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ARTICLE OPEN

Smartphone camera oximetry in an induced hypoxemia study
Jason S. Hoffman 1,7✉, Varun K. Viswanath 2,3,7, Caiwei Tian 1, Xinyi Ding4, Matthew J. Thompson5, Eric C. Larson 4,
Shwetak N. Patel1,6 and Edward J. Wang2,3

Hypoxemia, a medical condition that occurs when the blood is not carrying enough oxygen to adequately supply the tissues, is a
leading indicator for dangerous complications of respiratory diseases like asthma, COPD, and COVID-19. While purpose-built pulse
oximeters can provide accurate blood-oxygen saturation (SpO2) readings that allow for diagnosis of hypoxemia, enabling this
capability in unmodified smartphone cameras via a software update could give more people access to important information about
their health. Towards this goal, we performed the first clinical development validation on a smartphone camera-based SpO2

sensing system using a varied fraction of inspired oxygen (FiO2) protocol, creating a clinically relevant validation dataset for solely
smartphone-based contact PPG methods on a wider range of SpO2 values (70–100%) than prior studies (85–100%). We built a deep
learning model using this data to demonstrate an overall MAE= 5.00% SpO2 while identifying positive cases of low SpO2 < 90%
with 81% sensitivity and 79% specificity. We also provide the data in open-source format, so that others may build on this work.

npj Digital Medicine           (2022) 5:146 ; https://doi.org/10.1038/s41746-022-00665-y

INTRODUCTION
Smartphone-based SpO2 monitors, especially those that rely only
on built-in hardware with no modifications, present an opportu-
nity to detect and monitor respiratory conditions in contexts
where pulse oximeters are less available. Smartphone-based
solutions for monitoring blood oxygen saturation have been
explored previously, employing various solutions used to gather
and stabilize the PPG signal1, augment the IR-filtered broad-band
camera sensor2, and filter the resultant signal for noise or outlier
correction3. Some solutions require extra hardware, such as a
color filter or external light source1,2,4–6, whereas others rely only
on the in-built smartphone hardware and employ software
techniques to process the PPG signal3,7–11. These prior works
indicate that there is potential for smartphone-based SpO2

monitors to fill gaps in access to care, but lack validation data
on a full range of clinically relevant SpO2 levels. Prior evaluation
techniques for these smartphone-based studies have been limited
to a minimum of 80% SpO2 using techniques such as breath-
holding, which is limited to short durations of data collection due
to participant discomfort, limiting the clinical applicability of the
findings. The US Food and Drug Administration (FDA) recom-
mends cleared reflectance pulse oximeter devices achieve <3.5%
error across the full range of clinically relevant data of
70–100%12,13. To our knowledge, our study is the first to evaluate
unmodified smartphone-based pulse oximetry on this range of
SpO2 data using a Varied Fractional Inspired Oxygen (Varied FiO2)
study procedure, as shown in (Fig. 1).
Blood-oxygen saturation, reported as SpO2 percentage, is one of

a number of health measures used by clinicians to assess
cardiovascular function, reporting the proportion of hemoglobin
in the blood currently carrying oxygen. This ratio can be directly
measured from samples of arterial blood using an Arterial Blood
Gas (ABG) analysis device. However, obtaining and analyzing
arterial blood samples is invasive and can be technically difficult;
therefore, it is limited to in-clinic hospital or outpatient lab cases.

As a result, clinicians typically rely on the convenience of
noninvasive measures of SpO2 using FDA-cleared, purpose-built
devices called pulse oximeters, consisting of a finger clip and
readout screen (Fig. 1b). Pulse oximeters typically perform
oxygenation measurement via transmittance photoplethysmogra-
phy (PPG) sensing at the finger tip, clamping around the end of
the finger and transmitting red and IR light via LEDs14. By
measuring the resultant ratio of light reception on the other side
of the finger, the devices leverage the Beer-Lambert Law to
estimate the absorption properties of the blood, using calibrated
curves based on empirical data to infer blood oxygen saturation2.
This device allows clinicians to noninvasively monitor SpO2 for
single (spot-check) or continuous measures.
While baseline SpO2 levels vary slightly (typically 96–98% at sea

