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Abstract

Multi-scale models of amphiphilic assemblies

by

Xiaoxuan Liu
Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Phillip Geissler, Chair

Nature utilizes amphiphilic assemblies to compartmentalize different chemical environ-
ments, modulate interfacial properties and reaction rates, and create complex materials
with mesoscopic order. Many models explain the phase behavior of amphiphiles, but
our understanding of the non-equilibrium behaviors of amphiphilic assemblies is limited.
There exists a vast and rich space of structural and functional variations unexplored by
equilibrium methods and models. A recent set of amphiphilic self-assembly experiments
have suggested that non-equilibrium pathways of amphiphilic assemblies are complex and
poorly understood[1]. In the experiments, assembly of 2-oxooctanoic acid was photoini-
tiated and eventually yielded monodisperse aggregates of long-term stability. In this
dissertation, I explore various states of amphiphilic assemblies and the non-equilibrium
processes that interconnect these states in the context of the photoinitiated assembly
model system. In Chapter 2, I used molecular dynamics simulations to study structural
variations and mechanisms of formation of the early nuclei from aqueous solution. Im-
portance sampling and classical nucleation theory were employed to estimate the rate of
nucleation. I found that the kinetics of coaggregation, where a mixture of more than
one amphiphilic species, could differ significantly from that of single-species aggregation.
Specifically, the participation of a second species could open up new pathways of growth
and introduce microscopic phase separation of the two species within the aggregates and
as a result modulate the growth rates. In Chapter 3, I computed the solutions to master-
equation chemical kinetic models of amphiphilic aggregation pathways. I found that a
large critical nucleus size is an important factor that contributes to the production of a
narrow aggregate size distribution, a highly desirable characteristic in the preparation of
self-assembled nanoparticles. I incorporate the elementary steps of nucleation, growth,
and a source of precursor molecules to observe the effects of competing elementary rates
on the aggregate size distribution. In Chapter 4, I furthered the development of the
charge-frustrated Ising model to represent amphiphilic species with non-zero spontaneous
curvatures. I also built in the correct interfacial roughness by using two lattice spacings
in the same lattice model.
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Chapter 1

Introduction to amphiphilic
assemblies

1.1 Amphiphiles and their phase behaviors
Liquids are often classified as hydrophilic (water-loving) and hydrophobic (water-

hating). On their own, hydrophobic and hydrophilic molecules have mismatched inter-
actions that make their mixing unfavorable; mixtures of hydrophilic and hydrophobic
molecules are therefore in general capable of segregating into distinct phases.

Amphiphilic molecules possess one or more hydrophobic (groups of) atoms and one or
more hydrophilic (groups of) atoms. In amphiphilic molecules, the two types of groups
are connected by a covalent bond that prevents the two groups from phase separation.
Consequently, amphiphilic molecules tend to sit at the interface between macroscopic
hydrophobic and hydrophilic phases, such as the air-water or the oil-water interfaces. In
addition, supramolecular assemblies in the liquid phase often involve the creation of such
interfaces from solution. Due to their ability to modulate liquid interfacial properties and
liquid-phase assemblies, amphiphiles are widely seen in nature.

A common household example is milk, which contains casein micelles and milk fat
globules as the major insoluble components[2]. Casein micelles are the source of calcium
in milk and are not micelles in the conventional sense but large, 50 to 250 nm aggregates
coated with peptide chains that prevent coagulation[3]. In the process of making cheese
and yogurt, casein is denatured to expose the hydrophobic regions of the polypeptide,
yielding a cross-linked gel. Despite their technological relevance, the interior structure of
casein micelles, or even their existence, remains a topic of debate.

The milk fat globules on the other hand exemplify a method of fat transport commonly
seen in biological systems[4]. Fat molecules such as triacylglycerides are important for
energy storage, but their hydrophobic nature would force them to macroscopically phase
separate at high concentrations from the aqueous cellular environment. Such separation
does not allow the organism to control the equilibrium between increasing and depleting



2

energy storage. Evolution’s solution to this problem is to coat the hydrophobic molecules
with amphiphilic molecules to form a membrane[5, 6], which stabilizes the fat-water in-
terfaces and prevents macroscale separation[7]. The membrane can be further tagged by
amphiphilic proteins for signaling and transporting to specific locations in the cellular
environment[8]. In milk, the fat globules secreted into the suspension are coated with
three monolayers of phospholipids, whereas in adipose tissues intracellular energy storage
utilizes lipid droplets that have only a monolayer of phospholipids.

Amphiphiles can form more than just monolayers at the interfaces of hydrophilic and
hydrophobic environments. At high concentrations, the interfacial surface areas are no
longer large enough to accommodate all the amphiphilic molecules, and in response to
that amphiphilic molecules create increasingly more interfacial area by assembling into
clusters and networks with microscopic phase separation[9]. For instance, in water, a
highly concentrated solution of amphiphiles will form microscopic micellar aggregates,
which can further assemble hierarchically into a lyotropic liquid crystal of micelles, and
further fuse into two interconnected networks of water and hydrophobic groups.

The lyotropic liquid crystalline phase has received attention for its potential as a ve-
hicle for drug delivery[10]. Hydrophobic drug molecules can be incorporated into the
hydrophobic regions of the amphiphilic assemblies[11]. The existence of a layer of am-
phiphiles can also protect the carried drug from degradation and aid the entrance of the
drug molecules through the endocytosis pathways[12]. A prominent recent example is the
mRNA-lipid nanoparticle complex, which has negatively charged nucleic acid conjugated
with positively charged lipids[13, 14, 15, 16].

1.2 Models of amphiphiles
Despite their common appearance, our understanding of amphiphilic assemblies is lim-

ited. Most current models are only applicable for rationalizing an observed assembly. The
ultimate goal of studying self-assembly is to be able to predict and thus design assem-
bled states[17], as well as predict the dynamics with which the system evolves towards
the assembled states, but it is often the case that we have neither the resolution nor the
predictive capability for the microscopic structure of these assemblies.

1.2.1 Membrane as elastic sheets
In 1925, Gorter and Grendel deposited the constituent lipids of the red blood cell

plasma membranes in a monolayer and measured its surface area to prove that the mem-
branes are bilayers[18]. It wasn’t until half a century later that Helfrich proposed a
continuum theory of membrane elasticity[19] to argue that curvature elasticity controls
the shape of assembled lipid bilayers. Seifert and Lipowski then used the Helfrich model
to draw phase diagrams for shape transformations of vesicles[20] and explain the mecha-
nism of vesicle adhesion[21]. Safran then resolved the paradox of vesicle thermodynamic
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stability by examining the Helfrich model of a two-component lipid mixture with oppo-
site curvatures[22]. More recently, Levine et al. showed that the CHARMM36 molecular
dynamics force field can reproduce experimentally measured mechanical properties of
phospholipid bilayers[23].

What these models all share in common is the treatment of the plasma membrane as
elastic sheets with mechanical properties associated with the material. They have been
successful in modeling micron-scale behavior such as the shape deformations of cells.
They cannot however be used to model transformations that involve the disassembly or
dissolution of constituent lipids.

1.2.2 Molecular geometry
Due to their broad definition, amphiphiles are a class of compounds that exhibit a large

range of chemical diversity due to the possible hydrophobic and hydrophilic groups that
can be combined. In principle, it should be possible to connect the continuum models that
treat membranes as elastic sheets to a molecular perspective and predict the membrane
material properties from molecular structure.

To do this, Israelachvili proposed a packing parameter that summarizes the molecular
structure of an amphiphilic molecule by its shape[24]. The hydrophilic head group can
be assigned a size based on the functional groups it contains, its charge, and coordina-
tion number with solvents. Similarly, the hydrophobic tail group can be assigned a size
primarily based on the number of tails, the number of carbons in the chain, and any
unsaturated carbon-carbon bonds that cause the tails to bend. Overall, the amphiphile
is therefore considered either a cone (small head, large tail), a cylinder (comparably sized
head and tail), or an inverted cone (large head, small tail).

This geometric view is a qualitative proxy to the factors that affect non-translational
chemical potential of the monomer. It is then possible to model the chemical equilib-
rium of various states of assemblies at different concentrations. The conical amphiphiles
will preferentially assemble into micelles (also known as oil-in-water micelles) or other
structures with the same concave curvature. The inverted conical amphiphiles will prefer-
entially assemble into inverted micelles (also known as water-in-oil micelles). Finally, the
cylindrical micelles will preferentially assemble into bicelles (also known as bilayer discs).

1.2.3 Field-theoretic models
The Ising model is a minimal model that encompasses the liquid phase behaviors

from which the hydrophobic effect[25] arises. Initially intended for modeling the phase
transitions of ferromagnets, the +1 and −1 magnetic spins can be instead seen as the
occupation or densities of a hydrophobic substance and a hydrophilic substance. Since
the assembly of amphiphilic species at its core is also due to the hydrophobic effect, a
modified version of the Ising model should apply to the study of amphiphilic assemblies.
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Indeed, Wu et al. showed that the density correlation functions of a solution of am-
phiphiles can be expanded in Fourier space and then truncated to second-order of wavevec-
tor k to preserve only the small-k (or large scale in real space) behaviors of assembly[26]. It
turned out that the truncated density correlation, and the corresponding effective Hamil-
tonian found through Gaussian field theory, are identical to that of a solution of charges.
More specifically, the density of amphiphilic molecules can be represented in the Ising
model by placing opposite effective charges on the up and down spins. That is, the up
spins will gain a positive charge, while the down spins will gain a negative charge. As a
result, the opposite spins have an unfavorable interaction but the electrostatic interaction
that arises between the opposing spins is attractive and favorable.

Under equilibrium conditions, the electrostatic analogy and the charge-frustrated Ising
model can ultimately bridge microscopic molecular properties (in the form of intramolec-
ular density correlation functions) with macroscopic treatments of membranes as elastic
sheets[27]. The electrostatic analogy is also capable of reproducing other dense lyotropic
liquid crystal phases at equilibrium[28].

1.3 Photoinitiated assembly
Due to their significance in biological systems, theories of the conformations of bi-

layer membranes from molecular to continuum models at or near equilibrium have long
attracted the interest of biophysicists. But the conformational space of amphiphilic as-
semblies is vast, and the out-of-equilibrium pathways that a system may traverse are
poorly understood.

Various elements of amphiphile assembly can be studied using a model system of 2-
oxooctanoic acid (OOA)[1, 29]. Initially, OOA is dissolved in an aqueous solution at low
pH to ensure that the carboxylate group is protonated. UV radiation is introduced to
catalyze the formation of a free radical at the second, ketone carbon (C2), which can
dimerize with another free radial in its vicinity to form dihexyltartaric acid (DHTA). The
structural formulae of the aforementioned molecules are shown in Fig.1.1 and Fig.1.2.

The chemical transition then triggers a series of events that lead to the formation of
aggregates that range from 100 to 1000 nm in diameter. The progress of aggregation
can be monitored by dynamic light scattering (DLS) because aggregates of different sizes
scatter a laser beam differently. Two notable features of the aggregate size time evolution
are an initial hour-long induction time and a final aggregate population with a narrow
size distribution.

This thesis details an exploration of amphiphilic assemblies with tools of theory and
simulation, using the photoinitiated assembly of OOA and DHTA as a model system,
to paint a fuller picture of the dynamics and structures of amphiphilic assemblies via a
bottom-up understanding of the underlying molecular properties.
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Figure 1.1: Structural formula of 2-oxooctanoic acid (OOA).

Figure 1.2: Structural formula of one of the stereoisomers of dihexyltartaric acid (DHTA).
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Chapter 2

Molecular Dynamics Simulations of
OOA and DHTA

2.1 Motivation
The photoinitiated assembly of OOA and DHTA can be studied using molecular dy-

namics (MD) simulations of fully atomistic detail. The reason for doing so is not to repro-
duce the events observed over experimental timescales, which would be too long (hours)
and the system too large (centimeters) for even the most high-performing computer sim-
ulations today; but instead to investigate the building blocks and elementary mechanisms
of assembly without making assumptions a priori. Contrary to the intractably long simu-
lation time that a full simulation of the experimental system poses, the elementary steps’
timescale (nanoseconds) and molecular lengthscale (nanometers) are well within reach of
computer simulations. Once these physical characteristics of the molecular mechanism
are determined, they form the foundation for other techniques such as master equations
and field theory, which extend the modeling to experimental scales. In this chapter, I
present the results of MD simulations using the OPLS-AA force field [30] and discuss
their implications for building larger-scale models detailed in subsequent chapters. All
simulations were performed using the GROMACS simulation engine[31]. Analysis and
biased sampling were carried out using the open-source, community-developed PLUMED
library[32], version 2.6[33].

2.2 Molecular configurations in bulk environments
OOA is a linear, 8-carbon alpha-keto carboxylic acid that is fully protonated under ex-

perimental conditions (pH 2). Photo-catalyzed dimerization at the keto-carbon produces
the double-tailed DHTA with 6 carbons in each tail. The sites of dimerization become
chiral, but in the absence of any evidence for enantio-selectivity the mixture is likely
racemic with 25% (R,R)-DHTA and 25% (S,S)-DHTA, in addition to the diastereoisomer
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Figure 2.1: Probability density of splay angle of DHTA in the aqueous phase (left) and
the organic phase (right).

(R,S)-DHTA that accounts for another 50%.
For the mixture of OOA and DHTA at a fixed total volume fraction in an aqueous

solution, dimerization is expected to reduce the solubility of the mixture because the ideal
(entropic) part of the solution’s chemical potential is reduced by kBT ln 2.

Both OOA and DHTA are 1 nm long from the carboxylic acid (head) carbon to last
carbon of the alkyl tail. This implied the molecular size is borderline for the hydrophobic
effect to cause the tails to collapse against each other because water might still be able
to accommodate the presence of tails without breaking its hydrogen bonding network.
Statistics for tail alignment are shown in Fig.2.1.

In these measurements, a DHTA is solvated in TIP3P water. Its alcohol carbons
(C2,C2’) are tagged as the head carbon, and the last carbons (C8,C8’) on each tail are
tagged as the tail carbon. The C2-C8, C2’-C8’ and C8-C8’ distances are measured. The
probability densities show that when a single DHTA molecule is solvated in water, the
tail carbons are at about twice the distance between a head carbon and a tail carbon.
This can be understood by inspecting the two possible molecular configurations of DHTA,
one in parallel alignment and the other one splayed, which are illustrated in Fig.2.2. The
C2 and C8 carbons are highlighted in green. The molecular dynamics data point to a
preference for a splayed arrangement. The same splay is observed in simulations of the
organic bulk liquid that consists purely of DHTA molecules.

When the tails on a DHTA molecule are splayed to more than 90 degrees and some-
times to 180 degrees, the molecule takes up a tail-head-tail, or hydrophobic-hydrophilic-
hydrophobic configuration instead of the conventional head-tail, or hydrophilic-hydrophobic
configuration. Such a molecular configuration implies that the single-tail OOA and
double-tail DHTA are now distinct building blocks. While OOA is a more typical surfac-
tant that has the head-tail configuration, DHTA is not.
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Figure 2.2: Molecular configuration of DHTA in the conventional head-tail arrangement
(left) and in the tail-head-tail arrangement (right).

These observations contrast with those of most long-chain biological lipids that con-
tain 12 to 18 carbons. Due to their greater lengths, the tails prefer to align in parallel
with minimal splay. These lipids are the main structural components of biological mem-
branes, so parallel alignment is essential for maintaining a stable lamellar structure. It
has been hypothesized that tail splay mediates the interactions between two membranes
and eventually causes fusion.

2.3 Dynamics in the organic bulk
During the simulations of bulk organic phases at fixed pressure, the density of bulk

DHTA was observed to relax more slowly (> 10 ns) than that of bulk OOA (< 0.1 ns).
Even after density appears to have reached its steady-state value, the density fluctuations
were greater for DHTA than for OOA at the same volume fraction, pressure, and temper-
ature. Therefore, one or more slow molecular timescales must be present in DHTA but
not in OOA to form the bottleneck for the bulk organic phase of DHTA to relax at least
two orders of magnitude more slowly than OOA does.

By inspection of the simulation trajectories integrated at room temperature (298 K),
relaxation of the angle θ between the C2-C8 and C2’-C8’ tail vectors appears to be a slow
molecular process. As computation becomes increasingly costly for longer simulation
time, it was unfeasible to let the simulation run for much longer at room temperature to
determine the true relaxation time of order parameter θ.



9

Figure 2.3: Probability distribution of the angle θ between two tails on the same DHTA
molecule, averaged over 400 molecules in isotropic bulk environment at 373 K.

Therefore, the simulation box was heated to 373 K to measure a shortened correlation
time, which was found to be around 10 ns as shown in Fig.2.3. Over a sampling time of
10 ns, the probability distribution of cos θ for the box of 400 DHTA molecules contains up
to 800 independent samples. The distribution shows a strong preference for antiparallel
alignment of the tails (cos θ = −1) and a minimal preference for parallel alignment (cos θ =
+1). A second peak is also observed when the two tails are at a slightly greater than right
angle to each other.

The data indicate that at room temperature the configurations of DHTA molecules in
its bulk organic phase relax over timescales much longer than 10 ns, possibly impeding
other processes involved in the nucleation and growth, such as the adsorption-desorption
of monomers and surface relaxation pathways necessary for coalescence and fragmentation
during aggregation. The precursor OOA, with only one tail, would not be expected to
exhibit such behavior.

Another dynamical quantity of interest for studying surface mechanisms and the ag-
gregation pathways, in general, is the diffusion coefficient. Fig.2.4 shows the root mean
squared displacement (MSD) and probability distribution of displacements of DHTA
molecules in the bulk organic phase at room temperature. DHTA ceased to move af-
ter the initial relaxation period of 10 ns. The diffusion coefficient is effectively zero.

Heating the system to higher temperatures (348 K, 398 K, and 500 K) reveals that the
linear regime of MSD is gradually regained, as demonstrated in Fig.2.5. At 398 K, a regime
of conventional diffusion where MSD is proportional to time appears with a diffusion
coefficient of 0.08 × 10−10m2/s. When further heated to 500 K, diffusion accelerated to
10.70× 10−10m2/s. For comparison, a typical diffusion coefficient for globular proteins in
solution is on the order of 10−10m2/s, whereas water’s self-diffusion coefficient is 23.0 ×
10−10m2/s at room temperature. The dramatic increase in the diffusion coefficient upon



10

Figure 2.4: Displacement of 10 DHTA molecules, MSD averaged over the whole system,
and probability distribution of displacements along the x-axis for bulk DHTA at 298 K
over 30 ns.

Figure 2.5: MSD of bulk DHTA at increasing temperatures (348 K, 398 K, and 500 K).

increases in temperature implies a strongly T -dependent mobility µ the Einstein relation,

D = µkBT

where µ is the mobility. So we must conclude that the DHTA is either a solid or a highly
viscous fluid at room temperature, but undergoes a transition to a much less viscous liquid
state upon heating to higher temperatures (over 398 K).

2.4 Molecular configurations near interfaces with wa-
ter

To further understand the structural consequences of different head group and tail
group arrangements between OOA and DHTA, structural gradations between the aqueous
bulk environment and the organic bulk environment can be investigated by molecular
dynamics simulations. In these simulations, the systems contain a slab of organic material
(either OOA or DHTA) at the center of the box. A slab of water of 2 nm thick is added
along the x-axis, padding either side of the slab to create two interfaces with the organic
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Figure 2.6: Snapshot of OOA at water-organic interface

phase. Snapshots of the simulation boxes are shown in Fig.2.6 and Fig.2.8.
Deep inside the bulk phase, molecules have no orientational preferences in the isotropic

environment. Closer to the interface with water, the broken symmetry is expected to
induce orientational ordering. This is observed in the case of OOA’s interface with water
in Fig. 2.7. Densities of C2 head carbons and C8 tail carbons and the angle α between
the molecular axis (defined as the vector between C2 and C8) and x-axis of the box are
plotted as a function of their x-coordinates. The strongest layering is observed at both
interfaces (x = −6 nm and x = +6 nm). The layer is attenuated deeper into the interface
but extends at least 6 nm into the interface.

The same is not observed in the interface simulation data of DHTA (illustrated in
Fig.2.8), where the organic phase no longer has a clear preference for the formation of
a micellar or lamellar phase despite the broken symmetry at the interface. The density
profiles of head carbons (C2, C2’) and tail carbons (C8, C8’) are not showing any clear
layering. Angle α shows essentially no preference for any direction.

Similarly, Fig.2.10 shows the angle θ between two tails inside a DHTA molecule at
different depths from the interface. No significant change in angular preference is observed
for different depths. The reason behind the absence of interface-induced ordering is likely
the slow dynamics, preventing equilibration in our simulations as detailed in the previous
section.
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Figure 2.7: Orientation of OOA at water-organic interface

Figure 2.8: Snapshot of DHTA at water-organic interface
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Figure 2.9: Orientation of DHTA at water-organic interface

Figure 2.10: Snapshot of DHTA inter-tail angle
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2.5 Molecular configurations in smaller clusters
The assembly of OOA and DHTA is a process that starts from the bulk aqueous

environment and ends with large (> 100nm) aggregates inside of which a bulk organic en-
vironment emerges. Regardless of the specific pathways that could lead from the aqueous
to organic phases, the system is likely to go through a series of smaller clusters. Simula-
tions can assess the structure and thermodynamics of such clusters that contain different
numbers of OOA (N1) and DHTA (N2).

