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ABSTRACT
This papers presents the design of the travel mode detection
component within a generic architecture of processing indi-
vidual mobility data. It approaches mode detection in two
steps, each aiming at a particular objective. The first step
develops a discriminative classifier that detects the mode of
the observed trips or a sequence of modes in a multiple leg
journey. It requires a considerable amount of ground truth
data with known modes to be available for training. It also
relies on a k-shortest path algorithm that generates plau-
sible alternatives routes for the journey. The second step
utilizes the discriminative recognition step of the observed
mode in order to build a behaviorally grounded model that
predicts the chosen mode within a set of available alterna-
tives as a function of user characteristics and transportation
system variables. It is based on the discrete choice modelling
paradigm and results in a set of parameters calibrated for
distinct neighborhoods and/or segments of population. The
overall framework therefore enables travel mode choice mod-
eling and a consequent policy analysis and transportation
planning scenario evaluation by leveraging privacy-sensitive
individual mobility data possibly held in a secure private
repository. It provides a set of algorithms to drastically re-
duce the latency and costs of obtaining a crucial information
for models used in transportation planning practices. The
performance and accuracy of the algorithms is evaluated ex-
perimentally within a large metropolitan region of the San
Francisco Bay Area.

Keywords
UPDATE

1. INTRODUCTION
Travel Demand Models (TDMs) are an important tool

for transportation planning. TDMs typically rely on travel
surveys that are expensive, infrequent, and slow to reflect
changes to the transportation system. Recent studies have
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proposed methods for generating travel demand model in-
puts from passively collected location data from mobile phones.
Several methods have focused on extracting origin-destination
(OD) matrices, and perform either dynamic tra�c assign-
ment or simulation to estimate the tra�c volume on road
network, which corresponds to traditional trip based travel
demand models. A few have attempted to model individ-
ual agent activities and trips, which corresponds to more
advanced Activity Based travel demand Models (ABMs).
ABMs are based on the idea that travel is derived from peo-
ple’s desire to complete activities. The activity is the nuclear
unit of such a model; the ABM will predict what activities
a person wants to partake in, when and where the activities
will occur, and how the person will travel to each activity.
ABMs typically assign travel mode probabilistically, accord-
ing to the outputs of a Discrete Choice Model (DCM). The
DCM parameters are typically derived from household travel
survey responses.

Previous studies using cellular data to inform ABMs have
achieved a good understanding of the activity (trip purpose)
patterns. However, the missing piece is travel mode and
route inference. In this paper, we try to fill the gap by
showing how passively collected big data sources can be used
to infer the travel mode used to get from one activity to the
next. Moreover, a DCM based on the inferred travel mode
is trained so that such a model can be directly used for
transportation planning.

In the Bay Area, on average, a phone accesses the net-
work every 1.2 minutes. For long/non-trivial trips, a cell
phone will typically create several CDR entries during travel.
These records encode rich information about the spatial-
temporal nature of the trip (i.e. travel speed, frequency of
data records, proximity to road and transit infrastructure).

In this paper we show how to build an ABM that incorpo-
rates activity selection, location and time choice, and travel
mode selection from passively collected cell phone data. We
are limited (at present) by the availability of ground truth
information on a traveler’s selected travel mode. In this
work we highlight two methods for dealing with the lack of
ground truth and inferring the travel mode. Method one
involves generating realistic cell records for simulated travel
and building a classifier to determine the travel mode. We
have at our disposal a well calibrated travel simulation tool
for the 9 counties of the bay area. The simulator includes
travel by by car, bus, train, subway, tram (light rail) and
cable car. In this tool agents iteratively select travel alter-
natives until they find an optimal travel mode/route. We
use a sequence-to-label Long Short Term Memory (LSTM)



neural network ((add reference)) to learn the conditional
probability of the cell phone user’s mode of travel during a
trip given the sequence of cell phone records created during
travel. The input amounts to a sequence of timestamped
latitude, longitude coordinates (one input vector for each
cell record). The details of the method are discussed in
[[Section Ref]]. The model allows for variable size input se-
quences, and automatically learns relevant properties of the
travel modes (like location of infrastructure specific to one
or more modes of travel, travel speeds, etc.).

