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Abstract
Background: One of the main explanations for the stunning diversity of teleost fishes (~29,000
species, nearly half of all vertebrates) is that a fish-specific whole-genome duplication event (FSGD)
in the ancestor to teleosts triggered their subsequent radiation. However, one critical assumption
of this hypothesis, that diversification rates in teleosts increased soon after the acquisition of a
duplicated genome, has never been tested.

Results: Here we show that one of three major diversification rate shifts within ray-finned fishes
occurred at the base of the teleost radiation, as predicted by the FSGD hypothesis. We also find
evidence for two rate increases that are much younger than the inferred age of the FSGD: one in
the common ancestor of most ostariophysan fishes, and a second one in the common ancestor of
percomorphs. The biodiversity contained within these two clades accounts for more than 88% of
living fish species.

Conclusion: Teleosts diversified explosively in their early history and this burst of diversification
may have been caused by genome duplication. However, the FSGD itself may be responsible for a
little over 10% of living teleost biodiversity. ~88% of species diversity is derived from two relatively
recent radiations of freshwater and marine fishes where genome duplication is not suspected.
Genome duplications are a common event on the tree of life and have been implicated in the
diversification of major clades like flowering plants, vertebrates, and gnathostomes. However our
results suggest that the causes of diversification in large clades are likely to be complex and not
easily ascribed to a single event, even a dramatic one such as a whole genome duplication.

Background
With approximately 28,872 species, teleost fishes consti-
tute the dominant radiation of vertebrates on our planet
[1]. One common explanation for this diversity is that a
complete duplication of the entire genome [2] facilitated

teleost diversification. This event is also known as the fish
specific genome duplication, or FSGD [3]. Many studies
have corroborated the occurrence of the genome duplica-
tion event [3-7], and several workers have hypothesized
that the FSGD enabled the subsequent explosive diversifi-
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cation of teleosts by providing massive opportunities for
evolutionary experimentation via gene duplication and
decoupling [3-6]. This hypothesis, which we refer to as
FSGD-FD (FSGD-facilitated diversification) has never
been quantitatively tested.

The fact that teleosts contain over 99% of the total diver-
sity found in ray-finned fishes might be taken as evidence
that the diversification rate in teleosts is higher than in
their close relatives. However a closer examination of spe-
cies richness within teleosts reveals that the history of
their diversification has been complex. Several teleost
orders possess low species richness (Table 1), while the
bulk of the biodiversity is concentrated in two large
groups: the Ostariophysi, an almost exclusively freshwater
clade that includes carps, danios, piranhas, and catfish,
and the Perciformes (or perch-like fishes), a group of
spiny-rayed fish that includes the majority of coastal and
pelagic marine fish as well as some large freshwater line-
ages like cichlids and perches. Both of these groups appear
in the fossil record 150–250 My after the estimated time
of the FSGD [3,7,8]. One central prediction of the FSGD-
FD hypothesis is that the diversification rate accelerated
with the origin of teleosts. An alternative hypothesis is
that major rate shifts are more recent, and correspond to
the appearance of the species-rich teleost subclades
described above. If true, this alternative hypothesis would
suggest that the FSGD did not play a major role in gener-
ating fish biodiversity, due to the long interval between
genome duplication and accelerated diversification.

Recently, a number of molecular timescales for ray-finned
fishes have been published. However most of these stud-
ies sampled a limited number of taxa and used relatively
few fossil calibrations [7,9-11], making it difficult to date
the origin of more than a few major actinopterygian
crown groups. Here we present a large scale molecular
timescale for actinopterygians that allows us to estimate
the divergence times of most major lineages as well as the
origin of many crown groups within them. We used this
timescale along with information about taxonomic rich-
ness of unresolved actinopterygian clades to test the
hypothesis that teleosts experienced an increase in diver-
sification rates as predicted by the FSGD with a recently
developed comparative method, MEDUSA (Modeling
Evolutionary Diversification Using Stepwise AIC) ([16];
Additional file 1).

