
UC San Diego
Technical Reports

Title
Development of Algorithm to Predict Political Ad Spending on Snapchat

Permalink
https://escholarship.org/uc/item/6413d1xx

Author
Gorlla, Cyril

Publication Date
2024-05-16

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6413d1xx
https://escholarship.org
http://www.cdlib.org/

Predicting Political Ad Spending on Snapchat

June 8, 2020

1 Predicting Political Ad Spending on Snapchat
1.1 Cyril Gorlla
1.1.1 University of California, San Diego

2 Summary of Findings
2.0.1 Introduction

The Snapchat ads dataset contains political ad data for ads on Snapchat, one of the largest social
media networks in the world. A key feature of the dataset is how much money an organization
spends on a particular ad, found in the Spend column. It is reasonable to assume that this amount
varies based on certain factors, but can we use those factors to figure out how much is spent on an
ad? We can explore this by predicting ad spending through machine learning. Specifically, we can
utilize a regression model based on other features of the dataset to predict how much money will
be spent on a particular ad. That is, we can use other columns of the dataset to predict the Spend
column, our target variable, and we can evaluate our model’s performance with R2, or goodness of
fit, so we can ascertain how well our model is replicating the outcomes observed in the d ata. R 2 is
useful in telling us how effectively our model understands the patterns in the original data.

2.0.2 Baseline Model

For our intial model, we choose to include six features: Impressions (quantitative),
StartMonth (Ordinal), StartDay (Ordinal), EndMonth (Ordinal), EndDay (Ordinal), and
PayingAdvertiserName (Nominal). The date-related features were chosen as there may be a cor-
relation between the amount spent and what day or month the ad started or ended. The number
of impressions is important as an ad with more impressions likely had a higher budget behind it.
Lastly, the advertiser name (which was converted into one-hot encoding) may also be useful as
certain advertisers may tend to spend more. We have a total of one quantitative, four ordinal, and
one nominal feature(s). With this linear regression model, we achieve a R2 of .66. This essentially
means our model explains 66% of the variation in the original data. There is still a large portion
of the data that the model is not understanding, so to speak.

2.0.3 Final Model

We can improve our model by engineering two new features. Specifically, we c an s tandardize the
number of impressions by z-scoring, z = (x−mean)/stddev. This yields data with a mean of 0 and a
standard deviation of 1, better allowing us to see deviations from the mean number of impressions.
Second, we can utilize Pandas’ datetime functionality to calculate the difference in time from when

1

the ad ended to when it started, giving us the total duration of the ad. It’s reasonable to assume
that the longer the duration of the ad, the more was spent on it, so this should be a useful feature
in our model. We remove the other date features in favor of this feature. After trying various other
regression models, it was determined that linear regression was still the best in terms of R2, so this
was chosen to be the final model. GridSearchCV was used to determine the optimal parameters
for the linear regression model, these were fit_intercept = True and normalize = False. The
other parameters of the model are unrelated to the actual model output. These were the default
values for the model, so they were left unchanged. Our final model yielded a R2 of .84, a large
improvement from our previous model. This indicates that the new model replicates the outcomes
of the observed data much better.

2.0.4 Fairness Evaluation

We now wish to ascertain how well our model performs on certain portions of the data. Specifi-
cally, on those ads with low amounts of impressions. We define “low” as slightly lower than the
25th percentile, 18,000 impressions. To determine how fair our model is to ads with lower impres-
sions vs. regular and higher impressions, we separate the dataset into two, one with ads with low
impressions as defined above and one with the rest of the ads. We then see how well the model
performs on various permutations of each subset to get a clearer picture of its fairness to ads with
low vs other amounts of impressions. We use α = 0.1 with the null hypothesis that the model
treats both the same in terms of R2 and the alternative hypothesis being that it treats ads with
low impressions more poorly with a lower R2. The model has an average R2 of .45 on the low
dataset but .72 on the rest of the data. Using the Kolmogorov–Smirnov test, we can compare the
distributions of the scores of the model for both subsets of the data. We have an extremely small
p-value of 3.65 ∗ 10−153, so we reject the null hypothesis and determine that the model is likely
unfair in that it performs worse on ads with lower impressions.