The second method involves querying an external routing
database to generate a list of travel alternatives. A naive
Bayes approach is used to compare the observed cell records
to the alternatives and determine the most likely mode. The
method potentially enables better accuracy as the model ex-
plicitly compares the cell records to a set of possible alter-
natives - where the LSTM approach attempts to learn the
selected travel mode with no information about the alterna-
tives. However, the process of querying an external database
to generate the set of travel alternatives for each trip in the
dataset is, at present, infeasible. We demonstrate the e↵ec-
tiveness of this algorithm on a small sample of trips.

Finally we complete the ABM framework by training a
DCM on the observed trips, inferred trip purpose, predicted
travel modes and observable characteristics of a traveler.
The demonstarted DCM is simplistic, but the model could
certainly incorporate unique features such as the user’s typi-
cal travel mode (inferred from previous trips in the dataset),
the travel mode of previous trips in the same activity chain
(if someone drove to the store it is likely that they will also
drive home), and trip purpose (as determined by the semi-
supervised IO-HMM). The final output of our work is a gen-
erative model for producing realistic activity chains for users
(including activity time and location choice) and a discrete
choice model to inform how the user will travel to the locale.

While the interpretation of CDRs is less accurate than the
information from travel surveys, we benefit from the vast
coverage of cell phone network; cell providers have access
to a much larger sample size than household travel surveys
typically do. Due to small sample size ABMs often fit one
global model to all travelers and all trips (regardless of trip
purpose) in a region. With the vast number of customers
that the cell phone network services we have enough infor-
mation to train local ABMs and are not bound to the as-
sumption that ABM parameters are constant over the whole
region. (Add note about when paired with IOHMM activity
model, DCM framework allows for population segmentation
based on attributes like travelers inferred home location or
the travelers lifestyle (i.e. whether the traveler is a regular
everyday home-work-home commuter, whether she typically
partakes in secondary activities on the way home from work,
or whether she frequently telecommutes)),

The remainder of this paper is organized as follows. Sec-
tion 2 gives a literature review of related works on mode
detection methods. Section 3 describes the discriminative
mode recognition step, introducing a range of models and
discussing their applicability and algorithmic constraints given
available data. In Section 4, a discrete choice modelling
framework is introduced. Section 5 presents an experimental
evaluation of the framework across the range of performance
metrics. Finally, in Section 6, we draw our conclusions and
present the future work.

2. RELATED WORK

2.1 Travel Mode Detection from Passively Col-
lected Data

While several studies have used GPS data to infer travel
route and mode [7]. To date, there have been few studies
that have used CDR traces to infer transportation route,
and fewer still that use CDR data to infer transportation
mode.

GPS locations are generally more accurate than CDR lo-
cations. However, GPS services do not give the same popu-
lation coverage or the consistent temporal coverage that you
get from CDRs. GPS locations are collected by a cellphone
application provider while the application is enabled (if the
user has enabled location based services). In other words,
application service providers have access to GPS data only
for the apps’ user base and only when users are using the
app and have enabled location services. Apps are generally
not enabled at all times - meaning there are large gaps in
coverage. Some studies have sought volunteers to enable
GPS and be constantly monitored for transportation sur-
vey purposes, but generally this is for a very small sample.
[liao2007, ]

CDRs, on the other hand, are automatically collected for
all of the carriers’ customers. As mentioned above, a record
is created anytime a phone places or receives a call, text,
or accesses data. CDRs, therefore, o↵er broad population
coverage - a single service provider typically provides service
to 25-40% of the population in an area. CDRs also benefit
from broad temporal coverage - on average, a phone creates
a CDR record every ?? minutes.

