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Detecting global and local hierarchical
structures in cell-cell communication using
CrossChat

Xinyi Wang1, Axel A. Almet 1,2 & Qing Nie 1,2,3

Cell-cell communication (CCC) occurs across different biological scales, ran-
ging from interactions between large groups of cells to interactions between
individual cells, forming a hierarchical structure. Globally, CCC may exist
between clusters or only subgroups of a cluster with varying size, while locally,
a group of cells as sender or receiver may exhibit distinct signaling properties.
Current existing methods infer CCC from single-cell RNA-seq or Spatial
Transcriptomics only between predefined cell groups, neglecting the existing
hierarchical structure within CCC that are determined by signaling molecules,
in particular, ligands and receptors. Here, we develop CrossChat, a novel
computational framework designed to infer and analyze the hierarchical cell-
cell communication structures using two complementary approaches: a global
hierarchical structure using amulti-resolution clusteringmethod, andmultiple
local hierarchical structures using a tree detection method. This framework
provides a comprehensive approach to understand the hierarchical relation-
ships within CCC that govern complex tissue functions. By applying our
method to two nonspatial scRNA-seq datasets sampled from COVID-19
patients and mouse embryonic skin, and two spatial transcriptomics datasets
generated from Stereo-seq of mouse embryo and 10x Visium of mouse
wounded skin, we showcase CrossChat’s functionalities for analyzing both
global and local hierarchical structures within cell-cell communication.

In amulticellular organism, biological functions are performed by cells
coordinating via cell-cell communication (CCC). Cells communicate
with each other by secreting molecular signals, which are received by
nearby cells. CCC instructs crucial cellular functions, including cell
development, homeostasis, and immune responses in disease1–4. CCC
occurs at different biological scales. While some communications
occur over a wide range of cells, others may occur only among a small
subset of cells. The first example of such a hierarchy in CCC is related
to cell types at varying scales. Specifically, there may be sub-cell types
within a cell type. T follicular helper cells, which are a subset ofCD4 +T
cells, have been found to secrete IL-4 and IL-21 ligands, which are
received by B cells to promote cell proliferation and B cell

differentiation into plasma B cells or germinal center B cells5. Another
ligand-receptor interaction, CD40L-CD40 interaction occurs at awider
range of cells, from CD4+ T cells to B cells. This interaction is crucial
for T-cell-dependent B cell proliferation and differentiation6. These
two examples of ligand-receptor interactions demonstrate the possi-
bility of a hierarchy among different CCC activities. The second
example of a possible hierarchy in CCC is determined completely by
the cells where ligands/receptors involved in the interaction are
expressed. For example, there are genes expressed during a specific
phase of a cell cycle among many different cell types, and they can
perform important biological functions such as regulating cell growth,
DNA replication, and cell division7. As a specific example, senescent
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cells can induce paracrine effects on other within their tissue micro-
environment via the senescence-associated secretory phenotype,
which is characterized by the secretion of a wide array of inflammatory
cytokines, chemokines, and growth factors8. Therefore, considering
cells that express a certain ligand/receptor, while relaxing the restric-
tion that they should belong to a certain cell type, is biologically more
relevant when studying CCC.

Therefore, identifying which groups of cells exhibit hierarchical
CCC structure could increase one’s understanding of the structured
biological functions that occur among cell groups due to inherent
structures within ligand-receptor interactions. Such an understanding
of structures within CCC will shed light on the systematic mechanism
of cellular events, such as cell development and differentiation, as well
as orchestration of different functions across various biological con-
ditions such as inflammation, wound healing, and cancer.

Recent advances in single-cell RNA-sequencing and spatial tran-
scriptomics technologies have paved the way to understanding CCC,
and a rich number of methods have been developed to infer CCC
based on scRNA-seq or spatial transcriptomics data9–24. Current tools
for modeling CCC typically operate under specific assumptions and
focus on interactions among groups of cells that are predefined.
However, this approach has two significant drawbacks. Firstly, it
overlooks the intricate cell structures shaped by ligands and receptors,
crucial components in CCC. More importantly, it only accounts for
CCC between cell groups at a one level of clustering, which overlook
the varying scales of cell states, i.e. there may be substates within
clusters, and further substates within those substates. In the example
of the interaction between T follicular helper cells and B cells through
secretion of IL-4 and IL-12 ligands, if we only consider one scale of
clustering, where T cells are a cluster, the two interactions sent from T
follicular helper cells, and CD4 +T cells respectively, will both be
assigned as interactions from T cells. A coarse scale of clustering may
not be able to ascribe the interactions to the correct cell types as
precisely as desired. However, focusing solely on the finest scale of
clusters may cause us to miss the broader “big picture” functions of
T cells and B cells. Therefore, it is essential to consider the cellular
hierarchy rather than just a single level of clusters.

The key to overcoming these limitations is to develop a method
that can analyze CCC between cell groups at multiple clustering
resolutions defined by expression of signal ligands and receptors.
Hierarchies in cell groups occur throughout biology. For example, a
hierarchy naturally develops during cell differentiation, when a sub-
cluster of cells start to perform more specialized functions among a
larger group of cells. Consequently, we can define hierarchical struc-
tures within CCC with respect to two complementary perspectives.
First, from a global perspective, the hierarchical structure divides all
cells into clusters at different scales, where a cell group at a coarser
scale indicates a general cell group, and a cell group at a finer scale
indicates a more differentiated subcluster. A ligand-receptor interac-
tion can be specific to a pair of cell groups belonging to any scale along
this hierarchy, and thus the global hierarchy of CCC can be induced
from this hierarchy of cells. Second, from a local perspective, cells
expressing a ligand Amaybe a subset of cells expressing ligand B (with
a similar analogy for signal receptors). If we analyze ligands and
receptors with respect to their expressing cell groups, some ligands or
receptors will formnatural tree structures based on the overlap or lack
thereof between the cell groups that express these ligands. Several
recent studies investigated the existing hierarchical patterns in scRNA-
seq datasets25–29. However, they focus on the hierarchy from a global
perspective, and do not study the local hierarchy with respect to CCC.

Thus, we propose CrossChat, which detects and analyzes both
global and local hierarchical structures within CCC generated by
ligand-receptor interactions using single-cell and spatial tran-
scriptomics. CrossChat consists of two coremethods, CrossChatH and
CrossChatT, and their respective extensions to spatial transcriptomics

data, CrossChatH-S and CrossChatT-S. CrossChatH detects a global
hierarchical communication structure based on a hierarchical com-
munity detection method. CrossChatT is able to detect multiple local
hierarchical structures basedwith respect to ligand gene expression or
receptor gene expression using a tree detection method. By incor-
porating spatial information, both methods can be easily adapted to
spatial datasets, namely CrossChatH-S and CrossChatT-S. CrossChat
presents several major advantages. First, it detects structures within
CCC that do not rely on predefined cell type annotations. Second, it
detects the structure of CCC with respect to ligand and receptor gene
expression, and thus more accurately reflects the inherent structures
within CCC. Third, it provides a comprehensive view on hierarchical
structures within CCC with respect to both global and local perspec-
tives. To the best of our knowledge, CrossChat is the first method to
detect and analyze hierarchical structures within CCC. CrossChat is
available as an open-source Python package, that provides inference,
visualization, and downstream applications of hierarchical structures
within cell-cell communications.