Fig.2.11 shows the radial density profile of carbons in a small cluster that comprises
purely DHTA (N1 = 0, N2 = 30). Following the same numbering scheme as in previous
sections, the carboxylic acid carbons are numbered C1 (red) and the terminal tail carbons
C8 (blue). Farthest away from the center of mass of the cluster, there is no density of
carbon but a constant, bulk density of water. Moving towards the center of mass, we
first encounter a broad peak of C1, followed by consecutive peaks from C2, C3, ..., and
C8, each with successively broader distributions. While the first carbons, C1 to C4, are
confined to the outer layer of the cluster and have a negligible density within 0.3 nm of
the center, the last carbons, C5 to C8, show significant density throughout the cluster
even though the peaks appear near the center. In other words, there is significant tail
group density near the cluster surface and thus significant exposure of the tail carbons to
water.

Our radial density profiles for DHTA carbons compare well with the radial density
profiles of DPPC micelles in literature[34]. This contrasts with the conventional mental
image of a surfactant micelle, which has head groups facing strictly outwards and tail
groups strictly inwards. Having significant tail group density overlapping with the density
of water means that the mental image is only an approximate description of the radial
density peaks rather than a complete description of the micellar surface structure.

Similar tail exposure to solvent is seen in mixed micelles of OOA and DHTA. Ten of the
DHTA molecules in the previous system are replaced with OOA (N1 = 10, N2 = 20) and
equilibrated to produce the radial density profiles shown in Fig.2.12. The OOA carbons
and DHTA carbons of the same number generally have the same peak location, which
means both species have head groups at the interface with water, and tail groups mostly
near the center of the cluster. While the radial densities of this mixed micelle appear
similar to those of the pure micelle, the snapshot of the mixed micelle in Fig.2.13 shows
that angular distribution of OOA and DHTA might not be homogeneous. Throughout
the 30-ns trajectory from which this snapshot was taken, OOA segregates from DHTA
into one or two caps on the surface.

Both radial and angular segregation of the two species can be seen in larger clusters
such as the N1 = 320, N2 = 60 cluster shown in Fig.2.14. The cluster’s composition is
chosen to mimic the early molecular composition of the experimental system. The angular
segregation is visible in the snapshot, where the cluster surface is studded with around a
dozen small groups of DHTA.

The radial density profiles in Fig.2.15 and Fig.2.16 suggest that the large cluster is
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Figure 2.11: Radial density profiles of a N1 = 0, N2 = 30 cluster. Water included in left
plot for comparison.

Figure 2.12: Radial density profiles of a N1 = 10, N2 = 20 cluster. Water included in left
plot for comparison.
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Figure 2.13: Snapshot of a N1 = 10, N2 = 20 cluster showing OOA head carbons (dark
blue) and OOA tail carbons (light blue) segregating from DHTA head carbons (dark
purple) and DHTA tail carbons (light purple). Solvents omitted for clarity.

made of three OOA layers and two DHTA layers. The DHTA head carbons have peaks
at r = 2.7 nm and r = 1.4 nm, which means they are concentrated at the interface with
water and approximately one monolayer’s distance from the interface.

The OOA head carbon peaks are broader and hence more evenly spread throughout
the cluster, with its outermost peak sitting further into the solvent than the DHTA head
carbons do at r = 2.9 nm. A second broad peak appears at r = 1.0 nm. Surprisingly,
the third head carbon density peak appears sharp at the center of mass of the micelle,
where both OOA and DHTA tail carbon densities are low. The center of the cluster is
occupied by OOA head groups. The radial segregation could contribute to the core-shell
organization of large aggregates experimentally observed under the electron microscope.

2.6 Free energy of DHTA association
Homogeneous nucleation is an important molecular mechanism because it necessarily

precedes all aggregation pathways. However, simulating nucleation events using all-atom
molecular dynamics is difficult because the experimental concentration of OOA and DHTA
in the cuvette is no more than 5 mM, which is equivalent to a molar ratio of the order 1
solute to 10000 waters. On top of that, the rare nature of nucleation events further re-
duces the likelihood of ever observing one event in any computationally feasible trajectory
length.
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Figure 2.14: Snapshot of a N1 = 320, N2 = 60 cluster. Solvents molecules are omitted
for clarity.
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Figure 2.15: Radial density profiles of a N1 = 320, N2 = 60 cluster. Water included in
left plot for comparison.

Figure 2.16: Radial density profiles of a N1 = 320, N2 = 60 cluster. Only DHTA carbons
are shown for clarity.
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Figure 2.17: Potential of mean force between two DHTA molecules in aqueous solution.
Grey and red are two segments of the trajectory for error estimates.

Instead of using brute-force simulations to observe large systems over a long time,
umbrella sampling[35] can be used to measure the reversible work, or potential of mean
force (PMF), to move the system along a reaction coordinate. For aggregation, the natural
coordinate of choice is the distance between the center of mass of the cluster and the center
of the mass of the molecule to be added to the cluster, r. Without prior knowledge of
the free energy along the coordinate, it is difficult to guess a bias potential Ubias(r) that
counteracts the PMF w(r). Therefore, parabolic bias potentials with spring constant
k = 300kJ/mol · nm2 were placed to be at a series of 12 points to span the whole range of
r from 0 to 2.4 nm.

Fig.2.17 shows the PMF between two DHTA molecules in water. There is no barrier
to the aggregation of the two molecules. The effective interaction between the centers of
mass of two DHTA molecules is attractive and short-ranged, extending through no more
than 1.2 nm, which is approximately the length of a tail. The most favorable distance of
contact is 0.6 nm with a well depth of −4kBT , but pushing the two molecules any further
closer quickly becomes highly unfavorable due to steric clashing.

Adding DHTA monomers to clusters of larger sizes becomes more thermodyanmically
favorable. Fig.2.18, Fig. 2.19, Fig.2.20, and Fig.2.21 shows that the well-depth grows
from −6kBT to −10kBT , and the basic shape of the PMF is the same: there are no
barriers to monomer addition, and pushing a monomer deep into the core of the cluster is
unfavorable. The latter observation is in agreement with the radial density profile of pure
DHTA micelles with N1 = 0 and N2 = 30 because for the head-out, tail-in arrangement
to be satisfied, a DHTA molecule should not preferentially sit at the core of the cluster.

The PMFs can be integrated to yield equilibrium constants between an (N−1)-cluster,
a monomer, and an N -cluster:
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Figure 2.18: Potential of mean force for adding one DHTA to a cluster of 2, 3, 4, 5, 6, and
7 DHTA molecules in aqueous solution. Blue and red are two segments of the trajectory
for error estimates.
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Figure 2.19: Potential of mean force for adding one DHTA to a cluster of 8, 9, 10, and
11 DHTA molecules in aqueous solution. Blue and red are two segments of the trajectory
for error estimates.
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Figure 2.20: Potential of mean force for adding one DHTA to a cluster of 12, 13, 20, and
25 DHTA molecules in aqueous solution. Blue and red are two segments of the trajectory
for error estimates.
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Figure 2.21: Potential of mean force for adding one DHTA to a cluster of 30, 40, 50, and
60 DHTA molecules in aqueous solution. Blue and red are two segments of the trajectory
for error estimates.
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KN = 1
N

∫
dr e−β[w(r)−w(∞)]

and for a cluster of size N , the equilibrium constants {Ki}Ni=1 determine the free energy
as a function of N , at any solution monomer concentration ρ1:

F (N) = −kBT
N∑
i=1

ln (ρ1Ki)

= −kBT
N∑
i=1

lnKi −NkBT ln ρ1

where we see the solution DHTA monomer concentration adds a linear shift to the function
F (N). Fig.2.22 shows the free energy as a function of cluster size at different solution
monomer concentrations up to 1.7 mM. For the purpose of calculating the nucleation rate,
the relevant features of F (N) are the critical nucleus size at which the barrier appears,
N ‡, and the height of the barrier ∆F ‡:

∆F ‡ = F (N ‡)− F (1)

Due to the linear shift from the −NkBT ln ρ1 term, lower solution monomer concen-
tration causes a higher barrier to appear at larger N . Therefore to observe the barriers for
nucleation for ever lower concentrations, ever larger N values will need to be simulated.

The experimental concentration at which homogeneous nucleation of DHTA occurs
was not directly monitored throughout the reaction time, but the concentrations of DHTA
in the post-photolysis solution as well as the aggregates were measured relative to that
the concentrations of OOA in these environments at the end of the assembly reaction.
The total mass of inside the reaction vessel was conserved to be equal to the single-tail
precursor OOA’s initial concentration of 3 mM. At the end of the reaction, two thirds
of the organic material was incorporated into aggregates and one third remained in the
aqueous solution. The aggregates contained 65% DHTA and 18% OOA in addition to 17%
other photochemical products, whereas the aqueous solution contained 38% DHTA and
32% OOA in additions to 30% other photochemical products. Overall, the total (solution
and aggregate) molar concentration of DHTA does not exceed 0.84 mM at the end of the
reaction, of which 0.65 mM is in the aggregates and 0.19 mM is in solution.

At lower concentrations, such as the 0.19 mM curve shown on in the figure, the free
energy of the cluster has an initial barrier around N = 10 DHTA molecules, which is
expected for a hydrophobic phase nucleating out of solution. However, after the barrier,
instead of rapidly decreasing, the the curve reaches a metastable trough and turns back
up again. This is the result of the DHTA molecule being amphiphilic rather than fully
hydrophobic, and is consistent with our understanding that micelles have a preferred size.
The preferred size depends on the concentration of DHTA in the aqueous phase. At the



25

Figure 2.22: Free energy (in units of kBT ) as a function of number of molecules in the
cluster. Colors are for different soluble DHTA monomer concentration in equilibrium
with the cluster as shown in the legend. The dark red curve (0.19 mM) is the closest to
experimental conditions.
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experimental concentration (0.19 mM) the metastable size is 24 DHTA molecules, whereas
.

Within the cluster size range of 2 to 61 DHTA molecules, the radii of gyration observed
in simulations follow the compact scaling law

Rg(N) = Rg(1)N1/3

where Rg(1) is 0.402 nm. A cluster of 24 DHTA molecules exhibits a radius of gyration
of 1.16 nm. The two-orders-of-magnitude discrepancy between the predicted pure-DHTA
cluster radius (1.16 nm) and and experimentally observed mixed OOA and DHTA cluster
radii (over 100 nm) suggests homogeneous nucleation of DHTA molecules alone is unlikely
to account for all the aggregation in the system.

2.7 Nucleation kinetics of DHTA
In the previous section, we established that the small equilibrium cluster radius pre-

dicted from free energy measurements of a pure DHTA system is in disagreement with
the large cluster radii observed in experiments of mixtures of OOA and DHTA. It is clear
that for the large 100 nm aggregates to form, both OOA and DHTA need to participate
in the aggregation pathways.

But the role of homogeneous nucleation of DHTA in relation to cannot be neglected.
The first step to any aggregation pathway in solution is homogeneous nucleation. The
pure OOA at the experimental concentration is fully soluble, which means the aqueous
OOA will not spontaneously nucleate. In this case the nuclei must be composed of either
pure DHTA or a mixture of OOA and DHTA. Therefore, regardless of the cluster sizes at
the late stages of reaction, the nucleation kinetics of DHTA is relevant to the early stages
of the reaction, especially the long induction time.

The free energy profile as a function of cluster size provides the necessary information
for estimating the rate of nucleation at various aqueous concentrations of DHTA. One
approach is to apply Transition State Theory (TST), which says that once a barrier height
has been observed on the free energy F (N), a nucleation rate can then be computed using
classical nucleation theory[36, 37, 38]:

kn = Zvρ1e
−β∆F ‡

where v is the speed along the reaction coordinate N at the critical nucleus size N ‡, and
Z is the Zeldovich factor which accounts for the diffusive recrossing. .

An alternative approach to the TST is to use a master equation to model the stepwise
association and dissociation that lead up to the critical nucleus size. Given the wealth
of information available on the full free energy profile F (N), I will adopt this approach
instead of TST.
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A master equation describes the time evolution of a system through n possible states.
It assigns a probability density to each state that the system may occupy at any time,
{pi(t)}ni=1, and a transition rate constant to every pair of states, {k(i→ j)}ni,j=1.

This systematic description applies well to the aggregation pathway of DHTA, where
every cluster size N at time t is a state to which we assign a probability density pN(t).
The collection of all such states from cluster size N = 2 to cluster size N = Nmax written
as a vector:

p(t) =


p2(t)
p3(t)
...

pNmax(t)


The transition rate constants can be written as a matrix:

W =



−w+
1 w−2

w+
1 −(w+

2 + w−2 )
w+

2
. . .

w−Nmax−1
−(w+

Nmax−1 + w−Nmax−1) w−Nmax

w+
Nmax−1 −w−Nmax


where w+

i denotes the rate constant of one DHTA monomer associating to a cluster of size
i, and w−i denotes the rate constant of dissociating from a cluster of size i. The transitions
rate constants with subscripts 5, . . . , Nmax − 2 are omitted for clarity. Only the diagonal
and immediately off-diagonal elements are non-zero because the clusters are assumed to
grow one DHTA at a time.

The master equation combines the rate constants and the occupational probabilities:

∂p
∂t

= Wp(t)

which can be solved to yield the cluster size distribution over time.

2.7.1 Association rates
The rate constants can be found from the free energy profile F (N) presented in the

previous section. For the association rate constants (with superscript +), we are interested
in the rate of transition from a state of cluster size N to N + 1 by adding a monomer.
The rate for this process is

w+
NpN(t) = kd(N)ρ1pN(t)
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where on the right-hand side the transition rate constant w+
N has been decomposed into a

monomer-independent part kd(N) and the monomer concentration itself ρ1. Since F (N)
shows no barrier to association, the monomer-independent part kd(N) can be assumed
diffusion-limited,

kd(N) = 4πD(N)R(N)

where D(N) is the diffusion coefficient of the N -cluster, R(N) is the radial distance from
the center of the cluster within which a monomer will experience a net-inward pull.

To estimate the diffusion coefficients D(N), we consider that water has a molecule
size of 0.270 nm, which means its radius is about 0.135 nm. Its self-diffusion coefficient
is 2.29 × 10−9m2/s at room temperature. The DHTA monomer’s radius of gyration is
0.402 nm. The Einstein-Stokes relation says that the diffusion coefficient is inversely
proportional to the hydrodynamic radii, which we approximate to be 0.135 nm and 0.402
nm for water and DHTA respectively. So the diffusion coefficient of a DHTA monomer is
approximately

D(1) = DwaterRwater

RDHTA
= 2.29× 10−9m2/s× 0.135 nm

0.402 nm = 7.7× 10−10m2/s

Given that the DHTA clusters follow the compact scaling law R ∼ N1/3, we can
further write

D(N) = D(1)
N1/3 .

From the free energy profiles, R(N) is observed to scale as

R(N) = R(1)N0.21

where R(1) = 1.4 nm.
Combining all elements, the association rate constant is

w+
N = ρ1kd(N) = ρ1N

−0.1231.35× 10−17m3/s

which has the dimension of inverse time.

2.7.2 Dissociation rates
The free energy profile F (N) contains information about the equilibrium among all

cluster sizes 2, ..., Nmax. Detailed balance must be obeyed at equilibrium, so the disso-
ciation rate constants (with superscript −) are related to the association rate constants
by

ρ̄Nw
+
N = ρ̄N+1w

−
N+1
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where ρ̄N is the density of N -clusters at equilibrium. At equilibrium, the left-hand side
of this equality can be expanded to

ρ̄Nkd(N)ρ̄1 = ρ̄N+1w
−
N+1

and rearranged to

w−N+1 = ρ̄N ρ̄1kd(N)
ρ̄N+1

from which we identify the equilibrium constant

KN+1 = ρ̄N+1

ρ̄N ρ̄1

and it is related to the free energy profile by

KN+1 = ρ̄N+1

ρ̄N
× 1
ρ̄1

= e−β[F (N+1)−F (N)] × 1
ρ̄1
.

So the dissociation rate constant of the (N + 1)-cluster is

w−N+1 = ρ̄1kd(N)
e−β[F (N+1)−F (N)]

for which we also previously found

kd(N) = N−0.1231.35× 10−17m3/s .
and equilibrium DHTA monomer concentration is

ρ̄1 = 0.19 mM = 1.14× 1023 m−3

We can now use the dissociation and association rate constants to infer the non-equilibrium
nucleation flux.

2.7.3 Numerical propagation
Numerically propagating the master equation

∂p
∂t

= Wp(t)

gives the cluster size distribution p(t) shown in Fig.2.23 and Fig.2.24 for two different
equilibrium aqueous concentrations, 1.5 mM and 0.76 mM respectively. The numerical
integrations are carried out at a timestep size of 1 fs and the total time propagated is 1
ms. The pre-critical cluster sizes under N = 10 are omitted for clarity. The figures also
show a linear increase to the total nuclei probability on the right-hand side, from which
a nucleation rate can be calculated.
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Figure 2.23: Numerical solution to the master equation evaluated at an equilibrium aque-
ous concentration of 1.5 mM.

Figure 2.24: Numerical solution to the master equation evaluated at an equilibrium aque-
ous concentration of 0.76 mM.
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While not shown in the figures, the numerical solutions at the terminal experimental
aqueous concentration of 0.19 mM did not yield any nuclei during the 1 ms. This is a
consequence of F (N)’s global minimum sitting in the monomer state N = 1 at 0.19 mM
(Fig.2.22). This means the aqueous solution will not spontaneously nucleate new DHTA
clusters and is consistent with the final stability of the experimental system.

The numerical solutions also inform us about the early stages of the reaction. If all 3
mM of OOA in the starting aqueous solution was converted to DHTA before nucleation
occurs, the solution would contain 1.5 mM of DHTA. In that case, there is a 8% probability
that the solution has nucleated after 1 ms, which means on average 0.12 mM of DHTA
is incorporated into DHTA clusters of average size 24 molecules, or equivalently a cluster
density of 5 µM. This implies a nucleation rate of 3× 1018 events per second per liter.

If only half of the OOA is converted into DHTA before nucleation occurs, the solution
would contain around 0.76 mM of DHTA. In that case, there is a 0.05% probability that
the solution has nucleated after 1 ms, which means on average 0.38 µM of DHTA is
incorporated into DHTA clusters of average size 22 molecules, or equivalently a cluster
density of 17 nM. This implies a nucleation rate of 1.0× 1016 events per second per liter,
300 times slower than that at 1.5 mM.

The experiments yield aggregates of radius 100 nm from a solution of 3 mM of OOA, 2
mM of which is incorporated into aggregates either in the form of OOA or DHTA. Given
that the organic material has a density of 900 g/L and the molar weight of OOA is 158
g/mol, the volume of OOA or DHTA in aggregates occupies

2× 10−3 mol
L × 158 g

mol
900 g

L
= 3.5× 10−4 of aqueous solution volume.

Each liter of aqueous solution therefore contains

3.5× 10−4L× 10−3 m3

L
4π
3 ×

(
100nm× 10−9 m

nm

)3 = 8× 1013 aggregates / L.

This aggregation concentration takes only 30 µs at 1.5 mM and 8 ms at 0.76 mM.
Nucleation of DHTA must have taken place at even lower concentrations than 0.76 mM.
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Chapter 3

Aggregation kinetics

3.1 Motivation
The experiments observed the light-activated production of surface-active molecules

coupled to subsequent aggregation of these product molecules in solution. At the high-
est level, the steps leading from solvated 2-OOA molecules to aggregates around 100nm
in size can be divided into three categories: photochemistry, interfacial reactions, and
aggregation.

In the following, I will list all the possible elementary steps of each category of reac-
tions, and postulate the relative importance of each step for limiting the overall rate of
aggregate formation based on what we know about intermolecular interactions of these
molecules and what experiments with additional perturbations might have implied. I will
then collect this rate-determining subset of elementary mechanisms, combine them into
systems of differential rate equations, and solve them numerically to demonstrate simple
scaling laws whenever possible.

Given the values of rate constants, these theoretical calculations can inform us how
the system’s chemical composition, interfacial partitioning, aggregate mass, average ag-
gregate size, and aggregate size distributions evolve. However, it is the reverse procedure
that elucidates the underlying physics: given the experimentally measured time evolu-
tions of chemical composition, interfacial partitioning, aggregate mass, average aggregate
size, and aggregate size distributions, it should be possible to fit experimental kinetic
curves to theoretical calculations and ultimately extract rate constants of the elementary
mechanisms.

3.1.1 Photochemistry
The post-photolysis solution appears homogeneous, so we assume that the system

is well-mixed. Mean-field kinetics are assumed instead of diffusion-controlled reaction
kinetics. Single-tailed molecules S are converted into activated molecules S∗ by UV light,
which then react with un-activated monomers to yield radicals S◦. We assume only single-
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reaction equation rate
Photoactivation S→ S∗ k∗[S]
Radical formation S∗ + S→ S◦ + S k◦[S][S∗]

Radical combination 2S◦ → D kD[S◦]2

Table 3.1: Elementary photochemical mechanisms that convert OOA to DHTA.

tailed molecules are photoactivated and turned into radicals because there are very few
double-tails available as reactants for further radical polymerization. This means 2-OOA
polymerization does not go further than double tails to any significant extent within the
experimental timescale, so I will neglect the triple-tail formation steps. The single-tails
are then combined into double-tails in the termination step.

