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Steps Toward Real-time Natural Language Processing

Steven L. Lytinen and Noriko Tomuro
DePaul University
Department of Comuter Science and Information Systems
Chicago IL 60604
lytinen@cs.depaul.edu

Abstract

Understanding language is a seemingly effortless task
for people. Not only can they understand the meaning
of sentences with great accuracy, they do so quickly: in
most cases, people understand language in linear time.
In constrast, understanding language is not so easy for
computers. Even ignoring problems of accuracy, natu-
ral language processing systems are much slower than
people are. All current NLP systems that fully analyze
both the syntactic structure and semantic meaning of
text fall short of human performance in this respect.

In this paper, we present an attempt to develop a linear
time algorithm for parsing natural language using unifi-
cation grammars. While the computational complexity
of the algorithm is, in the worst case, no better than that
of many other algorithms, empirical testing indicates im-
proved average-case performance. Although linear per-
formance has not yet been achieved, we will discuss pos-
sible improvements that may result in an average-case
linear time algorithm.

Introduction

Unification grammar has become a popular formal-
ism to use in natural language processing (NLP) sys-
tems. Unfortunately, the formal power of unification
grammar makes it difficult to implement an efficient
unification-based parser. A common approach is to build
a unification-based parser on top of a context-free chart
parser. The result is an algorithm that is at least O(n®)
in the worst case (since this is the worst-case complex-
ity of context-free chart parsing), and perhaps worse,
due to the additional work of performing unifications.
Adding to the difficulties is the inclusion of semantic
information in many unification-based systems, such as
in HPSG (Pollard and Sag, 1988) and in our own pre-
vious work (Lytinen, 1992). This can greatly increase
the size and complexity of a grammar, which also has
an adverse effect on performance of a parsing algorithm.
Thus, unification-based parsers for complex grammars
capable of processing any significant subset of English
or other natural languages, even for a limited-domain
application, yield quite poor performance. Indeed, em-
pirial examinations of unification-base parsers indicate
that average case performance of these systems also falls
short of linear (Shann, 1991). Other popular parsing
algorithms, such as Tomita’s algorithm (Tomita, 1986),
also fail to achieve linear performance, even without the
inclusion of semantic interpretation.

How efficient should we expect NLP systems to be?
One way to answer this question is to observe human per-
formance in understanding language. Although there are
exceptional constructions (e.g., garden-path sentences)
that can cause problems in comprehension, it seems that
in general people process text in linear time. Thus, if we
expect an NLP system to match human performance, a
reasonable goal is to achieve linear performance in the
average case, with perhaps significantly worse worst-case
performance.

This paper describes an attempt to implement an
average-case linear time unification-based parser. The
algorithm that has been implemented is a mixture of
top-down and bottom-up chart parsing. In the top-down
component, semantic information encoded in the gram-
mar is utilized as much as possible in the production of
active edges (i.e., expectations for what is to come next
in a sentence). The general philosophy is to use this
information to produce as specific expectations as pos-
sible, thus limiting the possible alternative parses that
need to be pursued. While the worst-case performance of
this algorithm is no better than other unification-based
parsers based on context-free chart parsing, the hypothe-
sis 1s that the utilization of both syntactic and semantic
constraints in top-down expectations will significantly
improve average case performance.

The parsing algorithm has been implemented as part
of the LINK system (Lytinen, 1992). Specifically, the
top-down version of LINK (TDLINK) has been imple-
mented as an alternative version of the system which we
used in the Fifth Message Understanding Competition
(MUC-5) (Lytinen et al., 1993), so that its performance
could be tested on a pre-existing corpus and grammar.
MUC-5 systems processed newspaper articles describing
new developments in the field of microelectronics. Our
original MUC-5 system used a bottom-up chart parser,
very similar to PATR-II (Shieber, 1986).

TDLINK was tested on a random sample of sentences
from the MUC-5 corpus. The test results are reported
and analyzed in this paper. While TDLINK does not
appear to achieve average case linear processing time
on the sample sentences, the number of edges entered
into the chart for a sentence does appear to increase
linearly with sentence length, on average. This is an
encouraging result, since in context-free chart parsing,
processing time is linearly proportional to the number
of edges. Possible reasons for why edges and processing
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time do not seem to be linearly proportional in TDLINK,
and proposals for achieving linear processing time based
on TDLINK, are discussed in section 5.