Results
Overview of CrossChat
From a global perspective, hierarchical structures CCC can be uncov-
ered by hierarchically clustering cells according to their gene expres-
sion similarity or their similarity in ligand or receptor gene expression.
Some ligand-receptor interactions may occur between smaller cell
groups in which cells are highly similar, while other interactions may
occur between larger cell groups where cells are less similar (Fig. 1a).
From a local perspective, hierarchical structures in CCC can be
uncovered by analyzing, for example, whether a group of cells that
secrete a signal ligand contains a smaller subset of cells that secrete a
secondary signal ligand. Similar structures may exist with respect to
signal receptors or ligand-receptor pairs (Fig. 1b). Given these hier-
archical structures within ligands or receptors, we can build hier-
archical relations between ligand-receptor interactions (Fig. 1c). These
hierarchical structures of ligands, receptors, or interactions can be
visualized using trees (Fig. 1d–f).

CrossChatH investigates the global hierarchical structure within
CCC based on hierarchical clustering of cells. It first detects hier-
archical cell groups based on gene expression or ligands/receptors
expression similarity, and then calculates CCC activity between clus-
ters (Fig. 2a). The input to the method either a log-normalized gene
expressionmatrix or a raw count matrix. For a raw count matrix input,
it will first log-normalize it. It then calculates a cell-cell similarity graph
based on cosine similarity, which is then used to produce a K-nearest
neighbor graph, where the nodes represent the cells, and the edge
weights represent the similarity of cells. Using PyGenStability30, a
multi-resolution community detection method with generalized Mar-
kov Stability31, we obtain a hierarchy structure within cells. Next, we
obtain an ordered list of specific ligand-receptor pairs, ranked by their
specificity to ligand and receptor clusters in the hierarchy. For each
ligand-receptor pair, CCC is calculated using CellChat9. We tested the
robustness of hierarchical clustering of CrossChatH to noise, sparsity,
and normalization, selection of K in K-nearest neighbor graph con-
struction (Supplementary Fig. 1a–d).

CrossChatT investigates the local hierarchical structure with
respect to ligands, receptors, or ligand-receptor interactions using
Bron-Kerbosch, a graph search algorithm32 (Fig. 2a, Supplementary
Fig. 2). The input to themethod is a raw gene expressionmatrix, which
is then subsetted to consider only ligand and receptor genes and then
binarized to construct a support matrix. For the set of ligands
(receptors), we connect any pair of ligands (receptors) based on
whether they adhere to the principle of being disjoint or inclusive. This
procedure generates a gene-gene relationship graph where graph
nodes represent genes, and edges represent gene-gene relationships.
The Bron-Kerbosch algorithm is used on this gene relationship graph
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to find maximal complete subgraphs (largest subgraph in which each
pair of nodes is connected). Each subgraph represents a local hier-
archical structure within the set of ligands/receptors, where each pair
of ligands/receptors are either disjoint or inclusive, forming a tree
structure. For each pair of ligand tree and receptor tree which has at
least one known ligand-receptor interaction, we calculate CCC using
CellChat. We tested how different binarization thresholds could affect
the detection of local hierarchies (Supplementary Fig. 1e–h).We found
that the number of detected ligand trees decrease as we increased the
binarization threshold (Supplementary Fig. 1e). However, we observed

that neither the number of detected receptor trees (Supplementary
Fig. 1f) nor the average number of ligands/receptors in ligands/
receptors trees (Supplementary Fig. 1g–h) change significantly as the
binarization threshold changes.

CrossChat provides functionality for downstream analysis of
these hierarchical structures extracted from CCC (Fig. 2c). First,
CrossChat groups signaling pathways or ligand-receptor pairs based
on their hierarchical distribution of ligands/receptors by calculating
the cosine similarity between ligands/receptors distribution over
hierarchical clusters, which is weighted by Markov times (see
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Methods). Second, CrossChat provides a global view of interactions
between ligands trees and receptor trees by visualizing interactions
between a combination of ligands/receptors trees. Third, CrossChat
can measure the importance of a ligand or receptor in the hierarchy
of ligands/receptors by ordering them by their frequency of occur-
rence within the sets of ligands/receptors trees.

Validation of CrossChat using simulated dataset and COVID-19
dataset
To benchmark the ability of CrossChatH to detect specific CCC, we
simulated a dataset with 1000cells, and 10,000genes, among which
1000aremarker genes, and three clustering scales. In each scale, there
are two clusters, four clusters, and eight clusters respectively. We
reason that, as more marker genes will be inferred for larger clusters,
we assign 200, 100, and 50marker genes, respectively, to each cluster
from the coarsest scale to the finest scale (Fig. 3a). There are 400, 400,
and 200marker genes in total for each scale of clusters. The details of
data simulation can be found in Methods section (Synthetic data
generation).

We apply CrossChatH to the log-normalized simulated count
matrix to assess its ability to detect the correct marker genes of clus-
ters at different scales. Among the top 1000 selected differentially
expressed genes, we found that 789 of them are our assigned marker
genes and are accurately assigned to its differential cluster, reaching a
success rate of 78.9%. Indeed, at the two finer scales, the success rate
reaches 86.5% and 86.0% respectively. Genes that are not ground truth
marker genes tend to be assigned to larger clusters than smaller
clusters, so it is expected that clusters at coarser scales will have lower
success rates. As we increase the number of selected differentially
expressed genes from 1000 to 2000, the percentage of correctly
identified differentially expressed genes increases to 91.8%, where the
success rate at scales 1, 2, and 3 reaches 96.5%, 95.0%, and 86.2%,
respectively (Fig. 3b). In addition, CrossChat almostperfectly identifies
multi-resolution clusters at the simulated scales 1, 2, 3, achieving an
Adjusted Rand Index (ARI) of 0.99, 1, and 1, respectively, where an ARI
of 0 indicates no overlap while an ARI of 1 indicates complete over-
lap (Fig. 3c).

The ability of CrossChatH to detect hierarchical marker genes
across scales demonstrates that CrossChatH can find hierarchical
structures in cells when using all genes as input. CCC can then be
visualized between these hierarchical clusters. When using ligands/
receptors for clustering, CrossChatH can detect hierarchical clusters
that have statistically significant CCC patterns. The detected markers
for each cluster in the hierarchy of cells are ligands/receptors, so it can
be interpreted as a hierarchical CCC.