2.1.1 Travel Mode Detection from GPS

At this point, travel mode detection from GPS data has
become quite mature. The task has received more attention
than classification from raw CDR data because it has higher
spatial and temporal resolution. Most studies using GPS are
experimental and small scale, and have the ground truth
travel mode labels to train a supervised classifier.

Source of ground truth The automated transporta-
tion and emissions calculator app called E-missions tracks
44 users for 3 months and obtains ground truth travel la-
bels by asking the user to confirm their travel mode once
the trip has ended. [9]. Table 1 of Shankari et al. gives
a summary of other GPS based travel mode detection ex-
periments. The number of praticipants in the experiments
ranges from 5-135. [9].

Features Several experiments use pure data from GPS
[1] [13], [14]. Accelerometer data provide a highly discrim-
inative feature of motion dynamics with distinct signatures
for each of the modes. [8] and improves the accuracy of
travel mode detection by 17% over using GPS alone. Oth-
ers incorportates GIS information in addition to GPS and
accelerometer data [10]. These experiments take advantage
of features like average speed, average acceleration, distance
from bus routes, and even use realtime transit feeds to de-
termine average candidate bus closeness.

Models GPS based mode detection algorithms take ad-
vantage of many models including Neural networks [4], De-
cision trees [14], SVM [14], graphical model [6]

2.1.2 Mode Detection from CDRs

Holleczek et al. extracted trips from CDR data in Singa-



pore. They then quantified the travel mode split (driving
vs. public transport) by comparing the CDR generated OD
matrix to the public transport data generated from smart
card access. (Use this study to identify service gaps)

Doyle et al. classified the travel mode of users travelling
between Dublin and Corkbetween in the Republic of Ireland
using CDR data [3]. They measured the likelihood of an
observed trajectory being a road trip or a rail trip based
on the proportion of locating events that occur at cells that
represent the route of interest. However, the limitation of
their paper is that 1) they only classified the travel mode
between car and rail, 2) they only considered one pair of
origin and destination, and 3) they only used spatial features
of the CDR data.

Wang et al. grouped trips by their origin and destinations
(by 500*500 cells). They clustered the trips in each group
by the travel time using K-Means algorithm [11]. The faster
cluster of trips are assigned as driving trips, the slower clus-
ter is assigned public transit. They validated the cluster
mean travel mode with the Google map travel time for each
origin and destination group. However, their method did
not use any way points during the trip thus any spatial fea-
tures. The selection of 2 clusters per group is not justified
and there is no direct validation presented.

Yoo et al. compared the estimation of travel time using
GPS and cellular data. Travel mode identification was used
as a pre-processing step prior to map matching. Their travel
model inferences are purely rule-based, i.e., pedestrian walks
below 5 kph speed. Bus or train would stops at stops or
stations, etc.[2]

Leontiadis et. al devised an algorithm to infer the mobil-
ity path between activity locations based on cellular network
topology and GIS information. They used A* algorithm
searching from the GIS road networks, with the weight of
the road biased to the high-probability paths based on the
observed way points. Their result also show a median accu-
racy of 70m compared with ground truth GPS trajectories.
They also show that mobility path accuracy improves with
its length and speed [5].

Route detection from CDR and Handover Data.
Tettemani et al. use cell handover (HO) data to predict the
probable route of a traveler. Handovers transfer an ongoing
call/data-session from one tower to the next if a phone is
moving while a call is in session. If a call or data session
lasts for the entirety of the trip, the HO data indicates every
towers accessed along a route. Tettemani et al. predict the
route from a distance measure from a possible route (path)
to the centroid of the cell zones for cells accessed while en
route. However this work is limited, because, as mentioned,
handover data relies on the phone accessing the network for
the entirety of the trip.

Wu et al. propose a method to estimate route flow (the
number of vehicles using each route to travel from an ori-
gin to a destination) using a combination of link flows from
traditional tra�c sensors and data from the cell network.
Each possible route from an origin to destination is associ-
ated with a cellpath - a sequence of towers accessed while on
a particular route. While the paper doesn’t say so explicitly,
their method relies on handover like data. They assume that
there is only one cell-path associated with each route.

