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1.5D quasilinear model and its application on beams interacting
with Alfv�en eigenmodes in DIII-D
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We propose a model, denoted here by 1.5D, to study energetic particle (EP) interaction with

toroidal Alfvenic eigenmodes (TAE) in the case where the local EP drive for TAE exceeds the

stability limit. Based on quasilinear theory, the proposed 1.5D model assumes that the particles

diffuse in phase space, flattening the pressure profile until its gradient reaches a critical value

where the modes stabilize. Using local theories and NOVA-K simulations of TAE damping and

growth rates, the 1.5D model calculates the critical gradient and reconstructs the relaxed EP

pressure profile. Local theory is improved from previous study by including more sophisticated

damping and drive mechanisms such as the numerical computation of the effect of the EP finite

orbit width on the growth rate. The 1.5D model is applied on the well-diagnosed DIII-D discharges

#142111 [M. A. Van Zeeland et al., Phys. Plasmas 18, 135001 (2011)] and #127112 [W. W.

Heidbrink et al., Nucl. Fusion. 48, 084001 (2008)]. We achieved a very satisfactory agreement with

the experimental results on the EP pressure profiles redistribution and measured losses. This

agreement of the 1.5D model with experimental results allows the use of this code as a guide for

ITER plasma operation where it is desired to have no more than 5% loss of fusion alpha particles as

limited by the design. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752011]

I. INTRODUCTION

Confinement of fusion-product alpha particles is crucial

for sustaining ignition in next generation fusion devices as

well as avoiding damage to the first wall. In ITER, as little as

5% of fusion products’ power can be viewed as a limiting

value for alpha particle loss.12 Since the fusion product alpha

particle velocities are comparable to Alfvenic velocities,

they resonantly interact with Alfvenic modes which can lead

to instabilities and large scale fast ion transport. In this pa-

per, we propose a reduced version of the quasilinear model

that computes the effect of this interaction on the fast ion

profiles. A fully dimensional quasilinear model is currently

being developed, while the present paper only deals with a

1.5D (1.5 dimensional) limit. We introduced the 1.5 dimen-

sional term here to account for real space modification of the

density profile and an added 0.5 for the modification of the

velocity profile of fast ions that are in resonance.

To study the energetic particle interaction with Alfvenic

modes, present day machines operate in regimes where the

Alfvenic velocity, vA ¼ B=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnimi

p
, is comparable to that of

the injected beams. Alfvenic modes can be strongly damped

by the continuum. However, due to toroidicity, gaps in the

continuum arise that allow discrete modes, such as toroidicity

induced Alfven eigenmodes (TAE), to exist and these waves

have relatively small intrinsic damping when the driving ener-

getic particles are absent. These discrete modes can be driven

unstable by the free energy source of the energetic particles

posing, therefore, a threat to energetic ion confinement.

Many present day experiments observe TAE activity

with accompanying ion losses and profile relaxation.17 Under

some circumstances, a few modes expel fast ions from the

plasma in bursts of activity. This was the case, for example,

in the initial TAE experiments on TFTR16 and DIII-D.10 In

these cases, fast-ion transport occurs in a burst cycle reminis-

cent of predator-prey models26 that cannot be described

by quasilinear models. In contrast, some contemporary

experiments contain a large number of relatively small am-

plitude Alfven instabilities. Examples include the TAE and

“tornado” modes observed during ion cyclotron heating on

TFTR,40 JT-60U,20 or JET25 and the TAE and reverse shear

eigenmodes (RSAE) activity observed during beam-heated

reversed shear discharges in DIII-D.18 In the reversed shear

plasmas, the hundreds of wave-particle resonances associ-

ated with the Alfven instabilities flatten the fast-ion profile.28

Modeling of these plasmas finds stochastic, diffusive trans-

port over the affected region.24 Under these circumstances,

which may also govern fast-ion transport in ITER, a quasilin-

ear model is expected to be reasonable. We compare the pre-

dictions of this proposed 1.5D quasilinear model through the

comparison of losses in DIII-D’s well-diagnosed discharges

#12211729 and #14211119 and achieve good correlation with

the experimental results.

In Sec. II of this paper, we give an overview of the ana-

lytic theories that the proposed 1.5D model is based on. In

Sec. III, we give a detailed description of the proposed

model. We present the assumptions, approximations, and the

method used to reconstruct the relaxed profiles of energetic

particles interacting with TAE modes. Section IV is dedi-

cated to presenting the experimental observations of the

DIII-D shots we compare with the 1.5D model predictions.

Finally, Sec. V presents the predictions of the 1.5D model on
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the neutron deficit and EP profile redistribution in the DIII-D

discharges #122117 and #142111.

II. MATHEMATICAL FRAMEWORK FOR FAST ION
INTERACTION WITH TAE MODES

Interaction with TAE modes is speculated to be one of

the major mechanisms for EP transport and potential

loss.12,30,31 A qualitative description of the redistribution is as

follows.

The growth rate of TAEs in the linear regime due to free

energy of EPs is proportional to the gradient of EP pressure

profile, cL / @f=@r: A TAE mode then grows at a rate

c ¼ cL � cd , where cd is the linear damping rate, in absolute

value, due to the background plasma. TAE modes then satu-

rate when the pressure profile starts to flatten as a result of

stochastic diffusion of particles. This flattening causes the

growth rates to continue to diminish until it becomes compa-

rable to the damping rate and then marginal stability is

achieved. Here, we will assume that a steady turbulent state

is achieved where a background mode spectrum enables sto-

chastic diffusion of particles that arise from the steady state

spectrum of TAE waves. Alternative scenarios where the

spectrum is bursty or the modes do not produce mode over-

lap will not be considered in this paper.

In this section, we present the theoretical basis for the

1.5D model. The two main theories used to build the model

are linear theory for the analytic expressions of the growth

rate and the theory of quasilinear diffusion for the evolution

of the wave particle system.

A. Linear theory

For the consistency of the presentation, we outline the

derivation of the linear expression15,33 for the TAE mode

growth rate that is used in the 1.5D model.

