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Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400 005, India
Science Institute, Department of Biochemistry, University of Iceland, IS-107 Reykjavik, Iceland
Plant Sciences Department, University of California,, Davis, CA, 95616, USA

Abstract
The structure of a protein provides insight into its physiological interactions with
other components of the cellular soup. Methods that predict putative structures
from sequences typically yield multiple, closely-ranked possibilities. A critical
component in the process is the model quality assessing program (MQAP),
which selects the best candidate from this pool of structures. Here, we present
a novel MQAP based on the physical properties of sidechain atoms. We
propose a method for assessing the quality of protein structures based on the
electrostatic potential difference (EPD) of Cβ atoms in consecutive residues.
We demonstrate that the EPDs of Cβ atoms on consecutive residues provide
unique signatures of the amino acid types. The EPD of Cβ atoms are learnt
from a set of 1000 non-homologous protein structures with a resolution cuto of
1.6 Å obtained from the PISCES database. Based on the Boltzmann hypothesis
that lower energy conformations are proportionately sampled more, and on
Annsen's thermodynamic hypothesis that the native structure of a protein is the
minimum free energy state, we hypothesize that the deviation of observed EPD
values from the mean values obtained in the learning phase is minimized in the
native structure. We achieved an average specificity of 0.91, 0.94 and 0.93 on
hg_structal, 4state_reduced and ig_structal decoy sets, respectively, taken
from the Decoys `R' Us database. The source code and manual is made
available at  and permanently available onhttps://github.com/sanchak/mqap
10.5281/zenodo.7134.
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Introduction
The challenge of deriving the native structure of a protein from its 
sequence has intrigued researchers for decades1. Methods that predict 
putative structures from sequences are based either on features from 
databases of known structures (template-based methods)2–4 or use first 
principles of atomic interactions (ab initio or de novo methods)5–7. 
Typically, these methods yield multiple, closely-ranked possibilities. 
Model quality assessment programs (MQAP) that validate accuracy 
of these predicted structures are used to select the best candidate from 
the set of predicted structures.

MQAPs can be classified as energy, consensus or knowledge based. 
Two major sources of errors in energy based methods used for refin-
ing or discriminating protein structures are inaccuracies in the force 
field due to the inherent approximations in equations that model 
multi-atomic configurations, and inadequate sampling of the con-
formational space8–12. Consensus based methods are based on the 
principle that structural features that are frequently observed in a 
population of structures are more likely to be present in the native 
structure13–16. These clustering methods outperform other MQAP 
methods14 and are “very useful for structural meta-predictors17”. 
However, they are prone to be computationally intensive due struc-
ture-to-structure comparison of all models16, and are of limited use 
when the number of possible structures is small18. Knowledge based 
methods proceed by deriving an empirical potential (also known 
as statistical potential) from the frequency of residue contacts in 
the known structures of native proteins19,20. For a system in ther-
modynamic equilibrium, statistical physics hypothesizes that the 
accessible states are populated with a frequency which depends on 
the free energy of the state and is given by the Boltzmann distribu-
tion. The Boltzmann hypothesis states that if the database of known 
native protein structures is assumed to be a statistical system in 
thermodynamic equilibrium, specific structural features would be 
populated based on the free energy of the protein conformational 
state. Applying a converse logic, Sippl reasoned that the frequen-
cies of occurrence of structural features such as interatomic dis-
tances in the database of known protein structures could be used to 
assign a free energy (potential of mean force) for a given protein 
conformation21,22. Furthermore, this statistical potential can be used 
to discriminate the native structure23–27. The proper characteriza-
tion of the reference state is a critical aspect in applying statisti-
cal potentials23. In spite of their popularity, the application of such 
empirical energy functions to predict and assess protein structures 
are vigorously debated28,29. Many MQAP programs perform bet-
ter when multiple statistical metrics are combined30–33. The para-
mount importance of obtaining high quality protein structures from 
sequences using in silico methods can be estimated by the effort 
invested by researchers every two years34 to evaluate both structure 
prediction tools35 and MQAPs17,34,36.

Here, we propose a novel statistical potential to assess the quality 
of protein structures based on the electrostatic potential difference 
(EPD) of Cβ atoms in consecutive residues - EPD profile of side-
chain atoms used in assessment of protein structures (ESCAPIST). 
Previously, we have established that the EPD is conserved in cog-
nate pairs of active site residues in proteins with the same func-
tion37–40. The ability of finite difference methods to quickly obtain 
consistent electrostatic properties from peptide structures provides 
an invaluable tool for investigating other innate properties of pro-
tein structures41. We plot the EPD profiles for different atom types 
(Cα atoms, Cβ  atoms and the C-N bond) in consecutive residues 
from a set of non-homologous protein structures obtained from the 
PISCES database (http://dunbrack.fccc.edu/PISCES.php)42. We 
proceed to show that the EPD between Cβ atoms in consecutive 
residues can be used to generate a scoring function that assesses 
the quality of protein structures. This EPD scoring function is then 
applied to standard decoy sets from the Decoys ‘R’ Us database 
(http://dd.compbio.washington.edu) to establish the validity of our 
method43.

Results
Electrostatic potential difference (EPD) based discrimination
To extract feature values we chose a set of 1000 proteins from the 
PISCES database with percentage identity cutoff of 20%, resolution 
cutoff of 1.6 Å and a R-factor cutoff of 0.25 (SI Table 1).

Invariance of the EPD in the C-N peptide bond and between 
Cα atoms of consecutive residues
Adaptive Poisson-Boltzmann Solve (APBS) writes out the electro-
static potential in dimensionless units of kT/e where k is Boltz-
mann’s constant, T is the temperature in K and e is the charge of 
an electron. The units of EPD are same as that of the electrostatic 
potential. The EPD of the C-N peptide bond has a Gaussian distri-
bution with mean = 420 EPD units and SD = 55 EPD units (Figure 1). 
In the probability distribution for four pairs of amino acids the mean 
of all pairs of amino acids are the same (Figure 1a). Figure 1b shows 
the scatter plot for the mean and standard deviation (SD). Thus, the 
amino acids are indistinguishable using the profile of the EPD of 
the C-N peptide bond across all protein structures since they have 
identical mean values and a large variance (SD=~50).