level in otherwise healthy individuals), deviations of 5% or more
below these levels can be a sign of more serious cardiopulmonary
disease. Respiratory illnesses, such as asthma, chronic obstructive
pulmonary disease (COPD), pneumonia, and COVID-19, can cause
significant decreases in SpO2, hypoxemia (low blood oxygen), and
potentially hypoxia (low tissue oxygen). Hypoxia can lead to
serious complications, such as organ damage to vital organs like
the brain or kidneys, and even death, if uncorrected or occurring
acutely for an extended period of time15. Repeated measurements
of SpO2 can be used to monitor for changes in the severity of a
wide range of cardiopulmonary conditions such as asthma and
COPD16, and indicate potential presence of other illnesses
including Idiopathic Pulmonary Fibrosis, Congestive Heart Failure,
Diabetic Ketoacidosis, and pulmonary embolism17–19. Pulse
oximetry also has prognostic value; for example, an SpO2 level
below 90% SpO2 has been correlated to increased in-hospital
mortality rates for COVID-19 patients20 and levels below 95%
associated with complications from community-acquired pneu-
monia21 or complications in patients with diagnosed pulmonary
embolism18. Thus, determining whether a patient’s blood oxygen
saturation is below a threshold would likely be valuable in an
accessible early warning screening tool to indicate that further
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attention from a clinician is needed. Usability of smartphone
screening tools has also been explored but generally shown that
accuracy is poor due to the lack of clinical validation and user
experience challenges22–24.
In this study, we take a step towards SpO2 monitoring using the

unmodified camera on a smartphone. Our hypothesis was that, by
training a model using data from a varied FiO2 study, we could
accurately predict SpO2 on a wider range of clinically relevant
SpO2 levels (70–100%) than prior smartphone-based studies. Our
analysis reveals that a convolutional neural network (CNN) model
evaluated on this range is able to achieve, on average, a Mean
Absolute Error (MAE) of 5.00% (σ= 1.90) SpO2 in predicting a new
subject’s SpO2 level, after it has been trained only on other
subjects’ labeled data. To assess potential hypoxemia screening
capability, we show that this corresponds to an average sensitivity
and specificity of 81% and 79% respectively in classifying a new
subject’s SpO2 as below 90%. This work builds on a growing
tradition of using ubiquitous mobile devices as decision support
tools in healthcare, indicating the need for health care consulta-
tion25,26. Smartphones are widely owned because of their multi-
purpose utility, and contain increasingly powerful sensors,
including a camera with a LED flash27–29. Researchers have used
sensors in off-the-shelf smartphone devices to assess many
physiological conditions, including detecting voice disorders30,
tracking pulmonary function30,31, assessing infertility25, measuring
hemoglobin concentration32,33, and estimating changes in blood
pressure34,35. Alongside these results, we share the data from the
Varied FiO2 study with the community, so others may build on
this work.

RESULTS
SpO2 prediction performance
Our convolutional neural network (CNN) achieved an average MAE
of 5.00% (σ= 1.90) SpO2 when trained and evaluated via leave-
one-out cross validation (LOOCV) across the range of 70–100% of
data from the varied FiO2 study (Fig. 2). An average correlation of
R2= 0.61 (σ= 0.15) is observed between the model predictions
and readings from the ground truth reference pulse oximeter. The
average root mean squared error (Arms) is 5.55% (σ= 1.89) across
all subjects in this range, which is 2.05% higher than the ISO
80601-2-61:2017 standard of 3.5% for reflectance pulse oximeter
devices to be cleared for clinical use13. Bland-Altman analysis
demonstrates the performance of the CNN relative to a tight-
tolerance fingerclip pulse oximeter in LOOCV. The SpO2 values
predicted by the learned model near the Limits of Agreement
(LOA) reported in previous studies of clinical and non-clinical pulse
oximeters, while evaluating on a wider range of SpO2 levels12,36–38.
Considering that the ground truth measurements from pulse
oximeters exhibit similar variance to these results, this indicates
that the model has learned features in the PPG signal that are
common across subjects and the model is not simply mean-
tracking. On the other hand, for Subjects 2, 3, and 5, the negative
trend in predictions and mean difference above the limits of
agreement for most ground truth values in the range 70–80%
SpO2 reveals that the model is consistently over-predicting on
SpO2 samples below 80%. Notably, this is the first study to observe
model performance below 85%, as no prior work has demon-
strated that smartphone-based sensing systems may perform
poorly in this range.