The condition for charge neutrality results in

r � r � ~j? þ r �
B0

B0

~jjj

� �
þr � ~jk ¼ 0 (1)

and the linearized momentum balance equation

�ixq0~u ¼ j0 � ~B þ ~j? � B0; (2)

where B0, j0, and q0 are the unperturbed magnetic field, cur-

rent density, and mass density, respectively. ~j? is the per-

turbed current density vector perpendicular to the magnetic

field, ~jjj is the component of the perturbed current density vec-

tor parallel to the magnetic field, jk is the kinetically induced

current density, and ~u is the fluid velocity which, from the

ideal Ohms law, can be written as ~u ¼ cð~E � B0Þ=B2
0. The

pressure gradient is ignored as a result of adopting the low-

beta approximation valid for shear Alfven problems.

Writing the perturbation in the electric field ~E, magnetic

field ~B, and vector potential ~A as a function of the perturbed

potential field ~U and assuming small scale perturbations

across the field and long wave length perturbation along the

field line, the above relations are used to obtain an eigen-

mode equation

4p
c

B0 �r
B0 � ðr~UÞ

B2
0

� �� �
� r

j 0
jj

B0

 !

þðB0 � rÞ
1

B2
0

r � B2
0r?

B0 � r~U

B2
0

� �� � !

þr � x2

v2
A

r? ~U

� �
¼ i4px

c2
r � ~j k

: (3)

Due to periodicity in toroidal angle / and poloidal angle

h as well as the independence of the equilibrium on /, we

can obtain a solution in the form,

~U ¼
X

m

Umeið�mhþn/�xtÞ: (4)

Equation (3) is reduced to a set of coupled differential

equations in Um written as

L̂ijðxÞXj ¼ 0; (5)

where

X†
i ¼ ð…;Um;Umþ1;…Þ: (6)

The operator, L̂ij, is written as the sum of the MHD

operator L̂
ð0Þ
ij and the kinetic response L̂

ð1Þ
ij

L̂ijðxÞXj ¼ L̂
ð0Þ
ij þ L̂

ð1Þ
ij

h i
Xj ¼ 0; (7)

where the right hand side of Eq. (3) is the kinetic response

L̂
ð1Þ
ij Xj ¼ �

4pix
c2

@

@r
ðrj k

r;mÞ � imj k
h;m

� �
: (8)

This term is treated perturbatively to yield the damping

and growth rates.

TAE modes are a solution to the MHD part of the equa-

tion, L
ð0Þ
ij ¼ 0. Assuming a form for the magnetic field

B0 � 1� � cos h, where � ¼ r=R results in the coupling of

the two closest neighboring poloidal modes /i to /j¼i61.

This reduces L
ð0Þ
ij to a tridiagonal matrix succinctly written as

Pm Q
Q Pmþ1

� �
/m

/mþ1

� �
¼ 0: (9)

Pm/m ¼ 0 is the solution to an infinite cylinder whose

result is the known Alfvenic dispersion relation x ¼
6kjjmðrÞ vAðrÞ, where vA is the Alfvenic velocity. The paral-

lel wave vector is kjjm ¼
�

n
R� m

Rq

�
, where q ¼ �Btor=Bpol is

the safety factor. The frequencies of the neighboring poloidal

modes overlap at kjjmðrmÞ ¼ �kjjðmþ1ÞðrmÞ at rm such that

qðrmÞ ¼ mþ 1
2

� �
=n.

Due to the toroidal coupling from Q, the degeneracy is

lifted, and a gap in the continuum is formed at rm. This is akin

to electron bands forming in solids due to Bragg’s diffraction.

Within these gaps lie isolated TAE modes that are

hardly damped by the continuum and could be subject to a

strong drive from the wave-particle interaction due to the
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kinetic response in Eq. (8). TAE modes are the isolated

eigenmode solutions to Eq. (7). The drive is manifested as an

imaginary component to the eigenvalue solution computed

perturbatively as follows:

c
x
¼ �

ða

0

rdr X
ð0Þ
i L

ð1Þ
ij Xð0Þðr

0

rdr X
ð0Þ
i @L

ð0Þ
ij

	
@xX

ð0Þ
j

: (10)

where the overline denotes the flux surface averaging of the

quantity within x � ð2pÞ�1 Ð ð1þ � cosðhÞÞxdh. As further

discussed in Sec. III C, Eq. (10) is expanded in the different

limits to give analytic forms for the local damping and

growth rates that the 1.5D model uses.

B. Quasilinear theory

To study the effect of TAE modes on the EP distribution

function in the framework of quasilinear theory, the second

order perturbation, f ð1ÞEð1Þ, is maintained in Vlasov’s equa-

tion. This results in a diffusion like equation for the ensem-

ble averaged EP distribution function f.36 The mode’s

amplitude evolves at a rate ck ¼ cL � cd, where cL is the

instantaneous linear growth rate that depends on the EP dis-

tribution function; and cd is the damping rate, in absolute

value, that depends on the background plasma. This is

depicted in the following set of coupled equations:

@f

@t
¼ p

X
k

x
@

@E
þ n

@

@P/

� �
Dk x

@

@E
þ n

@

@P/

� �
f ; (11)

dWk

dt
¼ 2ðcL � cdÞWk; (12)

cL ¼
p
2

ð
q

c
dP/dE

vd � dE

x


 �����
����
2

dðXÞ x
@

@E
þ n

@

@P/

� �
f ; (13)

where Dk ¼ Wkjh q
cx vd � dEij2dðXÞ is the diffusion coefficient

at the resonances in phase space; Wk is the square of the

mode amplitude; vd is the particle drift velocity; XðP/;E; lÞ
¼ xTAE � nhx/i þ lhxhi, where hxðh;/Þi are the drift orbit

averaged toroidal and poloidal bounce frequencies of

the particles. E ¼ Mv2=2 is the energy of the particle and

P/ ¼ MRvjj � ðe=cÞWðrÞ is the canonical angular momen-

tum where vjj is the parallel velocity of the fast ions and

WðrÞ ¼
Ð

r0B=qðr0Þ, R is the major radius, e and M are the

particle charge and mass, respectively.

Knowing the equilibrium profiles of the plasma, it is

possible to find all the resonances in phase space, XðP/;E; lÞ
¼ xTAE � n hx/i þ lhxhi ¼ 0; and solve the self consistent

equation, Eq. (11), to compute the evolution of the mode ampli-

tude and resultant relaxation of the profile.14 This will be the

subject of future work. In the current paper, we discuss the

reduced 1.5 dimensional version of this model.