The probability distribution for four pairs of amino acids for the 
EPD between the Cα atoms of consecutive residues (Figure 2a) 
have means that are slightly more varied than those for the C-N 
bond (Figure 1a). In the scatter plot for the mean and SD of all 
pairs (Figure 2b) the outliers are pairs that include proline, which 
have a higher mean, although the magnitude of SD is the same 
(Table 1).

Distinctive EPD between Cβ atoms of consecutive residues 
for certain amino acid pairs
In contrast to the results described above, the EPD between the Cβ 
atoms in consecutive residues in the peptide structure can be used to 
discriminate different amino acid pairs in the protein structure. The 
mean EPD of all amino acid pairs are much more varied (Figure 3a). 
These pairs do not include glycine, which lacks a sidechain. In the 
scatter plot for the mean and SD, the outliers are pairs that include 
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Figure 1. Electrostatic potential differences (PD) for the C-N peptide bond. AA: Alanine/Alanine, AC: Alanine/Cysteine, HS: Histidine/Serine 
and DF: Aspartic-acid/Phenylalanine. (a) Probability distribution for four pairs of amino acids. (b) Scatter plot for all pairs of amino acids. It can 
be seen that the mean and SD for all pairs of amino acids are the same. Further, the variance is large (SD=~50), indicating that this feature is 
not tightly constrained in peptide structures.

Figure 2. Electrostatic potential differences (PD) for consecutive residue pairs for Cα atoms. A: Alanine/Alanine, AC: Alanine/Cysteine, 
HS: Histidine/Serine, DF: Aspartic-acid/Phenylalanine. (a) Probability distribution for four pairs of amino acids. (b) Scatter plot for all pairs of 
amino acids. It is seen that pairs of amino acids which include proline have a higher mean, although the magnitude of SD is the same.

cysteine (Figure 3b), which have a much higher SD (=~90) as com-
pared to other pairs (SD=~35) (Table 2), and thus cannot be used 
for discriminatory purposes.

These values are used as a discriminator when choosing the native 
structure from a set of possible candidates (Table 3). To establish 
the non-triviality of these values, we also show that the variance of 
the EPD between these pairs increases with increasing sequence 
distance. Thus, the EPD between the pairs ‘DF’ and ‘HS’ has 
lesser correlation as the sequence distance between them increases 
(sample size for each sequence distance is > 30) (Figure 4). The SD for 

distance 1 (i.e. consecutive residues) is 29.8 EPD units and 31.8 
EPD units for ‘DF’ and ‘HS’, respectively - and rises to around 60 
EPD units with increasing sequence distance.

Validating using decoy sets
We obtained the score (PDScore) of any given protein structure by 
comparing the electrostatics of the Cβ atoms based on Table 3. To 
benchmark model quality assessment programs, we used decoy 
sets from the Decoys ‘R’ Us database43. We detail our results from 
some of these decoy sets. Each set has several structures that are 
supposed to be ranked worse than the native structure.
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Figure 3. Electrostatic potential differences (PD) for consecutive residue pairs for Cβ atoms. AA: Alanine/Alanine, AD: Alanine/Aspartic-
acid, AE: Alanine/Glutamic-acid, DF: Aspartic-acid/Phenylalanine, DY - Aspartic-acid/Tyrosine, HT: Histidine/Threonine, HS: Histidine/Serine. 
(a) Probability distribution for seven pairs of amino acids. (b) Scatter plot for all pairs of amino acids. The pairs which include cysteine have 
a high standard deviation. It is seen that the mean is much more varied than the electrostatic potential difference (EPD) for Cα and the C-N 
peptide bond.

Table 2. Electrostatic potential differences (EPD) 
for consecutive residue pairs for Cβ atoms for 
residue pairs that has one cysteine. These pairs 
have a random values for the mean and a high 
standard deviation (SD), with the exception of the 
pair ‘CC’ (not the disulfide bond) which has a low 
mean value and SD. Consequently, these values can 
not discriminate between pairs of amino acids.

Pair Mean EPD SD Number of 
samples

AC -53.7 86.9 178

CC -7.1 30.4 36

CD 103.8 92.7 154

CE 96.8 94.7 121

CF -21.4 84.2 85

CH -12 93.3 97

CI 32.8 80.9 136

CK 50.2 93.9 131

CL 42.8 90.6 224

CM 61.9 100 39

CN 63.7 96.1 115

CP 24.9 88 45

CQ 66.7 92.1 95

CR 35.4 95.1 144

CS 106.3 98.1 184

CT 109.9 97.5 173

CV 54.9 90.7 183

CW -0.2 85.9 43

CY 8.5 91.5 96

Table 1. Electrostatic potential differences (EPD) 
for consecutive residue pairs for Cα atoms for 
residue pairs that include proline. While these pairs 
have for a low standard deviation (SD) like all other 
pairs, the absolute value of their mean is different 
(higher) than any pair that does not include a proline. 
This also highlights the unique nature of proline in 
protein structures.

Pair Mean EPD SD Number of 
samples

AP -167.3 28.6 328

CP -153 30.3 45

DP -184.5 29.5 290

EP -176.6 27.3 346

FP -160.4 25.3 173

GP -165.3 29.2 339

HP -162.7 34.6 92

IP -161.9 27.2 175

KP -156.6 29.6 203

LP -165.2 28.3 323

MP -161.3 29.5 70

NP -159.6 27.6 168

PQ 168.5 26.1 131

PR 156.2 31.5 184

PS 172.3 25.9 269

PT 170.8 27.6 218

PV 164.4 30.4 299

PW 158.5 29.7 70

PY 155.5 29 141
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Table 4. Misfold decoy set. This decoy set has ∼20 
protein structures - each of which has a correct and an 
incorrect structure specified. The PDBs are sorted based 
on the number of residues in the structure (NRes). Three 
of the structures (1CBH, 1FDX and 2SSI) have a lower 
PDScore for the incorrect structure.