Fig. 1 Varied FiO2 study using an unmodified smartphone camera. a Illustration of the experimental setup of the varied FiO2 experiment
conducted for this study. The subject breathes a controlled mixture of oxygen and nitrogen to slowly lower the SpO2 level over a period of
13–19min b During the study, one finger was placed over a smartphone camera with flash on to record light response via Reflectance PPG,
while a second finger was placed in the fingerclip of a tight-tolerance pulse oximeter acting as a transfer standard, which emits Red and IR
light reports SpO2 via Transmittance PPG. c Comparison of the histogram of a breath-holding study dataset, adapted with permission from
Ding et al.3, with the histogram of the ground truth distribution from our varied FiO2 experiment dataset reveal that a more clinically relevant
data spread was gathered using this protocol than prior work. d Classification results for the smartphone method reveal that 79% of cases of
hypoxemia (defined as a low SpO2 below 90%) were detected using this method. Illustration and images are the authors’.
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Classification of hypoxemia
Rather than simply inferring an estimate for SpO2, a smartphone-
based tool could be valuable for screening for low SpO2,
indicating whether or not further medical attention is needed.
To explore the potential of using an unmodified smartphone
camera oximeter system as a screening tool for hypoxemia, we
calculated the classification accuracy of our model in providing an
indication of whether an individual has an SpO2 level below three
different thresholds: 92%, 90%, and 88%. A pulse oximetry value
below 90% SpO2 is a common threshold used to indicate the need
for medical attention39, but other thresholds could be valuable
clinically. Thus, we evaluate the ability of our system to classify
samples from our test set by thresholding the regression result
from our model at different decision boundaries and comparing it
to whether the ground truth pulse oximeter simultaneously
reports less than the threshold value. We compute sensitivity (true
positive rate) and specificity (true negative rate) across all
combinations of LOOCV to compute an average result. This
experiment simulates the scenario where a smartphone screens a
subject it has never seen before, as the model was trained only on
the 5 other subjects from the dataset.
The results of this classification analysis can be seen in (Fig. 3).

For classifying SpO2 < 90%, on average across all 6 test subjects,
our model attains a sensitivity of 81% for correctly classifying the
positive samples in our dataset of suspected hypoxemia, while

maintaining a specificity of 79%. For classifying a subject as below
SpO2 < 92%, specificity increases to 86% with a sensitivity of 78%.
Not all combinations of test and train subjects displayed the same
level of accuracy. In order to visualize classification accuracy across
our entire dataset, we varied the classification decision boundary
for three classification thresholds that may be clinically relevant,
(92%, 90%, and 88%), and averaged the results across all 6
combinations of LOOCV. The results of varying the decision
boundary are plotted on the ROC curve in Fig. 3c. For the
SpO2 < 90% classification threshold, the highest accuracy (defined
as the closest point to (0,1) on the ROC curve) occurred when the
classification decision boundary was set to 88% SpO2. A decision
boundary of 90% on the regression result for the SpO2 < 90%
classification task resulted in 92% sensitivity at identifying
hypoxemic cases alongside 35% false positives (sensitivity of
92% and specificity of 65%).
Classification on individual subjects can be seen in Fig. 3a. The

model achieved the best performance on Subject 4, with a
sensitivity= 88% and specificity= 78%, reporting correctly 88%
of the time when the subject had a dangerous SpO2 level.
Subject 1 displayed the lowest sensitivity to specificity tradeoff of
81% to 73%. As noted in Discussion, the subject had significantly
thickened skin on their fingers. Even though the regression for
this test subject produces a MAE= 8.56%, the classification result
indicates that the tool could still be helpful in determining
whether or not the user should seek medical attention.

Fig. 2 Regression results, Bland-Altman comparison, and time series data from the varied FiO2 study. MAE averages to 5.00% (σ= 1.90)
over all 6 subjects in the study. R2 correlation averages to 0.61 over the full range of data gathered. The average difference (μ) and limits of
agreement (LOA) average to –0.72 and 9.68. Table: MAE and Bland-Altman statistics for CNN evaluation by LOOCV for each subject (n= 6) in
the study. Regression: Predictions from smartphone data plotted against associated ground truth SpO2 data collected via standalone pulse
oximeter. Bland-Altman: Bland-Altman plots displaying the spread of predictions against ground truth. Time: Plots of direct performance
analysis of regression results. Model predictions (in red) and ground truth readings (in blue) for the 6 subjects in the FiO2 study plotted against
time of study. For all plots, left hand is on top and right hand is on bottom.

J.S. Hoffman et al.

3

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)   146 



Overall, this classification result indicates that the current model
is insufficient for medical use, but further research, including
collecting a larger data set from a wider array of subjects, may
improve the accuracy in the future.

Data ablation
To understand how the accuracy of our model compares to
previously published smartphone-based pulse oximetry systems,
we study how excluding subsets of the dataset affects the
accuracy. Due to the larger range evaluated in this study
compared to prior studies, the overall MAE is not as low as prior
studies. However, a data ablation study reveals that, as subsets of
the data with lower associated ground truth SpO2 readings are
removed, the accuracy of our model nears that of other published
work. Notably, none of these proof-of-concept works were
evaluated on data where a statistically significant portion of the
SpO2 evaluation data was below 85%, whereas in our varied FiO2

dataset, the minimum SpO2 value included is 70% and the mean
of all ground truth SpO2 levels is 87.1% (See Fig. 1c).
We train and evaluate our machine learning models against a