Results
Timetree
We downloaded and aligned 227 vertebrate RAG1
sequences from GenBank (221 actinopterygians, 4 sarcop-
terygians, 2 elasmobranchs, Additional File 2), and used
Bayesian methods to infer divergence times with the ages
of 44 clades constrained by fossils (Table 2). Our timetree

(Fig 1, 2, 3) is the most comprehensive divergence time
study of actinopterygians to date: it includes representa-
tives of 39 of the 44 orders of ray-finned fish and 127 tel-
eost families (which, taken together, represent over 80%
of the total teleost species diversity); in addition, many of
the 45 fossil calibration points used in this study, identi-
fied after a comprehensive review of the actinopterygian
fossil record, have never before been integrated in a diver-
gence time analysis (Additional file 3).

Among the Actinopterygii, the crown ray-finned fishes
(Fig. 1, node 4) have a mean age of 298 Ma (with a 95%
High Posterior Density, HPD: 284 to 337 Ma). This is
approximately 100 My older than the oldest fossil, but
also ~100 My younger than recent mitogenomic studies
[9-11]. The key node in this study is the most recent com-
mon ancestor of teleosts (Fig. 1, node 6). We found that
teleosts separated from their sister taxon, which in our
analysis is a clade formed by gars and the bowfin (from
here onwards we refer to this clade as Holostei) about 230
Ma, (95% HPD: 225–243 Ma), and radiated 193 Ma
(95% HPD: 173–214 Ma). Our age estimate overlaps with
the revised estimate for the FSGD of Hurley et al. [7]
(226–316 Ma) but is not congruent with earlier estimates
of 300–350 Ma based on less complete sampling [4,6,12].
The short fuse of 37 My between the origin of crown neop-
terygians and the origin of crown teleosts also suggests a
relatively brief window of time for the occurrence of the
FSGD. Within teleosts, we found that the two largest
clades are both Cretaceous in origin. Crown Ostariophysi
appeared 128 Ma (95% HPD: 125–134 Ma) (Fig. 1), and
the crown Percomorpha (which differs from the Perco-
morpha of Nelson [13] because it includes also the Ath-
erinomorpha, and includes over 50% of all teleosts)
appeared 104 Ma (95% HPD: 93–115 Ma) (Fig. 2).

Our estimated ages for both the origin of the teleosts, as
well as for the main splits among their major lineages
(Table 3), are much younger than those inferred in mitog-
enomic studies [7,11], but are in fairly close agreement
with dates provided by time-calibrated nuclear gene diver-
gences in Hurley et al. [7]. This discrepancy might be due
to an overall higher rate of evolution in mitochondrial
genomes as discussed by Hurley et al. [7]. Within the
more derived teleosts, our age estimates are generally
younger than those previously published, but are in rela-
tively good agreement with Inuoe et al. [9] for the origin
of the acanthomorphs, with largely overlapping 95%
HPDs in both studies. The age of two important perco-
morph clades, the cichlids and the tetraodontiforms, are
drastically different between our study and previous work
[10,11] (Fig. 3). The crown cichlids appear to have origi-
nated 57 Ma, with the split between the African and Neo-
tropical lineages only 49 My old, dates that are consistent
with those inferred by Genner et al. [14]. These ages
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Table 1: Ray-finned fish Species Richness

Lineage name in Fig. 4 Richness Fishbase [1]

Elasmobranchi 970

Latimeriidae 2

Dipnoi 3

Polypteriformes 18

Chondrostei 30

Holostei 8

Elopomorpha 924

Osteoglossomorpha 228

Clupeomorpha 382

Denticipidae 1

Gonorynchiformes 37

Cypriniformes 3665

Characiformes 1847

Siluriformes 3214

Gymnotiformes 148

Osmeriformes 44

Galaxiiformes 51

Stomiiformes 406

Argentiniformes 197

Salmoniformes 205

Esociformes 13

Myctophiformes 254

Aulopiformes 244

Percopsiformes+Gadiiformes 610

Polymixiiformes 10

Zeiformes 32

Lampriformes 24
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appear to rule out a major role of the breakup of Gond-
wana [which dates to the Cretaceous] in determining the
present distribution of this group. The Tetraodontiformes,
the group that includes the pufferfish, an important
model for vertebrate genomics, originated ~65 Ma,
towards the end of the Cretaceous. This age is in agree-
ment with the estimate based the previous analysis of a
multigene dataset of Alfaro et al. [15], but is almost 100
Ma younger than Yamanoue et al.'s estimate based on
mitogenomes [10].