III. 1.5D MODEL

In this section, we describe the approximations and

modeling made that allow for reduction of the quasilinear

theory of diffusion to a 1.5 dimensional model. Then, we

give a detailed description of the 1.5D model and the method

for integrating the relaxed profiles. Finally, we give an

account of the analytic growth/damping rates that are used.

A. Assumptions and approximations

1. Radial redistribution only

The assumption x�EP � xTAE, where x�EP is the mean

drift frequency of the energetic particles, is taken every-

where. This entails that significant diffusion takes place

only in P/ or the radial direction and transport in E or v
direction is neglected. The 1.5D model is developed to find

the resulting relaxation of the EP pressure profile in the ra-

dial direction. In full dimensionality, the diffusion coeffi-

cient Dk, introduced in Sec. II B, is a function of all the

phase space variables. Since we are interested in the diffu-

sion coefficient as a function of radius only, we are con-

cerned with the radial dependence of Dk, denoted by D(r)

in what follows.

2. Accounting for phase space relaxation

Since the pressure profiles are obtained by integrating

the distribution function over the velocity, we use Kolesni-

chenko’s calculations37 to find the ratio of particles, g, that

are in resonance with the TAEs. It is roughly estimated for

two cases, alphas and beams, as follows:

g ¼
ðva0 � vjjÞvjj

v2
a0

for alpha distributions; (14)

g ¼
v2
jj

v2
b0

for beam� like distributions: (15)

This means that only an g fraction of fast ions relax,

while 1� g of them remain unchanged. Fig. 1 illustrates the

resonant region part in phase pace.

FIG. 1. Depiction of the resonant and non-resonant regions of phase space

for finding the contribution of the velocity to the redistribution of energetic

particles.
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3. Local growth and damping rates

We make use of local expressions for the growth and

damping rates of TAEs, while the modes are, in actuality,

global. Therefore, the use of a comprehensive code such as

NOVA-K9 is required. Then the values of the damping and

growth rate computations are used to normalize the rates.

Having the damping and growth rates normalized in this

manner, we maintain their analytically computed depend-

ence on the plasma parameters. This way the entire 1.5D

quasilinear model is expected to describe the expected func-

tional dependencies correctly. In addition, the rates are aver-

aged over the linear eigenmode width, Dm, to account for the

spatial breadth of the mode.

4. Instant radial transport

We do not consider the transition time period in which

the mode and the distribution both evolve with time. Instead,

it is assumed that the quasilinear equations will bring the

mode to a marginal stability state, and a near steady state dis-

tribution function and fields will be achieved to bring about a

steady state, DðrÞ ! 0 ¼> @f ðr; tÞ=@t ¼ 0: This happens as

a result of fast ion diffusion relaxation in all unstable regions

of phase space, which diminishes the gradient in the EP pres-

sure profile until the plasma state cL 	 cd is achieved

everywhere.

B. Integrating the relaxed profile

Assuming that the background plasma remains unaf-

fected, the local damping rates are unchanged. We calculate

the estimated local critical EP pressure gradient by balancing

the TAE drive to the most important damping mechanisms.

TRANSP6 provides the pressure profiles, established by clas-

sical relaxation processes (which when unstable will relax to

marginal stability profiles in accord with 1.5D assumptions)

as well as any other equilibrium plasma quantity needed in

the 1.5 D calculation.

The analytic expressions for growth3,33 and damp-

ing7,21,34,39 rates assume the existence of a multitude of

TAEs centered at all radial positions. Each of these radially

localized modes has rates that depend on the mode numbers

n, m, and other local plasma quantities. This will be detailed

in Sec. III C.

Many modes can exist at every radial location, but we

are interested in finding the growth rate of the most unstable

one which is theoretically predicted4 to be around

qEPk? � 1, where qEP is the particle orbit width due to cross

field drift.

It is shown that there is a plateau38 in the growth rate as

a function of toroidal mode number n for which cL is maxi-

mized at a given radial location

r2xc

Rq2vA
� nmin < n < nmax �

rxc

q2vA
; (16)

where xc is the EP cyclotron frequency, q is the safety fac-

tor, and vA the Alfvenic velocity. The growth rate chosen at a

given radius is that of the mode whose n number satisfies

Eq. (16). The poloidal mode number m is related to n

through qðrÞ ¼ ðmþ 1=2Þ=n: This specifies the mode for

which the rates are computed at a given radial location.

For each mode, the absolute value of the local linear

damping rate, cd, is assumed fixed since it depends on the

unaffected background plasma, while the mode’s growth rate

cL is a function of the gradient of the EP pressure which

undergoes relaxation in the presence of TAEs. In regions

where the mode is unstable, cL > cd, the gradient diminishes

as energetic particles diffuse due to their resonant interaction

with TAE modes. Assuming that the transport is strongest in

the P/, i.e., radial direction, as would be the case for

x�E � x, we neglect any transport in the E direction. There-

fore, we express the growth rate as a function of the radial

gradient in EP pressure profile, cL ¼ c0L@b=@r, where c0L is

independent of EP profiles.

At marginal stability, the gradient assumes a critical

value such that the growth rate equals the damping rate,

cd ¼ c0Lð@b=@rÞcrt: The unperturbed plasma profiles are com-

puted using equilibrium codes such as TRANSP, from which

we calculate cd everywhere and compute c0L: This is used to

calculate the critical value of the EP gradient

@bEP

@r

���
crt
¼ c0L

cd

: (17)

Note how the right hand side of Eq. (17) is independent

of bEP and only depends on the unchanged background

plasma.

In the 1.5 dimensional quasilinear diffusion equation,

D(r) grows at a rate proportional to cL � cd. This results in

diffusion of particles in the unstable region, where DðrÞ > 0.

The changing radial profile leads to an increased instability

drive that extends the unstable region into neighboring

regions that were originally stable. Particles continue to

undergo diffusion in the unstable region, until @bEP=@r
decreases to the point where cL 	 cd. The relaxed b profiles

are integrated assuming the critical value of the gradient in

beta, @b=@rjcrt, in regions of TAE instability ½r1; r2
, where

@bEP=@r > @bEP=@rjcrt and maintain the original value in

regions that are stable. To insure the continuity and the con-

servation of particles, we extend the boundaries of the unsta-

ble region to ½r�; rþ
 iteratively until both conditions,

continuity and particle conservation, are satisfied. As a

result, the pressure profile is modified over a region larger

than the initially unstable region. This is a feature that was

realized in the pioneering work in quasilinear theory.11,41

For the purpose of illustration, we show in Fig. 2 an

example of the redistribution resulting in a profile f(r) with the

corresponding critical gradient @f=@rjcrt everywhere. The fol-

lowing calculation is done using the 1.5D model integration

scheme described above for an arbitrary f ðrÞ ¼ ð1� r2Þ5=2

and arbitrary critical gradient @f ðrÞ=@rjcrit ¼ 20ð2r � 0:8Þ
ðr � 0:6Þ þ 0:6, where, r ¼ ½0 1
.