similar dataset to these proof-of-concept works using a data
ablation technique. We first subsample our dataset so that we
only include samples with ground truth SpO2 above a floor
threshold. We then retrain and evaluate our models to calculate a
sub-sampled MAE. Varying across possible thresholds, we observe
a negative linear correlation between the minimum SpO2 value
included and the resultant mean absolute error, as can be seen in
Fig. 4a. That is, as we reduce the range of SpO2 values in our
training and testing dataset, our models perform more accurately.
To directly compare to the performance of prior work from Ding
et al. and Bui et al. (Fig. 4b), we set a SpO2 threshold of 85%.
While Ding et al. report a range of 73–100%, their dataset shows
that only 0.6% of all samples are below 85% (Fig. 1c), so we
report this as a practical floor of 85% for comparison purposes. At
a floor SpO2 value of 85%, our model performs nearly as well as
prior work with a mean absolute error of 3.06%. With this
analysis, we can be confident that our techniques are at least as

reliable as prior works, and likely benefit from the larger range of
training examples.

DISCUSSION
The classification results from this study indicate a direction to
consider for enabling more accessible screening for hypoxemia via
unmodified smartphones. Considering the unique positioning of
smartphones in the pockets of billions of people worldwide, it
would be useful to not only reproduce the function of a pulse
oximeter in software, but also to provide an initial screen for
clinically significant low SpO2 levels. The COVID-19 pandemic
highlighted this need for an affordable remote oxygen desaturation
detection tool that can be accurately and safely used for initial
screening and monitoring, informing users whether or not they
should seek expert medical attention. This potential is important to
consider, as software applications are already being used in this
manner even when those applications have not cleared the FDA
regulatory requirements40,41. Our system is the first unmodified
smartphone camera sensor to report accuracy at levels below 85%
SpO2, and it achieved relatively high sensitivity (81%) and specificity
(79%) when classifying subjects with SpO2 below 90%.
This SpO2 prediction pipeline, including smartphone hardware,

custom software application, data processing, deep learning and
evaluation, is summarized in (Fig. 5). Overall, CNN modeling worked
well on this input data, learning a function that approximates the
data in a non-linear fashion.
We designed our CNN architecture with three goals in mind.

First, we chose the overall number of layers in our model such that
there are enough affine computations that the model could learn
to approximate the ratio-of-ratios model traditionally used in
purpose-built pulse oximeters. Second, we included convolutional
layers to provide time-invariance to remain robust to inputs that
start at different phases of the heartbeat. Third, the ReLU
activation function provided non-linearity, allowing the model to
learn features embedded in our wide-band input data, which has
more noise than the narrow-band input of purpose-built
pulse oximeters traditionally used with a ratio-of-ratios model.

Fig. 3 Classification results for the system. a Classifications overlaid on ground truth for each subject with a 90% classification threshold and
88% decision boundary. b Summary statistics for classification across subjects shows that classification performed better on certain patients,
and overall achieved a 81% sensitivity and 79% specificity rate at sensing whether a subject fell below a 90 % SpO2 level c ROC curves for the
classification of low SpO2, produced by thresholding the regression model. Classification accuracy decreases as the classification goal is
shifted lower, from 92% to 90% to 88%. The classification decision boundary was varied to produce curves for all 3 classification goals, with
each point plotted as the average test classification False Positive Rate and True Positive Rate for all LOOCV combinations. The points that are
labeled on each curve are those closest to (0,1) for each classification threshold. The Area Under the Curve (AUC) is .87 for the 90% threshold
SpO2 level classification.
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Linear layers finally regress from these high-level features to the
SpO2 prediction.
We investigated other types of models, as well, but were not

able to achieve better performance than our CNN model. While a
ratio-of-ratios approach8 has some predictive power on this full
range of smartphone camera data (average MAE= 7.12, σ= 1.64),
it does not infer SpO2 as accurately as our CNN model
(Supplementary Fig. 1). This is likely because our CNN model,
having more parameters and derived features, handles noise in
the signal better than the ratio-of-ratios model. Even so, the fact
that the ratio-of-ratios model showed some correlative power
(average R2= 0.21, σ= 0.20) is encouraging, suggesting that it
and the CNN model could have modeled a similar underlying
phenomenon. Future work may leverage gradient-weighted
activation mappings to further investigate this relationship.
Statistically, our study does not indicate that this smartphone

method of measurement and deep learning approach is ready to
be used as a medical device comparable with current pulse
oximeters, but further studies could be conducted to develop the
method and validate for medical use. A Wilcoxon signed-rank test
indicates that our observed MAE differences are large enough to
reject a null hypothesis that the measures are equivalent with
p= 0.03, even though the sample size is small (n= 6). The ISO
standard 80601-2-61:2017 for safety of pulse oximeter devices
indicates that at least 10 subjects with diverse skin tones should
be tested and result in a root-mean-squared error (Arms) below
3.5%, which indicates that more subjects should be tested before
we can determine whether this method is accurate enough for
clinical use13,42,43. In addition, an Arterial Blood Gas (ABG)
measurement should be used as ground truth for comparison,
and a single model would need to be trained prior to testing on
these 10 subjects, rather than the LOOCV procedure that was
used in this study.
In addition, we investigated whether heart rate (HR) or