LINK'’s Unification Grammar

LINK’s knowledge base can be thought of as consisting
of three modules: a grammar, a lexicon, and a set of
domain knowledge. All of these types of knowledge are
encoded in unification consiraint rules. These rules are
very similar in form to other unification grammars, such
as PATR-II. Figure 1 shows a small piece of a simple
knowledge base.

Consider the S rule (egs. 1-5) in the example grammar.
Each equation in this rule specifies a property that any
node labeled S (a complete sentence) must have. A prop-
erty consists of a path, or a sequence of arcs with the ap-
propriate labels starting from the node in question; and
a value, which is another node to be found at the end of
the path. Equations specify the values of properties in
one of two ways. They may specify the label of the node
to be found at the end of the path, as in equations 1 and
2 (i.e., the arc from an S node labeled 1 leads to a node
labeled NP). Or, they may specify that two paths must
lead to the identical node, as in equations 3-5. Identity
here is defined by the wunification operation; i.e, if two
paths must lead to the identical node, then the nodes at
the end of the two paths must unify. Unification merges
the properties of two nodes; thus, two paths can unify if
their values have no properties that explicitly contradict
each other.

Functionally, the S rule encodes information about En-
glish sentences as follows. Equations 1 and 2 specify that
a sentence is made up of two subconstituents: a NP and
a VP. Ordering of these constituents is implicit in the
numbering of the paths. Equation 3 assigns the HEAD
of the sentence to be the VP, by unifying the VP’s HEAD
path with the HEAD path of the S. This will be discussed
further shortly. Equation 4 specifies that the NP and the
VP must agree in number and person. These syntactic
properties are found under the AGR (agreement) feature
of each constituent. Finally, equation 5 assigns the NP
to be the subject of the sentence.

The HEAD property referred to in equations 3-5 is
used to propagate information up and down the DAG.
This is accomplished by unification of HEAD links, as
in equation 3. Because of this equation, any information
on the HEAD of the VP is accessible from the S node.
Other rules assign the heads of other constituents, such
as a verb group (VG) to be the HEAD of the VP (in the
two VP rules; egs. 7 and 11), and a verb (V) to be the
HEAD of a VG (egs. 15 and 18).

Lexical items typically provide the values that are
propagated by HEAD links. They are encoded in the
same form as grammar rules. Typical values provided by
lexical rules include syntactic feature information, such
as the AGR feature; as well as semantic information,
which causes a semantic interpretation of the sentence to
be constructed as parsing proceeds. For example, in the
entry for “eats”, eq. 20 specifies that “eats” is a transtive
verb, and egs. 21-22 specify the word’s syntactic agree-

667

(define-class S
(1) = NP
(2) = VP
(head) = (2 head)
(head agr) = (1 head agr)
(head subj) = (1 head))

(define-class VP
(1) = VG
(head) = (1 head)
(head type) = intrans)

(define-class VP
(1) =VG
(2) = NP
(head) = (1 head)
(head type) = trans
(head dobj) = (2 head))

(define-class VG
1=V
(head) = (1 head))

(define-class VG
(1) = AUXES
2)=V
(head) = (2 head))

(define-class V

(1) = eats
(head type) = trans
(head agr number) = sing
(head agr person) = 3rd
(head rep) = EAT-FOOD
(head subj rep) =

(head rep actor)
(head dobj rep) =

(head rep object))

(define-class EAT-FOOD
(actor) = ANIMATE
(object) = FOOD
(instrument) = UTENSIL)

Figure 1: A set of example LINK rules
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ment features, found under the AGR property. Eq. 23
provides semantic information about the word, specify-
ing that “eats” means EAT-FOOD. Eqs. 24-25 specify
mappings from syntactic to semantic dependencies. 24
states that whatever constituent fills the SUBJECT role
will also be assigned as the ACTOR of the EAT-FOOD.
Similarly, 25 specifies that the syntactic direct object
(DOBJ) is assigned as the semantic OBJECT.