Diversification rate study
To test whether diversification rate shifts supports the
FSGD-diversification hypothesis, we applied a recently
developed comparative method [MEDUSA, Modeling
Evolutionary Diversification Using Stepwise AIC ([16],
Additional file 1) to a 'diversity tree' derived from both the
chronogram and species richness data compiled from the
literature [Fig. 4]. Our stepwise procedure, based on the
flexible rate model of Rabosky et al. [17], integrates both
phylogenetic and taxonomic data [Fig. 4], and involves
the assignment of rate shifts [both birth and death rates]
to the optimal branches on the phylogeny with unre-
solved tips until additional rate changes do not substan-
tially improve the AIC score. We tabulated the total
species richness of actinopterygians, and partitioned it
among representative stem lineages in our phylogeny. We
pruned the chronogram down to representatives of each
stem lineage with taxonomic information and estimated
diversification statistics for the tree under the assumption
of rate homogeneity across lineages. Then we tested for
rate heterogeneity across lineages by implementing
MEDUSA, to identify lineages representing significant
departures from an expected background of diversifica-
tion [16].

Our study reveals that actinopterygian biodiversity has
been profoundly shaped by four diversification events.
The most statistically significant of these occurred at the
base of modern teleosts, as predicted by the FSGD-FD
hypothesis, and involved a four-fold increase in net diver-
sification rates [net rate r = birth rate – death rate] over the
background rates estimated from the closest evolutionary
relatives of teleosts. Additionally we find evidence for sec-
ondary rate increases in two lineages. The first of these
preceded the radiation of percomorph fishes comprising
most of the diversity of acanthomorphs or spiny-rayed

fishes [13], including most of the coral reef-associated tel-
eost families as well as most other marine fish diversity.
The second increase preceded the radiation of a clade con-
taining most ostariophysans, including the cypriniforms
(carps and minnows), characiforms (pirhanas) and sil-
uriforms (catfish). The final rate shift is a deceleration
which gave rise to the denticled herring, the sole member
of the family Denticipitidae, an ancient lineage that is the
sister taxon of the Ostariophysi.

The teleost rate shift is characterized by a 3.7 fold increase
in the rate of net diversification. Surprisingly, despite a net
increase in diversification rate, estimated extinction rates
in teleosts is higher than in nonteleosts (death rate, dteleosts
= 6.98 × 10-5, dnonteleosts = 1.21 × 10-5). This contradicts
suggestions that genome duplication in teleosts would
have contributed to their diversification by making them
more resistant to extinction [18]. Instead, turnover (e, the
ratio of death to birth rate) is 1.5 times higher in teleosts
than in non-teleosts. In comparison, the rate shift that
gave rise to the percomorphs was less pronounced with a
net diversification rate 1.98 times greater than the teleost
rate. The rate shift leading to the ostariophysans reveals a
period of increased volatility in the history of actinoptery-
gians. Birth rates increased by more than 2.6 fold over tel-
eost birth rates, but this rise in cladogenesis was checked
by a substantial increase in extinction rates. This resulted
in turnover rates in ostariophysans that were ~218 times
higher than other teleosts. An increase in clade volatility
may also have accompanied the increase in the perco-
morph diversification rate, but we were unable to calcu-
late independent birth and death rates from the net
diversification rate due to a lack of phylogenetic resolu-
tion within this large clade. In contrast to these three
major rate accelerations, the shift underlying the denticled
herring was characterized by a ~12 orders of magnitude
decrease in net diversification rate. This result provides
additional empirical evidence for the unusual nature of
ancient clades of small size. These clades are too small and
persist too long to be plausible outcomes under typical
birth-death models unless the birth and death rates
approach 0 [19,20].