PDB NRes Correct 
PDScore

Incorrect 
PDScore Specificity

1CBH 36 18.7 12.6 0

1PPT 36 18 33.5 1

1FDX 54 33 30.9 0

5RXN 54 25.1 35 1

1SN3 65 20.7 30.3 1

2CI2 65 19.9 35.2 1

2CRO 65 26.7 43.4 1

1HIP 85 19.1 36.8 1

2B5C 85 22.1 34.3 1

2CDV 107 17.4 40.9 1

2SSI 107 22.6 20 0

1BP2 123 21 44.1 1

2PAZ 123 19.3 27.3 1

1P2P 124 28.6 29 1

1RN3 124 20.7 28.8 1

1LH1 153 18 26.2 1

2I1B 153 19 27.6 1

1REI 212 16.5 21.8 1

5PAD 212 18.8 32 1

1RHD 293 23.2 31.9 1

2CYP 293 21.2 35.8 1

2TMN 316 27.2 32.2 1

2TS1 317 21.3 28.2 1

Figure 4. Standard deviation (SD) of the electrostatic potential 
difference between Cβ atoms increases with increasing 
sequence distance for amino acid pairs. Each sequence distance 
has at least 30 sample points. DF: Aspartic-acid/Phenylalanine, HS: 
Histidine/Serine. As expected, there is lesser correlation in the EPD 
values between the shown amino acid pairs ‘DF’ and ‘HS’ as the 
sequence distance between the residues increases. The SD for 
distance 1 (i.e. consecutive residues) is 29.8 EPD units and 31.8 EPD 
units for ‘DF’ and ‘HS’, respectively - and rises to around 60 EPD 
units with increasing sequence distance.

The misfold decoy set has ~20 protein structures, each of which 
has a correct and an incorrect structure specified (three structures 
have two incorrect structures: we randomly chose the first)44. The 
PDScore of these proteins were computed (Table 4). Barring three 
structures (PDBids: 1CBH, 1FDX and 2SSI), the PDScore of the 
incorrect structure is higher than that of the correct structures.

The hg_structal set has about ~30 proteins. Each protein has  
30 structures (including the native structure). Table 5A shows 
specificity obtained for structures in this decoy set. The aver-
age specificity obtained for this decoy set is 0.91 (Table 5A). The 
decoy set 4state_reduced has ~600 structures for each of the seven 
proteins. We obtain an average specificity of 0.94 for this decoy set  
(Table 5B). Similarly, for the ig_structal decoy set we obtain a spec-
ificity of 0.93 (Supplementary Table 1).

Table 3. Electrostatic potential differences (EPD) 
in a sample of consecutive residue pairs of Cβ 
atoms. These pairs are used for discriminating 
predicted structures in order to obtain the native 
structure. The complete set is available at https://
github.com/sanchak/mqap.

Pair Mean EPD SD Number of 
samples

DF -108.9 29.5 481

DY -107.4 30.7 442

DH -105.2 33.5 242

DW -104.1 27.7 209

EH -98.5 28.5 200

EY -96.5 28 378

EW -94.2 29.8 184

SY -93.5 27.5 403

EF -93.1 27.6 439

TY -93 28.6 384

TW -90.8 28.7 144

SW -89.2 27.7 169

FT 89.2 26.8 436

FS 92.3 28.4 453

HS 93.7 31.8 235

HT 95.1 31.5 235
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Table 5. hg_structal and 4state_reduced decoy sets. The PDBs are 
sorted based on specificity. (A) The hg_structal decoy set has ∼30 
protein structures - each of which has 30 structures. The average 
specificity obtained for the set is 0.91. (B) The 4state_reduced decoy 
set has 7 protein structures - each of which has ~600 structures. The 
average specificity obtained for the set is 0.94. (C) The fisa set has 4 
protein structures - each of which has 500 structures. The electrostatic 
discriminator has low specificities in this case. We have previously 
demonstrated that this decoy set can be discriminated by a distance 
based criterion. It consists of physically nonviable structures, thus 
rendering an electrostatic analysis meaningless. NRes = number of 
residues, NStructures = number of structures in the decoy set.

PDB NRes NStructures Specificity

(A) 
hg_structal

2PGHA 141 30 0.2

1MBS 153 30 0.5

2DHBA 141 30 0.6

1HDAB 145 30 0.9

1MYT 146 30 0.9

1HLM 158 30 0.9

1HSY 153 30 0.9

1MBA 146 30 0.9

1MYGA 153 30 0.9

1MYJA 153 30 0.9

1ASH 147 30 1

1BABB 146 30 1

1COLA 197 30 1

1CPCA 162 30 1

1ECD 136 30 1

1EMY 153 30 1

1FLP 142 30 1

1GDM 153 30 1

1HBG 147 30 1

1HBHA 142 30 1

1HBHB 146 30 1

1HDAA 141 30 1

1HLB 157 30 1

1ITHA 141 30 1

1LHT 153 30 1

2DHBB 146 30 1

2LHB 149 30 1

2PGHB 146 30 1

4SDHA 145 30 1

(B) 
4state_reduced

2CRO 65 675 0.8

3ICB 75 654 0.9

4RXN 54 677 0.9

4PTI 118 688 1

1CTF 131 631 1

1R69 97 676 1

1SN3 65 661 1

(C) 
fisa

4ICB 76 501 0

1FC2 44 501 0.4

1HDDC 57 501 0.1

2CRO 65 501 0.7
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Discussion
The functional characterization of a protein from its sequence using 
in silico methods based on the ‘sequence to structure to function’ 
paradigm is contingent upon the availability of its 3D-structure. 
The rapidly developing field of next generation sequencing has 
exacerbated the bottleneck of obtaining structural data using crys-
tallization techniques45. This ever-widening gap has been filled by 
methods that predict structures from sequences46, based either on 
features from databases of known structures2–4 or from first principles 
of atomic interactions5,6.