These steps, summarized in Table 3.1, can be written as the following rate equations:

d
dt

[S] = −k∗[S]
d
dt

[S∗] = k∗[S]− k◦[S][S∗]
d
dt

[S◦] = k◦[S][S∗]− 2kD[S◦]2
d
dt

[D] = kD[S◦]2

With the mass conservation constraint [S]+[S∗]+[S◦]+2[D] = Stot and initial conditions
[S∗](0) = [S◦](0) = [D](0) = 0 and [S∗](0) = Stot.

When both the photoactivation and radical formation steps are extremely fast, this
process may be reduced to simple second-order mean-field kinetics 2S → D. The rate
equations may be easily integrated to give:

[S](t) =
(

1
[S](0) + 2kDt

)−1

[D](t) = [D](0)− 1
2

( 1
[S](0) + 2kDt

)−1

− [S](0)


In this case, the appearance [D](t) is immediate without any incubation period. How-
ever, if the first two steps are not extremely fast, it takes the system some time to go
through the intermediate states S∗ and S· before the single-tailed radicals have accumu-
lated to significant concentration for combination into double tails to start. This means
there is an incubation period as a result of slow photoactivation and radical formation.
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reaction equation rate
Adsorption X→ X(ads) kXads[X]
Desorption X(ads) → X kXdes[X(ads)]

Table 3.2: Elementary physical mechanisms at interfaces.

3.1.2 Interfacial chemistry
All molecules undergoing photoreaction and aggregation in this system are surfactants,

which preferentially partition to the interfaces (in this experiment, solution/glass, and
air/solution). For any species X, the flux between bulk solution and the interface is the
sum of adsorption and desorption rates, as listed in Table 3.2.

This has two implications for the aggregation rates: firstly, according to Langmuir
trough experiments for the air/solution interface, the photoreaction’s product (double
tails) is more surface active than its reactant (single tails). So the interfaces compete
with the aggregates to serve as an additional sink for the double tails.

Secondly, the interfaces might be catalytic for the chemical conversion steps and/or
the aggregate formation steps. The loss in translational entropy due to the combination
of radicals or nucleation is much reduced at an interface (2D translation) compared to in
bulk solution (3D translation).

3.1.3 Aggregation
On their own, the first two categories of reactions have relatively well-understood ele-

mentary steps and reaction intermediates. The kinetics of aggregation is more opaque be-
cause the aggregates’ structures are varied and the associated energy landscape much more
complicated than those of small molecule reaction dynamics[39]. If non-trivial structural
conversions beyond the addition of a monomer to the aggregate occur during nucleation
and growth of aggregates, we will need to have some knowledge of the aggregates’ struc-
ture and ask about how to incorporate the rates of these structural conversion steps before
writing down the elementary aggregation mechanisms for kinetic modeling. The structure
of the aggregates is of interest, but in the current calculations, I assume no kinetically
important structural conversion is occurring beyond simple nucleation and growth so that
we can understand the implications of photochemistry and interfacial adsorption before
examining the possibility of more complicated pathways involving structural conversion.
The elementary steps are listed in Table 3.3.

Here f(t, 1) = [D](t) is the number of solvated double tails in the system (monomer
in the aggregation reaction), and f(t, j) = [Dj](t) is the size (volume) distribution of
aggregates at any instant t. If the size distribution is too noisy to be informative, the
time evolution of average aggregate size is related to the solution to the master equation
by the following equations:
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reaction equation rate
Nucleation nD→ Dn kn[D]n

Monomer addition Di + D→ Di+1 kp(1, i)[Di][D]
Monomer dissociation Di → Di−1 + D kf (i− 1, 1)[Di]
Aggregate coalescence Di + Dj → Di+j kp(i, j)[Di][Dj]

Aggregate fragmentation Di+j → Di + Dj kf (i, j)[Di][Dj]

Table 3.3: Elementary mechanisms of aggregation.

P (t) =
∞∑
j=n

f(t, j) Number of aggregates

M(t) =
∞∑
j=n

jf(t, j) Total aggregate mass

〈j〉(t) = M(t)/P (t) Average aggregate size
〈R〉(t) ∝ (〈j〉(t))1/3 Average aggregate radius

3.1.4 Possible rate-determining steps
The kinetic curves have an initial incubation period, which is a particularly interesting

characteristic suggestive of a slow step before runaway growth happens. They also have
a final asymptotic growth period, which could be attributed to the depletion of material
with aggregation propensity.

There are multiple steps involved in both the chemical conversions and the aggregation.
When analyzing the kinetic curves that show how the average radius of clusters changes
over time, one should keep in mind that it is not solely aggregation and its numerous
possible nucleation and addition pathways that produce the interesting features. The
chemical conversion alone or the balance between the input from chemical conversion and
output to aggregation could also explain the appearance of these features.

In the next section, I discuss how photochemistry, interfacial reactions, and aggre-
gation pathways may interact with one another to produce the two essential features:
induction time and monodispersity. I will start with a system that grows from a fixed
total concentration of monomers, calculate its aggregate populations and induction time.
I will then add in the elements of nucleation and source input to observe the effects of
these steps on the aggregate population.
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3.2 Aggregate population from stepwise growth
The aggregation pathways outlined above form a vast reaction network. To under-

stand its essential consequences of reaction rate constants on the population of different
aggregate sizes, I will begin by considering stepwise monomer addition as the only mecha-
nism of growth in the absence of source input, nucleation, or fragmentation. The absence
of fragmentation steps implies that aggregation is fast enough that fragmentation does
not take place to any significant extent. The absence of nucleation, which is a nonlinear
term, allows us to solve the master equation easily. Lastly, ignoring the effect of the
source is equivalent to postulating that photochemical reactions take place on a much
faster timescale than that of aggregation. In the later sections, I will add in nucleation
and the source input to isolate the effects of these potentially slow steps.

For a system that grows with simple stepwise addition from a fixed total concentration
of aggregates, the total amount of aggregation-prone material is initially f(t = 0, j = 1)
and the aggregate concentration f(t = 0, j) = 0 for all j > 1. The rate constant for
combining aggregates of size i and size j is kp(i, j). The size distribution evolves according
to

∂f(t, j)
∂t

=
j−1∑
i=1

kp(i, j − i)f(t, i)f(t, j − i)−
∞∑
i=1

(1 + δij)kp(i, j)f(t, i)f(t, j)

This set of master equations assumes spatial homogeneity in a dilute system (so that
three- or higher-body interactions can be ignored), and that the aggregate mass is the
only determinant for the addition rate. We can further simplify the system by assuming
that coalescence is negligible, in which case the only non-zero elements in the growth rate
matrix kp(i, j − i) are those with i = 1:

∂f(t, j)
∂t

=

−2kp(1, 1)f(t, 1)2 −∑∞i=2 kp(1, i)f(t, 1)f(t, i) j = 1
kp(1, j − 1)f(t, 1)f(t, j − 1)− kp(1, j)f(t, j)f(t, 1) j > 1
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From the microscopic concentrations f(i, j), I define number densityN(t) = ∑
j≥1 f(t, j):

dN

dt
=
∞∑
j=1

∂f(t, j)
∂t

= −2kp(1, 1)f(t, 1)2 −
∞∑
i=2

kp(1, i)f(t, 1)f(t, i)

+
∞∑
j=2

[kp(1, j − 1)f(t, 1)f(t, j − 1)− kp(1, j)f(t, j)f(t, 1)]

= −2kp(1, 1)f(t, 1)2 − f(t, 1)
∞∑
i=2

kp(1, i)f(t, i)

+
∞∑
j=2

kp(1, j − 1)f(t, 1)f(t, j − 1)−
∞∑
j=2

kp(1, j)f(t, j)f(t, 1)

= −kp(1, 1)f(t, 1)2 − f(t, 1)
∞∑
i=2

kp(1, i)f(t, i)

where the cancellation of two terms within the j-sum implies that the chain of stepwise
aggregation does not change the total number of entities in the system beyond the loss
of a monomer. When aggregates are large and their diffusion slows, we may further
assume that the monomer addition rate constants kp(1, i) are independent of i, such that
kp(1, i) = kp:

dN

dt
= −kpf(t, 1)2 − kpf(t, 1)

∞∑
i=2

f(t, i)

= −kpf(t, 1)
∞∑
i=1

f(t, i)

= −kpf(t, 1)N(t)

where the monomer concentration obeys

∂f(t, 1)
∂t

= −kpf(t, 1)2 − kpf(t, 1)N(t) = −kpf(t, 1)2 + dN

dt
.

The time of the reaction network is scaled by 1/mkp and all densities can be scaled
by the total density of aggregation-prone material m, which in this case is equal to initial
monomer concentration f(0, 1). Scaling rate constants and concentrations this way allows
for the master equation to be written in its dimensionless form, such that all systems with
various m and kp can be mapped to the same unique solution.

Solving this system of equations numerically yields Fig. 3.1, where we see that the
aggregation rapidly comes to a halt as monomers are depleted. Since every growth step
requires at least one monomer, the depletion of monomers happens at the same time as



38

Figure 3.1: (Left) Time evolution of the size distribution from a mechanism that ex-
hibits only stepwise growth through monomer incorporation. (Right) Number density of
monomers and non-monomeric (j > 1) aggregates.

the growth stops. The largest aggregates in the system do not exceed j = 10. To produce
larger aggregates, we must either supply the system with a source of monomers or build
in a nucleation mechanism that increases the size of the smallest aggregates to be that of
the critical nucleus. These two mechanisms will be explored in the following sections.

3.3 Stepwise growth from a step-function source
To model an aggregating solution with a source that continually introduces monomers,

the master equations can be written with a source term s(t):

∂f(t, j)
∂t

=

s(t)− 2kpf(t, 1)2 −∑∞i=2 kpf(t, 1)f(t, i) j = 1
kpf(t, 1)f(t, j − 1)− kpf(t, 1)f(t, j) j > 1

We are interested in aggregates made of more than one monomer, with number density
P (t) = N(t)− f(t, 1):

dP

dt
= ∂

∂t

∑
j>1

f(t, j) = kpf(t, 1)f(t, j − 1)

and aggregate mass excluding monomer mass M(t):



39

dM

dt
= ∂

∂t

∑
j>1

jf(t, j)

=
∑
j>1

j
∂

∂t
f(t, j)

= kp
∑
j>1

j [f(t, 1)f(t, j − 1)− f(t, 1)f(t, j)]

= kp
∑
j>1

jf(t, 1)f(t, j − 1)− kp
∑
j>1

jf(t, 1)f(t, j)

= kp
∑
j>0

(j + 1)f(t, 1)f(t, j)− kp
∑
j>1

jf(t, 1)f(t, j)

= kpf(t, 1)
∑
j>0

f(t, j) + kpf(t, 1)2

= 2kpf(t, 1)2 + kp
∞∑
j=2

f(t, 1)f(t, j)

which confirms the mass conservation,

dM

dt
+ ∂f(t, 1)

∂t
= s(t)

In other words, the total amount of material in the system is unchanged by the ag-
gregation pathways and only depends on the source input rate. The simplest source to
be considered is the step-function source, from which ks monomers are injected into the
system per unit volume and per unit time, for a finite time m/ks. The total amount of
aggregation-prone material, m, is fixed so that we may compare the aggregate population
yielded by the step-function source with the results from the previous section, where all
material is already present in the system at the beginning of aggregation. The mechanism
is summarized by:

s(t) =

ks 0 < t < m/ks

0 otherwise

By varying ks, we may then observe the effects of different rates of input on the
aggregate population. In dimensionless form, the source input rate is ks/kpm2. The
numerical solutions for a series of decreasing input rates (ks/kpm2 = 1, 0.1, 0.01, 0.001)
are shown in Fig. 3.2 and Fig. 3.3. It is clear that we retrieve the constant initial
concentration limit when the source inputs monomers rapidly into the system (ks/kpm2 =
1). With reduced input rates, larger aggregates can now be observed because fewer small
aggregates form during the early stages of the reaction; then during the later stages of
the reaction, the added monomers are incorporated into the existing aggregates instead
of forming new aggregates.
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Figure 3.2: (Left) Time evolution of the size distribution from a step-function source.
(Right) Number density of monomers and non-monomeric (j > 1) aggregates. From top
to bottom, the source input rate is ks/kpm2 = 1, 0.1 respectively.

The width of the size distribution increases with decreasing ks/kpm2. While the large-
j tail of the size distribution has a smooth decay to zero concentration, the small-j tail is
abruptly cut off at the moment of monomer depletion, beyond which the system enters
a steady state again because all growth steps require monomers. Monomer depletion
is therefore the cause of finite aggregate size in this system. As expected, the aggregate
number remains low while monomers are being introduced into the system. The induction
time scales less than linearly with the monomer input rate.

3.4 Nucleated growth from fixed initial concentra-
tion

One of the more widely accepted model for the synthesis of monodisperse solid parti-
cles from homogeneous solution was proposed by Victor La Mer[40, 41, 42]. The key for
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Figure 3.3: (Left) Time evolution of the size distribution from a step-function source.
(Right) Number density of monomers and non-monomeric (j > 1) aggregates. From top
to bottom, the source input rate is ks/kpm2 = 0.01, 0.001 respectively.
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monodispersity from the La Mer mechanism is that homogeneous nucleation is decoupled
from growth by the sharp concentration dependence of the nucleation rate so that nucle-
ation only occurs for a short period at the beginning of the reaction when the monomer
concentration is higher. The critical nucleus size should be j � 1 for a sharp increase in
nucleation rate with monomer concentration.

The mechanism in the previous section does not capture this nucleation mechanism
as it assumes that an aggregate can grow stepwise from a single monomer without having
to form a nucleus initially. In order to isolate the effect of nucleation, the source term
is removed and all aggregation-prone material is set to be present as monomers in the
system at t = 0, such that f(0, 1) = m. Let n be the critical nucleus size and kn be
the nucleation rate. To add in an irreversible nucleation step, we insert a nonlinear term
into the master equation. Each nucleation event consumes n monomers and produces one
n-mer. There are no aggregates of size between monomers and critical nuclei. The master
equation reads

∂f(t, j)
∂t

=


−nknf(t, 1)n −∑∞i=n kpf(t, 1)f(t, i) j = 1
0 n > j > 1
knf(t, 1)n − kpf(t, 1)f(t, n) j = n

kpf(t, 1)f(t, j − 1)− kpf(t, 1)f(t, j) j > n

In the limit of kp = kn and n = 2, the stepwise growth from fixed initial concentration
is retrieved. The dimensionless nucleation rate constant is knmn−2/kp. The solutions to
this set of master equations when knmn−2/kp = 1 and n = 2, 10, 100 is shown in Fig. 3.4.
All aggregates are formed in the short initial period, as shown by the aggregate number
concentration P (t) quickly reaching its asymptotic value P (∞). Systems with larger
critical nuclei exhibit shorter bursts of nucleation relative to the timescale of growth and
produce a smaller total number of nuclei; mass conservation, therefore, requires that a
large critical nucleus size n produces larger aggregates, and this trend is indeed observed in
the numerical solutions. The shorter bursts of nucleation also produce narrower aggregate
distributions, which can be quantified by smaller polydispersity indices (PDIs):

PDI = 〈j
2〉
〈j〉2

= 〈δj
2〉

〈j〉2
+ 1

As the initial nuclei form, both nucleation and growth from these nuclei deplete the
monomer concentration as evidenced by the almost vertical drop of monomer concen-
tration near t = 0. Nucleation is then quenched by this drop due to the high monomer
concentration dependency of the homogeneous nucleation rate. Gradual growth then grad-
ually increases the sizes of all nuclei, similar to the propagation of an impulse through
j-space. Slight spreading of the aggregate size distribution’s left tail is visible in the
n = 10 and n = 100 systems; this can be understood by noting that the sizes of lower
concentrations will grow more slowly due to their lower concentration.
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Figure 3.4: (Left) Time evolution of the size distribution of nucleated aggregation from a
fixed initial concentration of monomers m. Monomers are not shown for clarity. (Right)
Number density of monomers and non-monomeric (j ≥ n) aggregates. All numerical
solutions are generated for kn/kpm2 = 1. From top to bottom, the critical nucleus size
are n = 2, 10, 100 respectively.
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Figure 3.5: (Left) Time evolution of the size distribution of nucleated aggregation from a
fixed initial concentration of monomers m. Monomers are not shown for clarity. (Right)
Number density of monomers and non-monomeric (j ≥ n) aggregates. All numerical
solutions are generated for critical nucleus size n = 2. From top to bottom, the nucleation
rate constants are knmn−2/kp = 10−1, 10−2 respectively.

As shown in Fig. 3.5 and Fig. 3.6, reducing the nucleation rate constant knmn−2/kp
while keeping the order of the nucleation reaction constant also increases aggregate size
by reducing the total number of nuclei that form; however, a slower knmn−2/kp does not
concomitantly narrow the size distribution but instead widens it because the monomer
depletion can only quench nucleation through a high reaction order n. The small number
of nuclei are formed gradually and simultaneously with growth, resulting in a polydisperse
size distribution. The slowdown of nucleation also introduces a concave region near t = 0
for the monomer concentration, though it is not as pronounced as the induction time
observed in experiments; no induction time is seen in the aggregate number P (t).

It is therefore expected that slow knm
n−2/kp coupled with high n will produce large,

monodisperse aggregates without an induction period. As shown in Fig. 3.7, using a small
kn = 0.0001 and a large n = 100 results in large and highly monodisperse aggregates with
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Figure 3.6: (Left) Time evolution of the size distribution of nucleated aggregation from a
fixed initial concentration of monomers m. Monomers are not shown for clarity. (Right)
Number density of monomers and non-monomeric (j ≥ n) aggregates. All numerical
solutions are generated for critical nucleus size n = 2. From top to bottom, the nucleation
rate constants are knmn−2/kp = 10−3, 10−4 respectively.
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Figure 3.7: (Left) Time evolution of the size distribution of nucleated aggregation from a
fixed initial concentration of monomers m. Monomers are not shown for clarity. (Right)
Number density of monomers and non-monomeric (j ≥ n) aggregates. All numerical
solutions are generated for knmn−2/kp = 10−4. From top to bottom, the critical nucleus
sizes are n = 10 and n = 100 respectively.

an average size of over 2500 monomers and a PDI as low as 1.0004.

3.5 Nucleated growth from a step-function source
On the one hand, homogeneous nucleation with large critical nucleus sizes n can lead

to burst nucleation, but it is unlikely to produce an induction time as seen in the case of
OOA and DHTA assembly. On the other hand, un-nucleated growth from a step function
source showed a limited induction time in the aggregate number density but was unable
to yield a monodisperse aggregate population. We now consider nucleated growth from a
step-function source to see if they may couple to yield monodisperse aggregates after an
induction period:
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∂f(t, j)
∂t

=


s(t)− nknf(t, 1)n −∑i≥n kp(1, i)f(t, 1)f(t, i) j = 1
0 n > j > 1
knf(t, 1)n − kp(1, n)f(t, 1)f(t, n) j = n

kp(1, j − 1)f(t, 1)f(t, j − 1)− kp(1, j)f(t, 1)f(t, j) j > n

This set of master equations can be summarized into an equation for monomers and
a set of equations for the aggregate j-mers:

∂f(t, 1)
∂t

= s(t)− nknf(t, 1)n − f(t, 1)
∑
i≥n

kp(1, i)f(t, i)

∂f(t, j)
∂t

= kp(1, j − 1)f(t, 1)f(t, j − 1)− kp(1, j)f(t, 1)f(t, j) + δj,nknf(t, 1)n

where the aggregates of size j larger than 1 and smaller than the critical nucleus size
n are no longer part of the master equations because kp(1, j) = 0 for j ∈ (1, n − 1) and
f(t, j) = 0 for j ∈ (1, n− 1).

Solving this set of master equations yields Fig. 3.8. When ks/kpm2 = 1 and knmn−2/kp =
10−4 with n = 100, the nucleation timescale is much slower than the source input and
is, therefore, the rate-limiting step that separates aggregation pathways from the source
input mechanism. In this fast input limit, we retrieve the solutions we found for fixed
total concentration. Any decrease of ks/kpm2 in this limit leads to the appearance of an
induction time without interfering with the nucleation pathways, as shown in the second
row where ks/kpm2 = 10−3 and knm

n−2/kp = 10−4 with n = 100. The aggregate size
distribution is unperturbed in either case, with a PDI of 1.0004.

Further lowering the monomer input rate to be comparable or even smaller than the
nucleation rate has the effect of shortening the nucleation time window because monomer
concentration is kept from reaching m by rapid growth as soon as a small number of
nuclei form. This increases the induction time, decreases the total number of nuclei, and
increases the size of the aggregates formed, as shown in Fig. 3.9 for ks/kpm2 = 10−4 and
knm

n−2/kp = 10−4. Due to the high reaction order of the nucleation step (n), monomer
concentration needs to reach almost m for nucleation events to take place; therefore the
induction time is τ = m/ks. The PDI remains to be very monodisperse at 1.0009.