Furthermore, we validated the detected clusters using PBMC
(peripheral blood mononuclear cells) data from COVID-19 patients.
Two independent hierarchical clustering procedures are performed
based on ligands only and receptors only. The boxplot shows the
distribution of distanceofCCCpattern of a certain clusterwith the rest
of the clusters. We observe that cell-cell communication patterns are
robust to subsampling within each hierarchical ligands/receptors
group (Fig. 3d).

The algorithm used by CrossChatT to find all maximal complete
subgraphs is Bron-Kerbosch32. Finding hierarchical ligands/receptors
trees is equivalent to finding maximal complete subgraphs in the
graph of ligands/receptors that we constructed (see “CrossChatT:
CCC Tree search” in Methods). To validate CrossChatT, we generated
1000 cells that expressed 100 genes. We distributed the gene
expression counts so that there are at least five trees as shown in the
figure (Fig. 3e). There are 15 genes generating these five trees.
For each of the other 85 genes, we randomly chose 500 cells to
express them. We ran the experiment 1000 times and found that
CrossChatT is able to detect all five trees we generated in each
trial (Fig. 3e).

CrossChatH identifies hierarchical clusters and specific interac-
tions in COVID-19 patients
We demonstrate the functionalities of CrossChatH on a scRNA-seq
dataset of COVID-19 patients. This dataset is clustered into eight cell
types, including B cells, plasma B cells, CD4 cells, CD8 cells, NK cells,
dendritic cells (DC), monocytes, and megakaryocytes (Fig. 4a). Multi-
resolution clustering shows that there are three clustering scales
(Fig. 4a). At each cluster, we assigned each cluster to a cell type based
on their cell type composition (Supplementary Fig. 3a). At scale 1, the
coarsest scale, there are two clusters, where one contains a mixture of
B cells and T cells, two major types of lymphocytes, and the other
cluster containsmonocytes. At scale 2, CrossChatH further clusters the
lymphocyte cluster into B cells and twogroups of T cells. At scale 3, the
finest scale, finer subclusters are detected. Monocytes are further
clustered into two subclusters. B cells are clustered into three sub-
clusters, identifying plasma B cells as a cell subtype. T cells are clus-
tered into three subclusters, where CD4 and CD8 cells are identified
cell subtypes. We note thatmegakaryocytes are merged into the T cell
clusters. This is becausemegakaryocytes are scarce in number, and the
community detection algorithm may not be robust at identifying
small-number clusters.

CrossChatH detected 102 specific ligand-receptor pairs in this
dataset (the top 15 pairs are presented in Supplementary Fig. 3b).
These identified CCCs generate a multi-resolution nature. For exam-
ple, the ligand-receptor interactionCCL3-CCR1 interaction only occurs
among a subset of monocytes, mono2 cells, and monocytes (Fig. 4b).
Interactions via RETN-TLR4 only occur between monocytes and
another subset of monocytes, mono1 (Fig. 4b). The interactions
between the identified clusters account for most major interactions in
the dataset (Fig. 4b).We alsouseCrossChatH to visualize CCC strength
between clusters at multiple scales (Fig. 4c). These findings are con-
sistent with previous studies, and further provide new insights into
COVID-19. For example, one study showed that CCL3 is elevated in
patients withmore severe COVID-19 symptoms inmonocytes sampled
from PBMCs33. We observe that the specificity of CCL3 expression
further suggests that CCL3 may be released by only a subset of
monocytes in patients with severe COVID-19. Also, it has been shown
that targeting CCL3-CCR1 may suppress “hyper activation” of the
immune system in patients with COVID-1934. We found that CCL3
ligand and CCR1 receptor are only expressed in specific cell subtypes,
suggesting that treatments should target a specific subset of mono-
cytes as senders of CCL3 and all monocytes as receivers to suppress
immune hyperactivation. A previous study also showed that activation
of TLR4 is closely related to inflammation and immune hyperactiva-
tion, suggesting that targeting TLR4 could effectively reduce inflam-
mation in severe COVID-19 patients35. As we found that TLR4 is most
specific to mono1 cells, this suggests that treatments should specifi-
cally target a subset of monocytes as a treatment to inflammation.

Furthermore, CrossChatH can quantify the similarity of ligand-
receptor interactions or pathways based on their ligand (receptor)
gene distribution over hierarchical clusters, and then group them
based on their similarity (See Methods). Hierarchically grouping the
top 15 specific ligand-receptor pairs yielded three clusters (Fig. 4d).
Group 1 represents interactions within T cells, including CCL5-ACKR2,
CCL5-CCR4, GZMA-F2R (Supplementary Fig. 3b). Group 2 represents
interactions from monocytes to B cells, including LGALS9-IGHM and
APP-CD74. Group 3 represents interactions whose receivers are
monocytes, including CCL5-CCR1, GRN-SORT1, ANXA1-FPR1.

In addition to analyzing interaction patterns based on hierarchical
clusters found through all genes, CrossChatH also allows to analyze
hierarchical interactions between clusters found with respect to signal
ligands or signal receptors only. By neglecting the influence of genes
unrelated to ligand-receptor interactions, we generate hierarchical
clusters that are potentially more aligned with distributions of ligands
or receptors. Applying CrossChatH clustering on all ligands and all
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receptors respectively gives different hierarchical clusters (Supple-
mentary Fig. 3c–d). We assign cluster names based on their marker
ligands/receptors. By observing the clustering results, the clusters
basedon all ligands are very similar to hierarchical clusters based on all
genes, while the clusters found using all receptors are less aligned
(Supplementary Fig. 3c–d). CrosschatH provides two ways to visualize
the pathway interactions between ligand and receptor trees: 1) by
considering all original clusters with respect to ligands and receptors
or 2) constructing a “pathway intersected” tree by focusing on a spe-
cific ligand cluster and all other cells (Fig. 4e). As an example, we
analyzed the Granulin pathway. While the interactions in Granulin
pathwaymostly occur betweenmonocytes (PSAP is a marker ligand of
this cluster), the intersected version shows that small portion of cells in
T cells and B cells also secrete PSAP. Granulin has a central role in
regulating the host response during infection. Its interaction with
SORT1 can influence its levels and activity36–38 and is hence seen as a
promising therapeutic target for immune diseases. Our finding sug-
gests that treatments should target monocytes. Furthermore, we
clustered pathways based on their ligands and receptors distribution
over hierarchical ligand clusters and receptor clusters (See Methods).
Applying hierarchical grouping yields three pathway clusters (Fig. 4f).
Pathways in group 1 are associated with CD8T and megakaryocytes
cells and their subsets as signal senders, including CXCL, Insullin-like
growth factor 2 (IFN-II), Protease-activated receptors (PARs), TGF-β,
andothers. Pathways in group2 are associatedwith all other T cells and
B cells as signal senders, including Lymphotoxin (LT), CD45, Macro-
phagemigration inhibitory factor (MIF), B-cell activating factor (BAFF),
and others. Pathways in group 3 are associated with interactions
involving monocytes, including Granulin (GRN), Synuclein (SN),
RESISTIN, VISFATIN, and others. Collectively, CrossChatH detects
hierarchical structures of cell states based on either all genes, or
ligands/receptors, and identifies specific ligand-receptor interactions
in hierarchical cell structures of a given scRNA-seq dataset.