respiration rate (RR), which are correlated with acute drops in
SpO2, were major contributing factors to model accuracy. We
found that encoding the input data as 3 beats at 60bpm,
effectively removing heart rate as a discernable feature from the
input data, only reduced the accuracy of the model by 0.35 to an

average MAE= 5.35 (σ= 2.20), indicating that HR was not a major
contributing factor to model performance (Supplementary Fig. 3).
RR was not encoded in the input data, as 3 s is not enough time to
see a single breathing cycle for subjects resting in a reclined
position. Overall, this level of performance on a relatively small
test subject sample (n= 6 subjects with s= 12108 total samples)
indicates that the model accuracy could increase if more training
samples were gathered from further varied FiO2 experiments,
representing a larger range of potential users of the system.
For this study, camera settings were locked during data

gathering by presetting auto-balancing and manually enhancing
color gain, which are unique steps in our data collection system
relative to prior works in this area. Camera image capture is
variably exposed based on three factors: exposure time, sensor
sensitivity, and aperture. For RGB cameras used in smartphones, all
three color channels typically use the same exposure time and
aperture settings. Even though the Bayer filter pattern of CMOS
camera sensors is designed to sense twice the green light photons
per area, it is sometimes not possible to measure all three
channels with high dynamic range simultaneously. Both oxyge-
nated and deoxygenated hemoglobin have a significantly higher
absorption coefficient in the blue and green wavelengths than for
the red wavelengths by about two orders of magnitude. Thus, it
would not be possible to measure all three wavelengths
simultaneously under the same exposure. If the hardware sensor’s
sensitivity to a particular color is too high or too low, pixel values
for that color may clip by recording the minimum or maximum
value of 0 or 255. Because phones use an 8-bit precision scheme
for storing pixel data, the pixels will all be rounded to 0 and small
changes in that color will be lost. In our application, red is the
most dominant color, and prior work has shown that with the use
of white balance presets for incandescent light, the tones between
blue and green can be amplified44. Software advancements in
smartphone image processing pipelines now provide more
independent control of each color channel’s exposure through
independent per-channel amplifier gain settings. By having
control of independent amplifier gain settings, we can balance
the exposure settings to amplify the blue and green channels, as
shown in (Fig. 5a).

Fig. 4 Data ablation study. As shown by a data ablation analysis, our model achieves increased accuracy at smaller ranges of data, such as
that in prior studies evaluating above 80% SpO2 using a breath-holding study technique. a Accuracy of our model improves when ablating
our data to remove data below a floor of lowest ground truth SpO2 readings. b Accuracy statistics from the ablation analysis show that Arms
and Limits of Agreement improve with a higher data floor. c Mean Absolute Error (MAE) of prior works in smartphone-based SpO2 sensing
that perform on datasets with SpO2 values in the range of 85–100%. When the range of the data in our work is reduced to a similar range, we
achieve comparable accuracy to prior work. Note that Bui et al used attachments on the smartphone to enhance the photoplethysmographic
signal for inference while Ding et al and the present work use an unmodified smartphone camera1-3. d Sample statistics and MAE results for
this varied FiO2 study are compared to a recent breath-holding study using smartphone cameras and deep learning3.
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We see particularly aberrant performance on subject 1 with
MAE= 8.56. We suspect this is due to exacerbated tissue noise
on the subject’s fingers from thickened skin, which is not
represented in the rest of the training data. This subject was
noted to be the only subject in the study with noticeable calluses
on their fingertips, and the subject indicated this was due to
sports. We investigate the data obtained from this subject more
closely in (Fig. 6b) and observe that the PPG signals for subject
1 show nearly 50% dampened oscillations (AC signal component)
and 50% higher average value (DC signal component) than other
subjects. We hypothesize that these abnormal features are a
result of the calluses. Specifically, an abnormally thick layer of
tissue on the finger would absorb more light in the blue and
green spectra. Because our device’s sensor has fixed sensitivity,
the abnormally attenuated light in the blue and green spectra
results in poor measurement of the pulsatile blood and altered
spread in color channel values. With a small training set of
4 subjects including no other examples of subjects with fingertip
calluses, the model cannot learn to account for these tissue
differences. We anticipate the model could learn to account for
tissue abnormalities if trained on more subjects or if adaptive
gain settings were employed to gather data that ensured a
similar oscillation amplitude in the AC signal for the input data
collected by the smartphone.
From this limited dataset, we are unable to make definitive