This mechanism agrees with the quasilinear theory of

diffusion in which regions of instability extend into origi-

nally stable regions as particles diffuse into them. A similar

effect is known to be significant in the plasma turbulence

area.35

092511-4 Ghantous et al. Phys. Plasmas 19, 092511 (2012)



One can see how, in 1.5D, this behavior is captured

without the detailed calculation of the perturbed fields that

produce this diffusion coefficient. Therefore, 1.5D is capable

of quickly and efficiently predicting an estimate of the

amount of redistribution and transport of energetic particles.

C. Growth and damping rates

For TAE modes to be excited, the mode’s growth rate

must be larger than the sum of all damping rates. NOVA

simulations indicate that the different damping mechanisms

are of varying importance depending on the fusion device

and the plasma parameters. It has been found for typical pa-

rameters projected for ITER2,8,14,21,32,39 that ion Landau

damping and radiative damping are predominant with the

electron collisional damping negligible. On the other hand,

in the DIII-D experiments investigated here, radiative and

electron collisional damping are the main damping mecha-

nisms. Unlike the rest of the damping mechanisms, radiative

damping is non-perturbative.

1. Radiative damping

Radiative damping results from the coupling of short

wavelength kinetic Alfven waves (KAW) to TAE mode. It is

typically computed when finite Larmor radius effect (FLR)

and electron pressure perturbations are used to extend the

second order differential equation structure to the fourth

order. In NOVA, it is computed perturbatively.1,22 The dissi-

pation of these short wavelength KAWs leads to finite damp-

ing of TAE modes.

The following expression39 is used

crad

x
¼ �3

ffiffiffiffiffi
q2

p
r
ffiffiffi
2
p smðmþ 1Þ

2mþ 1

�����
�����
0:67

; (18)

where s is the local shear at the location of the mode, m is

the poloidal mode number and q ¼ vs=x with vs the speed of

sound, and x is the ion gyro-frequency.

The following damping mechanisms are derived pertur-

batively from linear theory using Eq. (10).

2. Ion Landau Damping

The following expression5 derived for kinetic response

due to the collisionless interaction of the background ions is

ciL

x
¼ � q2r

ffiffiffi
p
p

18ð1þ r=4Þ x
3
i e�x2

i ; (19)

where r is the plasma ion depletion factor, r ¼ ni=ne and

xi ¼ vA=3vi.

3. Electron landau damping

The analytic expression for the damping rate resulting

from the collisionless interaction of the background electrons

is derived by Candy7 in the limit of low beta, large aspect ra-

tio. The expression is

ceL

x
¼ � p3=2

6
q2be

vA

ve

5

2
�

� �
Gð�̂Þe1=s; (20)

with Gð�̂Þ � 447� 042�̂ þ 0:02�̂2; s is the local shear, be is

the electron b, and �̂ ¼ 2�=ð1� �Þ.

4. Electron collisional damping

The electron kinetic response34 affects the TAE modes

through the perturbation in their distribution function result-

ing from collisional damping with electrons. Since

vTe � vTa, only electrons with velocities vjj � vTe would

interact with the Alfven modes. Therefore, the main contri-

bution comes from trapped particles where vjj � v?. The

expression21 for the resulting damping rate is

ceColl

x
¼� 1

4
I1

8snqqs

5r�

� �2

þ I2q2
8bpc

1þ r

" # ffiffiffiffi
�

x

r

� ln 16

ffiffiffiffiffiffi
x�
�

r� �� ��3=2

; (21)

where bpc is the core plasma b, I1 ¼ ð0:43Zef f þ 1:06Þ, and

I2 ¼ ð1:03Zef f þ 2:3Þ, with Zef f ¼ 6� 5r and the electron

collision frequency

�

x
¼ 4pnee4 ln Ke

xm2
ev

3
Te

: (22)

5. Growth rate

The main mechanism for the TAE drive is provided by

the free energy from the gradient in the energetic particle dis-

tribution. Using the linear theory, one can find the perturbed

EP distribution function, ~f , from which the current density is

FIG. 2. An illustration for the integration

scheme of 1.5D. (a) The values for the original

gradient in pressure profile (blue) and the criti-

cal gradient (red). ½r�; rþ
 is the original region

of instability where @b=@r > @b=@rjcrt. (b) The

original pressure profile (blue) and the relaxed

profile (red). The redistribution has extended

into the region ½r1; r2
 which is larger than the

originally unstable region ½r1; r2
.
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evaluated, ~j ¼
Ð

d3vv~f . The energetic particle kinetic response

is thus calculated and different expressions can be derived

for various limits, such as passing and trapped or whether

Dm � Db or vice-versa. The expression is only valid in the

limit where qa � Dm, where qa the fast ion gyroradius.

To find the kinetic response of the energetic particles,

the drift kinetic equation is used to write the analytic form33

for the growth rate.

D. Normalizing with NOVA-K

We use the above analytic expressions for computing the

local growth and damping rates of the TAE modes at all radial

positions. For a quantitatively accurate representation, we cal-

ibrate them to values computed by the established code,

NOVA-K. This procedure allows for more accurate applica-

tion of the 1.5D model on experiments such as DIII-D.