The various sources of error in protein structure prediction have 
been previously discussed in detail47. An incorrect model of a pro-
tein structure will result in an inaccurate analysis of its properties48. 
For example, continuum models49 that compute potential differ-
ences and pK

a
 values from charge interactions in proteins50 are 

sensitive to the spatial arrangement of the atoms in the structure. 
It must be pointed out that other detailed methods using quantum 
mechanical/molecular mechanical (QM/MM) techniques and doing 
extensive conformational sampling have been able to determine the 
side chain pK

a
 values with high accuracy51. Accurate structural 

information is indispensable for in silico methods that extract the 
electrostatic profile of atoms in the peptide structure41,52, and for 
other methods widely used in pharmacology for drug discovery53. 
Model quality assessment programs (MQAP) that validate the 
accuracy of predicted structures are thus a critical aspect in the 
process of modeling a protein structure from its sequence. MQAPs 
can be classified as energy8–12, consensus13–16 or knowledge based 
(statistical potential)21–27. The state of the art methods for predicting 
structures35 and MQAPs17,34,36 are evaluated by researchers every 
two years.

Previously, we hypothesized and demonstrated that the electrostatic 
potential difference (EPD) in cognate pairs in the active site are 
conserved in proteins with the same functionality37,40,54, even when 
evolution has converged to the same catalytic from completely dif-
ferent sequences55. This similarity is observed in structures solved 
independently over many years and establishes the reliability of the 
APBS and PDB2PQR implementations41,56. We focused on unrave-
ling other electrostatic features that are innate to protein structures. 
Here, we first demonstrate that the EPD between the C-N peptide 
bond and the Cα atoms of consecutive residues are independent of 
the amino acid type. This is expected, since the distance between 
these atoms are almost invariant across all structures. The EPD 
of the C-N bond has a high variance, implying that the backbone 
accommodates relatively large variations while seeking energeti-
cally minimized structures.

The true source of the chemical and structural diversity in protein 
structures is the side chain atoms. Every amino acid, except glycine, 
has a Cβ atom that hosts a unique moiety of atoms. Although the 
reactive groups are different for amino acids, we show that this dif-
ference is encapsulated in the backbone Cβ atoms. We first show 
that different pairs of amino acids have significantly different mean 
EPD values in side chain Cβ atoms (Figure 3), unlike the EPD of 
the C-N peptide bond (Figure 1) or the EPD between consecutive 
Cα atoms (Figure 2). Further, the variance is much less than in the 
EPD of the C-N bond. These facts suggested that the EPD between 

Cβ atoms of consecutive residues in the peptide structure might act 
as a discriminator. Our hypothesis is based on the insightful Boltz-
mann law that lower energy conformations are disproportionately 
sampled, on the thermodynamic hypothesis57 that the native struc-
ture has minimal energy, and the hypothesis that statistical derived 
features in known protein structures have a Gaussian distribution21. 
We apply our discriminator to standard decoy sets from the Decoys 
‘R’ Us database to establish the validity of the method43.

Our work also highlights the unique properties of proline in the 
protein structure58. This is evident from the different magnitude of 
EPD in consecutive Cα atoms involving proline (Table 1). Another 
noteworthy aspect is the large variation in EPD in consecutive Cβ 
atoms involving cysteine (Table 2), demonstrating the unique role 
cysteine plays in providing flexibility to protein structures, a critical 
element in the evolution of complex organisms59. The discrimina-
tion of Cβ atoms also provides a uniform basis for methods that 
require a single-atom representation of a residue. Such methods 
depend on a correct parameterization of the reactive atoms37, a task 
further complicated by amino acids such as histidine which has 
two reactive atoms. For example, the EPD between the negatively 
charged E and D with respect to the aromatic phenylalanine is -108 
and -93 EPD units, in spite of the difference in their reactive atom. 
Similarly, the EPD between alanine and the three aromatic amino 
acids (F, W and Y) are -67, -66 and -63 EPD units respectively.

We achieved an average specificity of 0.91, 0.94 and 0.93 on  
hg_structal, 4state_reduced and ig_structal decoy sets, respectively, 
taken from the Decoys ‘R’ Us database. We have previously dem-
onstrated that the fisa decoy set can be discriminated by a distance 
based discriminator60. ESCAPIST does not discriminate the native 
structure in this decoy set (Table 5C). The physical implication 
of ESCAPIST results on the fisa decoy set, which has significant 
RMSD for backbone Cα atoms, needs further elaboration. The 
input to a finite difference Poisson-Boltzmann (FDPB) analysis is 
a charge distribution that might be unfeasible due to energy func-
tions other than electrostatics. For example, van der Waals force 
or the elastic bond length force components might prevent two  
atoms from being in close proximity. However, if such a physically 
impossible configuration were presented to a FDPB-based analysis 
tool, such as APBS41, it would still generate an electrostatic poten-
tial landscape. Inferences based on this potential landscape would 
be incorrect due to its physical non-viability. Thus, before invoking 
the EPD constraints specified here, it is imperative that other spatial 
constraints that are rarely violated in structures are checked. Pos-
sibly for this same reason, MQAPs that combine many features in 
their scoring functions are superior. Moreover, it should be kept in 
mind that decoy sets, like most benchmarking sets, are prone to 
biases61 and possible errors31. In fact, the fisa decoy set has been 
shown to violate the van der Waals term61. To summarize, we pre-
sent a novel discriminating feature in protein structures based on 
the electrostatic properties of the side chain atoms. We validated 
this discrimination in several decoy sets taken from the Decoys ‘R’ 
Us database, and achieved high specificities in most decoy sets.

Methods
Our proposed method has two phases. In the learning phase, we pro-
cess multiple structures to extract the feature values - mean values 
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The EPD between a pair of amino acid is order-independent - for 
example, the EPD statistics for the pair ‘AC’ (alanine-cysteine) 
includes the EPD of both ‘AC’ and ‘CA’ (with the sign reversed).

