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The LONI QC System: A
Semi-Automated, Web-Based and
Freely-Available Environment for the
Comprehensive Quality Control of
Neuroimaging Data
Hosung Kim1* , Andrei Irimia1,2* , Samuel M. Hobel1, Mher Pogosyan1, Haoteng Tang1,
Petros Petrosyan1, Rita Esquivel Castelo Blanco1, Ben A. Duffy1, Lu Zhao1,
Karen L. Crawford1, Sook-Lei Liew1, Kristi Clark1, Meng Law1, Pratik Mukherjee3,
Geoffrey T. Manley3, John D. Van Horn1 and Arthur W. Toga1

1 Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern
California, Los Angeles, CA, United States, 2 Department of Gerontology, University of Southern California, Los Angeles, CA,
United States, 3 Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA,
United States

Quantifying, controlling, and monitoring image quality is an essential prerequisite
for ensuring the validity and reproducibility of many types of neuroimaging data
analyses. Implementation of quality control (QC) procedures is the key to ensuring that
neuroimaging data are of high-quality and their validity in the subsequent analyses. We
introduce the QC system of the Laboratory of Neuro Imaging (LONI): a web-based
system featuring a workflow for the assessment of various modality and contrast brain
imaging data. The design allows users to anonymously upload imaging data to the
LONI-QC system. It then computes an exhaustive set of QC metrics which aids users
to perform a standardized QC by generating a range of scalar and vector statistics.
These procedures are performed in parallel using a large compute cluster. Finally, the
system offers an automated QC procedure for structural MRI, which can flag each
QC metric as being ‘good’ or ‘bad.’ Validation using various sets of data acquired
from a single scanner and from multiple sites demonstrated the reproducibility of our
QC metrics, and the sensitivity and specificity of the proposed Auto QC to ‘bad’
quality images in comparison to visual inspection. To the best of our knowledge, LONI-
QC is the first online QC system that uniquely supports the variety of functionality
where we compute numerous QC metrics and perform visual/automated image QC
of multi-contrast and multi-modal brain imaging data. The LONI-QC system has
been used to assess the quality of large neuroimaging datasets acquired as part of
various multi-site studies such as the Transforming Research and Clinical Knowledge
in Traumatic Brain Injury (TRACK-TBI) Study and the Alzheimer’s Disease Neuroimaging
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Initiative (ADNI). LONI-QC’s functionality is freely available to users worldwide and its
adoption by imaging researchers is likely to contribute substantially to upholding high
standards of brain image data quality and to implementing these standards across the
neuroimaging community.

Keywords: quality control, magnetic resonance imaging, diffusion tensor imaging, functional magnetic resonance
imaging, LONI Pipeline

INTRODUCTION

To ensure the highest standards of research quality, reliability,
validity, and reproducibility in brain imaging studies,
investigators who acquire and/or analyze neuroimaging data
are required to test and monitor all facets of image acquisition.
For this reason, image quality control (QC) is a prerequisite
to most single and multisite projects. Acquisition protocols
with relatively long scanning times, such as diffusion tensor
imaging (DTI) and functional magnetic resonance imaging
(fMRI), may be sensitive to substantial noise or artifacts during
scanning – for instance, artifacts related to subject motion during
relatively long duration acquisitions. Adherence to standardized
protocol compliance may be inconsistent. Such neuroimaging
challenges become more germane in imaging studies of children
(Yoshida et al., 2013) and adolescents (Satterthwaite et al., 2012);
the confounding influence of head motion on resting-state
functional connectivity and DTI structural connectivity (Lauzon
et al., 2013; Yoshida et al., 2013) have received substantial
attention (Power et al., 2012; Satterthwaite et al., 2012; Van Dijk
et al., 2012). Similar effects (Reuter et al., 2015) are evident in 3D
acquisitions of structural MRI (sMRI).