The NOVA-K code computes exactly the TAE growth

rate, including effects coming from TAE mode structure, finite

Larmor radius, and drift orbit radial width. It also computes the

damping rates. This is an area being successfully investigated

by the ITPA working group.13 We describe here how a specific

procedure is developed in order to include the finite orbit width

effect in the drive. First, we use the NOVA code to find several

mode structures localized at different radii. To simplify the

NOVA study, we focus on only one toroidal mode number,

which is taken at a value approximately corresponding to the

maximum (plateau region) value of the growth rate as a func-

tion of the ratio Dm=Db. Our goal here is to evaluate the growth

rate in the plateau regime, which would give the required

approximation for the TAE-like mode growth rate for the 1.5D

model we develop here. However, because of the finite value

of n, we expect that it is unlikely that we hit the maximum of

the growth rate plateau. Instead of going through the different

choices of n numbers, we change zEP, the particle charge. Note

that in the expression for the drive, the particle’s charge enters

only through the combination n=zEP. Thus, with the fixed n

value, we can find the plateau regime by changing zEP and

finding the growth rate of the most unstable mode. This proce-

dure is robust since the plateau regime is found regardless of

whether we use n or nþ 1 and vary zEP in the search.

For the application of 1.5D on DIII-D results, we use a

two point normalization scheme, where we find the most

unstable modes localized at two radial points. One is rela-

tively close to the center of the plasma, r1 � 0:3a and one is

towards the edge, r2 � 0:7a, where a is the minor radius.

The analytically computed rates are modified by a constant

multiple g1 ¼ c1ðNOVAÞ=canltðr1Þ for r < r1 so that it coincides

with the value of the NOVA-K computed one at r1. The

procedure is identical for r > r2 which is multiplied by

g2 ¼ c2ðNOVAÞ=canltðr2Þ, where c1;2ðNOVAÞ are the NOVA com-

puted rates of the modes around r1;2. For r1 < r < r2, the

rate is multiplied by a linear function ar þ b such that ar1 þ
b ¼ g1 and ar2 þ b ¼ g2.

For robustness, we build the code such that the input for

normalization can be in two forms. On one hand, the input is

the normalization constant at two given radial positions from

which g(r) is directly known and multiplies the analytic rates.

This allows for the use of the same normalizations for multi-

ple times of interest for the same discharge, such as in the fol-

lowing case of #127111 for t > 600 ms. Alternatively, the

input can be NOVA-K values for the rates at two given radial

positions from which the normalization constants are then

computed and in turn used on the analytic profiles. This is

done when analyzing specific times distinctly as in #142111

and for # 122117 at t < 600 ms as will be described later.

E. Computing losses

To account for the losses of particles, the condition for

the conservation of particles is lifted once the region of insta-

bility grows large enough to result in particle loss at the

edge. While integrating for the relaxed profiles according to

the method discussed in Sec. III B, fast ions are lost when the

boundary rþ reaches the loss boundary, rb ¼ a� Df =2þ qf ,

where a is the minor radius, Df ¼ qqf is the estimate for the

fast ion orbit width, and qf is the fast ion Larmor radius. The

profile is then integrated with rþ ¼ rb and the fraction of lost

particles is computed as follows:

L ¼

ða

0

drðbrlxðrÞ � biniðrÞÞða

0

drbiniðrÞ
: (23)

To compare with the experimental observation of the

neutron rate depletion, we calculate the fraction of the neu-

trons expected with the relaxed profile to that expected from

the initial profile using the cross section hrvi as derived from

TRANSP. The following is the expression used

Ln ¼

ða

0

hrvibibrlxða

0

bibini

; (24)

where bi is the ion pressure, bini is the initial beam pressure,

and brlx is the pressure of the relaxed beam. Even if energetic

particles are not lost to the wall, the mere modification in

their b profile due to redistribution can result in a change in

the neutron rate albeit less significantly.

IV. OBSERVED DIII-D FLATTENING

A series of DIII-D experiments10,18,27 has been con-

ducted to investigate TAE activity and Alfv�en eigenmode

(AE) induced fast ion transport. It has been observed that a

rich spectrum of TAE and RSAE (also called Alfven Cas-

cade modes) is produced when high energy neutral beams

are injected into the reversed shear plasmas. We look at two

discharges that have been extensively diagnosed and ana-

lyzed, discharge # 122117 and discharge # 142111, where

AE activity has been associated with significantly flattened

fast ion pressure profiles and losses.

The first discharge shows the presence of strong TAE

and RSAE modes and resulting losses which are captured by

1.5D. The second discharge is of special interest, since dur-

ing the time span of the discharge, TAE/RSAE activity is

significantly reduced until the instability becomes marginal
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at some point. This provides a sensitive test for theoretical

models, such as the 1.5D model developed here.

A. Diagnostics

Alfvenic activity is detected with a suite of fluctuation

diagnostics that are sensitive to Alfvenic instability oscilla-

tions. Electron temperature is measured with electron cyclo-

tron emission (ECE). CO2 interferometer, beam-emission

spectroscopy, and reflectometers are used for measuring the

density fluctuations, and Mirnov coils are used to measure

the magnetic fluctuations.

As for the fast ion diagnostics, there are four main diag-

nostics used.

Plastic scintillator is used to measure the volume aver-

aged neutron emission rate which is predominantly due to

plasma-beam interaction making it a direct function of the

energetic particle pressure profiles.

FIDA is a charge exchange recombination spectrometer

technique that uses the Doppler-shifted Balmer-a light emit-

ted by fast ions. This is used to measure the fast ion profile.

MSE is a diagnostic that depends on the motional stark

effect to find the internal magnetic fields. The total pressure

is computed using MHD equilibria obtained and the meas-

ured MSE magnetic fields. Subtracting the plasma pressure

(computed using measured temperature and density profiles)

from this total pressure results in the fast ion pressure profile.

FILD is a scintillator based fast ion loss detector23

inserted just outside the last closed flux surface to detect fast

ions over a large region of the phase space, ðE; lÞ, where E
is the energy and l is the pitch angle.

B. Experimental Observation

We present an overview of the experimental results for

discharges # 122117 and #142111 that will be used to validate

the 1.5D model. The results presented here on experiments

are adapted from works of Heidbrink29 and Van Zeeland.19

1. Discharge # 122117

At the baseline shot #122117, a deuterium neutral beam

injection (NBI) is injected with PNBI ¼ 4:6 MW, Eb0

¼ 80 keV, at a tangency radius of 1.15 m. The peak of the

energetic particle distribution is around vjj=v ¼ 0:68. AE ac-

tivity is detected using the diagnostics described in Sec. IV A

and depicted in Fig. 3 below. The EP detectors reveal flatten-

ing in the profiles around the center at all times of interest

shown in Fig. 4. Neutron deficits like those observed in

#122117 can be a result of fast ion redistribution to larger

radii as well as fast ion loss. Our simulations (which will be

discussed in Sec. V) show that early during the discharge,

there is a combination of EP losses and redistribution in

phase space while later during the current ramp, the EP is

predominately redistributed without losses resulting from

particle transport beyond the last closed flux surface.