Quality assessment phase
Algorithm 2 shows the function AssessEPDQuality() that generates 
the PDscore for a given protein from the template file generated by 
the learning phase. The set of proteins Φ AssessmentPhase    

proteins
         consists of the 

native structure P
1
 and N-1 decoys structures (Equation 4). Once 

again, barring x=IgnoreNTerm and y=IgnoreCTerm number of resi-
dues from the N and C terminals, the pairwise EPD for consecutive 
residues are computed. The absolute value of the difference of these 
values from their corresponding means, if they exist, in the template 
file is added to generate the absolute score (Equation 5). This score 
is normalized with the number of residues that have been compared 
to obtain the final PDscore. In summary, the PDscore encapsulates 
the average distance of the EPD for the given atom pairs (it may be 
Cβ, Cα or the C-N bond) of consecutive residues from their mean 
values. We hypothesize that in the native or a near native structure, the 
PDscore will be minimized for the EPD of Cβ atoms of consecutive 
residues, i.e. given a set of proteins Φ

proteins
 consists of the native struc-

ture P
1
 and N-1 decoys structures, P

1
 will have the minimum PDscore 

(Equation 6).

of electrostatic potential difference (EPD) for each amino acid pair. 
These feature values are applied on query proteins to obtain a score 
(PDscore) that indicates the deviation of the feature values in the 
given structure from the ‘ideal’ values. Thus, a lower PDscore indi-
cates a better candidate.

Learning phase
Algorithm 1 shows the procedure LearnFeatures() that extracts the 
feature values from a set of proteins ΦLearningPhase   proteins      (Equation 1). We  
ignore the first x=IgnoreNTerm and last y=IgnoreCTerm pairs of 
residues in the protein structure to exclude the terminals. For every 
consecutive pair of residues in the structure, we calculate the EPD 
(see below for method) between two specified atoms (atomP and 
atomQ). Both atomP and atomQ are set to Cβ to obtain EPD val-
ues for Cβ atoms, while we set atomP to ‘C’ and atomQ to ‘N’ in 
order to obtain the C-N peptide bond EPD values. The mean (Mean 
learnt value - MLV) and standard deviation (SD) are computed for 
each amino acid type pair (AAType) in protein (Equation 2), and 
the mean computed for the globals set of proteins (MLV(AATypex, 
AATypey)) for each pair of amino acid types (Equation 3). Pairs 
whose EPD have a SD greater than a threshold value (sdThresh, 50 
by default) are ignored. Means for all significant pairs (φ

pairMean
) are 

noted to a file, which is the input to the quality assessment phase. 

Φ proteins
Learning Phase

MP P P= { , }1 2…  (1)

MLV AAType AAType Pi
EPD s atomPs s n x

N y
nn n( , )

( ( ( )Re Re Re
+ = = +

− −∑
1 1

1 ,, ( )))

( )

Res atomQ
N y x

n+

− − −
1

2
 (2)

 (3)MLV AAType AAType i M and AAType and AAType
Mx y x y n

M

( , ) [ , ](
(

= ∀ = =∑1 1…
LLV AAType AAType Pi

M

x y( , ) )

Φ proteins
Assessment Phase

NP P P= { , }1 2…  (4)

PDscore
Abs EPD s atomP s atomQ MLPi n x

N y
n n=

−= +
− −

+∑ 1
1

1( ( ( ), ( ))Re Re VV AAType AAType
N y x

s sn n( , ))

( )

Re Re +

− − −

1

2
 (5)

[ ]( )∀ = <i N PDscore PDscoreP Pi2 1…  (6)
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Algorithm 1. LearnFeatures(): extract electrostatic potential difference (EPD) values from a given pair of 
amino acids

Input: φproteins = {P1 ··· PM} : M Proteins in the learning set

Input: IgnoreNTerm: Ignore this number of residues in the N Terminal

Input: IgnoreCTerm: Ignore this number of residues in the C Terminal

Input: atomP: Atom type in first residue

Input: atomQ: Atom type in second residue

Input: sdThresh: Threshfold for standard deviation of the EPD

Output:  φpairMean = {meanPDC1 ··· meanPDCK}: Mean values of EPD between specified atoms  
of successive residues, there being K such significant pairs

begin 

 /*K pairs of amino acid type (sorted: AC and CA are equivalent)*/

 /*Each set is initialize to be the null set*/

 φpair = {φ1PDC ··· φKPDC} :

 foreach Pi in φproteins do

 N = NumberOfResidues(Pi);

 for p ← IgnoreNTerm to (N − IgnoreCTerm) do

 q = p + 1 ;

 /* Amino acid pairs are order independent */

 ResiduePairTypeString = ResidueTypeString(p) + ResidueTypeString(q);

 ResiduePairTypeStringSorted = Sort(ResiduePairTypeString;

 /* Reverse sign of potential difference accordingly */

 multfactor = 1 ;

 if (ResiduePairTypeStringSorted != ResiduePairTypeString) then

 multfactor = -1 ;

 end 

 PD = PotentialDifference(p, q, atomP, atomQ) * multfactor ;

 /* Let the amino acid pair be the kth in the set φpair */

 InsertInSet(PD, φkPDC);

 end 

 end 

 /* Compute Mean and SD of each set - ignore pairs with SD greater than sdThresh*/

 φpairMean = ∅;

 foreach φipair in φpair do

 (Meani, SDi) = MeanAndSD(φipair);

 if (SDi > sdThresh) then

 Add(Meani, φpairMean);

 end 

 end 

 return (φpairMean);

end 
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Algorithm 2. AssessEPDQuality()

Input: P1 : Protein under consideration

Input: IgnoreNTerm: Ignore this number of residues in the N Terminal

Input: IgnoreCTerm: Ignore this number of residues in the C Terminal

Input: atomP: Atom type in first residue

Input: atomQ: Atom type in second residue

Input:  φpairMean = {meanPDC1 ··· meanPDCM}: Mean values of EPD between specified atoms of  
successive residues

Output:  PDscore: Score indicating the normalized distance of the observed values from the (mean)  
learnt values from native structures

begin 

 PDscore = 0 ; NumberCompared = 0 ; N = NumberOfResidues(P1);

 for p ← IgnoreNTerm to (N − IgnoreCTerm) do

 q = p + 1 ;

 /* Amino acid pairs are order independent */

 ResiduePairTypeString = ResidueTypeString(p) + ResidueTypeString(q);

 ResiduePairTypeStringSorted = Sort(ResiduePairTypeString;

 /* Reverse sign of potential difference accordingly */

 multfactor = 1 ;

 if (ResiduePairTypeStringSorted != ResiduePairTypeString) then

 multfactor = -1 ;

 end 

 /* Let the amino acid pair be the kth in the set φpair */

 PD = PotentialDifference(p, q, atomP, atomQ) * multfactor ;

 if (∃meanPDCk) then

 NumberCompared = NumberCompared + 1 ;

 diff = absolute(PD − meanPDCk);