The mapping equations are used in conjunction with
the system’s domain knowledge, to impose restrictions
on the semantic properties (i.e., the values of the REP
path) of the subject and direct object of “eats” (i.e.,
the ACTOR and OBJECT of the EAT-FOOD). Domain
knowledge is also encoded in constraint rules, as exem-
plified by the EAT-FOOD rule (egs. 26-28). Because
of the mapping provided by “eats” between its subject
and the ACTOR of the EAT-FOQOD, the restriction that
this constituent’s representation must be ANIMATE is
propagated up to the NP that fills the SUBJ role speci-
fied by equation 26. Similarly, the FOOD restriction on
the object of an EAT-FOOD would propagate to the NP
assigned as the direct object (DOBJ) of “eats.”

The Parsing Algorithm

TDLINK 1s a bottom-up, breadth-first, left-to-right
chart parser which uses top-down expectations (active
edges) to eliminate the construction of edges which could
not possibly fit into the overall parse of a sentence.
TDLINK also filters edges based on a single-word looka-
head.

Labels of edges in TDLINK are more complex than is
the case in context-free chart parsers: the labels of both
active and complete edges are directed acyclic graphs
(DAGs), which encode the syntactic category of a con-
stituent (the normal label of an edge in a context-free
chart parser) as well as other syntactic and semantic
features of the constituent. These features are specified
in the definitions of lexical items, as well as in some of
the grammar rules, as we saw 1n section 2.

Active edges are used in conjunction with a reachabil-
1ty table in order to find potential connections between
an expected DAG and the next word in the sentence.
This is done as follows: first, the word is looked up in
the dictionary. The result is a list of one or more DAGs,
each of which corresponds to a sense of the word. Next,
the syntactic label of each word sense DAG is used, along
with the syntactic labels of each expected DAG, to look
up possible connections in the reachability table. The
table lookup results in a list of grammar rules which, if
applied, would connect the word to the expectation.

Let us illustrate with a simple example sentence, “Pat
eats the sandwich.” After processing “Pat”, TDLINK
has built an active edge labelled S, with an expectation
to find a VP beginning at the word “eats” (since the S
rule states that a VP should follow the NP). The reach-
ability table provides the information that “eats” can be
connected to the expectation in two ways: by applying
the first VG rule (egs. 14-15), followed by either VP rule
(egs. 6-8 or 9-13). In other words, the table provides the
information that “eats” must start a verb phrase, and
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that the VP may be transitive (with a direct object) or
intransitive (without an object).

After comparing all active expectations with the next
word in the sentence, TDLINK applies the sequences of
rules provided by the reachability table in a bottom-up
fashion. After each possible sequence is finished, the re-
sulting DAG 1is unified with the expectation, to make
sure that all of their features are compatible. If so, the
new edges are added to the chart; if not, they are dis-
carded. In our example, since the TRANS feature of
“eats” turns out to be incompatible with the INTRANS
feature in eq. 8, one of the rule sequences applied is dis-
carded, leaving only an active VP edge, with the expec-
tation that an NP (the direct object of the verb) will
follow.! In addition, the NP expectation also contains
the information that this NP should refer to a type of
FOOD.

While it is a syntactic feature in this example which
disambiguates the parse and causes edges to be dis-
carded, in general either syntactic or semantic features
(or a combination) can resolve an ambiguity. For ex-
ample, semantic information would eliminate the ac-
tive/passive ambiguity in “The log cut by Pat was big”
at the word “cut”, assuming that semantics required a
log to be the OBJECT, rather than the ACTOR, of the
action CUT. The early resolution of ambiguity has the
potential to dramatically improve average-case parsing
performance.

Empirical Results

TDLINK was incorporated into our existing MUC-5 sys-
tem (Lytinen et al., 1993), replacing the existing bottom-
up chart parser that had been used in MUC-5. The sys-
tem was then run on 100 randomly chosen sentences from
the MUC-5 corpus.? 27 of these sentences were sucess-
fully parsed by TDLINK using our MUC-5 grammar.
These 27 sentences form the basis of the performance
analysis.