Discussion
Our study provides two lines of evidence in support of the
FSGD-FD hypothesis. First, we find a significant increase
in the diversification rate of teleosts. Second, the window

Beryciformes [includes Stephanoberyciformes] 233

Ophidiiformes 460

Percomorpha 15639

Ray-finned fish species richness taken from Fishbase [1].

Table 1: Ray-finned fish Species Richness (Continued)
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Timetree of ray-finned fishFigure 1
Timetree of ray-finned fish. Timetree of ray-finned fish based on 227 RAG1 sequences and 45 fossil calibration points. 
Includes taxa from Polypteriformes to Ostariophysi from Fig. 4.
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Timetree of ray-finned fishFigure 2
Timetree of ray-finned fish. Timetree of ray-finned fish based on 227 RAG1 sequences and 45 fossil calibration points. 
Includes taxa from Esociformes to part of Percomorpha from Fig. 4.
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Timetree of ray-finned fishFigure 3
Timetree of ray-finned fish. Timetree of ray-finned fish based on 227 RAG1 sequences and 45 fossil calibration points. 
Includes part of Percomorpha from Fig. 4.
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Table 2: Priors Used in Divergence Time Analysis

Node Name Mean 95% Prior

Root 428 505

1 Elasmobranchii 16 41 Offset 165, means 1.9, SD
2.2

2 Osteichthyes 418 505 Offset 418, mean 1.21, SD
1.98

3 Sarcopterygii 407 505 offset 407, mean 1.49, SD
1.88

4 Actinopterygii 284 420 Lognormal, offset 284, mean 1.91, SD 
1.83

5 Neopterygii 225 284 offset 225, mean 1.12, SD
1.8

6 Teleostei 152 228 offset 152, mean 1.30, SD
1.94

7 Osteoglossomorpha 130 152 offset 130, mean 1.0, SD
1.27

8 Elopomorpha 135 152 offset 135, mean 0.62, SD
1.35

9 Ostarioclupeomorpha 149 152 Offset 149, mean 0.1, SD
0.6

10 Pristigasteroidea 69 125 Offset 69, mean 1.48, SD
1.55

11 Ostariophysi 125 140 offset 125, mean 1.0, SD
1.04

12 Characiformes 68 100 Offset 68, mean 1.5, SD
1.2

13 Cyprinidae 49 100 Offset 49, mean 1.94, SD
1.2

14 Siluriformes 73 83.5 offset 73, mean 0.7, SD
1.0

15 Bagridae 59 73 Offset 59, mean 1.1, SD
0.94

16 Callichthyidae 55 73 Offset 55, mean 1.4, SD
0.94

17 Ictaluridae 56 73 Offset 56, mean 1.11, SD
1.05

18 Argentiniformes 127 152 Offset 127, mean 1.0, SD
1.35

19 Osmeridae 58.7 84 Offset 58.7, mean 1.08, SD
1.31

20 Galaxiidae 70 124 Offset 70, mean 1.01, SD
1.81

21 Esociformes 85 152 offset 85, mean 1.9, SD
1.4
Page 8 of 15
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22 Salmoniformes 48.6 125 offset 48.6, mean 1.54, SD
1.7