 PDscore = PDscore + diff ;

 end 

 end 

 /* Normalize */

 PDscore = PDscore/NumberCompared;

 return (PDscore);

end 
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Algorithm 3. ESCAPIST(): Top level function

Input: φproteins: Learning set

Input: P1: Protein to be scored

Input: IgnoreNTerm: Ignore this number of residues in the N Terminal

Input: IgnoreCTerm: Ignore this number of residues in the C Terminal

Input: atomP: Atom type in first residue

Input: atomQ: Atom type in second residue

Input: sdThresh: Threshfold for standard deviation of the EPD

Output: PDscore: Score indicating the normalized distance of the observed values from the (mean)

 learnt values from native structures

begin 

 /* This is invoked once*/ φpairMean =

 LearnFeatures(φproteins, IgnoreNTerm, IgnoreCTerm, atomP, atomQ, sdThresh);;

 PDscore = AssessEPDQuality(P1, IgnoreNTerm, IgnoreCTerm, atomP, atomQ, φpairMean);

 return (PDscore);

end 
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Supplementary Tables

Table S1. Proteins from the PISCES database used for learning values. Set of 1000 proteins from the 
PISCES database with percentage identity cutoff of 20%, resolution cutoff of 1.6 Å, R-factor cutoff of 0.25, and 
a RDCC cutoff of 0.012 Å used to learn feature values.