CrossChatT identifies local hierarchical signaling structures
driven by ligand-receptor interactions inmouse embryonic skin
While CrossChatH can analyze global hierarchical patterns in CCC,
CrossChatT can provide a more specialized “local” perspective to
analyze hierarchical structures within ligand-receptor interactions
with respect to ligand or receptor gene expression. For example, in a
mouse embryonic skin data, cells expresing ligandOcln are a subset of
cells expressing ligand Igf2, and cells expressing Itga6+Itgb4 (receptor
associated with Ocln) are disjoint with Ocln, which is the receptor of
itself (Fig. 5a). The inclusive or disjoint relationship implicate hier-
archical functions of cell groups, and such relationship of cells under
CCC give rise to tree structures of ligands, receptors, and ligand-
receptor interactions.

Applying CrossChatT on mouse embryonic skin E14 data39, we
found 142 hierarchical structures within ligands, and 11 hierarchical
structures within receptors (Fig. 5b). There are 58 ligands in total
across the 142 ligand tree structures, and 18 receptors across all
receptor tree structures, indicating many overlaps between these
ligand/receptor trees. There are significantly more hierarchical struc-
tures among ligands than among receptors, indicating a more struc-
tured function of cells in sending ligands during mouse skin
development. Many ligand trees begin with Igf2 as the root node. The
signal ligand Igf2 is indeedexpressed inmost of the cells (Fig. 5a). Igf2 is
known to primarily regulate mitogenic functions and play an impor-
tant role in cell growth and development40. Cells expressing Bmp5,
Inhbb, Cdh1, Cdh5 form mutually disjoint groups (Supplementary
Fig. 3a–b). Bmp5 is mostly expressed in a subset of fibroblasts (FIB-A)
and pericytes (Pericyte). In embryonicmouse skin, Bmp5 is involved in
the control of epidermal homeostasis, growth of hair follicles, and
melanogenesis41. Inhbb is mainly expressed in fibroblasts (Supple-
mentary Fig. 3a–b). It is a member of the TGF-β superfamily, and

regulates the development of the skin42. Cdh1 is abundant in basal
(Basal and Basal-P) and spinous cells (Spinous), which are both found
in the epidermis of the skin. This gene is crucial for maintaining the
structure of the epidermis by ensuring that cells adhere to each other
to form a functional barrier43. Cdh5 is mainly expressed in endothelial
cells (ENDO) and a minor subset of FIB-A cells (Supplementary
Fig. 3a–b). It ensures the integrity of blood vessels, which is important
to the supply of nutrients and oxygen to the skin and removal of waste
products44. Therefore, these signal-expressing groups, which are form
disjoint subsets of the cells expressing Igf2, may beperforming distinct
functions in mouse embryonic skin. Furthermore, Ocln is mostly
expressed in spinous cells (Spinous), a subcluster of the cell group
expressing Cdh1, and is known to play a role in the formation and
regulation of tight junctions45,46. Ocln and Cdh1 are both important to
epidermis structure, where functions of Ocln are more specific to
spinous cells. Analyzing the hierarchical relationship of ligands/
receptors in this way provides a deeper and more structured under-
standing of the relations between different signaling functions of cell
groups.

We then investigated the interactions between ligands hierarchies
and receptors hierarchies (Fig. 5c). In interaction tree 1, the adhesion
gene, Ocln, is expressed by spinous cells, a group of differentiated
keratinocytes. Ocln-Ocln interactions between spinous cells help form
tight junctions. The ligand Igf2 is more widely expressed, and its
interaction with Itga6_Itgb4 receptor, which is expressed in basal cells,
may help promote their continued proliferation. In interaction tree 2,
there exists a pair of hierarchical interactions within theWNT signaling
pathway, which is pivotal to skin developmental processes including
cell proliferation and differentiation47. Wnt4 is expressed widely by
epidermal basal cells and spinous cells, as well as dermis-resident
dendritic cells and fibroblasts, while Wnt3a is mainly expressed by
basal cells. Since Wnt3a is known to inhibit cell proliferation in kera-
tinocytes, whileWnt4 promotes cell proliferation in general48, we may
infer that Wnt3a ligand binding competes with the binding of Wnt4,
regulating cell proliferation in basal cells.

CrossChatT can analyze multiple ligand trees (or receptor trees)
in tandem (Fig. 5d), facilitating an understanding of the relationship
within ligands (receptors). We note that these “aggregated” ligand
trees (or receptor trees) do not necessarily exhibit the disjoint rela-
tionships between ligands in the individual trees. To measure the
importance of ligands/receptors in their hierarchical structures,
CrossChatTmeasures the frequencyof the ligand/receptor occurrence
across all ligands/receptors trees (Fig. 5e). Igf2 is ranked first due to its
wide expression by cells. While Ptprf is ranked first among receptors
due to its wide expression, Ocln, which is more specifically expressed
in spinous cells, is also ranked highly as its expression is disjoint from
many other receptors. In addition to detecting hierarchical ligands/
receptors trees, CrossChatT is also capable of detecting trees within
cells that are involved in the ligand-receptor interactions (Fig. 5f). Tree
1 is associated with the WNT signaling pathway, while Tree 2 is asso-
ciated with the MK signaling pathway.

CrossChatS reveals hierarchical clusters and ligand-receptor
interactions in spatial datasets
CrossChat can also be applied to spatial transcriptomics data by
incorporating spatial information inbothCrossChatH andCrossChatT.
We demonstrate utility of CrossChatH-S to a Stereo-seq data of a
mouse embryo on day E16.549. We compared the hierarchical cluster-
ing results between two trials: one trial use spatial information, and the
other trial does not use spatial information (Supplementary Fig. 4a, b).
We can see that when we incorporate spatial locations by con-
catenating the spatial vectors to PCA embeddings, the clusters
detected tend to bemore spatially coherent. For example, the neurons
are further segmented into multiple spatial regions. We also observed
that the multiscale clusters generated with spatial information have
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higher spatial neighborhood enrichment scores, indicating higher
spatial coherence (Supplementary Fig. 4a, b).Using spatial information
(seeMethod), CrossChatH identifies three scales of clustering (Fig. 6a).
At scale 3, the clusters correspond to biologically meaningful clusters
(Supplementary Fig. 5a). With the addition of spatial information,
CrossChat also groups spatially adjacent spots. For example, MSCN
(mid/hindbrain and spinal cord neuron) is partitioned into two