CDR data does not require a constant session. [[TODO:
add details]]

Benefits of my method: - relies on cell phone data - covers

greater user base than GPS data -allows for population seg-
mentation in ways that explain heterogeneity in travel mode
choice. - CDR data rather than HO data (does not require
a session to be active for the entirety of a trip) - Link flows
from Tra�c sensors and Public Transport ridership info can
be used to validate findings, but is not inherently needed for
route classification or for calculating mode split.

2.2 Mode Detection and Map Matching
Map matching, particularly related to travel on networks,

is a problem of associating a set of observed coordinates of
a moving object with a sequence of links that this travel
takes place on, either o✏ine [] or online []. E�ciency and
accuracy of map matching algorithms are at the cornerstone
of multiple data processing systems producing travel related
information from location data, and GPS probe data in par-
ticular[]. With decreasing spatial localization accuracy, the
nature of the problem changes to route flow inference[]. Map
matching is closely related to mode detection as map match-
ing algorithms, whether o✏ine or online, can be used to in-
fer which link of a multi-modal network the travel takes
place on, and, combined with speed information, inform
mode detection. The impact of map matching approaches is
profound when multiple modes take geographically distinct
routes [3], and diminishes when multiple modes share a spa-
tial corridor within the localization accuracy of the sensing
technology. The presented work utilizes elements of map
matching algorithms of [].

3. METHODOLOGY
In this work we have two main objectives - the first is

to build a discriminative model to automatically detect a
person’s mode of travel during a trip. The second objective
is to fit a discrete choice model to the observed travel mode.
The parameters of the discrete choice model describe and
explain how travelers choose the travel mode from a discrete
set of travel mode alternatives and can be used to predict
what travel modes a traveler will take on future trips.

For the discriminative portion we su↵er from a lack of
ground truth information on what travel mode is actually
taken for a given trip. We develop two methods for clas-
sifying the travel mode - each has a di↵erent approach for
dealing with the lack of ground truth. In the first, non-
parametric model, we generate realistic cell records for sim-
ulated travel and use a sequence to label LSTM to convert
the sequence of observed cell records into a travel mode la-
bel. In the second, we rely on an external routing database
to provide information on the availabl travel alternatives for
a given trip, and use a naive Bayes (parametric) approach
to determine the most likely alternatives from the set.

Finally we train a discrete choice model using the pre-
dicted travel mode, properties of each of the travel alter-
natives, and characteristics of the travelers. The details of
each step are outlined below.

3.1 Discriminative model 1: Sequence to label
LSTM neural net

3.1.1 Realistic simulation of CDRs from observed trips

The LSTM training relies on a regional micro-simulation
to provide the location and activity of each agent throughout
a day, including realistic travel by car, bus, train, subway,
tram, light rail, and cable car. We simulate cell records



Figure 1: Simulated cell records for a car trip: The black
dots represent the location of the agent at the time of the
simulated record is shown in black. The corresponding

simulated cell records are shown in blue

along the agents path of travel. The simulated cell records
amount to a (timestamp, latitude,longitude) tuple with lo-
cation noise.

The average rate at which cell records are created during
travel is about 50 records per hour. The reported location
accuracy is about 1km. Therefore we simulate cell records
along the travel path with 1 km of Gaussian noise. Figure
1 shows an example of simulated cell records for a driving
trip from the micro-simulation. We use this procedure to
simulate CDRs for 48,000 bay area trips.

3.1.2 Training the LSTM Neural Network

After simulating CDRs along the agents travel paths we
train an LSTM sequence to label neural network to learns
the conditional probability of each travel mode given the
sequence of latitudes, longitudes, and timestamps observed
during the trip.

While this model is trained on simulated CDR data, the
same could certainly be trained on sequences of coordinates
and timestamps observed from GPS or other sources as-
suming that the travel mode labels are known. The LSTM
automatically learns relevant features like location of travel-
mode specific infrastructure, possibly the travel speeds or
prolonged stops of buses.