23 Aulopiformes 96 128 Offset 96, mean 1.5, SD
1.2

24 Acanthomorpha 99 122 Offset 99, mean 0.1, SD
1.85

25 Beryciformes 99 122 Offset 99, mean 1.5, SD
1.03

26 Lampriformes 70 98 Offset 70, mean 1.0, SD
1.42

27 Ophidiidae 68 98 Offset 68, mean 1.28, SD
1.29

28 Fundulidae vs Poeciilidae 55 99 Offset 55, mean 1.21, SD
1.55

29 Channoidea 48 84 Offset 48, mean 1.71, SD
1.14

30 Cichlidae 46 84 offset 46, mean 1.5, SD
1.3

31 African Cichlids 23.3 84 Offset 23.3, mean 1.26, SD
1.49

32 Gerreidae 52 84 offset 52, mean 1.16, SD
1.4

33 Gobiidae 40 84 offset 40, mean 1.37, SD
1.47

34 Labridae 50 84 offset 50, mean 0.9, SD
1.6

35 Moronidae 74 84 offset 74, mean 0.5, SD
1.1

36 Pomacentridae 50 84 offset 50, mean 1.24, SD
1.39

37 Pleuronectiformes 52 98 offset 52, mean 1.28, SD
1.55

38 Tetraodontiformes 59 98 offset 59, mean 0.8, SD
1.75

39 Balistoidea 35 50 offset 35, mean .9, SD
1.1

40 Ostracioidea 50 70 offset 50, mean 0.53, SD
1.5

41 Tetraodontoidea 50 70 Offset 50
mean 1.0, SD
1.22

42 Tetraodontidae 35 50 offset 35, mean 1.0, SD
1.04

43 Caproidae 50 99 offset 50, mean 1.51, SD
1.44

44 Zeiformes 72 98 offset 72, mean 1.01, SD
1.37

Table 2: Priors Used in Divergence Time Analysis (Continued)
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Table 3: Divergence time estimates of focal ray-finned fish nodes

Name of the split Mean Age this study 95% age this study Other study ages

Condrichthyes vs. Osteichthyes 440

MRCA of Neoselachii 178 165 to 200

MRCA of Osteichthyes 423 418 to 435 415 to 524 [10]

MRCA of Sarcopterygii 409 407 to 415

MRCA of Actinopterygii 299 284 to 337 397 to 478 mit [7];
374 to 448 [9]

MRCA of Actinopteri 271 244 to 302 348 to 391 nuc
[7]; 346 to 391
mit [7]; 337 to
413 [9]

MRCA of Neopterygii 230 225 to 243 295 to 372 nuc[7];
327 to 378 mit [7];
340 to 442 [10]

MRCA of Teleostei 193 173 to 214 268 to 326 mit [7];
295 to 372 [9]

MRCA of Osteoglossomorpha 135 130 to 148 221 to 283 mit [7];

MRCA of Elopomorpha 140 135 to 158 210 to 272 mit [7];

MRCA of Ostarioclupeomorpha 151 149 to 153 192 to 255 mit [7];
242 to 332 [10];
204 to 275 [9]

MRCA of Clupeomorpha 108 84 to 133

MRCA of Ostariophysi 128 125 to 134

MRCA of Cypriniformes 92 56 to 123

MRCA of Characiformes 80 68 to 84

MRCA of Siluriformes 88 77 to 98

MRCA of Euteleostei 164 147 to 180 182 to 244 mit [7];
240 to 326 [10];
197 to 267 [9]

MRCA of Salmoniformes 54 49 to 66

MRCA of Esociformes 91 85 to 103

MRCA of Galaxiiformes 74 70 to 87

MRCA of Acanthomorpha 136 122 to 151 125 to 186 mit [7];
191 to 264 [10];
130 to 191 [9]

MRCA of Zeiformes 76 72 to 84
Page 10 of 15
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in time between the split of teleosts and their sister taxon,
the Holostei (230 Ma, 95% HPD:225–243 Ma, Fig. 1) and
the subsequent radiation of crown teleosts (193 Ma, 95%
HPD:173–214 Ma, Fig. 1) overlaps with the estimated age
of the genome duplication itself (316-226 Ma) derived
from dating of gene paralogs [7]. Furthermore, since tele-
ost diversification is characterized by increases in the birth
rate and not by decreases in the death rate (Fig. 4), our
study suggests that genome-facilitated mechanisms of
divergence, like lineage-specific nonfunctionalization
[5,21], have played a larger role in teleost diversification
than extinction resistance imparted by functional redun-
dancy [18].