3.6 Nucleated growth from a decaying source
In the photoinitiated assembly reaction, monomers (DHTA) are not introduced at a

constant rate but instead converted from a constant supply of precursors (OOA). There-
fore we need to consider a second-order decaying source:
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Figure 3.8: (Left) Time evolution of the size distribution of nucleated aggregation from
a step-function source that inputs monomer at a constant rate of ks for time m/ks.
Monomers are not shown for clarity. (Right) Number density of monomers and non-
monomeric (j ≥ n) aggregates. All numerical solutions are generated for knmn−2/kp =
10−4. From top to bottom, the input rates are ks = 1 and ks = 10−3 respectively.
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Figure 3.9: (Left) Time evolution of the size distribution of nucleated aggregation from
a step-function source that inputs monomer at a constant rate of ks for time m/ks.
Monomers are not shown for clarity. (Right) Number density of monomers and non-
monomeric (j ≥ n) aggregates. All numerical solutions are generated for knmn−2/kp =
10−4 and ks/kpm2 = 10−4.

s(t) = kd

[ 1
2m + 2kdt

]−2

where kd is the rate constant of OOA dimerization into DHTA. This source will again
input a total of m concentration units of monomers. The dimensionless version is

s(t)
kpm2 = kd

kp

(1
2 + 2mkdt

)−2
.

Integrating gives
∫∞

0 s(t) dt = m, the same amount of monomers as used in previous
mechanisms.

The decaying monomer input rate can compete with either time scales present in the
system: the nucleation time scale 1/knmn−1 and the growth time scale 1/kpm. When
kd/kp ∼ O(1) or greater, monomers input into the system completes instantly. As shown
in Fig. 3.10, the aggregate population dynamics are identical to the case when monomers
were present at a concentration m at the beginning of the reaction.

Also shown in Fig. 3.10 is the system’s behavior when kd is reduced below the growth
rate kp. An induction period appears as a result of the delay before sufficient monomers are
present to feed a significant number of nucleation events. Immediately after the induction
period, the short burst of nucleation creates a small number of nuclei that rapidly grow
with minimal spreading of their size distribution. The decrease in spreading was also
observed in previous sections as the constant input rate ks was lowered. By comparing
the step function source and the decaying source, the two sets of solutions appear similar,
suggesting that the exact functional form of the source input rate is unimportant for the
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induction time. To a first approximation, the induction time is proportional to the time
scale of the input.

In conclusion, various kinetic mechanisms have been explored to determine the possible
elements of the photoinitiated assembly reaction network:

1. A large nucleation rate order n causes burst nucleation that occurs rapidly at high
monomer concentration but immediately ceases as monomer concentration decreases
due to growth from the nuclei that just formed. A large n also causes the formation
of large, monodisperse aggregates because fewer nuclei form during the short burst
of nucleation as opposed to a longer nucleation window.

2. A slow nucleation rate constant kn causes fewer nuclei to form, but a slow kn on
its own without a large nucleation order n cannot support burst nucleation and
therefore cannot cause large, monodisperse aggregates to form. This is because the
nucleation rate with a small order n is not sensitive enough to monomer concentra-
tion to be quenched. Instead, it continuously generates nuclei and only gradually
declines as the monomer concentration declines.

3. A slow source input of monomers (ks or kd) causes an induction time. It also further
shortens the nucleation window because monomer concentration is kept lower for
longer than having all monomers present in the solution at the beginning of the
reaction.
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Figure 3.10: (Left) Time evolution of the size distribution of nucleated aggregation from
a step-function source that inputs monomer at a constant rate of ks for time m/ks.
Monomers are not shown for clarity. (Right) Number density of monomers and non-
monomeric (j ≥ n) aggregates. The numerical solutions are generated for knmn−2/kp =
10−4, n = 100, and kd/kp = 1 (top) or kd/kp = 10−2 (middle) or kd/kp = 10−3 (bottom).
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Chapter 4

Charge-frustrated Ising model

4.1 Motivation
The Ising model[43], or equivalently the lattice gas model, captures the universal char-

acteristics of macroscopic phase separation between hydrophobic and hydrophilic liquids.
Each lattice cell has a binary occupation number ni = 0, 1 that represents the presence
of either a hydrophobic group of atoms (or molecules) or a hydrophilic group of atoms
(or molecules). The cells have nearest-neighbor interactions, which are favorable when
the two neighboring cells have the same occupation number (both hydrophobic or both
hydrophilic), and unfavorable when the two neighboring cells have different occupation
numbers (one hydrophobic, and the other hydrophilic). Under the appropriate thermo-
dynamic conditions, these interactions are strong enough to cause the system to phase
separate.

Inside amphiphilic molecules, however, hydrophobic and hydrophilic groups are forced
to be in proximity by covalent bonds, thus preventing the groups to separate from each
other macroscopically. So to represent the amphiphilic connection that frustrates the
phase separation within the framework of the Ising model, some additional correlations
between the hydrophobic and hydrophilic lattice cells need to be built into the model.

There are many ways to add cell-cell interactions that would cause such correlations.
For example, a simple construction is to require a hydrophobic cell to always be the imme-
diate neighbor of a hydrophilic cell. Wu et al. built in the necessary correlations by adding
a Coulomb-like effective potential term to the existing Ising spin pair interactions.[26] The
lattice cells with different occupation numbers were given opposite effective charges, so
the favorable opposite-charge interactions counteract the unfavorable different-occupation
interactions.

This more sophisticated treatment mapped directly from the molecular structure of
the amphiphile to the long-range correlations in the mesoscopic and macroscopic config-
urations of amphiphilic assemblies. It was then possible to extend the existing methods
of studying the Ising model to study the amphiphilic assemblies, such as Monte Carlo
simulations and field-theoretic calculations[28, 44, 27]. The resulting model is called the



53

charge-frustrated Ising model.
To apply the charge-frustrated Ising model to realistic systems like the photoinitiated

2-OOA assembly, this chapter starts by tuning the charge-free Ising model to represent
both the air-liquid interface and the oil-water interface in one system with the correct
surface roughness. I then examine the consequences of imposing such realism on the
charge-frustrated Ising model, including the representation of mixtures of more than one
amphiphilic species as well as fluctuation-free estimates of the relative stabilities of var-
ious assembled structures. I also expand the charge-frustrated Ising model to include a
treatment of non-zero spontaneous curvature. In the Appendix, I include a description of
the simulation methods that speed up computations of the charge-frustrated Ising model.

4.2 Putting oil, water and air on a lattice

4.2.1 Surface tension relationships
To represent water at liquid-vapor coexistence, a one-component lattice gas should

have an energy of cohesion 1.25 ≤ ε/kBT ≤ 1.4 and a lattice spacing 1.7Å ≤ δ ≤ 1.9Å.[45]
The reasoning for restricting the lattice energy and the lattice spacing to such a narrow
range is as follows: On one hand, if the cohesion is too strong, then the liquid-vapor
interface will not reproduce the correct roughness on the capillary wave spectrum; on the
other hand, if it is too weak, then the system becomes supercritical and its coexistence
cannot be maintained. Furthermore, the surface tension of water constrains the ratio
between ε and the lattice spacing δ by

γ = βε2

πδ2 .

Knowing water’s surface tension, the range of lattice spacing corresponding to the range
of cohesion above is then 1.7Å ≤ δ ≤ 1.9Å.

Similarly, using the charge-frustrated Ising model to study the structure and dynam-
ics of amphiphiles at soft interfaces requires the interface roughness to be represented
accurately through a careful choice of energies of cohesion and the lattice spacing. The
charge-frustrated Ising model that represents amphiphiles at air-water interfaces, how-
ever, is a three-component lattice gas made of water, water-like head groups and oil-like
tail groups. The parameters in this model are: a universal lattice spacing δ, and six
cohesion energies {εtt, εww, εhh, εht, εwt, εhw} that can be collapsed down to three, {εow,
εww, εoo}, if we assume heads are equivalent to water and tails are equivalent to oil.

To determine these four parameters, the constraints of criticality and interfacial rough-
ness are useful. Additionally, this system should have additional constraints implied by
the criticality and roughness of all other interfaces:

1. The air-water or air-head interface have the correct surface tensions.
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2. The water-tail or head-tail interfaces have the correct surface tensions.

3. The air-tail interface has the correct surface tension.

So we end up with three equality constraints that determine three energy parameters.
The criticality constraints are inequalities and will be discussed later to show how they
determine the universal lengthscale δ.

The oil-air and water-air interfaces follow the formulae,

γaw = βε2ww
πδ2 and γao = βε2oo

πδ2 .

The oil-water surface tension is more complicated because both oil and water cells have
cohesion within themselves, unlike air cells which do not have cohesion. To apply the
oil-water surface tension constraint, consider an incompressible, binary mixture of binary
oil and water. The lattice Hamiltonian is a function of occupation variables ni = 0 for oil
sites and ni = 1 for water sites:

H [{ni}] = εoo
∑
i,j

′(1− ni)(1− nj) + εow
∑
i,j

′ [(1− ni)nj + ni(1− nj)] + εww
∑
i,j

′ninj

=
∑
i,j

′ (εoo + εww − 2εow)ninj + ...

where the chemical potential terms (functions of number of oils and waters) and con-
stants are omitted. From the last line, it is clear that the relative difference of cohesions
(εoo + εww − 2εow) determines the phase behavior of this “lattice gas” system. It also
shows that the oil-water surface tension in the lattice representation is related to these
cohesion parameters by

γow = β

πδ2 (εoo + εww − 2εow)2 .

4.2.2 Choice of lattice cell size(s)
Up to this point, if we are given the three surface tensions and a universal lengthscale

δ, we may calculate the energy parameters {εow, εww, εoo}. But δ remains undetermined
because we have not yet applied the roughness and criticality constraints - that is if our
choice of δ is too small, one or more of {εow, εww, εoo} will be too weak to hold the liquids
at coexistence with their vapors; and if our choice of δ is too large, the interfaces will no
longer be rough, in which case the relationship between surface tension and energy and
length scales we used will no longer hold.

Fig.4.1 and Fig.4.2 illustrate how a universal lattice size δ is determined:
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Figure 4.1: Procedure for determining different lattice cell sizes for oil and water with
given surface tension γwater = 72.8 mN/m and typical values γalkane,water = 50 mN/m
and γalkane,air = 25 mN/m at room temperature, using one universal lattice size for all
components of the system.
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Figure 4.2: Relaxing the constraint of a universal lattice cell size, now choose lattice cell
size for oil to be twice that of water.
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Interface Phase coexistence Interfacial roughness Surface tension matching
air/water � � �
oil/water � � �
air/oil × (no interface) × (no interface) × (no interface)

Table 4.1: The consequences of using one lattice spacing, 1.68 Å, for all pair interactions.

• The blue, purple, and red solid lines plot the relationship between ε and δ for fixed
surface tensions, in this case γwater = 72.8 mN/m and typical values γalkane,water = 50
mN/m and γalkane,air = 25 mN/m at room temperature. This may seem like a
very particular choice of parameters for surface tensions, but the resulting physical
phenomena are expected to be generalizable to other surface tension including some
that would prohibit a convenient lattice model representation.

• The grey zone spans across the range of cohesion that gives a rough interface without
the system being supercritical, ε/T ∈ [−0.89,−1.60]. More strictly, for the interface
to be rough at all scales without the formation of large domains of one phase in the
other, we prefer the cohesion to be as close to the middle of the interval as possible.

• The blue zone corresponds to the range of lattice sizes δ that will allow the air-water
surface tension relationship to be maintained, while at the same time obeying the
criticality and roughness constraints.

A single δ value for both oil and water will not let all three ε values fall in the range
1.25 ≤ ε/kBT ≤ 1.4, where both the roughness and criticality constraints are satisfied
with just one δ without getting too close to the boundaries. Specifically, the shortfalls
and advantages of this combination of choices are summarised in table 4.1.

To continue, we must have separate lattice cell sizes, δo and δw, for oil and water, as
illustrated in the bottom graph of Fig. 4.1. The constraints can now be easily satisfied
with oils cells being twice the size of water cells:

δo = 2δw = 3.36Å
and energies

εblockoo /T = −1.47 εsiteww/T = −1.25 .
In addition to the features previously described for the top graph, we also have:
• The red zone corresponds to the range of lattice sizes δ that will allow the air-water

surface tension relationship to be maintained, while at the same time obeying the
criticality and roughness constraints.

Table 4.2 puts this into the same tabular form as before for comparison. We can see that
in the second graph, we only sacrifice the interfacial roughness of oil and wate, which is
preferable to the mixing oil and air in the first graph.
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Interface Phase coexistence Interfacial roughness Surface tension matching
air/water � � �
oil/water � × �
air/oil � � �

Table 4.2: The consequences of using two different lattice spacings for pair interactions.

4.2.3 Lattice energies
So far we have established the lattice spacing and energy for two systems. The first

system is liquid water in coexistence with its own vapor, with a small lattice spacing
δw = 1.68Å and cohesion εww/T = −1.25. The second system is liquid oil in coexistence
with oil vapor, with lattice spacing twice as large, δo = 3.36Å and a stronger cohesion
between the bigger blocks of oil, εblockoo /T = −1.47. Each oil block effectively occupies
eight lattice sites (2×2×2) if placed in the water system, and so the interaction between
the faces of two oil sites is only 1/4 of that between oil blocks, εsiteoo = εblockoo /4 = −0.37T .
In practice this energy need only be calculated between different oil blocks; no accounting
for the interactions among oil sites in the same block is necessary because the block is
never broken apart.

Next, we move onto the final free parameter: given a fixed surface tension between
oil and water (for simplicity we may reasonably assume γow = γo) and the previously
determined lattice spacings and cohesions, what should the cohesion between oil and
water be? For this purpose, it is natural to consider the surface tension of an interface in
an incompressible system of oil and water as derived above,

γow = β

πδ2 (εoo + εww − 2εow)2

and the question then becomes which δ this lengthscale corresponds to and which ε,
the site-site or block-block ones, should be used. In such an incompressible system where
oil block movements are restricted to a coarser lattice than the water sites, the water
sites are effectively constrained to a coarser lattice too, so the expression above should be
interpreted as

γow = β

πδ2
o

(
εblockoo + εblockww − 2εblockow

)2

where εblockoo /T = −1.47 and εblockww /T = −5.00, and the εblockow is then
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εblockow = 1
2

(
εblockoo + εblockww + δo

√
πγow
β

)

εsiteow = 1
4ε

block
ow

= 1
2
(
εsiteoo + εsiteww

)
+ 1

8δo
√
πγow
β

= 1
2 (−1.25T − 0.3675T ) + 1

8 × 2.08T

= −0.55T .

4.3 Turning oil and water into surfactants
These parameters in the three-state lattice gas model (water, oil, and vacuum) should

now be capable of faithfully representing the interfacial roughness. On top of the pure
three-state lattice gas, amphiphilic molecules can then be represented using the electro-
static analogy - by imposing charges onto some of the water and oil molecules to turn
them into head and tail groups. However, it is not clear whether we have gained any-
thing on the length- or time-scale reachable by this model compared to other methods,
because periodic box simulations of electrolyte solutions often require us to take extra
care of calculating the energy of long-ranged electrostatic interactions, and the procedure
for book-keeping (e.g. Ewald sum) is demanding on CPU time.

The speed of this simulation is therefore limited by the range of electrostatic interac-
tions. In general, the longer the range of these electrostatic interactions, the longer the
book-keeping process will take because we have to sum up energetic contributions from
more and more periodic images of the system, which eventually requires a greater number
of wavevectors to be included in the Ewald sum implementation.

In this section, I will estimate the range of effective electrostatic interactions in the
lattice representations of these surfactant systems (the Debye length) using the common
model surfactant molecule sodium dodecyl sulfate (SDS) near its critical micelle concen-
tration (CMC) of 8.2 mM.

4.3.1 Debye length
The Debye length[46] of an electrolyte with concentration ci and valence zi for i =

1, ..., n ionic species in a solvent with dielectric constant ε0εr is:

λD = κ−1 =
√
εrε0kBT

e2∑
i ρiz

2
i
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where the charges in gaussian units are zie/
√
ε0εr. The size of effective charges are es-

tablished by comparing the O(k2) hamiltonian of the surfactant system and an analogous
point charge system:

FS = 1
2V

∑
k

∑
i,j=+,−

ρ̂i(k)ρ̂j(−k)
ninj

· 3kBT
ρk2∆2γij

FC = 1
2V

∑
k

∑
i,j=+,−

ρ̂i(k)ρ̂j(−k)
ninj

· 4πqiqj
k2

where γij = 1 if i = j and γij = −1 if i 6= j. The second line is in cgs units. In SI
units, the Coulomb energy would be

FC = 1
2V

∑
k

∑
i,j=+,−

ρ̂i(k)ρ̂j(−k)
ninj

· qiqj
εrε0k2 .

By comparing the two free energies, if we constrain that the two sums are equal on
a term-by-term basis, we see the effective valence of charges (zi = qi/e) is related to the
molecular density of the surfactant ρ = ρ+

n+
= ρ−

n−
by

z+ = −z− =
√

3kBTεrε0
ρ∆2e2

where ∆ is the average separation of head and tail groups. I estimate the average
separation to be ∆ = nδ where n u 3, and assume for SDS the stoichiometry is n+ =
n− = s. The ionic strength is then

∑
i

ρiz
2
i =

(
ρ+z

2
+ + ρ−z

2
−

)
= 2sρz2 = 2sρ× 3kBTεrε0

ρ∆2e2 = 6skBTεrε0
n2δ2e2

As shown in the equation above, although we intended to carry out this calculation
near the critical micelle concentration of SDS, ρ/NA = 8.2mM, this condition has turned
out to be irrelavent for the ionic strength because of the existing relationship between
effective charges and density cancels with the density dependence of ionic strength. That
is, in a more concentrated system, the effective charges will be proportionately weaker,
giving no net changes in ionic strength. Finally, we can combine these to find the Debye
length

λD =
√
εrε0kBT

e2∑
i ρiz

2
i

= n√
6s
δ

which for most reasonable values of s and n is similar to or smaller than the size of a
lattice cell. From this analysis, we see the effective range of electrostatics in these systems
with 1:1 stoichiometry is extremely short regardless of the sufactant concentration.
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4.3.2 Charge neutrality
Although we have identified the effective valences z+ and z− using the the structure

of the amphiphile , it is not clear whether these are the total charge on all the head cells
or the charge of a single head cell. This section discusses how charges are distributed to
the cells representing the molecule.

The lattice cell charges can be calculated by integrating the charge density in the
effective hamiltonian over the extent of a lattice cell. The effective hamiltonian for the
Coulombic system is

FC = 1
2V

∑
k

∑
i,j=+,−

ρ̂i(k)ρ̂j(−k)
ninj

· 4πzizj
k2

from which we see the charge density fields are
{
ρ̂+(k)z+
n+

, ρ̂−(k)z−
n−

}
or their real space

counterparts {ρ+(r)z+/n+, ρ−(r)z−/n−}, or in surfactant terms, {ρH(r)zH/nH , ρT (r)zT/nT}.
Integrating these gives the charge on any lattice cell. If we are integrating over a region
that is occupied by the positive (head group) charge density, then the lattice cell’s charge
is

qH =
∫
δ3
drρH(r)zH/nH = zH

nH

∫
δ3
drρH(r) = zH

nH
.

This result says that the charges we established before through the electrostatic anal-
ogy are a total charge on all head group cells (zH) and a total charge on all tail group
cells (zT ). To apply the electrostatic analogy to a lattice model, we must evenly distribute
these total charges across all head group cells and the same for tail group cells. Since the
two total charges are equal and opposite, charge neutrality and hence also stoichiometry
is preserved in this procedure of distributing the charges.

4.3.3 Size and density of isomorphic charges
Comparing FS and FC determines the charge isomorphism:

z+ = −z− =
√

3kBT
4πρ∆2

which in reduced units of kBT and lattice parameter δ is:

|z| =
√

3kBT
4πρ∆2 =

√√√√ 3kBTδ
4π (ρδ3) (∆/δ)2 =

√√√√3kBTδ
4πρ̄∆̄2

where I defined dimensionless quantities ρ̄ = ρδ3 and ∆̄ = ∆/δ. Using SDS at its
critical micelle concentration (8.2mM) as a model system, the reduced density and length
are
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ρ̄ = 8.2× 6.02× 1023molecules/m3 ×
(
1.68× 10−10m

)3

= 2.3× 10−5molecules
∆̄ = 5× 10−10/

(
1.68× 10−10m

)
= 3

This means in our system of reduced units where we have effectively kBT = 1 and
δ = 1, the isomorphic charges should be

zH = −zT =
√

3
4π × 2.3× 10−5 × 32 = 33.7 .

And the number of head or tail particles that should be placed into the 50δ×50δ×50δ
box is determined by the molar volume, vm = 50Å2×1nm = 500Å3 u 105 δ3 per molecule,
and the density of molecules ρ = 8.2mol/m3:

Nsurf = ρV

=
(
8.2× 6.02× 1023molecules/m3

)
×
(
50× 1.68× 10−10m

)3

= 2.9 molecules
Vsurf = Nsurf × vm

= 2.9 molecules×
(
105 δ3/molecule

)
= 300 δ3

Inspecting SDS’s molecular structure in Fig. 4.3, we see that roughly 80% of this
volume is occupied by the tail atoms while the rest 20% is occupied by the head group.
Given that each molecule occupies 105 of 1× 1× 1 cells, we have nH = 105× 20% u 20
sites. Since the tail groups site on 2 × 2 × 2 blocks. For the entire system containing 3
molecules, the number of tail and head groups should be set to

Ntail = 240 δ3/8δ3 = 30 blocks
Nhead = 60 δ3/1δ3 = 60 sites

SDS’s structure also implies that the charges on the head and tail groups are dis-
tributed as follows

zH/nH = 33.7/20 = 1.7 per site
zT/nT = −33.7/10 = −3.4 per block = −0.425 per site .
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Figure 4.3: Sodium dodecyl sulfate (SDS).