The LSTM inputs are normalized: the location coordi-
nates and timestamps are scaled to be between 0 and 1.
These inputs are fed into an encoder followed by 2 hidden
layers each with 128 nodes. The output of the hiddent nodes
are fed to a 6 ⇥ 1 output layer. We perform a softmax at
the output layer to determine the probability of each travel
mode: car, bus, train, subway, tram, light rail, and cable
car.

3.2 Model 2: Naive Bayes approach

3.2.1 Stay point detection from CDRs

The goal of stay location recognition is to turn CDR logs

Figure 2: Call Detail Records (CDR) data collection

into a list of sequential stay locations with start time and du-
ration for each user, as illustrated in Figure 2. Each record
of raw CDR logs contains the timestamp and the approxi-
mate latitude and longitude of events recorded by the data
provider. This is a CDR-specific step that requires fine-
tuning of several threshold parameters. The details of this
algorithm are outlined in [12]. After we have identified the
stay locations, a trip is defined as travel between two con-
secutive stay points.

3.2.2 Building alternative set

For each trip we query a multi-modal routing database
(such as Google maps or Open Street Maps) to obtain a set
of driving, transit, biking and walking (where appropriate)
route alternatives. For each alternative we retain attributes
of the trip:

• travel mode

• total travel time

• route geometry

• expected travel time

• specifically for transit:

– number of transfers

– type of transit

– walking access/egress distance

– agency names

– route name/number

These features are used both in the parametric discrimi-
native travel model and several are also relevant for fitting
a DCM.

3.2.3 Computing likelihood of alternatives

We model the likelihood of each alternative using a naive
Bayes classifier. We want to compute the probability of
each travel alternative, y

k

, in the alternative set given the
sequence of CDRs that we observe: x1 . . . xn

:
p(y

k

| x1, . . . , xn

)
We take advantage of Bayes rule to decompose p(y

k

| x)
as follows:

p(y
k

| x) = p(y
k

) p(x | y
k

)

p(x)

The denominator - the probability of observing the sequence
of cell phone records that we observe, is constant for all
travel modes in the set, so

p(C
k

| x) / p(C
k

) p(x | C
k

)



Here we treat the input sequence as a measure of true
location with location nosie. The probability of observing a
record, x

i

at a distance d

i,k

from route k is:

Pr (x
i

| y
i

) =
1p
2⇡�

i

e

�
(di,k)2

2�2
d

3.3 Discrete Choice Model
With travel mode inferred we can formulate a parametric

discrete choice model to learn traveler’s mode preferences
and determine how traveler’s trade o↵ various attributes of
the travel alternatives.

In a multinomial DCM, the utility, U , that person n ob-
tains from choosing alternative i, depends on attributes of
each travel alternative in the choice set:

U

ni

= �

j

z

in

+ ✏

ni

where z

ni

represents a vector of observed variables of trip i
and traveler n, � is a vector of the corresponding coe�cients
that are interacted with each of the observable variable, and
✏

n

i represents the unobservable factors that contribute to
travel mode choice.

The probability of traveler n selecting travel alternative i

is the probability that the utility of alternative i is greater
than the utility of all other alternatives. If there are J to-
tal alternatives, the probability that mode i is given by the
following:

P

ni

=
exp(�z

ni

)
P

J

j=1 exp(�znj

)

We consider a representative sample of Bay Area trips. The
coe�cient � are found by maximum likelihood estimation.

4. EXPERIMENTAL EVALUATION
There is no ground truth to directly quantify the accu-

racy of individual activity assignments of our proposed dis-
criminative models for real cell records. However, the travel
micro-simulation tool allows us to evaluate the discrimina-
tive models’ ability to recover the travel mode for simulated
travel and realistic cell records along the travel path.

In order to assess the models performance on actual cell
records, we use our methods to infer travel mode split in the
region and on key commuting trips. We compare our model
with aggregated statistics from surveys. Finally we evaluate
the parameters of the DCM to see if the parameters compare
well to those typically seen in travel demand models.