Our results also caution against the broad interpretation
of the FSGD as the primary explanation for extant teleost
diversity, of which approximately ~88% derives from the
secondary diversification events in the percomophs and
ostariophysans. One limitation of MEDUSA is that the
assignment of rate shifts is limited to the level of phyloge-
netic resolution. Thus, the rate shifts leading to the ostar-
iophysans and percomorphs might reflect a series of rate
changes within these unresolved groups. As the teleost

tree of life is uncovered, it will become possible to more
precisely identify subclades or time intervals where diver-
sification rates have changed. However given these cave-
ats, we suggest that the radiation of teleosts is best
understood as consisting of at least three pulses. Initial
diversification may have been facilitated by mechanisms
related to the FSGD [5,21], though further studies are
needed to clarify how genome duplication can lead to sus-
tained, elevated rates of diversification within a clade.

The second pulse (or series of pulses), the diversification
within the largely freshwater ostariophysans, occurred
about 100 My after the FSGD and coincides with the
breakup of the supercontinent Gondwana during the Cre-
taceous. This geologic upheaval may have created oppor-
tunities for ecological diversification by creating new
environments. Although many percomorph stem lineages
also appear at this time, both the fossil record [8] and this
molecular study suggest that the third pulse (or series of
pulses) of teleost diversification occurred mostly in the
Paleogene (65 to 23 Ma). Possible triggers of increased
percomorph diversification include the establishment of
scleractinian coral reefs and other tropical shallow water

MRCA of Lampridiformes 7 70 to 84

MRCA of Beryciformes 105 99 to 114

MRCA of Percomorpha 104 93 to 115

MCRA of Caproidae 61 50 to 77

MRCA of Cichlidae 57 46 to 73 72 to 108 [11]

African vs. American cichlids 49 37 to 66

MRCA of Atherinomorpha 74 64 to 85

MCRA of Pomacentridae 53 50 to 59

MCRA of Moronidae 75 74 to 78

MCRA of Labridae 53 50 to 60

MCRA of Gobiidae 44 40 to 52

MRCA of Tetraodontiformes 66 59 to 76 124 to 184 [10]

MRCA of Tetraodontidae 37 35.09, 41.06 55 to 86 [11]; 57
to 94 [10]

MRCA of Balistoidea 62 55.60, 71.78 95 to 146 [10]

MCRA of Pleuronectiformes 57 52 to 69

Ages are in millions of years.

Table 3: Divergence time estimates of focal ray-finned fish nodes (Continued)
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Diversity tree for analyses of lineage diversification in ray-finned fishFigure 4
Diversity tree for analyses of lineage diversification in ray-finned fish. Diversity tree for analyses of lineage diversifica-
tion in ray-finned fish. Clades from Fig. 1, 2, 3 are collapsed to 27 representative stem lineages and colored by extant species 
diversity. Clades with unusual diversification rates are denoted with numbers; yellow and blue numbers denote exceptionally 
fast and slow rates respectively, compared to background rates. Estimates for net diversification rate (r = b-d) and relative 
extinction rate (e = d/b) are included in the lower right table. Asterisk indicates FSGD event. Abbreviations is figure as follows: 
Percopsif.: Percopsiformes, Gadiif.: Gadiiformes.
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habitats like sea grasses [15,22], the fragmentation of the
marine biotas due to geological events such as the progres-
sive closing of the Tethys sea [23], sea-level fluctuations
[24], and the establishments of steeper temperature gradi-
ents across the world's oceans, primarily due to the rear-
rangement of oceanic currents [25].

Conclusion
Whole genome duplications are not uncommon in the
tree of life and have been implicated in the diversification
of other large clades, including most flowering plants
(eudicots) and vertebrates [18,26]. Without quantitative
comparison of diversification rates, however, it is difficult
to identify the correlates of an evolutionary radiation,
genomic or otherwise. The approach outlined here pro-
vides a mean for testing the central predictions of macro-
evolutionary hypotheses, including those linked to
genome duplications, and represents an important step
towards identifying the correlates of evolutionary radia-
tions. Theoretical explanations of how genome duplica-
tion may lead to speciation have been proposed [27], and
a number of examples are now known in which a genome
duplication has been shown to have been linked to
rounds of cladogenesis in yeasts and flowering plants
[28,29]. However, additional work that elucidates the
interplay between genomic isolating mechanisms and
ecological opportunity is needed to more completely eval-
uate the role of genome duplication in shaping patterns of
biodiversity.