4.4 Electrostatic analogy for a mixture of multiple
amphiphilic species

As presented by Wu et al. in [26], for every surfactant species, the type-type in-
tramolecular correlation matrix is found by summing correlations between groups of atoms
(indexed by α, γ) where the groups belong to the particular types of interest (indexed by
i, j), i.e. hydrophilic or hydrophobic:

ω̂ij(k) =
∑
α∈i

∑
γ∈j

ω̂αγ(k) . (4.1)

In a mixture of multiple surfactant species, we can continue to view all hydrophilic
groups as one type and all hydrophobic groups as another and explore what the corre-
lations between these are like. This means that the type-type correlation matrix will
contain contributions from multiple intramolecular group-group correlation matrices,

ω̂ij(k) =
Ns∑
m=1

ω̂
(m)
ij (k) =

Ns∑
m=1

∑
α∈i

∑
γ∈j

ω̂(m)
αγ (k) , (4.2)

where Ns is the total number of surfactant species present. In the following, I will
work out what this sum means for the effective interactions in the simplest case of two
surfactant species (labeled 1 and 2) in solution, and they have the same number of hy-
drophobic/hydrophilic groups (n(1)

A = n
(2)
A = nA, n(1)

B = n
(2)
B = nB). Suppose we have two

surfactant species with overall density ρ̄1 and ρ̄2, the type-type intramolecular density
correlation function is

ρω̂ij(k) = ρ̄1ω̂
(1)
ij (k) + ρ̄2ω̂

(2)
ij (k)

= ρ̄1

[
ninj − k2

(
∆(1)
ij

)2
/6
]

+ ρ̄2

[
ninj − k2

(
∆(2)
ij

)2
/6
]
. (4.3)

The determinant of this 2× 2 matrix to O(k2) is
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detρω̂(k) =
[
ρ̄2

1∆2
1 + ρ̄2

2∆2
2 + ρ̄1ρ̄2

(
∆2

1 + ∆2
2

)]
n2
An

2
Bk

2/3

= ρ2
[
x2

1∆2
1 + x2

2∆2
2 + x1x2(∆2

1 + ∆2
2)
]
n2
An

2
Bk

2/3

= ρ2
(
x1∆2

1 + x2∆2
2

)
n2
An

2
Bk

2/3 , (4.4)

where ∆2
m =

(
∆(m)
AB

)2
/nAnB −

(
∆(m)
AA

)2
/n2

A −
(
∆(m)
BB

)2
/n2

B is the average separation
between the hydrophobic and hydrophilic groups in species m. I also defined x1 = ρ̄1/ρ
and x2 = 1− x1 = ρ̄2/ρ to be the mole fractions of species 1 and 2, and ρ = ρ̄1 + ρ̄2 is the
total density of surfactants. I will further define a subscript-free ∆2 = x1∆2

1 + x2∆2
2 to

be the mole fraction weighted average separation between hydrophobic and hydrophilic
groups. With these simplification in place, the inverse of the type-type correlation matrix
condenses back into the familiar form

ρ−1ω̂−1(k) = 1
ρk2∆2

[
1/n2

A −1/nAnB
−1/nAnB 1/n2

B

]
. (4.5)

4.4.1 Wu’s approach to estimating the critical micelle concen-
tration

This subsection follows the derivation presented by Maibaum et al.[47] and Wu et al.
for a mixture of multiple surfactants. The critical micelle concentration is the concen-
tration at which the free energy per unit volume of a solution of monomeric surfactants
becomes higher than that of a surfactant assembly. Therefore, we need to find the free
energies of both states as a function of concentration.

The soluble state has

Fsoluble/L
3 = nερ . (4.6)

where n is the number of hydrophobic or hydrophilic groups in each molecule (assuming
that the surfactant has an equal number of either), ε is the energetic cost of moving a
hydrophobic particle into the aqueous phase, and ρ is the density of surfactant molecules
of any kind.

The micellar state has a contribution from the surface tension of the hydrophobic
aggregate, and a charge contribution that mimics the head-tail connectivity,

Fmicelle = Esurface + Echarge . (4.7)
Assuming the entire system contains N micelles with uniform size R,

Esurface ∼ NσR2 (4.8)

Echarge ∼ NR5
(
z

∆3

)2
(4.9)
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where the charge energy is calculated by applying Coulomb’s law to a negatively
charged sphere wrapped in a positively charged shell, both with charge density z/∆3.
The total number of micelles can also be expressed in terms of the molecular parameters

N ∼ ρL3∆3/R3 (4.10)

After collecting everything into the free energy expression, we have the free energy
density as a function of micelle size

Fmicelle(R)/L3 = ρ∆3σ

R
+ ρz2R2

∆3 (4.11)

The system will always relax down to an optimal R∗ that minimizes the free energy

R∗ ∼ ∆2σ1/3z−2/3 (4.12)

and the isomorphic charges z ∼ (βρ∆2)−1/2. Substituting these into Fmicelle(R), the
micellar state’s free energy per unit volume can be written as

Fmicelle/L
3 = ρ2/3∆1/3σ2/3β−1/3 . (4.13)

Fsoluble scales with ρ, while Fmicelle scales with ρ2/3. The critical micelle concentration
ρcmc is the concentration beyond which Fsoluble exceeds Fmicelle,

ρcmc = ∆σ2/βnε . (4.14)

In a mixture of two surfactant species, ∆ can be found by the mixing rule

∆ =
√
x1∆2

1 + x2∆2
2 ≥ x1∆1 + x2∆2 , (4.15)

which means the cmc of a mixture will always be greater than or equal to a linear
interpolation between two pure cmc’s.

4.4.2 Alternative approach using the law of mass action
An alternative derivation starts with the law of mass action and also includes the

monomeric surfactant’s electrostatic contribution. Part of this derivation was presented
in [47] for the one-amphiphile system.

Consider an equilibrium between soluble surfactants and those assembled into a monodis-
perse solution of micelles. I label the soluble surfactants “1” and the micelles formed from
n surfactants “n”. The chemical potential of the soluble state is

µ1 = kBT ln
(
ρ1

ρ(0)

)
+ ε− z2

∆ , (4.16)
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where ρ1 is the density of monomer surfactants, ρ(0) is the standard state density, and
ε is the free energetic cost from solvating a hydrophobic tail in water as well as the free
energetic gain from solvating a hydrophilic head in water.

The last term is the contribution from the electrostatic analogy of surfactant stoi-
chiometry: ∆ is the average head-tail separation, and z, the isomorphic charge, is related
to the molecular density ρ by z ∼ (βρ∆2)−1/2. In principle, ρ should be the sum total of
all surfactant molecules present in the system, aggregated or not,

ρ =
∞∑
i=1

ρi = ρ1 + ρn , (4.17)

but for the purpose of finding the critical micelle concentration (cmc), most surfactants
are soluble monomers when only a small, negligible number of micelles have formed. So
I will approximate ρ ≈ ρ1. This simplifies the monomer chemical potential down to

µ1 = kBT ln
(
ρ1

ρ(0)

)
+ ε− 1

βρ1∆3 . (4.18)

Now turn to the chemical potential of a micelle. The aggregation number n (number
of surfactants assembled into the micelle) is taken to be universal throughout the system:

µn = kBT ln
(
ρn
ρ(0)

)
+ γR2 −R5

(
z

∆3

)2
, (4.19)

where ρn is the density of micelles, γ is the surface tension between tail groups and
water, and R is the radius of the micelle. Again, the last term comes is the analogous
Coulomb energy for a micelle, which is taken as a negatively charged core surrounded
by a positively charged shell. If we assume that the micelle is simply made of individual
surfactants packed together with no volume change, the micelle radius can be related to
the surfactant head-tail separation by

R3 ∼ n∆3 , (4.20)

so µn can be rewritten in terms of n,

βµn = ln
(
ρn
ρ(0)

)
+ βγ∆2n2/3 − n5/3

ρ1∆3 . (4.21)

At equilibrium, the associated micelle has the same chemical potential as the dissoci-
ated individual surfactants, nµ1 = µn. This lets us relate the micelle density to monomer
density,

ρn = ρ(0) exp
[
−βn

(
γ∆n−1/3 + 1

βρ1∆3 + 1 + n2/3

βρ1∆3 − ε− kBT ln ρ1

ρ(0)

)]
. (4.22)
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The first term in the exponent comes from the surface tension of the micelle, the
second term is the effective Coulomb interaction in a monomer surfactant, the third term
is the effective Coulomb interaction in a micelle, the fourth term is the energetic penalty
of dissolving fatty tails, and the last term is the translational entropy of monomers.

As ρ1 increases, the last term becomes more negative, and eventually, at the CMC, it
begins to overwhelm the sum of all four terms that come before. This flips the sign of the
exponent and suddenly increases ρn. Because the sum in the exponent is preceded by a
factor of the aggregation number n, the greater the aggregation number, the more drastic
this sign change will be. This is why micelles suddenly become favorable at the critical
micelle concentration, even though micelle formation isn’t a real phase transition.

The density of monomer when micelles first become favorable, ρcmc, can be found by
setting the exponent in the previous expression to zero:

ln ρcmc
ρ(0) = −βε+ 1 + n2/3

ρcmc∆3 + βγ∆2n−1/3 (4.23)

I rearranged Eq. 4.23 and used the Newton-Raphson method to solve

x = −βε+ βγ∆2n−1/3 + 1 + n2/3

ρ(0)∆3 e−x , (4.24)

where x = ln ρcmc/ρ(0). I set γ to the surface tension in lattice units, and T =
1. The aggregation number n is set to 50, which is a typical value for ionic small-
molecule surfactants near room temperature and across a range of ionic strength. The
resulting ρcmc(∆) is a monotonically decreasing and slightly convex function. These two
properties can now be used to predict how the mixed solution’s CMC compares to that
of a linear interpolation between two pure solution’s CMCs. First, use the result for ∆mix

in subsection 4.4,

ρcmc (∆mix) = ρcmc

([
x1∆2

1 + x2∆2
2

]1/2)
. (4.25)

The argument on the right-hand side is greater than the mole-fraction weighted mean
[
x1∆2

1 + x2∆2
2

]1/2
≥ x1∆1 + x2∆2 (4.26)

and since ρcmc(∆) monotonically decreases, a larger argument value corresponds to a
smaller function return,

ρcmc

([
x1∆2

1 + x2∆2
2

]1/2)
≤ ρcmc (x1∆1 + x2∆2) . (4.27)

To further breakdown the right-hand side of the inequality, use Jensen’s inequality
(Convex transformation of a mean is less than or equal to the mean applied after convex
transformation):
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ρcmc (x1∆1 + x2∆2) ≤ x1ρcmc(∆1) + x2ρcmc(∆2) . (4.28)
Combining all these inequalities, we arrive at

ρcmc (∆mix) ≤ x1ρcmc(∆1) + x2ρcmc(∆2) , (4.29)
which says that the mixed solution’s CMC is always less than or equal to the mole-

fraction-weighted average of the CMC’s of the pure solutions. This confirms literature
observations of surfactant mixtures having lower CMC than their pure components[48].
The extent that mixing lowers CMC depends on the size of the convex curvature of
ρcmc(∆), which further depends on ε, γ, n and T . The more convex it is, the more the
CMC is lowered upon mixing.

4.5 Fluctuation-free estimate of the relative stabili-
ties of assemblies

The electrostatic analogy allows us to calculate the “stoichiometric entropy” of am-
phiphilic assemblies. By evaluating the sum of this effective electrostatic energy and
the lattice energies, we can estimate the relative stabilities among assembled structures.
Although this approach neglects all fluctuations in the shapes and sizes of surfaces and
structures, it sketches out the parts of parameter space we should look to find certain
structures (e.g. micelles, bilayers) before we use more sophisticated methods to investi-
gate the effect of these fluctuations. It is also useful to check whether the trends we see
in this back-of-the-envelope calculation agree with our qualitative understanding of how
variations in the amphiphile’s molecular structure influence its preferences for different
assembled structures.

4.5.1 Stoichiometry
The asymmetry factor σ denotes the ratio of the number of heads to the number of

tails per amphiphile molecule:

σ = nh
nt

For amphiphiles with long tails and small head groups, σ < 1.
The charge densities from head (ρh) and tail (ρt) groups are related to the isomorphic

charge z by

ρh = z

nh
ρt = − z

nt

and their ratio is inverse to the ratio of the relative total number of heads (Nh) and
tails (Nt) by stoichiometry:
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σ = − ρt
ρh

= Nh

Nt

Assuming these head and tail particles can assemble into a planar bilayer (2 head
layers and 2 tail layers) with each head layer thickness dh and tail layer thickness dt.
Again these layer thicknesses have to obey stoichiometry,

σ = dh
dt
.

They can alternatively assemble into Nmic of spherical micelles of uniform inner radius
r and outer radius R = (1+σ)1/3r. Since the total amount of material in this system is
Nt = 2dtL2 and Nh = 2dhL2, we know the number of micelles given their size r and R:

Nmic = 2dtL2

(4π/3)r3 = 3dhL2

2πr3σ

4.5.2 Planar bilayer
Applying Gauss’s Law to a patch of a flat infinite bilayer of area L×L and thickness

t = 2dh + 2dt, the effective electrostatic energy per unit area is

Ubilayer
elec = −4π

3 ρtρhdtdh(dh + dt)L2 = 4π(σ + 1)z2d3
hL

2

3σn2
hδ

6

where ρt = −z/ntδ3 and ρh = +z/nhδ3 are the charge densities found from distribut-
ing the isomorphic charge z evenly onto the amphiphile’s nh head particles and nt tail
particles.

I can also count the number of nearest-neighbor pairs and get the Ising energy

Ubilayer
ising = −3ε

(
L

δ

)3
+ 4ε

(
L

δ

)2

where the lattice energy is ε = −1
4 (2εow − εoo − εww), and δ is the lattice spacing.

This part of the energy is independent of dh and σ because the interface area between
heads and tails remain constant for bilayers of various thickness. Combining these two
contributions, we have

Ubilayer = Ubilayer
elec + Ubilayer

ising = 4π(σ + 1)z2d3
hL

2

3σn2
hδ

6 − 3ε
(
L

δ

)3
+ 4ε

(
L

δ

)2
.

4.5.3 Spherical micelles
Repeating the procedure above for a solution of Nmic micelles, the total electrostatic

energy is
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Umicelle
elec (r) = 4πf(σ)z2r2dhL

2

3σn2
hδ

6

where f(σ) is a monotonically increasing function of σ:

f(σ) = (σ + 1)2 + 1
5σ

2 − 9
5(σ + 1)5/3 + σ + 4

5 .

Similarly, counting the nearest-neighbor pairs gives

Umicelle
ising (r) = −3ε

(
L

δ

)3
+
(

12dh
r

)
ε
(
L

δ

)2
.

An estimate for the average micelle size can be found by minimizing Umicelle
elec (r) +

Umicelle
ising (r) with respect to the inner radius r. This gives the optimal inner and outer

radius as

r∗ =
[

9
2πf(σ)

]1/3 (
n2
hεδ

4

z2

)1/3

R∗ = (1 + σ)1/3r∗

Substituting these into the expressions for the effective electrostatic energy and total
ising coupling,

Umicelle = Umicelle
elec (r∗) + Umicelle

ising (r∗) = D [f(σ)]1/3 z2/3ε2/3dhL
2

σn
2/3
h δ10/3

− 3ε
(
L

δ

)3

where the numerical constant D = 4π
3

(
9

2π

)2/3
+ 12

(
2π
9

)1/3
' 16.0.

4.5.4 Optimal thickness
The energetic difference between a planar bilayer and a collection of micelles is

∆U = Ubilayer
elec + Ubilayer

ising − Umicelle
elec (r∗)− Umicelle

ising (r∗)

= 4π(σ + 1)z2d3
hL

2

3σn2
hδ

6 − D [f(σ)]1/3 z2/3ε2/3dhL
2

σn
2/3
h δ10/3

+ 4ε
(
L

δ

)2
.

This expression lets us determine the optimal bilayer thickness t∗ = 2d∗h + 2d∗t with
respect to our choice of Ising coupling strength ε and isomorphic charge z, as well as the
amphiphiles head and tail numbers, nh and nt = nh/σ. Minimizing ∆U with respect to
dh gives the optimal thickness
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Figure 4.4: Energetic stability of bilayer relative to micelles as a function of head-tail
asymmetry. Integral σ values are marked by circles.

d∗h =
(
D

4π

)1/2 [f(σ)]1/6

(σ + 1)1/2

(
n2
hεδ

4

z2

)1/3

,

t∗ = 2d∗h
(
σ + 1
σ

)
.

At this optimal thickness, the stability of bilayer relative to that of a micelle is

∆U(d∗h)/L2 =
4− D3/2

3(π)1/2

(
f(σ)

(σ + 1)σ2

)1/2
 ε

δ2

where the combination of numerical constants and σ in the prefactor is again a mono-
tonically increasing function of σ, as shown in Fig. 4.4.

4.5.5 Rules for constructing a stable bilayer
With the equations worked out above, we can draw out some rules for constructing a

stable bilayer:

1. The Ising coupling ε = −1
4 (2εow − εoo − εww) is the only relevant lattice energy

constant in determining ∆U(d∗h). Because ∆U(d∗h) turns out to scale proportionately
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to ε, the choice of ε alone does not alter the relative energetic stability between
micelles and bilayers. Under weak βε the amphiphilic tail particles dissociate and
no assembly will be observed, whereas under strong βε the tail-head and tail-water
interfaces lose the correct large-scale height fluctuations and become smooth. So we
need an intermediate ε that allows for the correct height fluctuations while it is still
“holding the assembly together”.

2. The asymmetry factor σ is a measure of the relative number of head and tail
groups in the amphiphile. As illustrated in Fig 4.4, small σ (small nh, large nt)
favors bilayers while large σ (large nh, small nt) favors micelles. This trend is
in agreement with the intuition that amphiphiles with large heads and small tails
will assemble into micelles, while those with small head and large tail assemble
into bilayers. When σ is small enough to favor bilayers (∆U(d∗h) < 0 for σ > 2),
increasing the strength of Ising couple ε will proportionally increase the energetic
preference for bilayers. Furthermore, in addition to determining the overall energetic
preference between micelles and bilayers, variations in σ also have some more subtle
effects on the geometries of these structures: when we have a large σ that favors
micelles, a larger σ gives smaller inner radius r∗; when we have a small σ that favors
bilayers, a smaller σ gives thinner d∗h but thicker d∗t .

3. The isomorphic charge density on head particles z/nhδ3 (or on tail particles
−z/ntδ3 = −zσ/nhδ3) are determined by the amphiphile’s average head-tail sepa-
ration ∆, and the number of heads and tails nh and nt. These constants do not
enter the equation for ∆U(d∗h), which means they do not determine whether bilayers
or micelles are more stable, at least from this limited, purely energetic perspective.
However they do appear in the expressions for the size of bilayers d∗h, d∗t and the
size of micelles r∗, R∗, which all scale ∼ n

2/3
h z−2/3. Since we know the isomorphic

charge is related to temperature β, molecular density ρ and head-tail separation
∆ by z ∼ (βρ∆2)−1/2, we know that decreasing the temperature, increasing the
amphiphile size, or increasing its molecular density can all reduce z, consequently
making r∗, R∗, d∗h and d∗t larger. Increasing nh and nt while holding their ratio σ
constant have the same effect.

4. The calculations in this section neglect various entropic contributions to the free
energy difference between bilayer and micelle configurations, including the surface
fluctuations, translational entropy, and size fluctuations. Though it is difficult to
know whether surface and size fluctuations favor one configuration or the other, it is
reasonable to guess that the translational entropy strongly favors the micelles over
the bilayers. Therefore for a bilayer to be stable, the Ising couplings and isomorphic
charges must give rise to a strongly energetically favorable bilayer. In other words,
simply having ∆U(d∗h)/L2 < 0 is not enough - the energetic advantage for bilayers
must be strong enough to outweigh the entropic preference for micelles. At the same
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time, we could also reduce the translational entropy of micelles by simply looking
at systems at high molecular densities.

4.5.6 Planar lamellae
In the sections above I calculated the relative energetic stability of a planar lipid

bilayer against that of a solution of micelles. It is easy to extend this calculation to a
lamellar phase in which planar bilayers on stacked on top of one another.

Previously during the calculations of the bilayer, the thicknesses of head and tail layers
were fixed because the system was not constructed to be periodic in all three dimensions.
But now the lamellar phase is periodic along all three axes, so we can fix the amphiphile
molecular density at ρm instead. The number of head particles and tail particles in a box
of dimensions (Lx, Ly, Lz) is then Nh = ρmLxLyLznh and Nt = ρmLxLyLznt respectively.
Note that I am writing (Lx, Ly, Lz) instead of L3 because this way it will be easier to
check the extensivity of the energies later on.

Consider the case when these heads and tails assemble into n identical pieces of bilayers
stacked along the z-axis. The thicknesses of the layers are then inversely proportional to
n:

dh = ρmδ
3Lznh/2n

dt = ρmδ
3Lznt/2n

We can now derive the total fluctuation-free energy of the system by considering the
contributions from Ising couplings and electrostatics. The Ising part of the energy is
simply the cohesive lattice energy of the whole water box, subtracted by the cost of
having hydrophobe-hydrophile interfaces:

U lamella
ising (n) = −3εLxLyLz

δ3 + 4nεLxLy
δ2

As we increase n, more interfaces are created and so U lamella
ising rises linearly with n.