4.1 Discriminative model

4.1.1 LSTM for mode detection

The non-parametric LSTM model is trained on simulated
cell records. We use 80% of the micro-simulation generated
trips to train the model and 20% as a test set. The dataset
consisted of 48,000 trips. The distibution of travel mode
on these trips is shown in Figure ??. As the data-set is
highly imbalanced, we use an imbalanced cross entropy loss
function that penalizes missed trips of the transit trips more
heavily than it penalizes a missed drive trip.

After every 50 training batches we compute the accuracy
on test set. Figure 4 shows us the per travel mode recall.
Recall is a machine-learnin and statistical term that denotes
the fraction of samples in a given class that are correctly

Figure 3: LSTM dataset - number of trips by travel mode
generated from travel micro-simulation tool.

Figure 4: LSTM per class recall on the test set. Recall is
evaluated after every 50 training batches

identified as belonging to that class. The recall for drive
trips, for example, tell us what percentage of the drive trips
were actually labeled as drive trips. The precision, on the
other hand, represents the fraction of samples that are cor-
rectly labeled as belonging to a class over the total number
of samples labeled as belonging to that class. The per-class
precision is shown in Figure 5

As seen in Figure 4, the recall for car trips begins near 1.0.
In early training the neural net predicts that all trips belong
to the most prominent travel mode in the training set - in
this case the car mode. As the training continues, however,
the precision for the other modes improves. In particular
the model achieves a very high subway recall by the end of
training.

The relatively low precision of all non-car travel modes
indicates that the model over-predicts transit trips.

Figure 6 shows the confusion matrix at the end of train-
ing highlighting which travel modes are misclassified. The
model still struggles to di↵erentiate between bus and drive
trips and also often confuses tram trips with bus or drive.
These make sense as these travel modes often share infras-
tructure.The rail an subway often have dedicated track that
is often spatially separated from the road network.



Figure 5: LSTM per class precision on the test set.
Precision is evaluated after every 50 training batches

Figure 6: After training, we obtain the following confusion
matrix between travel modes in the test set.

Figure 7

Figure 8

4.2 Naive Bayes parametric discriminative model
Due to privacy protection policies enforced by the CDR

data provider, there is no direct ground truth to quantify
the accuracy of individual activity assignments by our pro-
posed model. On routes where there is spatial distinction
between the alternatives the classifier naive bayes approach
works well. In dense urban areas where there is less sepa-
ration between alternatives, the method may not work as
well. Figure 7 shows a set of alternatives for a given route
and Figure 8 gives the probability of each alternative when
we use �

d

of 1 km.

4.3 Discrete Choice Model Results
Either of the above methods (or other discriminative meth-

ods) can be used to infer the travel mode. Using the most
likely travel mode from the naive bayes classifier, we fit a
simple DCM to the observed travel modes. We infer the
travelers home location according to the methods outlined
in [12] and use the median income of the traveler’s home
census tract as a proxy for the traveler’s income. We query
an in-house routing service that provides travel times and
costs for a set of possible travel alternatives between the ob-
served origin and destination zones. Eq. (??) shows a DCM
specification that accounts for the time and cost of travel, a
traveler’s anticipated income.



Table 1: Discrete choice model parameters for travel mode

Variable Coe↵ Std. error Z P > |Z|
�

drive

-1.048 0.525 -1.996 0.046
�

income

0.0156 0.006 2.557 0.011
�

TT

-1.9495 0.413 -4.72 0.000
�

TC

-0.0653 0.061 -1.071 0.284

V

drive

=�

drive

+ �

income

⇤ Income

+ �

TT

⇤ TravelT ime

drive

+ �

TC

⇤ TravelCost

drive

V

public transit

=�

TT

⇤ TravelT ime

public transit

+ �

TC

⇤ TravelCost

public transit

this model resulted in parameters listed in Table 1.
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