subclusters at scale 3, where subcluster 1 corresponds to neurons in
the brain, and subcluster 2 corresponds to spinal cord neurons. Next,
we investigated specific ligand-receptor interactions between clusters
(Supplementary Fig. 5b). Igf2-Igf2r interactionmainly occurs within the
mesoderm (Fig. 6bc). This interaction is crucial to organ development
inmouse embryo, and it occurs at a large scale50. Interactions between
synaptic adhesion molecules Nlgn1 and Nrxn1, which known to be
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crucial to synapse formation and maturation51,52, are specifically
expressed in neurons in the brain and spinal cord. Hierarchical clus-
tering is also performed using only ligands/receptors on this dataset
(Supplementary Fig. 5c–d), but hierarchical patterns of ligands/
receptors were not identified. This indicates that during mouse
embryo early development, where most cells have not fully matured,
ligand/receptor interactions are not specialized to a particular cell

group. Next, by hierarchically grouping active pathways, we detected
two pathway groups (Fig. 6d). The first pathway group is associated
with signaling mainly sending from brain and spinal cord neurons
(MSCN), including the pathways NCAM (Neural cell adhesion mole-
cule), NRG (Neuregulin), and NRXN (Neurexin) (Supplementary
Fig. 6a). The second pathway group is associated with interactions
within all other spots (Supplementary Fig. 6b). Hierarchically grouping
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c
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the top 20 specific ligand-receptor pairs yields three clusters (Sup-
plementary Fig. 6c). Group 1 includes interactions in MDK (Midkine)
pathway and IGF (Insulin-like growth factor) pathway, whichmay both
contribute to growth of the mouse embryo. Group 2 mainly contains
interactions from Dlk1 to Notch receptors, including Notch1, Notch2,
and Notch3. Dlk1 has been shown to inhibit Notch signaling53. Group 3
contains signaling between neurons, notably Nrxn1-Nlgn3 and
Nrg3-Erbb4.

CrossChatT-S uses spatial information to restrict the spatial dis-
tance between ligands and receptors when detect ligand/receptor
trees (see Methods). Applied to a Visium dataset of wounded mouse
skin sampled at post-operative day 754, we find many hierarchical
structures within ligands and receptors during wound healing,
including 124 ligand trees and 456 receptor trees (Supplementary
Fig. 7a). There are 58 and 141 distinct ligands and receptors, respec-
tively, across all ligands and receptors trees (Fig. 6e). Bymeasuring the
occurrence of each ligand and receptor (Supplementary Fig. 7b), we
see thatC3,Postn,Ccl8 aremost frequent acrosshierarchical structures
in ligands, while Cd74, Cd74_Cd44, Cd44 are highly frequent across
receptor trees. The ligands C3, Postn, and Ccl8 are expressed broadly
by dermis-resident spots. While the Cd74 receptor is almost expressed
by all spots, expression of Cd74_Cd44 and Cd44 receptors is con-
centrated around the wounded regions (Supplementary Fig. 7ac). We
then investigated interactions between ligand trees and receptor trees
(Fig. 6f). In interaction tree 1, Periostin (Postn), a pro-fibrogenic
secreted glycoprotein, interacts with its two receptors. Periostin is
known to promote injury closure by facilitating the activation, differ-
entiation, and contraction of fibroblasts55. Thy1 ligand, which is
expressed by a subset of Postn-expressing cells, affects cell adhesion
and fibroblasts proliferation andmigration, suggesting amore specific
function of these cells during tissue repair56. In interaction tree 2, Ccl8
and Ccl25 both interact with Ackr4, while Ccl25 is only expressed in a
subset of Ccl8-expressing cells. Chemokines are major regulators of
the wound-healing process57. Ccl8 is known to recruit inflammatory
cells including neutrophils and macrophages, which release growth
factors and cytokines to improve wound healing57. One study found
that Ccl25 is enriched during oral wound healing process that facil-
itates leukocyte recruitment, which helps to protect against infection
and promote wound healing58,59. Our finding suggests that there is a
hierarchical relationship among chemokines which may facilitate
specialized roles during skin wound healing.

Comparison between CrossChat and other CCC detection
methods
To show the differences between existing methods and CrossChat, we
compared CrossChat with two representative CCCmethods: CellChat9

for nonspatial mouse embryonic skin scRNA-seq, and COMMOT22 for
spatial mouse embryo data. We also use NeST60, a spatial multiscale
spot detection method, to produce spatial clusters for CCC detection.
By comparingCrossChatH’s output for the ligand-receptor interaction,
CCL3-CCR1, to CellChat, we can see that CellChat only shows that the
interaction occurs between monocytes. But CrossChatH is more pre-
cise and finds that CCL3–CCR1 signaling is mainly sent from a specific
subset of monocytes, Mono2 (Supplementary Fig. 8a, b). Also, by
comparing CrossChatT’s output with CellChat, we can see CrossChatT
is able to detect the inclusion relationship between the two

interactions: Igf2-Itga6_Itgb4, and Ocln-Ocln. Specifically, the cells
expressing the Igf2 ligand also express Ocln ligand, and the cells
expressing Itga6_Itgb4 receptor also express Ocln receptor. Such
hierarchical relationships among ligand-receptor interactions cannot
be identified by CellChat and existing CCC methods (Supplementary
Fig. 8c–e).

Furthermore, we compared the output of CrossChatH with the
output of the spatial CCC method COMMOT on spatial clusters pro-
duced by NeST (Supplementary Fig. 9a–e). While NeST clustering
generates multiple sparse and tiny clusters, CrossChatH detects a
more general hierarchical relationship amongcells, where each scale in
the clustering covers all cells in the dataset (Supplementary Fig. 9c–e).
By comparing CrossChatT to COMMOTwhere clusters are assigned by
biological annotations, we again see that CrossChatT detects the
structural relationship between the interactions, which cannot be
detectedbyCOMMOT. For example, theCcl25-Ackr4 interaction is only
involved in cells which interact through Ccl8-Ackr4 (Supplementary
Fig. 9f–h).

Overall, by comparing with existing CCC detection methods, we
can see that CrossChat (both CrossChatH and CrossChatT) is, in
principle, different from existing methods in terms of clustering
choice. CrossChat aims to detect the hierarchy of cells based on CCC
relations. However existing CCC methods rely on predefined cluster-
ing and calculate the interactions between these predefined clusters.
Those predefined clusters are produced by standard clustering results
like Louvain community detection, which fails to consider hierarchical
CCC relationships.

We also tested how different CCC calculationmethodsmay affect
the detected hierarchical structures. Using the COVID-19 scRNA-seq
dataset, we recalculated CCC using NATMI19, LIANA61,
SingleCellSignalR14,21 (Supplementary Fig. 10a–d). Using the mouse
skin wound 10x Visium data, we recalculated CCC using Giotto21,
SpatialDM62 and spaCI63 (Supplementary Fig. 11a–d). We can see that
the hierarchical cell structures identified remain consistent across
various CCC calculation methods. However, interaction strengths
exhibit minor variations due to the different scoring functions
employed by eachmethod. This consistency underscores a key aspect
ofCrossChat’s functionality: it initially identifies hierarchical structures
based on only on ligand/receptor expression, independent of the CCC
calculation method used. Thus, while changes in CCC calculation
methods influence the inferred interaction strengths, they do not alter
the underlying detected structures.