3 Code
[]: import matplotlib.pyplot as plt

import numpy as np
import os
import pandas as pd
import seaborn as sns
from sklearn import *
from sklearn.preprocessing import *
from sklearn.linear_model import *
from sklearn.metrics import *
from sklearn.model_selection import *
from sklearn.pipeline import *
from sklearn.compose import *
import scipy.stats
%matplotlib inline
%config InlineBackend.figure_format = 'retina' # Higher resolution figures

2

3.0.1 Baseline Model

[]: #currency was converted and months/days were added in previous project
sc = pd.read_csv('sc.csv').drop('Unnamed: 0',axis=1)
#we drop null values, the only null values are in EndMonth/Day
base =␣
↪→sc[['Impressions','StartMonth','StartDay','EndMonth','EndDay','PayingAdvertiserName','Spend']].
↪→dropna()

#select the columns we want to use

[]: # Numeric columns and associated transformers
num_feat = ['Impressions']
num_transformer = Pipeline(steps=[

('passthrough', FunctionTransformer(lambda x:x)) # passthrough
])

Categorical columns and associated transformers
cat_feat = ['StartMonth','StartDay','EndMonth','EndDay','PayingAdvertiserName']
cat_transformer = Pipeline(steps=[

('intenc', OrdinalEncoder()), # converts to int
('onehot', OneHotEncoder()) # output from Ordinal becomes input to␣

↪→OneHot
])

preprocessing pipeline (put them together)
preproc = ColumnTransformer(transformers=[('num', num_transformer, num_feat),␣
↪→('cat', cat_transformer, cat_feat)])

pl = Pipeline(steps=[('regressor',LinearRegression())])

[]: X = preproc.fit_transform(base.drop('Spend', axis=1)) #process the dataset
y = base.Spend

[437]: score = []
for x in range(100):

X_train, X_test, y_train, y_test = train_test_split(X, y)
pl.fit(X_train, y_train)
score.append(pl.score(X_test, y_test))

print(np.mean(score)) #average R^2

0.6611158867619407

3.0.2 Final Model

[]: # Numeric columns and associated transformers
num_feat = ['Impressions']
num_transformer = Pipeline(steps=[

('scaler', StandardScaler()) # z-scale impressions

3

])

def get_hours(x):
df = pd.to_datetime(x['EndDate']).dt.hour - pd.to_datetime(x['StartDate']).

↪→dt.hour
return pd.DataFrame(df)

dates = ['StartDate','EndDate']
date_transformer = Pipeline(steps=[

('duration', FunctionTransformer(get_hours))
#time duration

])

Categorical columns and associated transformers
cat_feat = ['PayingAdvertiserName']
cat_transformer = Pipeline(steps=[

('intenc', OrdinalEncoder()), # converts to int
('onehot', OneHotEncoder()) # output from Ordinal becomes input to␣

↪→OneHot
])

preprocessing pipeline (put them together)
preproc2 = ColumnTransformer(transformers=[('num', num_transformer, num_feat),␣
↪→('dates',date_transformer,dates), ('cat', cat_transformer, cat_feat)])

pl2 = Pipeline(steps=[('regressor', LinearRegression())])

[]: #select features for new model
improved =␣
↪→sc[['Impressions','StartDate','EndDate','PayingAdvertiserName','Spend']].
↪→dropna()

[420]: #get parameters to optimize
pl2.get_params().keys()

[420]: dict_keys(['memory', 'steps', 'verbose', 'regressor', 'regressor__copy_X',
'regressor__fit_intercept', 'regressor__n_jobs', 'regressor__normalize'])

[423]: params = {'regressor__fit_intercept': [True, False], 'regressor__normalize':␣
↪→[True, False]}

grids = GridSearchCV(pl2, param_grid=params, cv=5)

[424]: X_tr, X_ts, y_tr, y_ts = train_test_split(X, y)
grids.fit(X_tr, y_tr)

[424]: GridSearchCV(cv=5,
estimator=Pipeline(steps=[('regressor', LinearRegression())]),
param_grid={'regressor__fit_intercept': [True, False],

4

'regressor__normalize': [True, False]})

[425]: grids.best_params_ #these are the defaults

[425]: {'regressor__fit_intercept': True, 'regressor__normalize': False}

[426]: grids.best_score_

[426]: 0.7636818802834835

[532]: X = preproc2.fit_transform(improved.drop('Spend', axis=1)) #process the dataset
y = improved.Spend
score = []
for x in range(100):

X_train, X_test, y_train, y_test = train_test_split(X, y)
pl2.fit(X_train, y_train)
score.append(pl2.score(X_train, y_train))

print(np.mean(score)) #R^2

0.8493351530307777

3.0.3 Fairness Evaluation

[460]: sns.scatterplot(improved['Impressions'],improved['Spend'])
#There is some correlation between spend and impressions

[460]: <matplotlib.axes._subplots.AxesSubplot at 0x225abafce48>

5

[461]: improved[['Impressions']].describe()
#what if we looked at ads with low impressions, below the 25%?