In addition to head motion-induced artifacts, the common
classes of artifacts found in MRI include ringing artifacts driven
by aliasing, EPI distortions due to gradient effects, intensity
inhomogeneity across regions due to MR strength attenuation
and use of multiple channel coils, zero fill artifact, zipper
artifact related to blood flow, impulse noise that likely drops
the signal-to-noise ratio (SNR), magnetic susceptibility creating
image geometric distortion (Bastin et al., 1998; Skare et al.,
2000; Anderson, 2001), chemical shift due to the differences
between resonance frequencies of fat and water (Reiser et al.,
2008), and aliasing artifacts resulting from a field of view that
is smaller than the object (Heim et al., 2004; Owens et al.,
2012; Jones et al., 2013; Pizarro et al., 2016). Beyond the
aforementioned artifacts, the quality of DTI measurement is also
susceptible to eddy currents. These confounds likely contribute
to inaccuracies in segmentation of anatomical MRI images
(Pizarro et al., 2016; Keshavan et al., 2017), assessment of inter-
regional correlation of blood-oxygen-level dependent (BOLD)
time courses on resting state-fMRI (Power et al., 2012, 2014),
and the tensor fitting of DTI data (Le Bihan et al., 2006). Poorly
inspected data has the potential to obscure the presence of actual
biological changes and/or produce spurious associations with
study phenotypes. However, most neuroscientific and clinical
studies do not describe whether or not image QC was performed
in their research publications. Others rely solely upon a visual
inspection method of image QC and follow in-house QC

protocols, which may not be well documented. The use of visual
inspection methods which often rely on subjective interpretation
to identify ‘bad’ quality data are mainly due to the absence
of an existing standardized procedure for QC. Furthermore,
variations in QC approaches make data aggregation across
datasets even more difficult.

Development of quantitative QC metrics is imperative for
addressing the subjectivity in visual assessment and would serve
to facilitate an automated QC system of brain image data so
that methods of assessment can be reproduced across multisite
datasets. A survey of the literature (Supplementary Data 1)
presents studies performing systematic assessment of image
quality of MRI data using quantitative QC for typical MRI
modalities (sMRI: n = 9; fMRI: 5; DTI: 3). The types of QC
(i.e., manual or fully automated annotation of ‘bad’ images), the
number of QC metrics (n = 1–190) and the type of datasets (i.e.,
inclusion of patients or healthy subjects only, age range, sample
size, use of publicly open data or their own data) used in these
studies vary considerably. In particular, inclusion of pathologic
brains or inclusion of pediatric or elderly groups in some studies
may result in a different distribution of the QC metrics –
suggesting different interpretations of their relative image quality
since these are factors likely changing the degree of artifacts
or degrading the image preprocessing for the computation of
QC metrics. This may ultimately present confounds for the
users during their interpretation of the QC results. Recent work
shows more promising results and provides more advanced
features that improve the accessibility and reliability of the
QC system: The nine studies shown in Supplementary Data 1
focused on developing a QC system for structural MRI (sMRI).
Similarly, these studies derived a number of QC metrics that
characterize different aspects of imaging artifacts on sMRI and
used supervised classifiers to determine a decision boundary
by which the best agreement with visual inspection results was
obtained. One of these frameworks is not publicly available
(Pizarro et al., 2016). Roalf et al. (2016) recently developed a
publicly open script which calculates several QC metrics to assess
the image quality of DTI data. They performed a systematic
evaluation on a large DTI dataset showing sensitivity and
specificity of their proposed QC metrics to bad quality data. Oguz
et al. (2014) have also developed the DTIPrep tool, open-source
software featuring a graphical user interface (GUI), which can
perform QC on DTI images. This tool has two separate modules
including an automatic QC and artifact correction/removal as
well as a module enabling visual assessment. One fMRI study
using a QC metric of temporal variation in signal changes showed
that this metric is sensitive to motion artifacts and also related to
reductions in functional connectivity (Power et al., 2012). In their
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follow-up study, they expanded their findings by investigating
methods to remove the censored motion artifact (Power et al.,
2014). There have also been efforts made for the quality assurance
of post-image processing such as in the studies evaluating brain
structural segmentation on sMRI (Keshavan et al., 2017) and
fiber tractography extracted from DTI data (Sommer et al.,
2017). However, this type of QC processing may tend to be
computationally costly, requiring numerous stages of image
processing prior to the image quality evaluation.