For the effective electrostatic energy, the extension from our calculation for the planar
bilayer case is again simple because each bilayer is overall charge-neutral. By Gauss’s
Law, there is no field in the space between the bilayers, so the effective electric field from
one bilayer will not feel that of its neighbors. So the total electrostatic energy is that of
a single bilayer multiplied by the number of bilayers n:

U lamella
elec (n) = 4π(σ + 1)z2d3

hLxLyn

3σn2
hδ

6

= π

6 ·
(nh + nt)z2ρ3

mδ
3LxLyL

3
z

n2

where on the second line I made the change of variable from dh to ρm. The electrostatics
is proportional to 1/n2. It favors a larger n because in that case the opposite charges are
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better mixed and the system is more locally charge-neutral. This preference for larger n
opposes the Ising coupling’s preference for a smaller n, which reduces the cost of creating
interfaces.

Since the electrostatics and Ising energies push the preferred n in opposite directions,
it is possible to derive a preferred number of bilayers n∗ at fixed molecular density ρm,
temperature β and molecular structure {z, nh, nt} by minimizing U lamella

ising (n) + U lamella
elec (n)

with respect to n. Minimization yields

n∗ =
(
π

12
z2(nh + nt)δ5

ε

)1/3

ρmLz

This is the optimal number of bilayers inside the periodic box of size (Lx, Ly, Lz), with
the surface normals aligned with the z-axis. The proportionality to Lz is expected, as
doubling the number of periodic images along z-axis should double the number of bilayers.
The proportionality to ρm is also expected under our assumption that the system is dilute
enough that the bilayers do not interact with one another. This assumption is likely going
to break down for high concentrations or lipids that have low bending rigidities, which
allow greater height fluctuations along z-axis.

Even entropy from individual bilayer’s height fluctuations is ignored for the current
calculation, as is the micelle phase’s entropy of translation, because solving for optimal
configuration parameters, such as the optimal micellar radii or the optimal number of
bilayers, becomes much less tractable analytically when these extra entropic terms are
incorporated into the free energy.

Substituting n∗ into U lamella
ising + U lamella

elec , we find the optimal lamellar phase energy to
be

U lamella(n∗) = U lamella
ising (n∗) + U lamella

elec (n∗)

= εLxLyLz
δ3

−3 + ρmδ
3
[

18π(nh + nt)z2

δε

]1/3
 .

Comparing this with the micellar phase’s energy at the optimal inner radius r∗

Umicelle(r∗) = εLxLyLz
δ3

−3 + ρmδ
3 D

2σ

(
f(σ)nhz2

δε

)1/3
 ,

we find the energy density of the lamellar phase relative to micelles,

∆u =
[
U lamella(n∗)− Umicelle(r∗)

]
/LxLyLz

= ρm(nhz2ε2/δ)1/3
{

[18π(σ + 1)/σ]1/3 − [f(σ)]1/3D/2σ
}
.
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The constants and functions of σ inside the curly bracket are negative for all σ values,
and are monotonically increasing with σ, as shown in Fig. 4.5. That is, the longer the
amphiphile’s tail, the more stable the lamellar phase is. The linear dependency on ρm
indicates that the lamellar phase is favored at higher densities.

Figure 4.5: Energy density differences between the lamellar phase and the micellar phase.

These expressions for the optimal bilayer number and the energy density difference are
useful as a guideline for setting up a numerical simulation with a good initial configuration
of the lamellar phase that would stay relatively stable against decomposing into spherical
micelles.

The usefulness of this approach is limited to a molecular density ρm that allows for
both phases to exist. This result cannot apply to the high-density limit as mentioned
previously, due to the expected strong inter-bilayer interactions. At very low density, this
calculation also does not accommodate for the fact that there are not enough molecules
in the system to make complete sheets of bilayers for the lamellar phase, therefore at that
point, we need only consider the micelle phase and the soluble phase.

4.5.7 Dependency on lattice spacing choice
To make a lattice representation of the effective charges derived through the electro-

static analogy, we have to choose a lattice spacing δ. An amphiphile molecule has head
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group volume vh and tail group volume vt, which are represented by nh = vh/δ
3 head

particles and nt = vt/δ
3 tail particles, each of volume δ3 on the lattice.

The electrostatic analogy says that the head particles should carry +z charge in total,
while the tail particles should carry −z charge in total, making the whole molecule overall
charge-neutral. This implies that every head particle has a charge density of +z/nhδ3 =
+z/vh, and every tail particle has a charge density of −z/ntδ3 = −z/vt. For the strength
of Ising coupling as we change the lattice spacing, we have been emphasizing that the
surface tension should be kept at a constant. A fluctuation-free, purely energetic surface
tension match will require us to choose ε ∝ δ2γ, while a complete picture incorporating
the capillary wave entropy will require us to choose ε ∼ δ

√
kBTγ.

The physical phenomenon we are interested in is the relative stability of the lamellar
phase against spherical micelles. From a physical standpoint, the energy density difference
should be invariant of the lattice spacing, because the lattice spacing is a fictional variable
we use to put the configurations on a lattice and by doing so facilitate the free energy
calculation. Let’s inspect the expression below and see if the invariance holds:

∆u = ρm(nhz2ε2/δ)1/3
{

[18π(σ + 1)/σ]1/3 − [f(σ)]1/3D/2σ
}

As we scale the lattice spacing by a multiple of δ′ = mδ, if the amphiphile molecule
was previously represented by (nh + nt) lattice cells, then it is now only represented
by (n′h + n′t) = (nh/m3 + nt/m

3) lattice cells. The new ising couple is ε′ = mε. The
temperature β, molecular density ρm, effective charge valency z, and asymmetry factor σ
do not change. So the new energy density is

∆u′ = ρm(n′hz2ε′2/δ′)1/3
{

[18π(σ + 1)/σ]1/3 − [f(σ)]1/3D/2σ
}

= m−2/3ρm(nhz2ε2/δ)1/3
{

[18π(σ + 1)/σ]1/3 − [f(σ)]1/3D/2σ
}

The residual scaling factor of m−2/3 shows that the energy density is not lattice-
spacing independent. If we were to make the lattice coupling scale in such a way that ∆u
is invariant to changes in δ, we should have chosen ε′ = m2ε instead. Adding in entropy
of translation and height fluctuations will change this result.

4.6 Representation of spontaneous curvature
In the previous section, we derived the relative stabilities of different amphiphilic

assemblies inside the framework of the charge-frustrated Ising model. But in the literature,
an amphiphilic molecule’s spontaneous curvature is known to be one of the most significant
factors that determine such stabilities.

Most notably, Israelachivili et al.[49] quantified the spontaneous curvature into the
packing parameter, which is a ratio of head and tail group sizes. Amphiphiles with large
head groups and small tail groups have concave spontaneous curvatures that stabilize
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oil-in-water micelles, while amphiphiles with small head groups and large tail groups have
convex spontaneous curvatures that stabilize water-in-oil reverse micelles.

The charge-frustrated Ising model is concerned with only the distances among hy-
drophobic and hydrophilic groups within the molecule; the spontaneous curvature due
to varying tail angles or head sizes is not explicitly included in the model. The goal of
this chapter is to derive a higher-order correction to the charge-frustrated Ising model to
produce asymmetry in the surfactant head and tail interactions so that a spontaneous
curvature may emerge in the assemblies of layers.

4.6.1 Higher-order corrections to ω̂ij(k) in 3D
Following the previous formulation, I can write the density correlations to a higher

order in k:

ω̂ij(k) = ninj −
1
6k

2∆2
ij + 1

120k
4Φ4

ij −
1

5040k
6Ω6

ij +O(k8)

where I defined distances:

∆2
ij =

∑
α∈i

∑
γ∈j
〈
∣∣∣~r(α) − ~r(γ)

∣∣∣2〉
Φ4
ij =

∑
α∈i

∑
γ∈j
〈
∣∣∣~r(α) − ~r(γ)

∣∣∣4〉
Ω6
ij =

∑
α∈i

∑
γ∈j
〈
∣∣∣~r(α) − ~r(γ)

∣∣∣6〉
In matrix form, the density correlations are:

ω̂(k) =
[
n2
A − 1

6k
2∆2

AA + 1
120k

4Φ4
AA − 1

5040k
6Ω6

AA nAnB − 1
6k

2∆2
AB + 1

120k
4Φ4

AB − 1
5040k

6Ω6
AB

nAnB − 1
6k

2∆2
AB + 1

120k
4Φ4

AB − 1
5040k

6Ω6
AB n2

B − 1
6k

2∆2
BB + 1

120k
4Φ4

BB − 1
5040k

6Ω6
BB

]

To invert the density correlation matrix, first find determinant to O(k4):

det ω̂(k) = n2
An

2
B

(1
3k

2∆2 + 1
12k

4Φ4 + 1
720k

6Ω6
)

+O(k8)

where the distances are:

∆2 = ∆2
AB/nAnB −∆2

AA/2n2
A −∆2

BB/2n2
B

Φ4 = 1
3
(
∆2
AA∆2

BB −∆4
AB

)
/n2

An
2
B −

1
5
(
Φ4
AB/nAnB − Φ4

AA/2n2
A − Φ4

BB/2n2
B

)
Ω6 =

(
2∆2

ABΦ4
AB −∆2

AAΦ4
BB −∆2

BBΦ4
AA

)
/n2

An
2
B + 1

7
(
2Ω6

AB/nAnB − Ω6
BB/n

2
B − Ω6

AA/n
2
A

)
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In the following I will truncate the density correlation matrix at O(k4). Consider first
the AA-th element of the inverse (effective interaction) matrix. By the rules of inverting
a 2× 2 matrix:

ω̂−1
AA(k) = ω̂BB(k)

det ω̂(k)

=
n2
B − 1

6k
2∆2

BB + 1
120k

4Φ4
BB +O(k6)

n2
An

2
B

(
1
3k

2∆2 + 1
12k

4Φ4 + 1
720k

6Ω6
)

+O(k8)

= k−2
[
n2
B −

1
6k

2∆2
BB + 1

120k
4Φ4

BB +O(k6)
]
×[

n2
An

2
B

(1
3∆2 + 1

12k
2Φ4 + 1

720k
4Ω6

)
+O(k6)

]−1

= k−2
[
n2
B −

1
6k

2∆2
BB + 1

120k
4Φ4

BB +O(k6)
]
×[

3
n2
An

2
B∆2 −

3Φ4

4n2
An

2
B∆4k

2 + 1
16n2

An
2
B

(
3Φ8

∆6 −
Ω6

5∆4

)
k4 +O(k6)

]

Carry out the multiplication:

ω̂−1
AA(k) = 3/n2

A

k2∆2 −
(

3Φ4

4∆4n2
A

+ ∆2
BB

2n2
An

2
B∆2

)
+{

1
16n2

A

(
3Φ8

∆6 −
Ω6

5∆4

)
+ Φ4∆2

BB

8n2
An

2
B∆4 + Φ4

BB

40n2
An

2
B∆2

}
k2 +O(k4)

= 1
n2
A

(
aAAk

−2 − bAA + cAAk
2 +O(k4)

)
This can be written into a format that will be nicer for inversion back to real space

later:

ω̂−1
AA(k) = 1

n2
A

(
aAAk

−2 − bAA + cAAk
2 +O(k4)

)
= 1
n2
A

(
aAAk

−2 + −bAA
1 + (cAA/bAA)k2 +O(k4)

)

where on the second line, I combined the zeroth and second order term to a form that
retains the accuracy of the power series up to k2. The constants are defined as:
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aAA = 3
∆2

bAA = 3Φ4

4∆4 + ∆2
BB

2n2
B∆2

cAA = 1
16

(
3Φ8

∆6 −
Ω6

5∆4

)
+ Φ4∆2

BB

8n2
B∆4 + Φ4

BB

40n2
B∆2

As k is small, we can drop the O(k4) terms in later calculations. Repeating this
procedure for the other three elements, this gives the cleaned up effective correlation
matrix (accurate up to O(k2)):

ω̂−1(k) = 1
k2

[
aAA/n

2
A aAB/nAnB

aAB/nAnB aBB/n
2
B

]
+
 1

n2
A
· −bAA

1+k2cAA/bAA
1

nAnB
· −bAB

1+k2cAB/bAB
1

nAnB
· −bAB

1+k2cAB/bAB
1
n2
B
· −bBB

1+k2cBB/bBB

+O(k4)

So on top of the head-head repulsion in the original formulation, they experience an
additional screened electrostatic attraction by an amount proportionally to tail-tail rms
distance. The invariance of head-head and tail-tail interactions with respect to head-
head/tail-tail distances is broken.

In the expression above I defined more coefficients for the diagonal elements:

aBB = 3
∆2

bBB = 3Φ4

4∆4 + ∆2
AA

2n2
A∆2

cBB = 1
16

(
3Φ8

∆6 −
Ω6

5∆4

)
+ Φ4∆2

AA

8n2
A∆4 + Φ4

AA

40n2
A∆2

and off-diagonal coefficients carry opposite signs:

aAB =− 3
∆2

bAB =−
(

3Φ4

4∆4 + ∆2
AB

2nAnB∆2

)

cAB =− 1
16

(
3Φ8

∆6 −
Ω6

5∆4

)
− Φ4∆2

AB

8nAnB∆4 −
Φ4
AB

40nAnB∆2

4.6.2 Effects of higher order corrections on AB2

In the O(k−2) model, the analogous charge densities interact with the same strength
independent of how the head and tail groups are arranged spatially within the molecule.
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To see how the higher-order terms introduce these elements, which are necessary for a
non-zero spontaneous curvature, we can apply the expressions derived above to a simple
molecule, B-A-B, with fixed bond length rAB = ` and tunable bond angle θBAB = θ.
While ` sets the length scale for interactions in this system, larger θ gives the molecule
more steric bulk.

The results are shown in Fig.4.6 and Fig.4.7. θ does not change the relative ratio of
strengths of the O(k−2) effective interactions. From this, we again see that the O(k−2)
interactions represent the spatial constraint that overall the head and tail groups are
separated, as explained in the Electrostatic Analogy paper.

The O(k0) interactions, however, are capable of describing in more detail how the
groups are arranged relative to each other, and the asymmetric changes to the molecule’s
shape when the arrangement changes. For O(k0), the changes in these strengths follow the
expected trend up to θ ≈ π/2: As θ widens from 0 to π/2, the surfactant tail groups are
farther away from each other, and the graph shows that the tail-tail repulsion gets stronger
while the head-head repulsion gets weaker. The behavior beyond θ ≈ π/2 opposes the
trend before and instead of frustrating the phase separation of head and tail groups, it
now facilitates such separation.

The O(k2) interaction strengths follow the same trend up to about θ ≈ π/2. But
for inverting the Fourier transform the sign of bij/cij, i.e. the ratio of the O(k0) and
O(k2) strengths, will determine whether the real-space potential is of the from e−εr/r
(exponential) or cos(εr)/r (oscillatory). On the plot of bij/cij we see all three types of
interaction strengths change sign - they all switch between exponential and oscillatory
at some point when θ becomes large. Note that for small θ values, when the tails are
relatively close to each other and the molecule has the shape of a conventional surfactant,
the head-head and tail-tail interactions start as oscillatory. Furthermore, bij/cij < 0 has
consequences in the types of density fluctuations that are prohibited, as discussed below.

4.6.3 Prohibited density fluctuations
In the original O(k0) electrostatic analogy, the free energy in reciprocal space is:

FG = kBT

2V ρ
∑

k

3
k2∆2

(
|ρ̂A(k)|2

n2
A

+ |ρ̂B(k)|2

n2
B

− ρ̂A(k)ρ̂B(−k)
nAnB

− ρ̂A(−k)ρ̂B(k)
nAnB

)

where ρi(r) = (1/V )∑k e
ik.rρ̂i(k), and ρ̂i(k) is dimensionless. The 1/k2 prefactor

becomes infinite for the term k→ 0, unless the densities in the bracket become 0:

lim
k→0

(
|ρ̂A(k)|2

n2
A

+ |ρ̂B(k)|2

n2
B

− ρ̂A(k)ρ̂B(−k)
nAnB

− ρ̂A(−k)ρ̂B(k)
nAnB

)
= 0

Rearranging this,
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Figure 4.6: Coefficients for higher order corrections as a function of the inter-tail angle θ.
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Figure 4.7: The ratio bij/cij as a function of the inter-tail angle θ.

(
ρ̂A(0)
nA

− ρ̂B(0)
nB

)2

= 0

where ρ̂i(0) = V
∑

r ρi(r) = Ni is the total number of group i in the system. This
equation, therefore, implies that the system must be overall charge neutral to avoid having
prohibitively large free energy values. Translated into the language of amphiphiles, this
constraint is equivalent to saying that stoichiometry of head and tail groups must be
preserved in the field theory model.

Extending this to a free energy expression with higher-order k terms, if we are simply
adding on theO(k0) andO(k2) terms, these terms do not go to infinity as k → 0. However,
if we decide to combine these two terms into the 1

1+k2 form, a new constraint emerges.
The additional terms in the free energy expression are:

F
′

G = kBT

2V ρ
∑

k

∑
i,j=A,B

ρ̂i(k)ρ̂i(−k)
ninj

(
−bij

1 + k2cij/bij

)

When cij/bij ≥ 0, no singular values are present; but as we saw in the section above,
cij/bij < 0 is seen even in the simple AB2 surfactant. This means that the k =

√
−bij/cij

terms must be eliminated from the sum by having ρ̂i(k)ρ̂j(−k) = 0 at |k| =
√
−bij/cij.
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4.6.4 Real space effective interactions ω̂−1
ij (r)

After finding the low-k expansion to O(k2), the next step is to transform the following
expression back to real space long-range effective interactions:

ω̂−1
ij (k) = 1

ninj

(
aijk

−2 + −bij
1 + k2cij/bij

+O(k4)
)

= 1
ninj

(
aijk

−2 +
−b2

ij/cij

k2 + bij/cij
+O(k4)

)

For the case of bij/cij ≥ 0, we have the following known result:

fε(~r) = e−εr

4πr ⇔ gε(~k) = 1
k2 + ε2

This means with ε =
√
bij/cij,

F−1
[
−b2

ij/cij

k2 + bij/cij

]
=
(
−b2

ij/cij

4π

)
F−1

[
4π

k2 + bij/cij

]
=
−b2

ije
−r
√
bij/cij

4πrcij

And with ε→ 0,

F−1
[
aij
k2

]
= aij

4πr

Therefore in real space the effective interaction matrix is:

ω−1
ij (r) = aij

4πrninj
−

b2
ij

4πrninjcij
e−r
√
bij/cij , bij/cij ≥ 0

For the case of bij/cij < 0, contour integration gives

fε(~r) = cos(εr)
4πr ⇔ gε(~k) = 1

k2 − ε2
And so the real space effective interaction matrix is:

ω−1
ij (r) = aij

4πrninj
−

b2
ij

4πrninjcij
cos

(
r
√
−bij/cij

)
, bij/cij < 0
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4.6.5 Lattice model
Landau-Ginzburg form of the effective Hamiltonian

Without changing the k-expansion, the additional terms in the free energy can be put
into an Ising-like form:

βF
′

G = 1
2ρV

∑
i,j=A,B

∑
k

ρ̂i(k)
ni

(−bij + cijk
2) ρ̂j(−k)

nj

= 1
2ρV 2

∑
i,j=A,B

∑
k

∑
k′
V δk,−k′

ρ̂i(k)
ni

(−bij + cijk
2) ρ̂j(k

′)
nj

To turn the sum over k into integrals over r, use
∫
V dre

i(k+k′).r = V δk,−k′ :

βF
′

G = 1
2ρV 2

∑
i,j=A,B

∫
dr
∑

k

∑
k′
eik.r

ρ̂i(k)
ni

(−bij + cijk
′2)eik′.r ρ̂j(k

′)
nj

= 1
2ρ

∑
i,j=A,B

∫
dr

(
1
V

∑
k

eik.r
ρ̂i(k)
ni

)
(−bij + cijk

′2)
 1
V

∑
k′
eik
′.r ρ̂j(k′)

nj


= 1

2ρ
∑

i,j=A,B

∫
dr

(
1
V

∑
k

eik.r
ρ̂i(k)
ni

)
(−bij − cij∇2)

 1
V

∑
k′
eik
′.r ρ̂j(k′)

nj


= 1

2ρ
∑

i,j=A,B

∫
dr
∫
dr′

ρi(r′)
ni

δ(r − r′)(−bij − cij∇2)ρj(r)
nj

= 1
2ρ

∑
i,j=A,B

∫
dr

[
cij∇

ρi(r)
ni

.∇ρj(r)
nj
− bij

ρi(r)ρj(r)
ninj

]

where I neglected the electrostatic term. The full effective hamiltonian should be:

βFG = 1
2ρ

∑
i,j=A,B

∫
dr
∫
dr′

aijρi(r)ρj(r)
4πninj |r− r′|

+ 1
2ρ

∑
i,j=A,B

∫
dr
[
cij∇

ρi(r)
ni

.∇ρj(r)
nj
− bij

ρi(r)ρj(r)
ninj

]

Hubbard-Stratonovich transformation

To see how this result can be mapped back into interactions in a lattice model, we use
the Hubbard-Stratonovich transformation.[50] Doing the transformation backward from
an effective field-theoretic hamiltonian back to a lattice model hamiltonian is more dif-
ficult, so I will start with a lattice model hamiltonian with unknown coefficients, and
compare combinations of these coefficients with the coefficients of the field theory hamil-
tonian above at the end of the forward transformation:
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−βH[{nαi }] = 1
2
∑
ij

∑
αγ

nαi K
αγ
ij n

γ
j +

∑
i,α

βµαnαi

where i, j ∈ {1, ..., N} are indices for lattice sites; α, γ ∈ {o, w, h, t} are the particle
types; nαi ∈ {0, 1} are occupation variables;Kαγ

ij = βJαγij is the temperature-adjusted
coupling between sites; and µα is the chemical potential associated with particle type α.
The transformation takes the partition function for this system and applies the result of
Gaussian functional integrals:

Z =
∑
{noi }
· · ·

∑
{nti}

exp
1

2
∑
ij

∑
αγ

nαi K
αγ
ij n

γ
j +

∑
i,α

βµαnαi


=
∑
{noi }
· · ·

∑
{nti}

∫
D [φ] exp

−1
2
∑
ij

∑
αγ

φαi
(
K−1

)αγ
ij
φγj +

∑
i,α

(φαi + βµα)nαi


=
∫
D [φ] exp

−1
2
∑
ij

∑
αγ

φαi
(
K−1

)αγ
ij
φγj

× ∑
{noi }
· · ·

∑
{nti}

exp
∑
i,α

(φαi + βµα)nαi


(4.30)

where the inverse couplings are defined by ∑ξkK
αξ
ik (K−1)ξγkj = δijδαγ. Since the occu-

pation variables are now uncoupled, they can be traced out. I will split the trace into two
parts: a trace over all possible particle types at each site i, and a trace over all sites in
the system.