conclusions regarding the effect of skin tone or sex on
smartphone pulse oximetry. Our test subjects included 1 subject
with a dark skin tone (subject 2 identified as African-American)
and 5 subjects with a light skin tone (all other subjects identified

as Caucasian), as seen in (Fig. 6c). Our model does not appear to
perform differently based on skin tone with this limited dataset,
as the results for subject 2 fell in a similar range as other subjects,
as seen in (Fig. 2). However, it has been shown that standalone
pulse oximeters, such as the one used as the ground truth in our
dataset, can produce decreased accuracy on patients with darker
skin tones45,46. Based on our study, we do not claim any findings
around model performance based on skin tone, but that should
be evaluated in future studies. Our model also does not perform
differently on any subset of our 3:3 female:male sex split.
Analyzing performance of our model to users of different skin
tones and biological sexes is important, but will require further
work to understand.
Our results, in this pilot study of 6 subjects, provide a positive

indication that a smartphone could be used to assess risk of
hypoxemia without the addition of extra hardware in the future.
In order to validate and enable this, we would recommend
gathering more data with a smartphone in varied FiO2 studies
that induce hypoxemia to increase the training data variety and
the accuracy of the deep learning model. With an improved
model, we could set up user studies in which the app is used in
conjunction with a standalone pulse oximeter to measure the
accuracy of the software-based solution in real-world scenarios.
Usability of the smartphone-based measure could be explored to
further enhance the clinical applicability of the findings22,24.
Further analysis could involve processing or preparing this type of
dataset differently, including exploring the use of different ROIs
for signal extraction47 and gathering the data differently to study
the effect of preset camera gains. Additionally, different phone

Fig. 5 Signal extraction and deep learning pipeline. a PPG signal extraction occurs after collecting video data from the smartphone camera,
applying empirically determined per-channel gains to ensure that each channel is within a usable range (no clipping or saturating). Gains for
the R, G, and B channels were empirically determined and held constant throughout all subjects to avoid clipping or biasing towards one
channel. b Pre-processing of the data extracts the PPG signal for each channel by computing the average pixel value of each frame. The mean
of each channel value across the entirety of each frame was used. c Training and evaluation was performed using Leave-One-Out Cross-
Validation (LOOCV) by using 5 subjects' data as the training set, holding one of these subject's data as the validation set for optimizing the
model, and then evaluating the trained model on one test subject. d The deep learning model is constructed of 3 convolutional layers and 2
linear layers operating on the input of 3 s of RGB video data (90 frames for 3s at 30fps). The output is a prediction of the current blood-oxygen
saturation (SpO2 %) of the individual, which was evaluated using Mean Absolute Error (MAE) compared to the ground truth standalone pulse
oximeter reading. e Equations for Loss and MAE that were used in training and evaluating the model.
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models have different camera sensor configurations and thus the
cross-device compatibility of a model should be tested. We would
also like to see what others in the community can do with the
open-source FiO2 data that we are providing alongside this paper.
More development and testing could allow this tool to become
beneficial for low-cost clinical management of individuals with
chronic respiratory conditions, such as COPD, as well as acute
respiratory diseases like COVID-19.

METHODS
Study design
In total, 6 healthy test subjects were recruited and enrolled to participate in
a varied FiO2 study to evaluate the efficacy of using unmodified
smartphone cameras in pulse oximetry. The varied FiO2 study was
performed using the varied fractional inspired oxygen protocol adminis-
tered by a clinical validation laboratory, Clinimark, which is a group that
performs validation services for medical devices42. This experiment was
approved by the Institutional Review Board at Clinimark. Written informed

consent for each participant was obtained prior to commencing the test
procedure. Six subjects were administered controlled fractional mixtures of
medical grade oxygen-nitrogen in a controlled hospital setting for
14–19min. The subjects rested comfortably in a reclined position while
the gas mixture was given to induce hypoxemia in a stair-stepped manner.
The mixture of oxygen was started at 18–21% and was adjusted
downwards in a stair-stepped manner every 1–2min. The goal was to
maintain the subjects’ SpO2 level on a plateau for 30 s, with 4 discrete
levels within the following ranges: above 93 (subject’s resting SpO2 level
breathing room air), 89–93, 80–88, 70–79. During this time, the subjects’
fingers were instrumented with multiple transmittance pulse oximeter
clips and two smartphone devices, with the smartphone device on the
index finger of each hand. In the controlled hospital setting, the ambient
light was kept at a constant level of a controlled fluorescent white light
and the position of the smartphone did not change between subjects. The
ground truth data was recorded using multiple purpose-built pulse
oximeters, including a tight-tolerance finger clip pulse oximeter acting as a
transfer standard, the Masimo Radical-7, which has a tested Arms of 2%
between 70–100% and 3% between 60–80% SpO2 and was used as
ground truth in this evaluation48,49. Variation in ground truth between the