Despite these recent efforts in various MRI modalities, several
challenges exist which potentially limit neuroimaging researchers’
and clinicians’ access to or familiarity with currently available
QC tools: First, There are no other comprehensive QC tools
covering sMRI, fMRI, computed tomography (CT) and DTI
simultaneously, even though there are other QC tools covering
part of these image modalities1,2 (Marcus et al., 2013; Esteban
et al., 2017). Second, most of the QC tools do not provide a
user-friendly GUI which can increase the accessibility of novice-
level users to these tools. Most tools also require preinstalled
software libraries such as FSL, SPM or AFNI in order to enable
their functionality on a local host computer. Furthermore, the
facility for automated QC is not routinely included in many
neuroimaging software packages, which potentially implies a
dependence on human efforts in the QC process. Lastly, running
a given QC tool on a personal computer or small size compute
clusters may limit QC efforts in large-scale data collections.

Here, we describe the LONI QC system (version 1.0) which
features a detailed scientific workflow for the objective review
and assessment of various modality and contrast imaging data
including sMRI, fMRI, DTI, and CT data. The current QC
system has two options to perform its functionality: (1) a
completely online system supported by various commonly-
used web-browsers and which requires no preinstalled software;
(2) a downloadable framework which runs on the user’s
local computing environment but does necessitate prerequisite
software. In the online system, the design allows users to
anonymously upload imaging data to the LONI QC system,
either through LONI Integrated Data Archive (IDA) or using
a direct uploading interface. It computes a comprehensive
set of standard QC metrics that have been described in the
literature and performs a standardized QC via an automated
pre-processing system specifically designed to generate a range
of scalar and vector statistics along with derived images. LONI
QC data processing workflows are implemented using the LONI
Pipeline3 that facilitates designing, modifying, and maintaining
the system, whilst the QC data processing is performed on
the LONI processing grid in the Mark and Mary Stevens
Neuroimaging and Informatics Institute at the University of
Southern California (USC) – a cluster of thousands of central
processing units (CPUs). LONI QC system also features a user-
friendly web GUI that is designed for those whose level of
expertise can range from novice to expert. Upon completion of
the QC process, the system provides the users a detailed report

1http://preprocessed-connectomes-project.org/quality-assessment-protocol/
2https://mriqc.readthedocs.io/en/stable/
3http://pipeline.loni.usc.edu

containing a range of quantitative metrics which can be used to
assess neuroimaging data quality. Finally, the LONI QC system
enables image evaluation based on flagging each QC metric as
‘good,’ ‘questionable,’ or ‘bad’ based on a statistical distribution
of prior results.

To provide an illustration of the LONI QC system, we evaluate
various datasets including imaging data scanned with different
imaging modalities (sMRI, fMRI, DTI), sequences (T1-weighted,
T2-weighed, FLAIR) and different acquisition parameters (e.g.,
repetition time, echo time, voxel size). We also evaluate the
QC metrics’ reproducibility (for a dataset collected from the
same scanner and collected from multiple scanners with different
acquisition parameters) as well as sensitivity and specificity
to the identification of ‘bad’ quality images in comparison
to visual inspection to assess the utility of the automated
QC rating process.

MATERIALS AND METHODS

The online LONI QC system consists of the following three
stages (Figure 1): (1) Initialization, including online account
creation and uploading data; (2) Computation of QC metrics for
various modality images; and (3) Image QC reporting including
automated QC rating and user’s visual inspection. The automated
QC feature provides a way for users to be informed about
whether the assessed image data is of good quality or needs
further careful inspection by a human expert. In the following
sections, the workflow and technical specifications of the system
are described. More details that explain how the GUI of the
current system interacts with the workflow and the proposed
features are provided in Figure 2 and Supplementary Data 2.