[461]: Impressions
count 4.184000e+03
mean 9.269965e+05
std 5.490533e+06
min 1.000000e+00
25% 1.851525e+04
50% 1.017510e+05
75% 4.533338e+05
max 2.349018e+08

[536]: improved['Binarized'] = Binarizer(threshold=18000).
↪→fit_transform(improved[['Impressions']])

[555]: improved.head(10)

[555]: Impressions StartDate EndDate \
0 1183287 2019/09/27 12:29:18Z 2019/10/05 14:00:00Z
1 190847 2019/03/20 13:00:00Z 2019/04/04 03:59:59Z
2 84687140 2019/10/23 13:00:00Z 2019/11/16 07:59:59Z
3 2555940 2019/09/30 14:00:00Z 2020/06/29 03:59:00Z
4 323890 2019/06/03 07:00:00Z 2019/09/04 06:59:59Z
5 3231 2019/11/26 00:05:10Z 2019/11/26 23:00:00Z
6 2762599 2019/11/12 13:11:17Z 2019/11/18 23:59:59Z
7 8779 2019/09/13 09:32:01Z 2019/09/14 09:32:01Z
8 2585 2019/12/13 00:29:58Z 2020/01/01 04:59:59Z
9 50946 2019/10/17 20:09:20Z 2019/11/06 00:00:00Z

PayingAdvertiserName Spend Binarized
0 Federal National Council 4187.000000 1
1 Ben & Jerry's 1576.000000 1
2 Recreational Equipment, Inc. 99361.000000 1
3 truth 10360.000000 1
4 Plan International Canada 260.219623 1
5 HOPE not hate Charitable Trust 7.760268 0
6 The Labour Party 6466.890193 1
7 NCDHD 23.000000 0
8 Warren for President 48.000000 0
9 ACRONYM 365.000000 1

[538]: #separate data
low = df[improved['Binarized'] == 0]
rest = df[improved['Binarized'] == 1]

6

[541]: X_low = (preproc2.fit_transform(low.drop('Spend', axis=1)))
y_low = low.Spend
score_low = []
for x in range(500):

X_train, X_test, y_train, y_test = train_test_split(X_low, y_low)
score_low.append(pl2.score(X_test, y_test))

print(np.mean(score_low)) #low R^2

0.4502236073057152

[542]: X_rest = (preproc2.fit_transform(rest.drop('Spend', axis=1)))
y_rest = rest.Spend
score_rest = []
for x in range(500):

X_train, X_test, y_train, y_test = train_test_split(X_rest, y_rest)
score_rest.append(pl2.score(X_test, y_test))

print(np.mean(score_rest)) #higher R^2

0.7288819175587933

[558]: sns.distplot(score_low)
sns.distplot(score_rest)

[558]: <matplotlib.axes._subplots.AxesSubplot at 0x225ac9e33c8>

7

[544]: scipy.stats.ks_2samp(score_low,score_rest) #very low P-val, dist. are not␣
↪→similar

[544]: Ks_2sampResult(statistic=0.832, pvalue=3.6552424432544507e-153)

4 References
• Pandas Development Team, Zemodo
• Data structures for statistical computing in python, McKinney, Proceedings of the 9th Python

in Science Conference, Volume 445, 2010.
• Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming with NumPy.

Nature 585, 357–362 (2020). DOI: 0.1038/s41586-020-2649-2.
• Snap Political Ads Library, Snap Inc. https://snap.com/en-US/political-ads
• Waskom, M. L., (2021). seaborn: statistical data visualization. Journal of Open Source

Software, 6(60), 3021, https://doi.org/10.21105/joss.03021
• J. D. Hunter, “Matplotlib: A 2D Graphics Environment”, Computing in Science & Engineer-

ing, vol. 9, no. 3, pp. 90-95, 2007
• Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
• Virtanen et al. and SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamental Algorithms for

Scientific Computing in Python. Nature Methods, 17(3), 261-272.

8

	Predicting Political Ad Spending on Snapchat
	Cyril Gorlla
	University of California, San Diego

	Summary of Findings
	Introduction
	Baseline Model
	Final Model
	Fairness Evaluation

	Code
	Baseline Model
	Final Model
	Fairness Evaluation

	References