For further validation, we performed hierarchical clustering of
CCC calculated using single-cell-level CCCmethods, including NICHES
and Scriabin on COVID-19 patients (Supplementary Fig. 12a, b). Many
scattered and small clusters are detected, and they do not have hier-
archical structures. Thismaybedue to the limitationsof current single-
cell-level CCC methods, which do not accurately capture cell-level
interactions and may introduce noise in their inference. Moreover, we
attempted to explore the clustering of cell pairs using traditional
hierarchical clustering and visualize the clusters using dendrograms.
Specifically, weusedNICHES to calculate single-cell level CCCand then
performed traditional hierarchical clustering using dendrograms on
cell pairs (Supplementary Fig. 12c). However, we observed one major
limitation in this type of approach: although our test dataset contains
only 3000 cells, there are nine million possible cell pairs, making

Fig. 6 | Applications of CrossChatS to spatial datasets. a Annotations and
CrossChatH-S hierarchical clustering results of a Stereo-seq dataset of mouse
embryo at E16.5. Spatial hierarchical clustering detects three scales of clusters,
which are shown in spatial coordinates. b Two ligand-receptor interactions that are
specific to spatial hierarchical clusters. Ccl3 ligand is specific to Mono2, a subset of
Mono, and Ccr1 receptor is specific to Mono. Retn ligand is specific to Mono, and
Tlr4 receptor is specific to Mono1, another subset of Mono. Interaction proportion
shows that the assigned cluster pairs contain the majority of interactions for both

Ccl3-Ccr1 and Retn-Tlr4 interactions. c Hierarchical visualization of the two ligand-
receptor interactions where ligand (receptor) clusters are from CrossChatH-S
clustering based on ligands (receptors) only. d Applying UMAP to pathways based
on similarity of ligand/receptor distribution over spatial hierarchical clusters to
visualize the interaction similarity in 2D. e Examples of ligand tree structures and
receptor tree structures detected by CrossChatT-S. f Two examples of hierarchical
interactions in space occurring between a ligand tree and a receptor tree. Source
data are provided as a Source Data file.
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hierarchical clustering computationally infeasible due to bothmemory
and complexity constraints. To gain at least a basic understanding of
how traditional hierarchical clustering might work on cell pairs, we
reduced the dataset to 100 cells, resulting in 10,000 cell pairs—small
enough to meet computational constraints. We generated a heatmap
that illustrates the overlap of sender-receiver cell groups across 20
clusters of cell pairs. However, the cell-pair structure is much less
interpretable than the original cell groups, largely because different
clusters of cell pairs can include identical sets of cells (simply paired
differently), making it difficult to visually distinguish meaningful dif-
ferences between the clusters (Supplementary Fig. 12d). For example,
the Jaccard similarity of sender/receiver cells in cell pair cluster 5 and 9
is 0.98, indicating that the group of senders and receivers are indeed
almost identical even though they’re in two different clusters of cell-
pairs. To ensure the robustness of this finding, we also performed
subsampling for 20 times. We found that the average number of pairs
with similarity higher than 0.5 is 11.6, indicating that many of the
clusters of cell pairs have a high overlap.

Discussion
A large number of tools are recently developed to infer cell-cell com-
munications using either scRNA-seq or spatial transcriptomics
datasets9–24. However, the major limitations of them are: 1. They infer
CCC based on predefined cell groups, and overlook the cell structures
that form with respect to ligands or receptors. 2. They overlook the
existing clusters of cell states at different scales.

To overcome these limitations, we have developed CrossChat to
detect hierarchical structures within CCC from scRNA-seq and spatial
transcriptomics data, which infers and analyzes hierarchical CCC
structures from complementary global and local perspectives. Cross-
Chat can visualize CCC between hierarchical cell groups and perform
downstream analysis of inferred hierarchical CCC patterns. CrossChatH
detects a global hierarchical structure of cells based on gene expression
across either all genes, or only across signal ligands or signal receptors,
and infer hierarchical CCC patterns. CrossChatT detects hierarchical
structures within ligands or receptors. Both methods can be applied to
spatial transcriptomics datasets by incorporating spatial information. In
general, CrossChat is particularly advantageous over existing CCC
detection methods, like CellChat or CellPhoneDB in the following sce-
narios. First, when one wants to analyze CCC between cell groups at
multiple clustering resolutions, rather than one single scale. Second,
when one wants to investigate structures induced by cell-cell commu-
nication that are specific to signal ligands/receptors and independent of
predefined cell type annotations.

By applying CrossChat to two nonspatial scRNA-seq datasets,
PBMC cells sampled from COVID-19 patients and mouse embryonic
skin atday E14.5, and twospatial transcriptomics datasets, a Stereo-seq
dataset of mouse embryo at day E16.5 and a Visium dataset of mouse
wounded skin64, CrossChat is always capable of detecting biologically
meaningful hierarchical structures within CCC, and improve the
understanding of CCC from a structured way. As an example, Cross-
ChatH recovers the hierarchical structures of PBMC cells in COVID-19
patients, and identifies specific ligand-receptor interactions within
monocytes, and within subsets of monocytes, providing deeper
understanding of structured functions of cells. CrossChatT detects
multiple tree structures within ligands/receptors in mouse embryonic
skin and provides a structural understanding of ligands/receptors in
terms of their inclusion and disjointness relationship. Notably, we
observed that while the growth factor, Igf2, expressed by many cells,
the ligands Bmp5, Inhbb, Cdh1, Cdh5 are expressed by cells that form
mutually disjoint groups, possibly due to these cell groups performing
different functions. We also observed that the adhesion gene, Ocln, is
expressed only within a subset of Cdh5-expressing keratinocytes,
specifically, spinous keratinocytes, suggesting a specialized role for
differentiated keratinocytes.

Several directions for future studies on hierarchical patterns of
CCC can be anticipated. First, while we have shown that CrossChat can
be easily extended for spatial applications, theremay be other ways to
utilize the spatial information. For example, one may restrict
CrossChatT-S analysis of hierarchical structures to a local spatial
region, rather than imposing that there is a hierarchy across all cells.
Furthermore, as more time-series datasets of scRNA-seq and spatial
transcriptomics become available65–67, CrossChat may be applied to
gain further understanding of temporal changes of hierarchical
structures within CCC. Also, with the recent availability of 3D spatio-
temporal data68, CrossChat may be used to analyze hierarchical
structures within CCC in 3D, with the potential of gaining a more
reliable understanding of tissues. We anticipate further studies of
hierarchical structures within CCC will prosper as sequencing tech-
nologies continue to develop rapidly.