The offline version of the LONI QC framework may be
downloaded at http://qc.loni.usc.edu. This package includes the
related LONI pipeline workflow file, the scripts required by the
workflow, and a document instructing the installation and the list
of the packages to be preinstalled, such as FSL, AFNI, FreeSurfer,
and SPM.

Initialization (Figure 1-1)
Once users create their account on the LONI QC system
and login, they can submit image data from the existing
data collection to the QC processing workflow. To enable the
submission of image data by a user, the LONI QC system either
interacts with the LONI-Image Data Archive (IDA)4 or uses a
separate module that allows the user to directly upload their
data to the QC system. The IDA is a user-friendly environment
for archiving, searching, sharing, curating and disseminating
neuroimaging and related clinical data (Crawford et al., 2016).
It has been employed in a large number of neuroimaging
research projects across the globe and accommodates MRI,
MR angiography (MRA), magnetic resonance spectroscopy
(MRS), DTI, CT, positron emission tomography (PET) and
other imaging modalities. An engine for flexible data de-
identification and encrypted file transmission are then used to

4http://ida.loni.usc.edu
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FIGURE 1 | Overall workflow for the LONI QC system. The LONI QC system consists of the three main stages: (1) Initialization including the creation of an online
account and uploading data; (2) Computation of QC metrics for different image modalities. The system computes and generates various QC metrics, vectors and 3D
maps and renderings for user’s comprehensive evaluation of image quality; and (3) Image QC including automated QC and user’s visual evaluation. The automated
QC feature provides a way for users to be informed about whether the assessed image data is of good quality or needs further careful inspection by a human expert.
IDA, Integrated Data Archive; QC, quality assessment; QC, quality control; MSI, mean slice intensity; SNR, signal-to-noise ratio; CoM, Center of Mass; ADC,
apparent diffusion coefficient; DWI, diffusion-weighted imaging; FA, fractional anisotropy; SVNR, signal variance-to-noise variance ratio; TCTV, tissue
contrast-to-tissue variance ratio; DVARS, the root-mean-squared change in blood oxygenation level-dependent signal across time; FWHM, full width half maximum;
FD, frame-wise displacement; SD, standard deviation.

ensure compliance with patient-privacy regulations. Uploading
data through the IDA automatically archives the data in the IDA
securely, which requires no specialized hardware, software or
personnel. The IDA and the direct upload module automatically
extract relevant metadata from all de-identified image files. The
direct upload method implemented in the current system version
(v1.0) permits DICOM and Nifti formats as well as uploading
multiple files at a time (up to 2 gigabytes or up to 30 files).

Computation of QC Metrics for Various
Modality Images (Figure 1-2)
The users can initiate the system for computation of the QC
metrics by selecting data included in the existing data collection.

The LONI QC system uses a LONI Pipeline workflow (Rex
et al., 2003) to pre-process image data prior to the calculation
of QC metrics including correction for intensity inhomogeneity
(Sled et al., 1998) and eddy current correction for the geometric
distortion on DTI (Jezzard et al., 1998). Once the preprocessing
is done, the system then inspects all XML header information
and verifies that the data are suitable for analysis: e.g., whether
the modality of the image is within the category of sMRI,
fMRI, DTI or CT, and whether there is missing information
about the imaging parameters. The results of this inspection are
used as input to a module which either instructs the system to
proceed with the calculation of metrics or transmits information
to an error reporting module. We describe in the following
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FIGURE 2 | The web-based user-friendly GUI for LONI QC system. (a) Entering to http://qc.loni.usc.edu using any web-browser, users can register their accounts
and log in to LONI QC system. (b) After sign-in, users enter into the main page. In the left panel the user can first select a data collection. The user can select
image(s) in the selected collection in the middle panel. Finally, in the left panel, the user can select an Action related to the selected image(s): either run new QC,
evaluate QC result, create QC report, export QC data to a CSV file or refresh collection data. (c) The user can set or change the cutoff values/ranges in ‘auto QC
setting.’ The cutoff ranges are set per image modality by selecting it on the left-bottom panel. The ranges can be compared to the mean and SD of the previously
processed datasets. (d) Once QC metrics computation were completed and the user clicked “Evaluate scan quality” in the left panel of the main page, the user can
appreciate and evaluate the calculated QC metrics (d-1), vectors (d-2), and 3D maps and renderings (d-3,4,5) per image. If the auto QC was performed, they can
find the ‘good,’ ‘questionable’ or ‘bad’ flags and can revise the results if they do not agree. After the evaluation and revision of QC, users can submit the final
evaluation to the system and request to export the QC reports in various formats such as XML or PDF (e).
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sections how and what QC metrics are computed in each
imaging modality.