∑
{noi }
· · ·

∑
{nti}

exp
∑
i,α

(φαi + βµα)nαi

 =
∑
{noi }
· · ·

∑
{nti}

N∏
i=1

exp
[∑
α

(φαi + βµα)nαi
]

=
N∏
i=1

∑
noi

∑
nwi

∑
nhi

∑
nti

exp
[∑
α

(φαi + βµα)nαi
]

=
N∏
i=1

∑
α

exp [(φαi + βµα)]

where the last step uses the fact that only one type of particle can occupy a site
at a time (incompressibility constraint). Incorporating this result back to the partition
function:

Z =
∫
D [φ] exp

−1
2
∑
ij

∑
αγ

φαi
(
K−1

)αγ
ij
φγj +

∑
i

ln
{∑

α

exp [(φαi + βµα)]
}

where
∫
D [φ] includes the appropriate normalization.
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Saddle point approximation

Denoting the exponent as −βHeff [{φαi }], we now expand it in a power series of {φαi }
around the saddle point. First, find the saddle point

{
φ̄αi
}
:

∂

∂φξk
(−βHeff [{φαi }]) = −

∑
i,α

(
K−1

)ξα
ki
φαi + eφ

ξ
k
+βµξ∑

α e
φα
k

+βµα

This derivative vanishes at the saddle point, giving a self-consistent equation for the
field variables:

∑
i,α

(
K−1

)ξα
ki
φ̄αi =

exp
[
φ̄ξk + βµξ

]
∑
α exp

[
φ̄αk + βµα

] ⇔ φ̄αi =
∑
k,ξ

Kαξ
ik

exp
[
φ̄ξk + βµξ

]
∑
α exp

[
φ̄αk + βµα

]
On the right hand side, the field variables always appear with the chemical potential.

This observation helps us determine the solution through a derivative of the partition
function with respect to the chemical potential:

∂ lnZ
∂βµξ

=
〈∑

i

∂

∂βµξ
ln
{∑

α

exp [(φαi + βµα)]
}〉

=
〈∑

i

exp
[(
φξi + βµξ

)]
∑
α exp [(φαi + βµα)]

〉

= N

〈 exp
[(
φξ1 + βµξ

)]
∑
α exp [(φα1 + βµα)]

〉

But we also know, from inspecting the paritition function of the binary occupation
variables, that this is equivalent to:

∂ lnZ
∂βµξ

= N
〈
nξ1
〉
{n}

= N

〈 exp
[(
φξ1 + βµξ

)]
∑
α exp [(φα1 + βµα)]

〉
{φ}

Now substitute this result back to the self-consistent equation, taking ensemble aver-
ages on both sides:

〈
φ̄α1
〉

=
∑
k,ξ

Kαξ
1k

〈 exp
[
φ̄ξk + βµξ

]
∑
α exp

[
φ̄αk + βµα

]〉
{φ}

=
∑
k,ξ

Kαξ
1k

〈
nξ1
〉
{n}

Here
〈
φ̄α1
〉
is a proxy for the effective field around any certain site, and the system

is homogeneous so the effective field should have no location-dependence. Now we write
φ̄α =

〈
φ̄α1
〉
as the saddle point, and n̄ξ =

〈
nξ1
〉
the average density of type ξ in the system.
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The saddle point is therefore related to the average densities via a simple transformation
by the occupation variables’ coupling matrix:

φ̄α =
∑
k,ξ

Kαξ
1k n̄

ξ

Note this implies that the field variable φα(r) is the continuum equivalent to the
effective fields acting on the spins.

Next, to expand the effective hamiltonian around the saddle point we need the second
derivative:

∂2

∂φη`∂φ
ξ
k

(−βHeff [{φαi }]) = −
(
K−1

)ξη
k`

+ δk`δξηe
φξ
k
+βµξ∑

α e
φα
k

+βµα −
δk`e

(φξk+φη
k)+β(µξ+µη)(∑

α e
φα
k

+βµα
)2

I will use the notation δφξk = φξk − φ̄ξ. Writing out the expansion to second order,

−βHeff [{φαi }] ' const.− 1
2
∑
ξη

∑
k`

δφξk
(
K−1

)ξη
k`
δφη` (4.31)

+ 1
2
∑
ξη

∑
k

δφξkδφ
η
k

(
δξηn̄

ξ − n̄ξn̄η
)

(4.32)

Gradient expansion

I will now assume that the interactions (K−1)ξηk` are short ranged:

(
K−1

)ξη
k`

=

(K−1)ξηnn if ` = k + a

0 otherwise

where the subscript “nn” denotes nearest-neighbors, and a is the index change when
moving from one site to its nearest-neighbor site. Under this assumption, the second term
in −βHeff can be further broken down into a gradient expansion:

∑
k`

δφξk
(
K−1

)ξη
k`
δφη` =

∑
k

∑
a

(
K−1

)ξη
nn
δφξkδφ

η
k+a

=
∑
k

(
K−1

)ξη
nn
δφξk

∑
a

(
δφηk + ~a · ∇φηk + 1

2 (~a · ∇)2 φηk + . . .
)

The first-order term will cancel as we carry out the sum over all lattice vector di-
rections. Now assuming the underlying lattice is cubic with lattice vector length ` and
coordination number z, we can further simply the second-order term:
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∑
k`

δφξk
(
K−1

)ξη
k`
δφη` =

∑
k

(
K−1

)ξη
nn
δφξk

(
zδφηk + `2∇2φηk + . . .

)
Substituting this back into −βHeff and take the continuum limit of site index k:

−βHeff [{φαi }] = const.− 1
2`3

∑
ξη

∫
dr
{
a2
(
K−1

)ξη
nn
∇φη(r) · ∇φξ(r)

. . .−
[
z
(
K−1

)ξη
nn

+ n̄ξn̄η − δξηn̄ξ
]
φξ(r)φη(r)

}
This is now the same form as the effective hamiltonian in section 4.6.5 if we establish

the mapping φα(r) = ρα(r)/nα. Comparing the coefficients of the gradient expansion we
have

cαγ
ρ`6 =

(
K−1

)αγ
nn
/`

bαγ
ρ`6 = −

[
z
(
K−1

)αγ
nn

+ n̄αn̄γ − δαγn̄α
]
/`3

Alternative transformation

The expressions that relate the lattice model’s coupling matrix to our field theory
hamiltonian’s coefficients involve the inverse of Kαγ

ij , which is difficult to compute or
interpret. We can eliminate occurrences of K−1 by applying a linear transformation
to our field variables {φαi }, because such transformations will not change the Gaussian
integral’s outcome in Eq.4.30. The saddle point then directly corresponds to the average
density, σ̄α = n̄α, which means that the field variable σα(r) is the continuum equivalent
to the discrete spin variables.

Applying the transformation φαi = ∑
m,λK

αλ
imσ

λ
m to Eq.4.31 yields

−βHeff [{φαi }] '
1
2
∑
αγ

∑
i

φαi φ
γ
i (δαγn̄α − n̄αn̄γ)−

∑
ij

φαi
(
K−1

)αγ
ij
φγj


= 1

2
∑
αγ

∑
i

∑
m,λ

Kαλ
imσ

λ
m

∑
n,ξ

Kγξ
in σ

ξ
n (δαγn̄α − n̄αn̄γ)−

∑
ij

∑
m,λ

Kαλ
imσ

λ
m

(
K−1

)αγ
ij

∑
n,ξ

Kγξ
jnσ

ξ
n


= 1

2
∑
λξ

∑
mn

σλmσ
ξ
n

[∑
αγ

∑
i

Kαλ
imK

γξ
in (δαγn̄α − n̄αn̄γ)−Kλξ

mn

]

Let’s now again consider the simplest step forward by assuming that the coupling
matrix only contains nearest-neighbor interactions. The first term now reads
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1
2
∑
αγλξ

∑
i

∑
a,a′

σλi+aσ
ξ
i+a′K

αλ
i,i+aK

γξ
i,i+a′ (δαγn̄α − n̄αn̄γ)

=1
2
∑
αγλξ

∑
i

(∑
a

σλi+a

)(∑
a′
σξi+a′

)
Kαλ

nnK
γξ
nn (δαγn̄α − n̄αn̄γ)

=1
2
∑
αγλξ

∑
i

(
zσλi + `2∇2σλi + . . .

) (
zσξi + `2∇2σξi + . . .

)
Kαλ

nnK
γξ
nn (δαγn̄α − n̄αn̄γ)

'1
2
∑
λξ

∑
i

(
z2σλi σ

ξ
i + 2z`2σξi∇2σλi

) [∑
αγ

Kαλ
nnK

γξ
nn (δαγn̄α − n̄αn̄γ)

]

Taking the continuum limit ∑i → 1
`3

∫
dr:

− 1
2`3

∑
λξ

∫
drχλξnn

(
−z2σλ(r)σξ(r) + 2z`2∇σξ(r) · ∇σλ(r)

)
where χλξnn = ∑

αγK
αλ
nnK

γξ
nn (δαγn̄α − n̄αn̄γ). Under a similar gradient expansion, the

second term in the effective hamiltonian becomes

− 1
2
∑
λξ

∑
m

Kλξ
nnσ

λ
m

(
zσξm + `2∇2σξm + . . .

)
→− 1

2`3

∑
λξ

∫
drKλξ

nn

(
zσλ(r)σξ(r)− `2∇σξ(r) · ∇σλ(r)

)

Combining all terms in the effective hamiltonian

βHeff [σα(r)] = 1
2`3

∑
λξ

∫
dr
(
2z`2χλξnn − `2Kλξ

nn

)
∇σξ(r) · ∇σλ(r)

. . .+
(
zKλξ

nn − z2χλξnn
)
σλ(r)σξ(r)

Comparing to the coefficients derived in section 4.6.5, we find

cαγ
2ρ`6 = 2z`2χλξnn − `2Kλξ

nn
2`3

− bαγ
2ρ`6 = zKλξ

nn − z2χλξnn
2`3

So the nearest-neighbor coupling matrices can be written as linear combinations of
the structural coefficients:
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zχαγnn = z
∑
λξ

Kαλ
nnK

γξ
nn

(
δλξn̄

λ − n̄λn̄ξ
)

= 1
ρ`5z

(
zcαγ − `2bαγ

)
Kαγ

nn = 1
ρ`5z

(
zcαγ − 2`2bαγ

)
From the second equation, we can find four elements of the matrix Kαγ

nn from the
molecules structural coefficients {bαγ, cαγ} for α, γ ∈ {h, t}. But to fully solve the first
equation, we need the rest 12 elements of Kαγ

nn , which describe the surfactant head/tail-
solvent (oil/water) interactions and solvent-solvent interactions. Since the intramolecular
pair correlation function ω̂(k) only gives information about the interactions among surfac-
tant head and/or tail groups, these 12 real-space elements cannot be uniquely determined
but can instead freely chosen. Combining with the long-ranged interactions,

βHeff = 1
2
∑
αγ

∑
i 6=j

nαi V
αγ
ij n

γ
j −

∑
〈ij〉

nαi K
αγ
nn n

γ
j

− β∑
i,α

µαnαi

V αγ
ij = aαγ

4πrijρ

Kαγ
nn = 1

ρ`5z

(
zcαγ − 2`2bαγ

)
.
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Appendix A

Computational techniques for the
charge-frustrated Ising model

A.1 Monte Carlo moves

A.1.1 Bulk equilibrium
Detailed balance requires that the flow between old configuration o and new configu-

ration n obey:

K(o→ n) = K(n→ o)
N (o)α(o→ n)acc(o→ n) = N (n)α(n→ o)acc(n→ o)

whereK is the flow of probability between the system’s configurations, N is the proba-
bility of observing the system in a given configuration for the ensemble of interest, α is the
probability of generating and proposing a configuration from the current configuration,
and acc is the probability of accepting the proposed changes.

When detailed balance is satisfied, the system is guaranteed to evolve towards equilib-
rium. In the following, I use detailed balance to verify the validity of the generation and
acceptance criteria of various moves used in the Monte Carlo simulations of the canonical
ensemble,

N (o)
N (n) = exp(−βU(o))

exp(−βU(n)) .

A.1.2 Spin swaps
One spin is randomly selected from the total of N spins. A neighbor of this spin

is randomly selected among its (3d − 1) nearest and second-nearest neighbors. A swap
between these two spins is proposed. Hence the generation probability is
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α(o→ n) = 1
N(3d − 1) = α(n→ o) .

Given the generation probability, detailed balance requires the simple metropolis rule:

acc(o→ n)
acc(n→ o) = N (n)α(n→ o)

N (o)α(o→ n) = exp (−β [U(n)− U(o)])

which in practice can be programmed by setting the acceptance criterion as:

acc(o→ n) = min {1, exp (−β [U(n)− U(o)])} .

A.2 Minimum box size
To make sure this system will form micelles once isomorphic charges are included,

the charge-free oil-water binary lattice gas must exhibit phase separation, because the
inclusion of charges will not increase the propensity of aggregation but will only work
against it. Without phase separation in the charge-free system, it is not possible to form
micelles (mesoscopic aggegates).

This mean that with the given set of energy parameters εoo, εww and εow, the charge-free
binary oil-water system must be below the critical temperature T < Tc, and the overall
volume fraction φoil must be between the boundaries of coexistence, φOR and φWR . Here
I denote the volume fraction of oil in the oil-rich phase φOR, and the volume fraction of
oil in the water-rich phase φWR. When the fraction of system volume f is occupied by
the oil-rich phase, the three volume fractions are related by

φoilV = φORfV + φWR(1− f)V

and by approximate symmetry in a half oil half water system,

φOR + φWR ≈ 1 .
Setting φWR < φoil < φOR, we expect a oil-rich slab of thickness d and cross-sectional

area L2, so the volume fraction accounting equation is now

φoilL
3 = φORL

2d+ φWRL
2(1− d)

which can be rearranged and simplied using the approximate oil-water symmetry to

d = L× φoil − φWR

φOR − φWR
≈ L× φoil − φWR

1− 2φWR

So this tells us the thickness of the oil-rich slab we should expect in a system of box
size L and overall oil volume fraction φoil. The other volume fractions, φOR and φWR, are
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boundaries of the coexistence region. They depend only on temperature and the cohesion
energies, which are held fixed for our purposes. Another way to think about this is a
minimal box size, Lmin, below which no phase-separated slab is possible. Since our oil
particles are 2×2×2, for such a slab to exist we must have thickness of at least dmin = 2,
so

Lmin ≈ 2× 1− 2φWR

φoil − φWR

is smaller when φoil is large, and increases asymptotically if φoil goes close to its lower
limit, φWR. This is in line with intution: the system has a greater tendency towards
slab formation when there is a high concentration of oils; and if there is little excess of
oil compared to the soluble concentration of oil in the water-rich phase, there is little
tendency to produce a separate oil-rich phase.

Similarly, this equation can only be used to estimate the minimum concentration
required for slab formation in a certain box size,

φmin
oil = dmin

L
(1− 2φWR) + φWR = dmin

L
+
(

1− 2dmin

L

)
φWR .

Another consideration comes after satisfying these minimum concentration or mini-
mum system size constraints. If there is only a very small volume of the oil-rich phase,
it might not form a slab as we expected above, but instead form a sphere to minimize
its surface area. Micelles might still be able to form in such sphere-forming systems, but
it is confusing because we could mistake the formation of a spherical aggregate because
of finite size effects with the formation of micelles in macroscopic systems because of the
competition of real physical forces.

This explains why we need to know for a system of overall oil volume fraction φoil ≥
φmin
oil , what minimum system size is required for the formation of a slab instead of a sphere.

The total volume of the oil-rich phase is

VOR = L3 × φoil − φWR

1− 2φWR

At any slab thickness, this volume gives rise to a slab surface area Aslab = 2L2. But
the sphere’s surface area depends on its volume,

Asphere = 4π
(3VOR

4π

)2/3
= (36π)1/3

(
φoil − φWR

1− 2φWR

)2/3

L2

For Asphere ≥ Aslab, we need

φoil ≥
2

9π (1− 2φWR) + φWR

which is another lower bound on φoil that may be smaller or larger than the previous
lower bound, depending on the system size L.
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To summarise, to observe an oil-rich slab with minimal thickness dmin sites, the choice
of system size and oil concentration needs to satisfy two requirements:

1. There is enough amount of oil to form a slab

φoil ≥
dmin

L
+
(

1− 2dmin

L

)
φWR

2. The system prefers a slab over a sphere

φoil ≥
2

9π (1− 2φWR) + φWR

For large L, it is possible that Requirement 1 is satisfied but Requirement 2 is not.
For smaller L, satisfying Requirement 1 will automatically satisfy Requirement 2. For the
current choice of parameters, the site-site interactions are εoo/T = 0.37, εww/T = 1.25 and
εow/T = 0.55, and φWR = 0.0017 in a box of L = 50. This means we need φoil ≥ 0.042
for Requirement 1 and φoil ≥ 0.072 for Requirement 2. It is curious to see that increasing
the box size L helps with relaxing the first requirement for oil concentration but not the
second.

A.3 Measurements of interface properties
The absolute location of the interface will drift over time, because the Monte Carlo

moves by design do not explicitly preserve total momentum. But the location of the
interface relative to the center of mass of one of the two phases should stay constant, so all
the particle coordinates will now be taken as relative to the center of mass, rc = (xc, yc, zc).

The interface is assumed to be perpendicular to the x-axis. The simulation box can be
divided into Ns slabs, each with width L/Ns. The average density of oil particles in each
slab is measured. Using the Gibbs’ definition, the oil-water interface sits at the height
where the oil density is half-way between the densities of oil in the two bulk phases that
the interface divides. The bulk densities correspond to the edge points of the coexistence
region on the T − xoil phase diagram at the given temperature.

A.4 Optimizing CPU time

A.4.1 Changes in energy
Since acceptance criteria of Monte Carlo simulations only require changes in the system

total energy, ∆E, rather than the absolute total energy, we can cut down computing time
by only looking at how the proposed coordinate changes affect the total energy of the
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Figure A.1: When T < Tc , the densities of the oil-rich and water-rich phases give the
edge of the coexistence region. Here I used a 50/50 mixture of oil and water in a L = 50
periodic box. The overall volume fraction of oil is 0.5, with the oil-rich phase φoil = 0.9983
and the water-rich phase φoil = 0.0017. This in turn means that in a L = 50 system,
Noil = 0.0017 × 503/8 = 27 is the minimal number of oil blocks equired for droplets to
form.

system, instead of computing the total energy across all coordinates twice to get the
difference.

To make this clear, consider a proposed move that involves only n coordinates within a
N -coordinate system, where n ≤ N is a subset of all the coordinates. I will denote the old
coordinates as {r1, r2, ..., rn, rn+1, ..., rN} and the new coordinates {r̄1, r̄2, ..., r̄n, rn+1, ..., rN}.
Assuming the total energy of the system can be decomposed into a sum of pair potentials
among all coordinates,

Eold = 1
2

N∑
i=1

N∑
j=1

u(ri, rj)

= 1
2

 n∑
i=1

+
N∑

i=n+1

 n∑
j=1

+
N∑

j=n+1

u(ri, rj)

= 1
2

n∑
i=1

n∑
j=1

u(ri, rj) +
N∑

i=n+1

n∑
j=1

u(ri, rj) + 1
2

N∑
i=n+1

N∑
j=n+1

u(ri, rj)

and the new total energy would be,

Enew = 1
2

n∑
i=1

n∑
j=1

u(r̄i, r̄j) +
N∑

i=n+1

n∑
j=1

u(ri, r̄j) + 1
2

N∑
i=n+1

N∑
j=n+1

u(ri, rj)
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from which we can see that the last term that accounts for the pair interactions
among the unchanged coordinates remains the same after coordinate changes for the first
n particles. Repeatedly calculating those interactions is therefore only a waste of time.
Taking the difference between the two, we have

∆E = Enew − Eold

= 1
2

n∑
i=1

n∑
j=1

[u(r̄i, r̄j)− u(ri, rj)] +
N∑

i=n+1

n∑
j=1

[u(ri, r̄j)− u(ri, rj)]

where the first term sums the n(n− 1)/2 changes in the pair interactions among the
first n particles, and the second term sums the n(N − n) changes in the pair interactions
between the first n particles and the rest of the system. So when a Monte Carlo move has
been proposed, the calculation for energy changes should only include i) the pair potentials
between moved coordinates, and ii) the pair potentials between moved coordinates and
the rest of the system. In practice this can be implemented by a one-particle energy,
E1p(i), that calculates the sum of the interactions between particle i and all N − 1 other
particles in the system (we can discard some of these depending on the cut-off distance),
and a two-particle energy, E2p(i, j), that calculates the interaction between particle i and
particle j. The energy that will contribute to ∆E is then

EMC =
n∑
i=1

E1p(i)−
1
2

n∑
i=1

n∑
j 6=i

E2p(i, j) .