Methods
Data preprocessing
COVID-19 scRNA-seq. We analyzed a published scRNA-seq dataset
generated from PBMC cells sampled from severe COVID-19 patients64.
The data is downloaded from the NCBI GEO database at accession
number GSE158055. using Scanpy69, we removed cells expressing
fewer than 1000UMI counts and cells expressing more than
25,000UMI counts, and cells with more than 10% of their total
expression due tomitochondrial genes. The remaining cells were then
processed through log-normalization, feature selection, and scaling.
We randomly sampled 3000 cells from the preprocessed data, and
used retained cell type annotations from the original dataset.

Embryonic mouse skin scRNA-seq. We analyzed a published mouse
embryonic skin scRNA-seq dataset sampled at embryonic day E14.539

using Scanpy. This data is downloaded from theNCBIGEO at accession
number GSM3453537. Cells expressing fewer than 2500UMI counts or
more than 50,000UMI counts were removed, as were cells with more
than 10%of their total gene expressiondue tomitochondrial genes.We
downsample 3000 cells from this dataset.

Mouse embryo spatial Stereo-seq. We used recently published
Stereo-seq dataset of mouse embryos of embryonic day E16.549. Raw
data is downloaded from https://db.cngb.org/stomics/mosta/. We
removed spots expressing fewer than 200 unique genes using Scanpy.
The remaining spots were then processed through log-normalization,
feature selection, and scaling. 10,000 spots are sampled from the data.

Mouse wounded skin spatial Visium. We used a recently published
10X Visium dataset of mouse-injured skin at post-operative day 754.
Raw data is downloaded from the NCBI GEO at accession number
GSE178758. Using Scanpy, spots expressing fewer than 200 total UMI
counts were removed. The dataset contains 3, 075 spots after filtering.

Synthetic data generation
To benchmark the ability of CrossChatH to detect specific hierarchical
CCC, we simulated a dataset with 1000 cells and 10,000 genes, among
which 1000 are marker genes, and three clustering scales (see Fig. 3a
for details). In each scale, there are two clusters, four clusters, and
eight clusters respectively. This simulated dataset is based on our
analysis of the characteristics of a real biological dataset of PBMC from
10X Genomics (https://cf.10xgenomics.com/samples/cell/pbmc3k/
pbmc3k_filtered_gene_bc_matrices.tar.gz). The dataset contains
2700 single cells and 13,714 genes.

Step 1:
We normalize the gene expression counts of the PBMCdataset so

that each cell has the same number of total counts, which is calculated
as the median of the total counts across all cells. Using the cell type
annotations provided by Seurat70, we find all marker genes using
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default parameters by Seurat and order marker by log fold change
(based on “one vs. rest” comparison). We observed that, in the nor-
malized PBMC data, the top 1,371 marker genes (10% of all genes) are
among the top 20% of all genes in terms of their average expression
across cells. Therefore, from 13,714 genes in the PBMC dataset, we
randomly choose 1000 genes from the top 20% of genes ranked by
average expression. We assign 200, 100, and 50 marker genes,
respectively, to each cluster from the coarsest scale to the finest scale
(Fig. 3a). There are 400, 400, and 200 marker genes in total for each
scale of clusters.

Step 2:
We set the mean gene expression of our 1000chosen markers as

the mean gene expression of the chosen 1000 genes from top 20%
genes from the PBMC dataset. Next, at each scale, we set the fold
change of marker genes as the median fold change of the top 400,
400, and 200 differentially expressed genes of the randomly chosen
1000 genes, respectively. Using themean gene expression andmedian
fold change of eachgene, we calculated itsmeangene expression both
inside and outside of the cluster where themarker should be assigned.

Step 3:
As theNegative Binomial is themost commondistribution used to

model RNA-seq count data71, we generated simulated gene expression
counts for the 1000marker genes from a Negative Binomial distribu-
tion with the mean set as the previously calculated mean gene
expression counts, and a dispersion parameter of 0.1 (default value
chosen by Splatter71). Next, we randomly choose 9000mean gene
expression values from the lower 80% of genes ranked by mean gene
expression from the PBMC dataset, and simulate gene expression
counts for 9000non-marker genes from a Negative Binomial dis-
tribution, using the chosen mean gene expression counts and disper-
sion parameter of 0.1.

CrossChatH: hierarchical clustering
1. KNN graph construction. Using latent embeddings generated by
PCA, we first use cosine similarity to construct a cell-cell similarity
matrix. The cosine similarity is calculated either based on all genes, or
ligands/receptors, based on user interest. Next, we construct a
k-nearest neighbor (KNN) graph, setting k = 15. The nodes of the KNN
graph are cells, and the edges represent the similarity between
the cells.

2.Randomwalks ongraphsandMarkov stability. TheKNNgraphG is
an undirected andweighted graph. Denote the adjacencymatrix of the
KNN graph G is as A. Denote the diagonal matrix, D, as the degree
matrixofA, whereDii =degree vi

� �
, where vi denotes the i

th nodeof the
graph. We then define the random walk Laplacian of the graph G as
L = I� D�1A. We then define the continuous time transition matrix of
the graphG asP tð Þ= e�tL. The randomwalk transitionmatrix,D�1A, has
stationary distribution π, where πu is the limit probability of a random
walk that ends up in vertex u as time t tends to infinity. Given com-
munities C1, . . . ,Ck present in the the graph G and an associated ran-
dom walk transition matrix D�1A with stationary distribution π, the
Markov stability31 (MS) of community Ci is defined as
MS Ci, t

� �
=
P

u, v2V P tð Þuv � πv

� �
δ cu, cv
� �

, where the sum is defined
over all vertices, V . Here, δ is the Kronecker delta defined such that
δðcu, cvÞ= 1 if vertices u and v are in the same community and
δ cu, cv
� �

=0 otherwise. Intuitively, for a given way of partitioning the
graph into communities, TheMSmeasures the overall likelihoodof the
random walker stays inside its community at time, t. If we fix the
communities, this likelihoodwill decrease as t grows, since the random
walker tends to exploremore other communities rather than staying in
its own. For each t-value between zero and infinity, we use the Louvain
algorithm72 to find communities that maximizes the MS at this t-value.
Due to the previous fact that the MS decreases with t for fixed com-
munities, we tend to have fewer (and larger) communities when

maximizing the MS for larger t-values, converging to the case where
one community contains the whole graph.

3. Variation of information. The robustness of partitions of the graph,
G, found at each time scale, t, is assessed using variation of informa-
tion, which measures the distance between two partitions. Given two
partitions of the graph G, fXigki= 1, fYjglj = 1, we define, pi =

Xi
n , qj =

Y i
n , and

rij =
Xi\Y j

n , where n is the number of vertices in G. Then, variation of
information between the two partitions is defined
as VIðfXig, fY jgÞ= �P

i, jrij ½logðrijÞ=pi + logðrij=qjÞ�.
Before calculating the variation of information at each time t, we

first transform t to lie on the log10 scale, setting the range of t to be
from 10�1 to 104. Next, we pick 100 evenly spaced time scales, li,
ranging from �1 to 4, and select scales ti = 10

l
i .