2. Discharge #142111

Another well diagnosed discharge is #142111.19 The on-

axis magnetic field for this discharge is BT ¼ 2 T, and the

current increases at a rate 0.8 MA/s until it reaches 1.2 MA

at t¼ 1000. 80 keV neutral beams are injected at t¼ 300 ms

with a total power of 6.8 MW. Fig. 5 shows the AE activity

as a function of time and the associated EP coherent losses

detected by FILD. Note that the FILD detected coherent

losses correspond primarily to TAE frequencies.

V. COMPARISON OF 1.5D RESULTS WITH
THE OBSERVED DIII-D BEAM ION FLATTENING

The extensive DIII-D experiments that are dedicated to

the study of AEs and their interaction with energetic particles

readily lend themselves for validation of EP transport models

and numerical simulations. The most notable discharges,

# 142111 and # 122117, are used here to validate the pro-

posed 1.5D model.

TRANSP provides the machine and plasma parameters

such as the major radius R, minor radius a, and on-axis

FIG. 3. Radial profile of ECE radiometer power spectrum depicting the

observed TAE and RSAE activity in DIII-D discharge # 122117 at t¼ 410 ms.

The solid line is the safety factor profile, q. These measurements depict the ex-

istence of AEs around the minimum of q and extending to r/a¼ 0.8. Adapted

from Ref. 18. Adapted from M. A. Van Zeeland, Phys. Rev. Lett. 97, 135001

(2006). Copyright (2006) American Physical Society.

FIG. 4. A depiction of the unperturbed profiles from TRANSP in dashed lines

of different colors for the times, t¼ 360 ms, t¼ 780 ms, and t¼ 1200 ms. The

profiles are modified due to interaction with TAE activity depicted in Fig. 3

and the FIDA measurements are presented as dots while the MSE fit is in solid

lines. Reprinted with permission from W. W. Heidbrink et al., Nucl. Fusion

48, 084001 (2008). Copyright 2008 IOP Publishing Ltd.
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magnetic field B, as well as the plasma and beam profiles.

The profiles used for this 1.5D model are the ion tempera-

ture, TiðrÞ, electron temperature, TeðrÞ, plasma pressure

bpcðrÞ, beam pressure, bbmðrÞ, electron pressure, beðrÞ, ion

density niðrÞ, and the safety factor, q(r). Once these parame-

ters and profiles are accessible, the analytic linear growth

and damping rates, as discussed in Sec. III C, are easily cal-

culated for the most unstable mode at each radial position.

These rates are then calibrated to NOVA-K computed linear

rates using a normalization scheme described in Sec. III D.

A. NOVA-K simulations

Due to its crucial role in determining the results of 1.5D

on experimental data, we present the NOVA-K computed

eigenmodes and their linear growth and damping rates used to

normalize the analytically computed rates of two discharges

analyzed. We use a two point normalization scheme, which

entails finding two modes and their rates for each case we ana-

lyze. The procedure is discussed in details in Sec. III D.

1. Discharge #122117

We use results of NOVA-K simulations for the rates at

two radial positions to normalize the analytically computed

rates as a function of radius. The safety factor measurements

have been optimized for t < 600, so we choose to use

NOVA-K at t¼ 360 and t¼ 410 to compare the model’s pre-

dictions for neutron losses with the experimentally detected

ones. However, since FIDA results for later times, t¼ 780 ms

and t¼ 1200 ms also exist, we use the rates computed by

NOVA-K at t¼ 360 ms to normalize later times where we

also model TAE-EP interaction using 1.5D. For the purpose

of illustration, we present in Fig. 6 the mode structures of the

TAE modes computed by NOVA for discharge #122117 at

t¼ 360 ms. However, we present the rates computed for both

t¼ 360 ms and t¼ 410 ms for which NOVA-K was used.

The computed linear growth and damping rates:

For t¼ 360

Mode location cgrowth=x (%) ceColl=x (%) crad=x (%)

r/a¼ 0.32 11 2 0.3

r/a¼ 0.78 1.7 3 0.2

For t¼ 410

Mode location cgrowth=x (%) ceColl=x (%) crad=x (%)

r/a¼ 0.23 26 0.1 1.4

r/a¼ 0.75 4.1 0.09 8.8

When there is continuum damping, we add it to the radi-

ative damping. This was the case for t¼ 410.

NOVA is a perturbative ideal MHD code9 that solves

in matrix form a reduced set of second order differential

equations in nðqÞ, the vector of amplitudes of poloidal har-

monics of the radial displacement as a function of rho

q �
ffiffiffiffiffiffiffiffiffiffiffi
w=w0

p
, and the square root of the normalized poloi-

dal field flux. However, it is possible that the numerical so-

lution propagates into the continuum and still has finite

FIG. 5. (a) FILD activity signifying coherent NBI loss peaking around

t¼ 500 ms and disappearing after t¼ 800 ms. (b) AE activity measured

throughout the discharge in the spectrum of Mirnov and CO2 interferometer

data. Adapted from Ref. 19. Adapted from M. A. Van Zeeland, Phys. Plas-

mas 18, 056114, (2011). Copyright 2011 American Institute of Physics.

FIG. 6. The structure of modes localized

around r¼ 0.32 and r¼ 0.78 for shot

# 122117 at t¼ 360 ms as computed by

NOVA for n¼ 3. The modes are computed

as a function of
ffiffiffiffiffiffiffiffiffiffiffi
w=w0

p
, the square root of

the normalized poloidal field flux. The dotted

line is the safety factor profile.

092511-8 Ghantous et al. Phys. Plasmas 19, 092511 (2012)



Fourier components. It is an approximation but it is consist-

ent with expectations from ideal MHD. This results in a

jump in the imaginary part of the eigenmode structure giv-

ing rise to the continuum damping. However, since this

procedure only provides the real part of the eigenvalue for

the singular TAE mode, the flux function Ĉðdn=dqÞ, which

is continuous around the resonance with the continuum, is

introduced22 to find the effect of the interaction with the

continuum. The MHD equations written in terms of flux

function are not singular and one can use the perturbative

technique to find the complex correction resulting from the

interaction of the mode with the continuum. The details are

found in Gorelenkov’s treatment.22

2. Discharge #142111

For this discharge, the safety factor measurements have

been optimized for t¼ 425, 525, 675, 725, 800, and 975 ms.