Fig. 6 Analysis of collected data. Visualization of PPG data, derived from smartphone videos, reveal the effects of camera gains settings and
skin tissue differences on the input signal for our deep learning model. a PPG signal using auto-balance from a prior study3 vs custom
empirically determined gain settings from this study. In the left image, the green channel is clipped so that the dynamic range becomes so
low that the AC variation in the signal cannot be observed. In the right image, the pulsation is visible in all three channels. This shows how
standard smartphone camera settings, designed for photography, can reduce the information available to smartphone-based systems for
accurate SpO2 sensing. b Skin tissue aberrations (such as calluses seen in Subject 1's fingers) can affect the quality of data available for SpO2
sensing. At left, the raw data in the red, blue, and green channels for Subject 1 are dampened and the oscillating portion of the signal cannot
be observed at a resolution of 300 frames. At right, the oscillations can be clearly seen for Subject 2 at the same resolution. This abnormality is
likely due to Subject 1's callused tissue on the fingers. c Subject breakdown for the FiO2 study and ground truth data statistics (in SpO2 %) for
each subject. The average difference between mean and median for each subject is 1.58, showing minimal skew. Skin tone was recorded
based on appearance of the skin on the subjects' hand. The average length of each subject's test run is about 16min.
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tight-tolerance pulse oximeter chosen as a transfer standard (Masimo
Radical-7) and other reference pulse oximeters (which were placed on
different fingers on different hands) averaged less than 1, measured in the
absolute value of the mean difference between all samples, but varied
widely in Limits of Agreement, highlighting the differences between
approved pulse oximeters (Supplementary Fig. 5). Subject characteristics
and data statistics can be seen in (Fig. 6c). Subject observations were
recorded, including the observation that one subject, Subject 1 in the
analysis, had particularly callused hands. A trained administrator mon-
itored the subjects’ vitals, including SpO2, pulse rate, EtCO2, respiration
rate, ECG rhythm, and FiO2, for any abnormalities and would intervene if
deemed necessary. The subjects were informed that they could stop the
test at any time. The target for minimum SpO2 level was 70%, as that is the
level above which the ground truth pulse oximeter was validated as
accurate, but some subjects’ SpO2 level drifted below 70% briefly during
testing, and data in that range was excluded from the study (Supplemen-
tary Fig. 4).

Smartphone device configuration and setup
We collected camera oximetry data with a Google Nexus 6P, recording
video at 30 frames per second in a custom video capture application
developed in Java using Android Studio. The device was specifically
configured so that camera exposure settings in the camera hardware did
not change throughout the entire study. Color gains were set to 1x for the
red channel, 3x for the green channel, and 18x for the blue channel. These
gains were chosen empirically by manually analyzing the impact of gain
value adjustments on 20 healthy individuals to find gain values that
avoided data loss due to compression and obtained optimal signal quality
(see Fig. 6a). The Android camera2 API was used to set a target framerate
of 30 fps and the phones were plugged in and kept cool with ice packs so
the framerate did not dip below 30 fps during the recording. During the
varied FiO2 study, because the device could overheat from recording
continuous video with flash enabled for more than 1min, we placed clay
ice packs around the device to keep its temperature down for the
14–19min duration of the study. The ice packs were placed strategically to
avoid contact with the hand.

Data pre-processing
For each hand on each subject, we recorded an ordered list of n RGB image
frames, each with 176 × 144 pixels. To obtain a PPG signal, we computed
the mean pixel value for each color channel and obtained a 3 × n-shaped
matrix of values. Each hand of each subject is treated as a unique subject
in the display of results. We divide the data into samples for each 1-second
(30 frames) window, combining the 3 s (90 frames) of sample RGB data
centered on 1 ground truth SpO2 reading as one sample. This provides
over 8000 training examples (4 subjects) to our models, with about
2000 samples (1 subject) held out for both the cross-validation and test set
for each configuration of LOOCV. Samples under 70% SpO2 are removed
prior to training and validation, as the samples gathered below 70% were a
result of incidental over-shooting of the intended study range of 70–100%
and were not represented in every subject.