At each time scale, t, we run the Louvain algorithm72 100 times to
generate 100 optimal partitions, denoted as fPig100i= 1 . Next, we calculate
the average pairwise variation of information by
VIg =

1
100*100

P
i, jV IðPi,PjÞ. For each time scale t, we select the partition

with the highest Markov stability as the representative partition, Pt .
Then, for each pair of time scales, t and t', we calculate the pairwise
variation of information, VIðPt , Pt'Þ, which forms a 100*100 matrix,
VIP . Intuitively, the VIP can be viewed as a graph over the lattice
fði, jÞj1≤ i, j ≤ng: The diagonal elements of VIP are 0, and off diagonal
elements are non-negative. Thus, each diagonal entry can be viewed as
the center of a basin of the graph. If the representative cluster at time
scale t is stable, then its pairwise VI with representative partitions at
neighborhood time scales will be small, thus forming a large flat basin.
The optimal scales are selected by thresholding thewidth anddepth of
the basin. We then take the partitions at the selected optimal scales.

Obtain ordered list of specific ligand-receptor pairs
First, at each scale, we use Wilcoxon rank-sum test to determine
ligands and receptors that are associated significantly to a cluster,
assigning the ligands and receptors to the cluster with the lowest
associated p-value. For a ligand (receptor) multi-unit, we calculate the
geometric mean of each ligand (receptor) in the complex to measure
ligand (receptor) multi-unit expression. Then its p-value is calculated
based on the ligand (receptor) multi-unit expression. Next, we only
retain the ligands and receptors with associated p-values such that
p<10�3:We reason that these filtered ligands and receptors are specific
to its assigned clusters, due to their low p-values. Then, we retain
ligand-receptor pairs for which both ligand and receptor are inferred
marker genes of certain clusters, forming the specific ligand-receptor
interaction list. We assign a specificity score each ligand-receptor pair
to capture the specificity of the interaction to sender and receiver
cluster, calculated by the products of p-values associated with the
ligand and receptor, respectively. Finally, we order the specific ligand-
receptor pairs their calculated scores.

Multiscale similarity of ligand-receptor pairs and pathways
To better illustrate the relationship among multiple ligand-receptor
pairs or pathways, we calculate a weighted cosine similarity between
each ligand-receptor pair or between pathways of interest. For each
ligand, its mean gene expression in each cluster at varying resolutions
is calculated and summarized into a vector for each scale:
similarity L1, L2

� �
=
Pn

i= 1
1

log Tið Þ+ 1 cosine sim ui, vi
� �

, where n is number

of scales,Ti is theMarkov time of scale i,ui and vi representmeangene
expression vector of L1,L2, respectively, across clusters at scale i. We
calculate the similarity between receptors in a similar manner. We
calculate the similarity between two ligand-receptor pairs as the sum
of pairwise ligand similarity and receptor similarity. For two pathways,
we sum the interacting ligand-receptor pairs to obtain a pathway
ligands gene expression, and a pathway receptors gene expression in
each cluster at varying resolutions. The weighted cosine similarity is
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then calculated in a similar manner by aggregating their ligands simi-
larity and receptors similarity. Then, we apply UMAP to the similarity
matrix and use K-means to cluster the ligand-receptor pairs or
pathways.

CrossChatT: CCC Tree search
In order to find ligands/receptors whose supports form a hierarchical
tree structure, we construct trees such that, in each tree, all pairs of
ligands/receptors are either disjoint or inclusive in terms of their gene
support, i.e., the cells that express these ligands/receptors.We impose
that each tree has to be maximal in the sense that no other ligand/
receptor can be included in this tree. We first binarize the gene
expressionmatrix in order to find the support for each ligand/receptor
(Supplementary Fig. 2). Next, wemodel that two ligands/receptors are
connected if their relationship (with respect to their supports) is either
disjoint or inclusive. Two ligands/receptors are disjoint from each
other if the cells expressing them are exclusive. One ligand is a subset
of another ligand if the cells expressing ligand 1 alsoexpresses ligand 2.
Thus, we form a gene relationship graph based on these relationships
between ligands/receptors. In a tree of interest, all pairs of ligands/
receptors are either disjoint or inclusive, thus are connected. Such a
tree structure forms a complete graph,where nodes represent ligands/
receptors, and every pair of nodes has an edge connecting them. In
order to find largest trees of ligands/receptors in which any other
ligand/receptor is either intersecting with one ligand/receptor in the
tree or is disjoint with any ligand/receptor in the tree, we use Bron-
Kerbosch graph search algorithm to find all maximal complete
subgraphs32. Each complete subgraph may be one tree itself or con-
tains multiple disjoint trees. Finally, we check each maximal complete
subgraph and extract all individual trees from them (Supplemen-
tary Fig. 2).

Incorporating spatial information
CrossChatH-S: Spatial position of both directions is first scaled into 0
to 1, and is concatenated to the PCA embeddings of cells. The con-
catenated PCA embeddings of cells that contain the spatial informa-
tion of cells are used to calculate the similarity of cells and build the
KNN graph on cells. We calculate spatial CCC using COMMOT22.

CrossChatT-S: For any ligand or receptor, we restrict its support
such that only ligands or receptors whose nearby spots express its
receptors/ligands are kept in its support. Then the filtered ligands/
receptors support are used to detect tree structures. Since the reso-
lution and capture ability are different for different spatial sequencing
methods, we allow users to modify their own spatial range based on
their input data.

Incorporation of CellChat and COMMOT
After CrossChatH or CrossChatT obtains the clusters at multiple
resolutions, CellChat9 (for nonspatial datasets) or COMMOT22 (for
spatial datasets) is used to calculate the interactions between the
clusters.

CellChat deduces significant CCC activity from scRNA-seq data
between identified cell groups. It computes an interaction score using
mass action kinetics, which represents the probability of CCC. This
process integrates gene expression data with existing knowledge
about the interactions among signaling ligands, receptors, and their
cofactors.

COMMOT infers CCC according to predefined ligand-receptor
pairs by solving a global optimization problem. This method accounts
for higher-order interactions among multiple ligand and receptor
species. It introduces collective optimal transport to determine opti-
mal transport plans for all species pairs simultaneously, allowing for
interdependent couplings that are not possible with traditional opti-
mal transport.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets analyzed in this study are available from the Gene
Expression Omnibus (GEO) repository under the following accession
numbers: GSE158055 (COVID-19), GSM3453537 (mouse skin), and
GSE178758 (mouse wounded skin). Mouse embryo dataset can be
found in the following link: https://db.cngb.org/stomics/mosta/.
Source data are provided with this paper.

Code availability
The CrossChat package73 is implemented in Python and is available on
the GitHub repository https://github.com/Xinyiw28/CrossChat. The
tool is deposited in PyPI for installation: https://test.pypi.org/project/
crosschat/0.0.1/. A Read the Docs website can be found here: https://
crosschat.readthedocs.io/en/latest/README.html. It is also deposited
at Zenodo: https://zenodo.org/records/13984908.
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