Methods
Timetree inference
RAG1 sequences for 225 species of bony fish (including
three species of lungfish, one species of coelacanths and
221 species of ray-finned fish), and two species of sharks,
which we used as outgroups, were downloaded from Gen-
Bank (Additional file 2). The sampling was selected in
order to both maximize the number of taxonomic groups
that we could include in our analysis, and the number of
fossil calibration points that could be assigned to the phy-
logeny. Sequences were aligned automatically using Clus-
tallW [30], and the alignment was then refined by eye
using MEGA 4 [31]. A survey of the fossil fish literature
allowed us to identify 45 calibration points that were used
to date 44 clades identified in the tree as well as the root
of the tree (Additional file 3). We used BEAST v 1.4.6 [32]
to estimate divergence times under a model of uncorre-
lated but log-normally distributed rates. We assigned soft
upper bounds to the prior distributions of all fossil cali-
brations using log-normal distributions as described in
Table 2. We specified a Yule prior on the rates of cladogen-
esis. The data set was assumed to have evolved under a
GTR model with invariant sites and gamma-distributed
rate heterogeneity. We constrained the monophyly of a
number of groups in order to reflect generally accepted

phylogenetic relationships. Five independent analyses of
20,000,000 generations each were run. Output from each
run was analyzed using TRACER 1.4 [32]; 25% of the trees
were discarded as burnin, and the remaining were com-
bined using TreeAnnotator 1.4.6 to produce the timescale.

Diversification rate analysis
MEDUSA [16] is an extension of the flexible rate shift
model introduced by Rabosky et al. [17]. Rabosky's
approach combines two likelihoods. The first is called the
phylogenetic likelihood and uses the timing of splits
along the resolved backbone of a phylogenetic tree to find
maximum likelihood estimates for birth and death rates
following equations developed by Nee et al. [33]. The sec-
ond is called the taxonomic likelihood and uses informa-
tion about the total species richness of an unresolved tip
clade on a phylogeny along with the age of the split
between the unresolved clade and its sister group to esti-
mate diversification rates following methods developed
by Magallon and Sanderson [34]. Rabosky et al. [17] pre-
sented a likelihood ratio test for a model where birth and
death rates are allowed to shift on one branch of a phyl-
ogeny with unresolved tip clades to a model where birth
and death rates are held constant across the tree. MEDUSA
extends this procedure by adding rates in a stepwise fash-
ion. First, the AIC score of a model with a single birth and
death rate is calculated for the unresolved tree using the
combined likelihood estimator presented by Rabosky et
al. [17]. This two parameter model is then compared to
the best four parameter model (two birth rates and two
death rates) where the birth rate and the death rate are
allowed to shift on the branch in the unresolved tree that
produces the greatest improvement in the likelihood
score. If the difference in AIC score between the two and
four parameter models is substantial (ΔAIC ≥ 4, [35]) then
this rate shift is retained. Next the four parameter model
is compared to the best six parameter model by finding
the optimal place on the tree for a third rate shift. The
process is continued until additional rate shifts no longer
produce a substantial improvement in AIC score. Full
description of MEDUSA is present in Additional file 1.

To implement MEDUSA with the actinopterygian data,
first we assembled taxonomic richness data from FISH-
BASE [1] for major lineages of fishes. Then we pruned the
timetree in Fig. 1, 2, 3 down to 27 representative lineages.
Our goal in pruning down the timetree was to preserve as
much of the backbone of the timetree as would still per-
mit us to assign species richness unambiguously to tip lin-
eages. Thus, for example, we did not retain splitting events
within Percomorpha because, although it was possible to
assign species richness to some percomorph subclades
such as tetraodontiforms, we could not confidently assign
the entire species richness of other percomorphs to line-
ages included in our sampling. We used this pruned
Page 13 of 15
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chronogram plus the taxonomic richness to estimate birth
and death rates for ray-finned fishes and tested for rate
shifts across the tree in R [36] using the LASER [37] and
GEIGER [38] packages.
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