First, TDLINK’s performance was compared against
the performance of the purely bottom-up version of
LINK. TDLINK achieved a factor of 4 speedup (mea-
sured in CPU time), on average, compared with LINK’s
performance on the 27 sentences. Performance improve-
ment also increased with sentence length.

Next, TDLINK’s performance was analyzed on abso-
lute terms. Figure 2 shows a plot of sentence length vs.
the number of edges entered in the chart for the 27 sen-
tences. A weighted R? analysis indicates that the best-
fitting polynomial for this data is a straight line (R? =
.86). This is an encouraging result, because parsing time
in context-free chart parsing is linearly proportional to
the number of edges entered in the chart.

1Even without the incompatible features, the intransitive
VP edge in this case would be discarded at this point due to
lookahead.

2Qur MUC-5 system contained a filtering mechanism,
which discarded all sentences that did not contain at least
one word whose meaning was relevant to the domain. Those
sentences judged to be irrelevant by the filter were not in-
cluded in the random sample.
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Figure 2: Edges vs. sentences length in TDLINK

The number of edges constructed was also compared
against the minimum number of edges that could pos-
sibly be constructed in a complete parse of each of the
sentences. This is the number of edges that would be
constructed by a chart parser which always parsed every
sentence as unambiguous at all stages of the parse. The
ratio of the number of edges constructed by TDLINK,
divided by the minimum number of edges, remained vir-
tually constant vs. word length, with a value of 2.5. This
means that, on average, between 2 and 3 different pos-
sible interpretations of a sentence were active as a parse
proceeded. The number of interpretations did not in-
crease with sentence length, another encouraging sign.

Figure 3 shows a plot of CPU time used vs. sentence
length. A weighted R? analysis indicates that the best-
fitting polynomial for this data is a quadratic (R? =
.953), indicating that TDLINK did not achieve average-
case linear time performance on the test sentences. Thus,
it appears that the number of edges in the chart is not
linearly proportional to processing time in TDLINK.

Discussion

There are two possible sources for additional processing
time in TDLINK. First, the system may unsuccessfully
apply enough rules that the time to build discarded edges
overshadows the time to build edges that are entered
into the chart. Second, as the sentence progresses, the
application of a rule becomes more expensive. This is
because the DAG labels of edges further along in the
chart become more and more complex. Since unification
in LINK is a destructive operation, whenever more than
one interpretation is being pursued by the parser, DAGs
must be copied before unification is performed, so that
additions made to one interpretation do not affect other
interpreatations. The more complex the DAG, the more
expensive copying is. It may be that the time required
to copy DAGs is overshadowing the rest of the overhead
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Figure 3: CPU time vs. sentences length in TDLINK

required in constructing a new edge, meaning that edge
construction is not a constant time operation. Both of
these possible difficulties will be discussed below.

Discarded Edges

Sometimes a rule is applied which eventually results in
a failed unification. The reason that this happens is
due to the bottom-up application of rules found in the
reachability table. Thus, all the information contained in
expectations, except for an expectation’s syntactic cat-
egory, is not used until after a sequence of rules that
connect a word to an expectation has already been ap-
plied. This may result in a lot of unnecessary work,
if the newly constructed edges are discarded due to a
failed unification at the end of the process. We saw an
example of this scenario in section 3: TDLINK tried to
construct two VP edges beginning with the word “eats”,
only to discard the edge corresponding to the VP rule
for intransitive verbs.

The reachability table only utilizes the syntactic cat-
egory of an expectation and a word. If additional infor-
mation from expectations could be utilized during the
bottom-up construction of edges which connect a word
to an expectation, it might be possible to cut down on
the number of discarded edges that are constructed by
TDLINK.