1A62 1AH7 1AHO 1AIE 1ARB 1ATG 1B5E 1BGF 1BKR 1BX7 1C1K 1C4Q 1C5E 1C75 1C7K 1CC8 1CCW 
1CO6 1CZP 1D4O 1D5T 1DJ0 1DK8 1DS1 1E29 1E2W 1E58 1E5K 1E7L 1EAQ 1EB6 1EGW 1ELK 1ELU 
1ES9 1ET1 1EUV 1EUW 1EYH 1EZG 1F1E 1F46 1F86 1F8E 1F94 1FK5 1FSG 1FT5 1FX2 1G2R 1G5A 
1G61 1G8A 1G8Q 1GCI 1GJ7 1GK9 1GKP 1GMU 1GMX 1GP0 1GPQ 1GQI 1GU2 1GUT 1GWM 1GXM 
1GXU 1GY7 1H16 1H91 1HDO 1HX0 1HXI 1HYO 1HZ4 1I1W 1I27 1I2T 1I71 1IDP 1IFR 1IJY 1IO0 1IQZ 
1IRQ 1ITX 1J0P 1J98 1JCD 1JEK 1JET 1JFB 1JHJ 1JI7 1JK3 1JKE 1JL1 1JO0 1JOV 1JX6 1JZ8 1K4I 
1K5C 1K5N 1K7C 1K7J 1KAF 1KMT 1KNG 1KOE 1KQ6 1KQR 1KS8 1KT6 1KWF 1KYF 1L9L 1LC0 
1LKK 1LLF 1LWB 1M15 1M1Q 1M2D 1M40 1M55 1M9Z 1MC2 1MF7 1MFW 1MJ5 1MKK 1MN8 1MSO 
1MUN 1MUW 1MWQ 1MY7 1N08 1N8V 1NC5 1NF8 1NG6 1NKD 1NKG 1NKI 1NLQ 1NNF 1NQJ 1NTH 
1NUY 1NWW 1NWZ 1NYC 1O06 1O7I 1O7J 1O82 1OAI 1OCY 1ODM 1OH0 1OK0 1OQJ 1OU8 1P1M 
1P1X 1P6O 1P9G 1P9I 1PO5 1PQH 1PSR 1PZ4 1Q5Y 1Q6Z 1Q92 1QDD 1QGI 1QL0 1QLW 1QNR 1QQF 
1QV9 1QW2 1QW9 1QZ0 1R5L 1R6J 1R6X 1R7J 1R9L 1RA0 1RFY 1RG8 1RKI 1ROC 1RTQ 1RTT 1RV9 
1RW1 1RWH 1RYO 1RYQ 1S1D 1S29 1S9R 1SAU 1SFX 1SG4 1SJW 1SN9 1SQS 1SU8 1SVF 1SZH 1SZN 
1T1D 1T2D 1T3Y 1T6F 1T6U 1T8K 1T92 1TCA 1TJP 1TP6 1TQG 1TT8 1TU9 1TUA 1TUK 1TZP 1U84 
1UCR 1UCS 1UFY 1UGI 1UKF 1UOY 1UTE 1UTG 1UUY 1UWK 1UZ3 1V05 1V4P 1V5V 1V7Z 1V8H 
1VBW 1VCC 1VK1 1VKK 1VL7 1VLY 1VMG 1VMH 1VQS 1VR7 1VYI 1VZM 1W0H 1W0N 1W23 1W4S 
1W53 1W5R 1W66 1WB4 1WBH 1WC2 1WCW 1WDD 1WER 1WHI 1WLZ 1WN2 1WNA 1WNY 1WPA 
1WS8 1WTJ 1WU9 1WVF 1WVQ 1WWI 1WY3 1X54 1X6I 1X6Z 1X9I 1XDN 1XG0 1XMK 1XOD 1XPP 
1XQO 1XSZ 1XUB 1Y43 1Y6X 1Y8A 1Y9L 1YB3 1YD0 1YPY 1YQS 1YU0 1YXY 1Z2U 1Z3X 1Z6M 1ZCE 
1ZGK 1ZHV 1ZHX 1ZL0 1ZMI 1ZMM 1ZR6 1ZV1 1ZZ1 256B 2A26 2A6Z 2ACF 2AEB 2AHF 2AIB 2AKZ 
2AP3 2APJ 2ASB 2ASK 2AXW 2AYD 2B0A 2B4H 2B82 2B97 2B9D 2BAY 2BCM 2BDR 2BF9 2BKX 
2BL8 2BT9 2BWF 2C0H 2C1V 2C2U 2C3V 2C4J 2C71 2C78 2C92 2CAR 2CB8 2CC6 2CCQ 2CCV 2CCW 
2CG7 2CHH 2CI1 2CIU 2CIW 2CKK 2CPG 2CS7 2CVE 2CVI 2CWS 2CXN 2CXY 2CYJ 2CZL 2CZS 
2D1S 2D3D 2D5W 2D8D 2DDX 2DE3 2DG5 2DKJ 2DKO 2DLB 2DPF 2DS5 2DSX 2DT8 2DVM 2DWU 
2DXA 2E4T 2E6F 2E7Z 2EAB 2EB4 2EGV 2EHP 2EHZ 2ELC 2END 2ENG 2ERF 2F23 2F62 2FAO 2FB6 
2FBA 2FCJ 2FCL 2FCW 2FHZ 2FJ8 2FNU 2FQ3 2FVV 2FVY 2FWH 2G30 2G3R 2G7O 2GB4 2GKE 
2GKG 2GKP 2GOM 2GPI 2GS5 2GS8 2GUD 2GUI 2H1V 2H8E 2HDO 2HEU 2HOX 2HP0 2HX0 2I49 
2I53 2IA7 2IAY 2IC6 2II2 2INW 2IP6 2J43 2J5Y 2J6B 2J8B 2J8K 2J9W 2JCB 2JEK 2JHF 2LIS 2MCM 
2MHR 2NLS 2NLV 2NNU 2NQT 2NQW 2NR7 2NSZ 2NUH 2NXV 2O1Q 2O6N 2O9S 2OA2 2OB5 2OCT 
2ODI 2OFC 2OFK 2OLM 2OOA 2OV0 2OVG 2OVJ 2OY9 2P02 2P17 2P2S 2P51 2P5K 2P6W 2P8G 2PHN 
2PIE 2PMR 2PNE 2POF 2PR7 2PRV 2PTH 2PVB 2PW0 2Q5C 2Q9K 2QAP 2QE8 2QF4 2QGU 2QIP 
2QJL 2QKV 2QML 2QNG 2QNK 2QNL 2QRL 2QSB 2QSK 2QUD 2R01 2R2Z 2R5O 2R9F 2RA9 2RBK 
2RH2 2RKL 2UVO 2V03 2V1M 2V2P 2V33 2V3I 2V4X 2V8I 2V9V 2VBK 2VC8 2VHA 2VHK 2VK8 2VNG 
2VOK 2VPB 2VQ2 2VQ4 2VZC 2W1J 2W2E 2W39 2W40 2W5Q 2W8X 2WAG 2WDS 2WE5 2WFI 2WH7 
2WLV 2WOY 2WTP 2WZO 2X32 2X3M 2X46 2X49 2X4K 2X6W 2XBG 2XDW 2XET 2XOD 2XOL 2XOM 
2XRH 2XTS 2XU3 2XW6 2XWV 2Y24 2Y6H 2Y71 2Y78 2YFO 2YLB 2YMV 2YV9 2Z5W 2Z6O 2Z6R 
2Z72 2ZDP 2ZHJ 2ZHP 2ZNR 2ZUX 2ZXY 2ZZV 3A07 3A16 3ACX 3AGN 3AIA 3AJ7 3AKS 3ATV 3AWU 
3B0G 3B0X 3B64 3B79 3B9W 3BB0 3BBB 3BEX 3BMZ 3BO6 3BOE 3BOG 3BPT 3BWH 3BWZ 3BXU 
3BY4 3C5K 3C68 3C70 3C9A 3C9U 3CEC 3CIJ 3CIM 3CKM 3CLM 3COV 3CP7 3CT5 3CT6 3CU9 3CZX 
3D2Q 3D32 3D3B 3D4E 3D9N 3DG6 3DHA 3DLC 3DSO 3E4G 3EER 3EOI 3EPW 3EUR 3EYE 3F1L 
3F2Z 3F40 3F43 3F9X 3FDE 3FEA 3FIA 3FKE 3FMY 3FO3 3FR7 3G21 3G36 3G48 3G5T 3GA4 3GAE 
3GBW 3GE3 3GHA 3GJY 3GKJ 3GKM 3GKR 3GMG 3GMX 3GO5 3GOC 3GVO 3GWI 3GZR 3H0N 
3H4X 3H5J 3H8G 3HF5 3HKW 3HP4 3HWU 3HYQ 3I3Q 3I4G 3I4O 3I94 3IAR 3IE4 3IE7 3ILW 3IMK 
3ISX 3IT3 3IV4 3IXL 3JS8 3JU4 3JYO 3JYZ 3K05 3K1U 3K67 3K6Y 3KB9 3KFF 3KKF 3KKG 3KLR 
3KM5 3KQR 3KYZ 3LFK 3LHC 3LMZ 3LQB 3LWX 3M3P 3M6Z 3M9Q 3MAO 3MC3 3MD7 3MDQ 3MJO 
3MMH 3MOL 3MQD 3MXN 3NBM 3NI0 3NO2 3NPD 3NYC 3O79 3O8M 3OCZ 3OD9 3ODV 3OIG 3ON9 
3ORU 3OV9 3OXP 3OYV 3PD7 3PFT 3PLW 3PMC 3PMS 3POD 3PP5 3PSM 3PUC 3PVH 3Q39 3Q3Y 
3Q46 3Q64 3Q7R 3QHB 3QPA 3QR7 3QU3 3QZM 3QZX 3R5T 3R5Z 3R87 3R9F 3RJU 3RKG 3RQ9 3RT2 
3RX9 3RZN 3S2R 3S44 3S4E 3S6F 3S9X 3SEE 3SHG 3SQZ 3SU6 3SUK 3SWO 3T47 3T8J 3T92 3TEW 
3TG0 3TK2 3TOW 3TT9 3TYT 3U65 3U99 3U9W 3UEJ 3UF7 3UI4 3ULJ 3ULT 3UP3 3URR 3US6 3UW3 
3V39 3V46 3V68 3VEN 3VII 3VMK 3VQJ 3VWC 3VXJ 3VZX 3W0K 3ZQU 3ZSJ 3ZUC 3ZYP 3ZZP 4A02 
4A4J 4A56 4A6Q 4A7U 4A9V 4AAZ 4ACJ 4AIW 4ANN 4AV5 4AXO 4AXY 4AYO 4B4U 4DD5 4DI9 
4DQA 4DQJ 4DT5 4DUI 4DVC 4DYQ 4DZN 4E40 4EFP 4EGU 4EP4 4EQ8 4EQP 4ERR 4ERY 4ES8 
4EU9 4F2F 4F54 4FCH 4FR9 4FS7 4FTF 4FZL 4G3O 4G41 4G7X 4G9P 4G9S 4GB5 4GC3 4GEI 4GJZ 
4GVF 4GWB 4H14 4H4D 4H4J 4H4N 4H6Q 4H8E 4HBQ 4HE6 4HHR 4HNO 4HTG 4HU2 4HWM 4HY4 
4I1K 4IGT 4IIL 4IUM 4J42 1CXQ 1D8W 1DD9 1DF4 1DFM 1DG6 1DY5 1EKQ 1F9V 1FCQ 1FIU 1FO8 
1FYE 1G2Q 1G3P 1G6X 1GK7 1GPP 1GSO 1GVJ 1GVP 1H2C 1H99 1IN4 1IUQ 1J3A 1J77 1JL0 1JNI 
1JUH 1K3X 1K4N 1K6X 1KGD 1KJQ 1KMV 1LMI 1LNI 1LQT 1LS1 1LU0 1LUC 1LYQ 1M0K 1M22 
1M4L 1MG7 1MNN 1N3L 1N4W 1NLS 1NNX 1NXM 1NZJ 1O8B 1OD6 1OI0 1OI7 1PP0 1PZ7 1QG8 
1QWY 1R5M 1RYL 1SX5 1T1U 1T9I 1TBF 1U7I 1UNQ 1USM 1V0W 1V2B 1V6P 1VD6 1VE4 1VJU 
1VYK 1W5Q 1W7C 1WFB 1WHZ 1WPU 1WT6 1X91 1XJU 1XMT 1XYI
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Table S2. ig_structal decoy set. The PDBs are sorted 
based on specificity: The ig_structal decoy set has ~61 
protein structures - each of which has 61 structures. 
The average specificity obtained for the set is 0.97. 
NRes =: number of residues, NStructures =: number of 
structures in the decoy set.

