROPOMI SIF for moist forest and the K83 tower site (R* =
0.66) (SI Appendix, Fig. S9).

The seasonality of TROPOMI SIF agrees with in situ seasonality
of photosynthesis and MODIS EVI (Fig. 2 4 and B), but to what
extent do incoming solar radiation and cloud cover affect canopy
photosynthesis and spaceborne observations of SIF in the Amazon?
The amount of photosynthetically active radiation reaching the top
of the canopy (PARtoc) is determined by the difference between
the amount of incoming PAR at the top of the atmosphere
(PART04) from the sun and the amount of PAR reflected into
space and absorbed by clouds, trace gases, aerosols, and particulate
matter (APAR). Thus, seasonality in PARtoa (length of day and
solar angle) and APAR (mostly cloud cover/thickness) determine
the amount and timing of instantaneous and daily PARtoc
(PARtoc = PARToA — APAR), which drives photosynthesis and
serves as a phenological queue for tropical tree species (26).

Diurnally, there is a tight relationship between PARoc and
photosynthesis in the morning and evening, as they rise and fall
in tandem (27). At midday, the relationship between PARtoc and
photosynthesis decouples as the canopy becomes light-saturated
(SI Appendix, Fig. S10). Using in situ data, we found that, during
TROPOMTI’s early afternoon overpass time of 12:45 PM to 2:30
PM local solar time (LST) over the Amazon (SI Appendix, Fig.
S11), photosynthesis is nearly always light-saturated (Fig. 5 A-C)
and APAR rarely impacts photosynthesis (Fig. 5 D—F). Dense clouds
can block the emission of SIF into space, and TROPOMI soundings

22396 | www.pnas.org/cgi/doi/10.1073/pnas.1908157116

are prefiltered to remove soundings that are affected by high ra-
diance levels due to cloud albedo and that have >80% cloud
fraction. However, in situ data indicate that cloud cover rarely
blocks enough solar irradiance at TROPOMI’s overpass time to
induce light limitation of photosynthesis (Fig. 5). We cannot com-
pletely rule out that seasonal changes in cloud cover and optical
thickness may affect SIF dynamics in the Amazon, but we did
observe that the strongest increase in SIF occurred during the
middle to late dry season despite reduced PARyoc and increased
APAR and cloud fraction (S Appendix, Fig. S12), which suggests
that changes in cloud properties during the dry season have an
insignificant effect on SIF retrievals. The seasonality of forest SIF
was most similar to PARtg 4, indicating that perhaps the timing of
leaf flush in the forest is photosensitive to the length of the day
and/or responsive to herbivory, which are not necessarily mutually
exclusive (1, 28, 29).

In summary, the dry-season increase of TROPOMI SIF in the
Amazon mimics the dry-season increase of photosynthesis as
estimated from eddy flux data (23), in situ observations by
phenological cameras of seasonal canopy senescence and leaf
flush (22, 30), and BRDF-corrected, reflectance-based satellite
observations (3, 11, 21, 31). Our results not only help resolve the
debate over whether there is a dry-season increase in photo-
synthesis in moist tropical Amazon forest but also indicate that
changes in photosynthesis during the dry season are largely
driven by land cover type and changes in the forest canopy.

Materials and Methods

TROPOMI Observations. We used daily corrected ungridded TROPOMI SIF data
for all data analysis (Fig. 1 and S/ Appendix, Figs. S1-54) and daily corrected
gridded TROPOMII SIF data in 0.05° spatial resolution for visualization in Fig. 1
(20). Gridded (0.20°) and ungridded data are available at ftp:/fluo.gps.caltech.edu/
data/tropomi/. It is also important to note that aerosols and clouds have different
effects on SIF and reflected radiance at top-of-atmosphere (decreasing SIF, in-
creasing reflectance), and cloud shadows reduce reflectance but not necessarily
photosynthesis (Fig. 5), so any reflectance-based correction may introduce an

Doughty et al.
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artificial seasonality in the framework of our study (20). The data fields contain,
for each sounding, the cloud fraction, daily correction factor, latitude and longi-
tude of the center of the sounding, latitude and longitude for each corner of the
sounding footprint, viewing zenith angle, solar zenith angle, phase angle, in-
stantaneous SIF and error, daily corrected SIF, and LST. Cloud fraction is calculated
using the data from the Visible Infrared Imaging Radiometer Suite satellite,
which is an indicator of cloud cover but not cloud optical thickness. Daily mean SIF
is estimated using a function that accounts for the measurement’s solar zenith
angle, time of measurement, and length of day (10, 20). Error estimate methods
and additional data processing details have been previously published (20).

In Situ Eddy Flux Observations and MODIS Data. In our analysis, we used Tier 1
FLUXNET2015 eddy flux data from the tower site K83 (BR-Sa3; Santarem
Km83), located in seasonally moist tropical Amazon forest near —3.0180,
—54.9714 (latitude/longitude), for the years 2000-2004 (32) (https:/fluxnet.
fluxdata.org/doi/FLUXNET2015/BR-Sa3). The seasonality in GPP, PARtoa,
PARtoc, and PAR, at K83 (Fig. 2 A and B) was used in this manuscript as an
example of observations from other eddy flux towers in the seasonally moist
tropical Amazon forests (K34, K67, and CAX), which are in agreement and
have been previously reported (23). Prior to plotting the light- and shade-
response curves (Fig. 5), which are half-hourly data, we filtered the data to
include only the highest-quality measured PAR (shortwave radiation incoming
at the surface), thereby excluding gap-filled and estimates from the European
Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis
(ERA-Interim). We also converted the local time of the eddy flux observations
to LST. TROPOMI overpass times in the Amazon ranged from about 12:45
PM to 2:30 PM LST (S/ Appendix, Fig. S11), so we plotted eddy covariance
data whose 30-min timestamp range had midpoints between 1:00 PM and
2:15 PM LST.

Doughty et al.

We used BRDF corrected surface reflectance from the MODIS MCD43A4
data product (33) to calculate EVI. We calculated 16-d means of EVI from the
daily data, which was available at 500-m spatial resolution, where EVI was
calculated using bands 1 through 3,

b2 - b1

V=2 5 X 6" b1 57576351’

where b1is the red band, b2 is the near-infrared band, and b3 is the blue band
(34, 35).

Land Cover, Precipitation, and PAR Datasets. To determine forest and non-
forest land cover, we used annual forest cover maps for 2008-2017 for the
Amazon Basin with a spatial resolution of 500 m (36, 37). Only TROPOMI
soundings that were in land cover map pixels that were consistently forest or
nonforest were used in the data analysis. To prevent the inclusion of mixed
water/land TROPOMI soundings from our analysis, we masked water from
the TROPOMI data using the MOD44W Version 6 (38) water mask with a
7-km buffer. Implementing a similar buffer for forests to exclude TROPOMI
mixed forest/nonforest soundings resulted in a near elimination of nonforest
soundings due to the heterogeneity of nonforest area; thus we applied only
a water mask to the TROPOMI data. Total annual and monthly precipitation
(Fig. 1 G-I) was derived using the monthly, 0.25° Version 7 Tropical Rainfall
Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (3B43) (39).
For 16-d precipitation means (Fig. 2C), we used the TRMM Research Derived
Daily Product (3B42) (40). We calculated mean 16-d temperature (Fig. 2C)
and 16-d PAR values (Fig. 2B) using daily mean downward shortwave radia-
tion at the surface (PARtoc) and the top (PARroa) of the atmosphere, from the
NCEP-DOE Reanalysis Il data set (41). APAR was calculated as the difference
between PARroa and PARtoc.
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