Therefore, NOVA-K simulations are made at all these times

to compare the model expectations with the experimental

results. To avoid redundancy, we only show the mode struc-

tures (Fig. 7) of the t¼ 675 ms for discharge #142111, while

presenting the rates of the most unstable modes at two given

radii for all the times analyzed.

The computed NOVA-K linear growth and damping

rates:

For t¼ 425

Mode location cgrowth=x (%) ceColl=x (%) crad=x (%)

r/a¼ 3 8.23 0.6 1.8

r/a¼ 0.82 0.37 2.2 0.733

For t¼ 525

Mode location cgrowth=x (%) ceColl=x (%) crad=x (%)

r/a¼ 0.23 11 0.16 1.8

r/a¼ 0.83 4.9 0.29 0.67

For t¼ 675

Mode location cgrowth=x (%) ceColl=x (%) crad=x (%)

r/a¼ 0.25 22 0.15 3.5

r/a¼ 0.75 4.9 0.16 2.7

For t¼ 725

Mode location cgrowth=x (%) ceColl=x (%) crad=x (%)

r/a¼ 0.3 56 0.11 1.3

r/a¼ 0.85 3.1 2.7 1.3

For t¼ 800

Mode location cgrowth=x (%) ceColl=x (%) crad=x (%)

r/a¼ 0.2 12.5 0.21 2.9

r/a¼ 0.8 3 0.11 1.9

For t¼ 975

Mode location cgrowth=x (%) ceColl=x (%) crad=x (%)

r/a¼ 0.2 1.8 0.8 0.052

r/a¼ 0.8 2.2 18 0.44

B. 1.5D results

To implement the 1.5D model on the DIII-D shots of in-

terest, Eq. (10) is expanded in the limit of highly anisotropic

passing particles with consideration for the finite orbit width.

The expression therefore depends on the ratio Db=Dm, where

Db ¼ qqb is the beam width with q the safety factor, qb is the

EP Larmor radius, and Dm � rm=m is the mode width with

rm the location of the TAE mode, and m the poloidal mode

number. Using local expressions for the case of the two

discharges being analyzed, the value of Db varies between

5 and 20 cm, while Dm is around 2 cm. Therefore, we use the

following analytic expression3,33 for the growth rate

expanded in the limit of Db � Dm:

c
x
¼ �q2

mbp
b

xp
�

xr
ð1þ v2

0Þ
2 � 24

D3
m

n3
p

X
s¼61

yshð1� ysÞ; (25)

where h is the step function; q is the value of the safety factor

at the mode location; x� is the local diamagnetic frequency;

v0 is the pitch angle; n ¼ ð1þ v2
0Þqv0=ðv0xcÞ; and ys ¼ vA

=ðj2s� 1jv0v0Þ.

1. Discharge #122117

We compute the critical value of the gradient in beam

pressure profiles of discharge #122117 that would result in

FIG. 7. The structure of modes localized around

r¼ 0.25 and r¼ 0.75 for shot # 142111 at

t¼ 675 ms as computed by NOVA for n¼ 4.

The dotted line is the safety factor profile.
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marginally stable AEs. Following the procedure described in

Sec. III B for calculating the functional form of the rates,

we first use Eq. (25) to compute the growth rates and Eqs.

(18)–(21) for the damping rates. We then use the results

from NOVA-K simulations as given in Sec. V A to calibrate

the analytical growth rate profiles using the two-point nor-

malization scheme described in Sec. III D. Fig. 8 depicts the

1.5D computed relaxed profiles. For t < 600 ms, we run

NOVA-K for the two cases separately to calibrate the ana-

lytic expressions; however, for the two cases where t > 600

whose safety factors measurements are not optimized, we

use the normalization rates calculated for t¼ 360 ms to com-

pute the resulting distribution function and compare it to

FIDA results. To avoid redundancy, we only present the

resulting profile redistribution for t¼ 360 ms as a representa-

tive of the times t < 600 ms where losses occur. The 1.5D

predicted losses for these cases are provided in Fig. 9. We

report that the simulated losses and flattening for t¼ 410 ms

are similar to t¼ 360 ms. The 43% neutron losses for

t¼ 410 ms further supports the results of the represented

t¼ 360 ms case.

We compare the predicted neutron losses from the

1.5D model and the experimentally measured neutron defi-

cit for DIII-D discharge # 122117. The ratio of the neutron

emission rate to the classical rate is computed using

Eq. (24) and is represented in Fig. 9 as crosses in juxtaposi-

tion with the experimentally measured values. The pre-

dicted emission rates are quite close to the measured

neutron loss rate.

2. Discharge #142111

As discussed in Sec. IV B, there are measurements of

AE induced EP losses that peak around t¼ 525 ms. Although

AE activity persists throughout most of the shot, the associ-

ated losses diminish after t¼ 800 ms.

In this section, we present the results of 1.5D applied on

# 142111 depicting this qualitative change and making esti-

mates of the expected losses. As shown in Fig. 10, AE activ-

ity around t¼ 425 ms causes redistribution of energetic

particles contained within the last closed flux surface without

resulting in losses. Modification of the EP pressure profile,

however, results in some neutron losses in accordance with

Eq. (24). TAE activity increases at t¼ 525 ms and EP redis-

tribution now extends all the way to the last closed flux sur-

face resulting in their loss.

As time evolves, losses continue to occur up to t � 800 ms

where the system reverts to transport and redistribution of EP

without any losses. This is depicted in Fig. 10 for t¼ 925 ms

where the particles are redistributed due to the unstable central

modes but the redistribution is contained within the last closed

flux surface.

We use results reported by Van Zeeland19 on the experi-

mental measurements of the neutron emission rate in com-

parison to the TRANSP expectations to validate the

predictions of 1.5D. In Fig. 11, we present the model’s

results in juxtaposition with the measurements of Van

Zeeland.

C. Discussion

We report good agreement of the 1.5D model with ex-

perimental measurements of DIII-D discharges #122117 and

#142111. We elaborate here on some remarks regarding the

1.5D results reported.