A.4.2 Ewald sum
The electrostatic interactions among charges are computationally costly to evaluate

because the long-ranged Coulomb interactions extend way beyond the extent of periodic
boxes, and our usual way of summing over pair interactions among all particles within
the single periodic box at origin will fail to account for the interactions between these
particles and those in the box’s periodic images. The Ewald sum technique addresses this
problem by splitting the electrostatic energy into a short-ranged part (summed in real
space), a long-ranged part (summed in reciprocal space). The parameter that determines
what is short-ranged and what is long-ranged is denoted 1/

√
α, a “screening” length.

For either sum, the energy will only be exact if we sum towards infinity which is
not tractable computationally. But since the real space part is short-ranged, we can
potentially cut off the range of interaction at r = rcut using methods like Verlet neighbor
lists; on the other hand, since the reciprocal space part is long-ranged in real space and
hence short-ranged in reciprocal space, we may cut off the reciprocal sum by some k = kcut.
In the following I discuss how the choices for all three can be made.
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Patterns at intermediate scale

The interaction range cutoff is a tradeoff between computational efficiency and accu-
rate observations: If we enforce a small cutoff by summing over fewer terms in the real and
reciprocal space series, it is possible to greatly speed up the energy calculation. However,
the small cutoff might also be too small for our energy calculations to be accurate, because
the discarded terms still contribute significantly to the sum. The inaccurate energies will
then cause our observations of the system’s configurations to be inaccurate, too.

Of course, cutting off the energy calculation will always result in inaccurate configura-
tions to some extent. So what kind of inaccruacy is acceptable, and what is not? Before
deciding on a cutoff distance or wavenumber, it is important to first understand the scale
of the phenomena we are interested in observing. If the cut-off gives inaccuracies on scales
that are either far smaller or far greater than the scale of our observations, then we can
accept such inaccuracies and enforce the cutoff.

For the charge-frustrated Ising model, we can find this relevant scale by examining
the hamiltonian in fourier space:

H
[
{si}Ni=1

]
= −J

∑
〈i,j〉

sisj + 1
2
∑
i

∑
j 6=i

sisjQij

|ri − rj|

where 〈i, j〉 means summation over all nearest-neighbor pairs of spins in the system,
and Qij ∈ RN×N contains information about the size of charges,

Qij =


z2/n2

A , if si = sj = 1;
z2/nAnB , if si = 1, sj = −1;
z2/n2

B , if si = sj = −1.

For simplicity we will assume nA = nB = n for now; and Qij = Q = 1/n2 is a constant
scalar. The spin coupling and charge interactions can be summarized into one single
interaction potential u(r),

H
[
{si}Ni=1

]
= 1

2
∑
i

∑
j 6=i

sisju(ri − rj)

Now we can define a pair of Fourier transforms ŝk = ∑
j sje

−ik.rj and sj = 1
N

∑
k ŝke

ik.rj ,
and their Delta-function δmn = 1

N

∑
k e

ik.(rm−rn), so that the hamiltonian can be written
as a sum in k-space rather than r space:
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H
[
{ŝk}π/akx,ky ,kz=−π/a

]
= 1

2
∑
i

si

∑
j 6=i

sju(ri − rj)


= 1
2
∑
i

si

[
1
N

∑
k
ŝkûke

ik.ri
]

= 1
2N

∑
k
ŝkûk

[∑
i

sie
ik.ri

]

= 1
2N

∑
k
ŝkûkŝ−k

= 1
2N

∑
k
|ŝk|2 ûk

where on the second line I applied the discrete version of convolution theorem. Note
u(r) = −Jδ|r|,a + Qij

|r| has the fourier transform,

ûk = a3
N∑
j=1

u(rj)e−ik.rj

= −Ja3
N∑
j=1

δ|rj |,ae
−ik.rj + a3

N∑
j=1

Q

|rj|
e−ik.rj

= −Ja3 ∑
m=x,y,z

(
eikma + e−ikma

)
+ 4πQ

k2

= −2Ja3 ∑
m=x,y,z

cos (kma) + 4πQ
k2

u −2Ja3 ∑
m=x,y,z

(
1− 1

2k
2
ma

2
)

+ 4πQ
k2

= −2Ja3
(

3− 1
2k

2a2
)

+ 4πQ
k2

= Jk2a5 + 4πQ
k2 + constants

These two results let us understand how the pair-potential influences the system’s
structures and dynamics in reciprocal space. The first term in ûk is the square gradient
Ising coupling that rises with increasing wavenumber k (short-ranged and favoring pat-
terns at large scales), whereas the second term is the surfactant-mimicking electrostatics
that decreases with increasing k (long-ranged and favoring patterns at small scales). The
net effect due to these two terms with opposite scaling trends with k is that a minimum of
ûk, |k| = k∗, exists at an intermediate scale. This also means that in real space, the corre-
sponding wavelength λ∗ = 2π/k∗ should encompass the interesting assembly phenomena
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that is otherwise not observed in a pure Ising or pure electrostatics system. Consequently,
this is the scale of observation that we should take care to preserve when using cutoffs to
improve computational effciency. In this particular system that has equal number of head
and tail groups per surfactant, we can work out the characteristic wavenumber k∗ exactly
according to the charge valence z, the surfactant density ρ, and head-tail separation ∆,

k∗ =
(

4πz2

Ja5n2

)1/4

=
(

4π
Ja5n2 ×

3kBT
4πρ∆2

)1/4

=
(

3kBT
Ja5n2ρ∆2

)1/4

with a corresponding characteristic wavelength,

λ∗ = 2π
k∗

= 2π
(
Ja5n2ρ∆2

3kBT

)1/4

.

Given the summation increment ∆k = π/L, the number of wavevectors needed to sum
up to this k∗ in each direction is then

nk = k∗/∆k = L

π

(
3kBT

Ja5n2ρ∆2

)1/4

.

Truncating the real-space sum

Now we look into the methods that improve computational speed in relation to the
characteristic scale. Fundamentally, in all these methods the computational efficiency is
gained by modifying the way the system’s total energy is calculated, often by approximat-
ing the true hamiltonian using a truncated hamiltonian to reduce the number of terms
that needs to be iterated over.

In order to decide how to implement the Ewald sum correctly so that the observed
phenomena at the characteristic scale remains true to the original hamiltonian, we need
to see analytically what the modified, approximate hamiltonian is and make a direct
comparison with its unmodified counterpart. As demonstrated in the previous section,
our system’s exact total electrostatic energy can be written as

Eelec = 1
2N

∑
k
|ŝk|2 ûeleck

= 1
2N

∑
k

4πQ
k2 |ŝk|2

[
e−k

2/4α +
(
1− e−k2/4α

)]
= 1

2N
∑

k

4πQ
k2 |ŝk|2 e−k

2/4α + 1
2N

∑
k

4πQ
k2 |ŝk|2

(
1− e−k2/4α

)
where the first term is a fast-decaying gaussian centered around k = 0, so it should be

summed in reciprocal space; while the second term is slow-decaying in reciprocal space,
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but that in turn means it is fast-decaying in real space, so it is transformed back into real
space,

Eelec = Ereciprocal + Ereal

= 1
2N

∑
k

4πQ
k2 |ŝk|2 e−k

2/4α + 1
2
∑
i

∑
j 6=i

qiqjerfc(
√
αrij)

rij
.

Before going into more details about the first term, let’s look at the second term. The
complementary error function has a decay length of 1/

√
α, which means if we want to

truncate the real-space sum to only include the charges that are in the periodic box at the
origin, we should choose 1/

√
α� L/2, where L/2 is the largest possible distance without

crossing into neighboring periodic box images. Rearranging this expression, we see that
α � 4/L2 is the lower limit for choosing α if we want to truncate the real-space sum at
one periodic box, rcut ≤ L/2.

However, in my experience the real-space sum is generally cheaper to calculate by
implementing list of charges and neighbor lists, so this criterion can be relaxed if choosing
an even larger screening length (smaller α) help speed up the reciprocal sum. We will
just have to extend the sum into neighboring periodic box images.

In any case, rcut should not need to be more than a few multiples of 1/
√
α, the decay

length of the real-space pair potential, because beyond that the complementary error
function essentially evaluates to zero.

In the source code I combine the real-space sum with other real-space interactions,
such as the Ising near-neighbor coupling.

Truncating the reciprocal-space sum

Next, we return to the reciprocal sum which can be further split into a small-k series
and a large-k series, preparing it for truncation,

Ereciprocal = 1
2N

∑
k

4πQ
k2 |ŝk|2 e−k

2/4α

= 1
2N

 ∑
|k|<kcut

+
∑

|k|≥kcut

 4πQ
k2 |ŝk|2 e−k

2/4α

Combining this with the real-space sum we see the total electrostatic energy accounted
for by the Ewald sum, and a large-k reciprocal part that is being tossed out,
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Eelec = 1
2N

 ∑
|k|<kcut

+
∑

|k|≥kcut

 4πQ
k2 |ŝk|2 e−k

2/4α + 1
2
∑
i

∑
j 6=i

Qerfc(
√
αrij)

rij

=

 1
2N

∑
|k|<kcut

4πQ
k2 |ŝk|2 e−k

2/4α + 1
2
∑
i

∑
j 6=i

Qerfc(
√
αrij)

rij

+ 1
2N

∑
|k|≥kcut

4πQ
k2 |ŝk|2 e−k

2/4α

= Eewald + 1
2N

∑
|k|≥kcut

4πQ
k2 |ŝk|2 e−k

2/4α

which can then be rearranged and decomposed into the electrostatic pair potential
ûeleck = 4πQ

k2 ,

Eewald = Eelec −
1

2N
∑

|k|≥kcut

4πQ
k2 |ŝk|2 e−k

2/4α

= 1
2N

∑
k
|ŝk|2 ûeleck − 1

2N
∑

|k|≥kcut

|ŝk|2 ûeleck e−k
2/4α

= 1
2N

∑
|k|<kcut

|ŝk|2 ûeleck + 1
2N

∑
|k|≥kcut

|ŝk|2 ûeleck

(
1− e−k2/4α

)

= 1
2N

∑
k
|ŝk|2 ˜̂ueleck

where on the last line I summarized the terms using an Ewald pair potential,

˜̂ueleck =

û
elec
k for |k| < kcut;
ûeleck

(
1− e−k2/4α

)
for |k| ≥ kcut .

and the error of the Ewald sum can be written as,

∆E = Eelec − Eewald = 1
2N

∑
|k|≥kcut

(
ûeleck − ˜̂ueleck

)
|ŝk|2 = 1

2N
∑

|k|≥kcut

ûeleck |ŝk|2 e−k
2/4α

This rearrangement shows us how the choice of kcut influences the accuracy of the
Ewald sum at different scales.When |k| < kcut, the full electrostatic pair potential ûeleck is
included into the sum, so with all else done correctly the configurations at wavenumbers
smaller than kcut are expected to be accurate. However at |k| ≥ kcut, such accuracy is no
longer guaranteed as ûeleck is now discounted by a factor of

(
1− e−k2/4α

)
. The discrepancy

scales with e−k
2/4α, which is the greatest at |k| = kcut where ˜̂ueleck has a discontinuous

step down from ûeleck . After that, the discrepancy decays to 0 at |k| → ∞, with a rate
r ∝ 1/

√
α that scales inversely with the choice of α.
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In essense, the accuracy of the reciprocal sum is controlled by both α and kcut. A
smaller α gives a smaller discontinuity at |k| = kcut and faster decay of the error introduced
by the k-series truncation. This contrasts with the need for larger α values from our
discussion of the real-space sum truncation.

Comparing kcut and k∗

Let’s consider a gradual relaxation of our kcut choice and what each case implies for
the choice of α and rcut.

If we were given infinite computational resources, then we are free to choose kcut to
be much greater than k∗, which in turn means that we can afford to have any choice α
value without introducing any discrepancy between ûeleck and ˜̂ueleck across a large range of k
values. A larger α means rcut ∝ 1/

√
α can be very small. Of course, including many terms

in the k-series is expensive, and maintaining accuracy beyond |k| ≥ kcut is unnecessary.
If we choose a smaller kcut close to but greater than k∗, the step down of ûeleck e−k

2/4α

will happen beyond k∗, so no noticeable change at the characteristic length is expected.
From the perspective of the reciprocal sum, we’ve saved some time, and we don’t care
about the size of α because it doesn’t change the behavior at k∗ whatsoever. Again in
this case we should be free to pick a large α to speed up the real-space sum.

Up to this point we have looked at two very conservative choices of kcut, but since the
reciprocal sum is much more expensive than the real sum, it is worth asking whether we
can cut the number of wavevectors even more. The answer is yes as long as we choose α
more carefully, not only increasing α to reduce the number of real space neighbors, but
also balancing that with the widening gap between ûeleck and ˜̂ueleck as α increases.

The α of our choice must not be so large that the error at |k| = k∗ is much larger than
a3kBT ; but it also must not be so small that the real-space sum becomes prohibitively
expensive. This is again contrasts with the conventional way of converging Ewald sums,
which calls for a balance between small kcut and small α that maintains a converged energy
Eewald = Eelec. But our focus with α and kcut is different from the conventional choice,
because we care more about the value of the error gap at the a specific contribution to
the total energy - the characteristic scale - than the error of the total energy ∆E. To
reiterate, errors at wavenumbers far away from the characteristic k∗ should not give arise
to inaccurate configurations at the scale of our interest, so even if those errors are large
they should not be of our concern.

As an example, let’s evaluate this error for the case of equal and opposite head and
tail charges:
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(
ûeleck − ˜̂ueleck

)∣∣∣
|k|=k∗

= 4πQ
k∗2

e−k
∗2/4α

= 4π z
2

n2

(
Ja5n2

4πz2

)1/2

exp
−( 4πz2

Ja5n2

)1/2

/4α


=
(

4πJa5z2

n2

)1/2

exp
−( πz2

4Jα2a5n2

)1/2


= a5/2z
√

4πJ
n

exp
(
−
√
π

J
× z

2αa5/2n

)
Previously I have been using values α = 1, z = 0.3, J = 1, L = 12 and n = a = 1,

which yields an error of 0.815 × a3kBT and k∗ = 1.03. This does not meet the small
error criteria, so if I choose to include nk = k∗/∆k = 3.94 ≈ 4 or fewer wavevectors, the
configurations at the characteristic length scale will be inaccurate and different from what
we should see based on the full hamiltonian.

In practice, the pair potentials ˜̂ueleck and ûeleck can be found analytically, from which
we can then find an optimal combination of {kcut, α} by surveying the computation times
of a number of combinations that satisfy the requirement

(
ûeleck − ˜̂ueleck

)∣∣∣
|k|=k∗

� a3kBT .
Among these combinations, we should pick the least computationally intensive one. Nat-
urally this choice is highly dependent on τreciprocal/τreal, the ratio of evaluation time for
a reciprocal term and that for a real term, and hence highly dependent on how the re-
ciprocal and real term calculations have been optimized, for example by using a cosine
look-up table as described in the next Section. Finally the real-space cutoff rcut is easily
determined as some multiple of 1/

√
α.

Changes in structural factors

Calculating the reciprocal sum requires us to compute structural factors of the screened
charges, {ρ̂k} with kx = 2πnx/L, nx = −L/2, ...,−1, 0, 1, ..., L/2. It is related to the
charge densities {ρr} by

ρ̂k =
Nq∑
m=1

ρrme
−ik.rm =

Nq∑
m=1

 Nq∑
n=1

qnδrm,rn

 e−ik.rm =
Nq∑
m=1

qm exp [−i (kxxm + kyym + kzzm)]

and its modulus
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|ρ̂k|2 =
Nq∑
m=1

Nq∑
n=1

qmqn exp [i (kxxn + kyyn + kzzn)− i (kxxm + kyym + kzzm)]

=
Nq∑
m=1

Nq∑
n=1

qmqne
ikx(xn−xm)eiky(yn−ym)eikz(zn−zm)

=
∑
m

q2
m +

(∑
m>n

+
∑
n>m

)
qmqne

ikx(xn−xm)eiky(yn−ym)eikz(zn−zm)

=
∑
m

q2
m +

∑
m>n

qmqn
[
eikx(xn−xm)eiky(yn−ym)eikz(zn−zm) + e−ikx(xn−xm)e−iky(yn−ym)e−ikz(zn−zm)

]

=
Nq∑
m=1

q2
m + 2

Nq∑
n=1

Nq∑
m>n

qmqn cos [kx (xn − xm) + ky (yn − ym) + kz (zn − zm)]

which contributes to the reciprocal sum as

Ereciprocal = 1
2N

∑
k 6=0

4π
k2 |ρ̂k|2 e−k

2/4α

Note the {kx, ky, kz} = {0, 0, 0} term is excluded (Frenkel & Smit page298). Ev-
ery time a Monte Carlo move is proposed, we make a change to the charge densities
{ρr} by moving the first q out of Nq charges, so that the coordinates changes from{
r1, r2, ..., rp, rp+1, ..., rNq

}
to
{
r̄1, r̄2, ..., r̄p, rp+1..., rNq

}
. Similar to what is discussed in

Section A.4.1, we don’t need to fully re-calculate the modulus of the structural factor
|ρ̂k|2 after every move. Because the summation over k is a linear operation, we can speed
up the computation by looking at only the change to the structural factor modulus at
each wavenumber k. Untangling the sums and breaking them into changed and unchanged
parts:
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|ρ̂k|2old = 2
Nq∑
n=1

Nq∑
m>n

qmqn cos [k.(rm − rn)]

= 2
 p∑
n=1

+
Nq∑

n=p+1

 Nq∑
m=n+1

qmqn cos [k.(rm − rn)]

= 2
 p∑
n=1

Nq∑
m=n+1

+
Nq∑

n=p+1

Nq∑
m=n+1

 qmqn cos [k.(rm − rn)]

= 2
p∑

n=1

p∑
m=n+1

qmqn cos [k.(rm − rn)]

...+ 2
p∑

n=1

Nq∑
m=p+1

qmqn cos [k.(rm − rn)]

...+ 2
Nq∑

n=p+1

Nq∑
m=n+1

qmqn cos [k.(rm − rn)]

and

|ρ̂k|2new = 2
p∑

n=1

p∑
m=n+1

qmqn cos [k.(r̄m − r̄n)]

...+ 2
p∑

n=1

Nq∑
m=p+1

qmqn cos [k.(rm − r̄n)]

...+ 2
Nq∑

n=p+1

Nq∑
m=n+1

qmqn cos [k.(rm − rn)]

and the change is

∆ |ρ̂k|2 = |ρ̂k|2new − |ρ̂k|2old

= 2
p∑

n=1

p∑
m=n+1

qmqn {cos [k.(r̄m − r̄n)]− cos [k.(rm − rn)]}

...+ 2
p∑

n=1

Nq∑
m=p+1

qmqn {cos [k.(rm − r̄n)]− cos [k.(rm − rn)]}

where the first double sum is across all pairs among the charges that have been moved,
and the second double sum is over all pairs of one moved charge and one un-moved charge.

In practice, computing the change in the structural factor involves repeated evaluation
of cosines, which can be computatinally expensive, and in fact unnecessary for a lattice
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where the number of possible arguments for the cosine functions are finite. This will be
the topic of the next section, where I explain how we can construct a pre-computed cosine
look-up table to speed up this step.

Regarding data structures of the implementation, we can think of the change in the
structural factor modulus as a matrix, ∆ |ρ̂k|2 = S ∈ R(L+1)×(L+1)×(L+1), where the central
k = 0 element can just be set to zero for easy evaluation. Once ∆ |ρ̂k|2 has been evaluated,
the change in reciprocal energy is then easily computed by performing a k-space sum,

∆Ereciprocal = 1
2N

|k|<kcut∑
k 6=0

4π
k2 ∆ |ρ̂k|2 e−k

2/4α .

Neighbor lists

The spin interactions are nearest-neighbor only, so a suitable neighbor list for that
is simply a L × L × L array that contains the particle id numbers, indexed by their
coordinates.

The real space part of the Ewald sum can go beyond the nearest neighbor, but due to
the nature of its length-scale separation, the real space pair potential will never extend
beyond a few lattice cells. This means we should not blindly evaluate this pair potential
throughout the size of the system, but rather impose a cut-off distance, rcut, that depends
on the Ewald sum parameter α,

rcut ∝
1√
α
.
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