Convolutional neural network
We applied a CNN machine learning model, detailed in (Fig. 5). We
designed and trained a network with three convolutional layers followed
by two fully connected layers. For the first convolution, we treat the RGB
channel components of our signals as a second dimension and use kernel
sizes of 3 × 3 with no padding. We normalize and standardize both training
and validation datasets based on a weighted channel-wise mean and
standard deviation of the training dataset, where the weights are scaled by
the length each subject’s data collection. A 3 s sample (90 samples at
30 Hz) was chosen as input based on our intuition that it would provide
enough input data for the model to see multiple heartbeats for inference,
remaining robust to brief sources of noise from movement, while also
keeping in mind usability by keeping the length of required recording to a
short length. This input choice was validated via hyperparameter search,
which optimized model structure, input data, and regularization para-
meters based on mean cross-validation set loss across all rounds of LOOCV.
The model is trained using the Adam optimizer with a learning rate of
0.00001 (with a rate decay by 0.1 after 80 epochs) and an L2 regularization
of strength 0.1, using LOOCV with five subjects in the training set (with one
held out for cross-validation) and tested on the remaining subject after
optimization. We optimize model weights on the cross-validation subject

with Mean Squared Error (MSE) as our loss function and report the
accuracy of the results by computing the MAE (Fig. 5e) on the test subject.
Hyperparameters were selected in a hyperparameter search using the
LOOCV method, selecting those parameters based on the lowest average
cross-validation MAE prior to final model training. The model is built and
trained using the PyTorch library. In addition to testing a CNN model, we
attempted to model the data and infer SpO2 accurately using a few
different models, including a linear regression model and a ratio-of-ratios
model. We achieved the highest accuracy when the CNN was applied, so
we conducted our analysis on that model, but also report our results from
the ratio-of-ratios model in Supplementary Fig. 1.

Model benchmark
For comparison, we implemented and applied a ratio-of-ratios model8 to
our data. We apply a variation of the technique in8 to each 3 s sample from
our data where the PPG signal is stable. To do this, we first segmented
each beat and extracted the slopes and heights of systolic peaks. Partial
beats on the edge of the sample window were dropped. The average of
the slopes and heights from the red and green color channels were used
to calculate the SpO2 using Eq. (1) from8 with the appropriate absorption
coefficients. Finally, we fit a linear regression from the calculated SpO2

values and ranges of the RGB channels to the ground truth. We analyzed
the regression performance of this model, and the results can be seen in
Supplementary Fig. 1.

Statistical analysis
We identified and evaluated two potential usage scenarios for a software-
based oximetry solution on a standalone smartphone: (1) as a replacement
for traditional pulse oximeters by regressing a continuous SpO2 value, and
(2) as an at-home screening tool to inform the need for a follow-up with a
physician by classifying regression results as below a particular threshold.
We explored the first scenario of pulse oximetry measurement by

performing a regression analysis, comparing our smartphone measure-
ment to a purpose-built pulse oximeter with error and Bland-Altman
metrics. In our performance assessment, we evaluated models using
Leave-One-Subject-Out cross validation (LOOCV). Specifically, we eval-
uated six validation splits, holding one subject out as the test set in each
split (Fig. 5c) and averaging the test MAE for the overall reported MAE
(Fig. 2). Signed rank test and skew were computed using the statsmodels
library in Python 3.8.
For Bland-Altman analysis, we see minimal skew in our differences with

skew= 0.64. Therefore, we calculate Limits of Agreement assuming a
normal distribution by computing 1.96 times the standard deviation of the
difference between the ground truth and predictions of the validation
dataset50. We visually examined the ground truth distributions of the splits
to ensure there was not a heavy imbalance in the dataset. We
experimented with upsampling the minority SpO2 range within each
training batch. In practice, this increases the weight of mistakes that are
made on examples in the minority SpO2 range. By weighting the minority
SpO2 range mistakes, the model should learn features that improve
performance on these examples. However, this had little effect on the
performance of the model, so most of our experiments were performed
without upsampling. We compared the performance of algorithms using
Mean Absolute Error and reported Arms and R2.
We explored the second scenario of hypoxemia screening by perform-

ing a classification analysis, thresholding the ground truth recordings
below 3 different SpO2 levels (92%, 90%, and 88%) and comparing it to our
thresholded regression result. We examined the true positive (sensitivity)
and true negative (specificity) rates at different screening decision
boundaries (92%, 90%, and 88%) to illustrate the potential performance
of the system for use in hypoxemia screening. To interrogate the potential
to adjust this decision boundary to bias towards sensitivity or specificity,
we varied the decision boundary across the range of 70%–100% and
plotted ROC curves for each subject using LOOCV.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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DATA AVAILABILITY
We provide the data from the varied FiO2 study in open source format to the
community to allow others to build upon this work. The dataset generated and
analysed during the current study are available on Github in the oximetry-phone-
cam-data repository: https://github.com/ubicomplab/oximetry-phone-cam-data.

CODE AVAILABILITY
We provide code for pre-processing, visualization, and data-loading that is
compatible with the varied FiO2 study in open source format to enable the
community to more easily start building upon this work. This supporting code is also
available on Github in the oximetry-phone-cam-data repository: https://github.com/
ubicomplab/oximetry-phone-cam-data.
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