AE activity does not need to be associated with losses of

energetic particles. This is an important feature that 1.5D

captures by modeling the quasilinear diffusion of particles as

described in Sec. III B. The basic idea is that particles

undergo diffusion and are redistributed in phase space such

that the pressure gradient is maintained below the critical

value that destabilizes the modes.

The critical value of the gradient in EP pressure is pro-

portional to the ratio of the damping to the growth rate of

TAE modes. Therefore, when the ratio is high, particles can

FIG. 8. Redistribution of energetic particles at t¼ 360 ms results in signifi-

cant EP losses and associated neutron losses. At later times, AE activity

results in the redistribution of particles without EP losses.

FIG. 9. The time evolution of the ratio of the measured neutron emission to

TRANSP computed classical rate is represented by a solid line. Juxtaposing

the experimental results, the emission rates calculated by the 1.5D model are

represented with colored crosses at the times of interest, t¼ 360 ms (red),

780 ms (green), and 1200 ms (blue). Reprinted with permission from W. W.

Heidbrink et al., Nucl. Fusion 48, 084001 (2008). Copyright 2008 IOP Pub-

lishing Ltd.
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stack up and maintain a steep gradient without destabilizing

the modes, i.e., when there is significant damping, the free

energy from the gradient in EP pressure profiles is not

enough to destabilize the modes. However, if this ratio is

low the free energy can be strong enough to destabilize the

mode. The associated low critical gradient models a high

quasilinear diffusion coefficient which continues to redistrib-

ute the particles until the gradient reduces to or below the

critical value at which the mode is stable.

In cases where the critical gradient in EP pressure is

lower than the original gradient around the center but signifi-

cantly higher at the edge, energetic particles undergo diffu-

sion that will transport them from the center towards the

edge. However, due to the high critical gradient threshold at

the edge, particles can accumulate without being transported

beyond the last closed flux surface. This results in redistribu-

tion and central flattening without any losses to the wall as

AE modes saturate.

On the other hand, in cases where the critical value of

the gradient is not sufficiently high towards the edge, diffu-

sion results in particles being transported beyond the last

closed surface and consequently results in particle losses.

We also note the discrepancy in the neutron loss

measured to that predicted by the 1.5D model for t � 975

and t � 425 in discharge # 142111. There are other modes

prevalent in these cases whose effects are not captured by

the model. Most notably, the EGAM might cause neutron

deficit at 425 ms, while BAAEs result in EP transport and

neutron deficit at 925 ms. EGAMs are symmetric modes

(n¼ 0) which result in EP transport in velocity space only.

However, this affects the cross section for neutron emission

rates, which could lead to neutron deficit. The discrepancy

might have been caused by a deficiency in input to TRANSP

and thus NOVA. Therefore, the stability calculations per-

formed by NOVA-K may be questionable especially some

damping rates that are very sensitive to plasma profiles such

as the continuum damping. Overall these discrepancies

reflect a deficiency of the stability calculation.

Due to the sensitivity of the 1.5D model results on

NOVA-K calculations used for normalization, discrepancy

arises if certain growth and/or damping mechanisms are

excluded.

VI. SUMMARY AND FUTURE WORK

In this work, we have combined the established routines,

NOVA and NOVA-K with the newly developed 1.5D. The

code NOVA calculates the eigenmode structure while

NOVA-K determines the contributions of growth and damp-

ing rates. NOVA is used to find two eigenmodes, one tending

to be localized in the center of the plasma and the other

towards the edge. The new code 1.5D uses the NOVA-K

FIG. 10. Relaxation of EP distribution for

different time slots. EP losses peak at

around t¼ 525 ms, while AE activity is

evident throughout. At t¼ 425 ms and at

t¼ 975 ms, TAE activity only results in

redistribution of EP without resulting

losses.

FIG. 11. TRANSP predicted (red) and experimentally measured (blue) neu-

tron emission rate as a function of time. We add to the figure green dots as

markers for the 1.5D results for neutron rates at t¼ 425, 525, 675, 725, 800,

and 975 ms. Adapted from Ref. 19. Adapted from M. A. Van Zeeland, Phys.

Plasmas 18, 056114 (2011). Copyright 2011 American Institute of Physics.
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computed rates for these two eigenmodes to normalize the

rates that are analytically computed for all radial positions.

Then, in 1.5D, we presume that the profiles relax to a

locally marginal state at every radial position where the local

drive exceeds the local damping. With the constraint that the

energetic particle number be conserved during the profile

relaxation, providing the redistribution region does not reach

the loss region, the change of profile can then be computed.

If the instability region reaches the plasma edge, then the

constraint on the conservation of particles is released and the

profile is integrated using the critical value of the gradient

for which the mode is marginally stable. This results in a

profile where ð
Ð

drbiniðrÞ �
Ð

drbrlxðrÞÞ=
Ð

drbiniðrÞ > 0 is

the fraction of EP loss.

The well diagnosed DIII-D discharges # 142111 and

#122117 have shown significant TAE activity and correlated

neutral beam losses and profile redistributions. We use these

discharges to validate the proposed 1.5D model. The model

predicted losses that agree with the experimentally measured

ones, and the relaxed profiles computed by 1.5D depicts the

flattening measured by FIDA.

The strength of the model is in predicting the relaxed

profiles in an efficient and quick way without detailed com-

putations of the fields and wave-particle interactions. 1.5D

model can be used as an initial check for EP losses in a large

parameter space. This then can be followed by more detailed

simulations in a specific parametric subspace of interest.

A. Application to ITER

The model is being developed for the purpose of predict-

ing the effect of AE modes on energetic particles in ITER

and other burning plasmas where alpha confinement is cru-

cial. The success of the model in predicting the redistribution

of EP in DIII-D and making ballpark estimates of the neutron

losses gives us confidence in applying it to ITER. The model

is yet to be expanded to include two species, isotropic and

anisotropic particle distribution functions, which is necessary

for ITER applications, especially when an additional ener-

getic particle source from neutral beam injection is present.

B. Line broadening quasilinear burst model

This work is a promising initial investigation of a quasilin-

ear treatment of energetic particle interaction with Alfvenic

Eigenmodes. The resulting agreement with experimental

measurements motivates a more sophisticated model, LBQ3D,

currently being developed. LBQ3D is a fully dimensional

extension to toroidal geometry of the proposed Line Broad-

ened Quasilinear model,14 LBQ, which has been implemented

on the one dimensional bump on tail problem.
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