PDB NRes NStructures Specificity

1FPT 11 61 0

1IKF 233 61 0.5

1IGM 115 61 0.9

1ACY 211 61 1

1BAF 214 61 1

1BBD 219 61 1

1BBJ 211 61 1

1DBB 211 61 1

1DFB 212 61 1

1DVF 107 61 1

1EAP 213 61 1

1FAI 214 61 1

1FBI 214 61 1

1FGV 107 61 1

1FIG 214 61 1

1FLR 219 61 1

1FOR 210 61 1

1FRG 217 61 1

1FVC 109 61 1

1FVD 214 61 1

1GAF 214 61 1

1GGI 211 61 1

1GIG 210 61 1

1HIL 211 61 1

1HKL 214 61 1

1IAI 214 61 1

1IBG 213 61 1

1IGC 213 61 1

PDB NRes NStructures Specificity

1IGF 214 61 1

1IGI 213 61 1

1IND 211 61 1

1JEL 230 61 1

1JHL 108 61 1

1KEM 217 61 1

1MAM 214 61 1

1MCP 220 61 1

1MFA 113 61 1

1MLB 214 61 1

1MRD 211 61 1

1NBV 219 61 1

1NCB 386 61 1

1NGQ 211 61 1

1NMB 385 61 1

1NSN 213 61 1

1OPG 214 61 1

1PLG 215 61 1

1RMF 219 61 1

1TET 211 61 1

1UCB 211 61 1

1VFA 108 61 1

1VGE 214 61 1

1YUH 211 61 1

2CGR 219 61 1

2FB4 214 61 1

2FBJ 213 61 1

2GFB 214 61 1

3HFL 223 61 1

3HFM 214 61 1

6FAB 214 61 1

7FAB 204 61 1

8FAB 206 61 1
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The quality of protein structure models is assessed by the geometry of adjacent C beta atoms. The
approach successfully distinguishes properly folded proteins in most cases. It adds a new way to assess
protein models and could be included in the protein model assessment toolbox.

Just a few comments:

a) Table 4 lists three of 20 structures where the incorrect one has a lower score. A few comments about
structural features of those examples that lead unexpected scores would be useful.

b) It might be preferable to note in the title that the method is applied to computational models of protein
structure as a way to distinguish the manuscript from those that deal with quality assessment of
experimentally determined structures.

c) I did not test the available source code.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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We would like to thank you for taking the time and reviewing our paper, and deeply appreciate your
positive comments. We do not have the expertise to comment on the structural characteristics that
lead to the 3 negative results in Table 4 - these require insights into crystal structures that we do
not possess at the present time. Also, we believe that this method could be applied to any structure
- computational or experimentally obtained - and thus are leaving the title unchanged. 
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This is an interesting idea that uses the physical (electrostatic) properties of amino acid side chains in
order to predict secondary structure from sequence, and thus assess (and rank) the quality of protein
structures. The manuscript is well-written, and the authors provide comprehensive information to allow
others to follow the study-design and methodology. The focus on electrostatics is important as this has
been repeatedly shown by rigorous theoretical studies (work by Warshel and others) to be the primary
driving force in determining protein function and most likely folding stability as well (whether directly or
indirectly). As the specific methodology the authors use is slightly further from my area of expertise I
cannot directly comment on this, however, importantly the source code has been made Open Access and
freely available through Github.

My only comment is on the second paragraph of the Discussion, which comments on the pitfalls when
using an incorrect model of a protein structure, particularly when trying to calculate pK s using continuum
models which are dependent on the initial conformation. While the authors highlight a very important
challenge, I would like to point out that it can to some extent be resolved by extensive conformational
sampling (particularly the pK  problem, as the pK  is an average property over all possible protein
conformations), which we discussed at length in a review a few years ago ( ).Kamerlin , 2009et al.
Otherwise this is a nice manuscript and a valuable contribution to the literature.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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