We are currently investigating ways to do this. First,
we wish to modify the reachability table entries to a form
wherein additional information from expectations is di-
rectly accessible from a word. This way, rule sequences
which will lead to unsuccessful unification at the end of
bottom-up application can be eliminated from consider-
ation immediately, and the number of discarded edges
will decrease. Connection between an expectation and a
word can be automatically constructed by pre-compiling
the list of grammar rules in each table entry; one com-
plete DAG which connects two categories will have the



expectation in 1its root node and the word in its left-
corner descendant position, and it will indicate what
features (of all kinds) must unify between them. By
using this complete DAG, both syntactic and semantic
information contained in an expectation at any point in
the parse can be brought down to a word: when the ex-
pectation is unified with the complete DAG at the top
node, the left-corner descendant will inherit some fea-
tures which must be found in the next input word.

Complete DAGs can also bring down the features spec-
ified 1n the grammar rules to a word: some of the syntac-
tic and semantic features tested during bottom-up rule
application are propagated down and become directly ac-
cessible from the the left-corner descendant. Then, those
features are used to cut down the number of discarded
edges: if, during the parse, the input word does not unify
with the left-corner descenddant of the complete DAG,
then no edge will be created. From the previous ex-
ample sentence “Pat eats the sandwich.”, in processing
“eats” from the input, the intransitive VP rule will be
eliminated from consideration immediately after the un-
successful unification of “eats” with this rule’s expected
verb. By using complete DAGs, since no processing time
will be wasted by discarded edges, we expect CPU time
to decrease.

We are presently implementing a version of TDLINK
which uses this reachability table. In this version, com-
plete DAGs are simplified into DAGs with the top-most
category (expectation) and the left-corner descendant
(word). Those two categories are directly connected by a
special arc named LC; each DAG is associated with one
or more rule sequences which compile into the DAG.
Although no features from the intermediate rules are
recorded in the DAG except for the ones propagated to
an expectation or a word, bottom-up rule application is
still required to test if the rule sequence will actually lead
to successful unification. However, additinal information
from expectations can still be utilized to disambiguate
the parse and eliminate discarded edges.

Another modification we wish to make to the reach-
ability table is the rule hierarchy. We like to organize
the grammar rules which connect an expectation to a
word into a discrimination network where each node in
the network indicates a value to be found for a spe-
cific feature in the word and the grammar rules to se-
lect or eliminate. This discrimination network can be
constructed automatically by using the complete DAGs
described above. After complete DAGs are created for
all rule sequences, features in the left-corner descendants
are further analyzed to form a hierarchy of feature-value
tests. In our example, under the table entry for con-
necting a VP expectation with a V, the TYPE feature
would be tested first in the discrimination net. If a value
other than INTRANSITIVE is found in the word, this
eliminates the first VP rule (egs. 16-18) from considera-
tion, and if a value other than TRANSITIVE is found,
this eliminates the second VP rule (egs. 19-23). Since
rules are selected by value lookup which requires con-
stant time rather than DAG unification, by using this
rule hierarchy, we expect the parsing performance to im-

prove significantly.

DAG copying

The second potential impediment to achieving linear per-
formance in TDLINK is the amount of DAG copying
that 1s currently done during unification. In TDLINK,
features are added to previous expectations as parsing
proceeds; thus, copying expectation DAGs necessarily
becomes expensive by more than a linear factor. In other
words, the time required to copy DAGs may be overshad-
owing the time to construct an edge. If we can minimize
the amount of this expensive DAG copying, the process-
ing time may stay linearly proportional to the number
of edges.

One way to minimize DAG copying is to modify uni-
fication in TDLINK to a non-destructive operation; a
resulting new DAG is created only if two DAGs unify.
However, this non-destructive unification must be no
more expensive than the destructive one; depending on
how it is implemented, processing time to decide if two
DAGs unify may alone be as expensive as copying them.
Attempts to build efficient non-destructive unification
algorithms have shown promise (Wroblewski, 1990; God-
den, 1990).

Non-destructive unification will be most effective when
unification is applied to DAGs that are fairly big and im-
compatible. This situation can happen at two places in
TDLINK: at the end of bottom-up rule application when
the expectation is unified with the resulting DAG, and
at the end of each grammar rule when all the children are
unified to form the parent DAG. Significant reduction in
the expense of copying these large DAGs may result in
linear performance of our algorithm.
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