Workflow and QC Metrics for sMRI and CT
The following QC metrics are computed: (1) mean slice intensity
(MSI): AFNI software is used to calculate MSI, a vector
representing the mean intensities for all the slices. A quick
change in mean intensity at a slice compared to its previous one
may indicate a quality issue; (2) SNR: The lower 10% of the
intensity distribution is used to separate the image background
from the head. The SNR is, then, computed as mean signal
intensity of the head divided by the standard deviation (SD) of
the intensity in the background. The range of possible values is
between zero and infinity. Lower SNR indicates poorer image
quality; (3) signal variance-to-noise variance ratio (SVNR): Signal
intensity variance of the head is divided by the signal intensity
variance of the background. Here, the range of possible values
is between zero and infinity. Higher SVNR indicates bad image
quality; (4) contrast-to-noise ratio (CNR): Image is skull stripped
to label the brain using FSL-BET5. The FSL-BET is subject to
the generation of a poorly fitting brain mask. However, we
intend for the LONI QC system to use simple and minimum
image pre-processing steps rather than employing learning-
based approaches, per se, which often perform better or worse
depending on the training-set. Furthermore, the LONI QC
system has the functionality for users to visually check the quality
of the BET-generated mask, allowing for the finalization of the
QC more comprehensively. Segmentation of gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) is performed
on the skull-stripped brain using SPM86 package. The means of
GM and WM signal intensities are subtracted from one another.
Their absolute value is divided by the SD of the background signal
intensity. Possible values range from zero to infinity. Lower CNR
indicates poorer image quality; (5) Contrast of Variance-to-Noise
Ratio (CVNR): Instead of the means of GM and WM intensities,
their SDs are used; (6) brain tissue contrast-to-tissue intensity
variation (TCTV): The means of GM and WM signal intensities
are subtracted from one another. Their absolute value is divided
by the pooled SD of the GM and WM as

√
σ2

GM + σ2
WM where σ is

SD of the signal intensities for a given tissue type. Range of values
is zero to infinity. Smaller TCTV indicates poorer image quality.
This metric was used in a recent study (Pizarro et al., 2016) and
we observed this is sensitive to the motion artifact more than SNR
or CNR; (7) full-width-at-half-maximum (FWHM): This metric
that characterizes the smoothness of the image is determined
using the variance of derivatives method of Worsley et al. (1992):
The FWHM was computed within the brain area and calculated
separately for each axis in the image volume. Also, the number
of ‘resolvable elements’ is calculated by dividing the number of
voxels in the brain by the geometric mean of the FWHM of each
axis; (8) center of mass (CoM) of the volume in each dimension
(X, Y, and Z). The CoM is computed by dividing the sum of each
coordinate X, Y, or Z for the voxels inside the brain by the number
of these voxels (Fesl et al., 2008).

5https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET
6http://www.fil.ion.ucl.ac.uk/spm/

Workflow and Metrics for DTI
The module first ensures whether data for all gradient directions
are available or not by extracting B0 values and the diffusion
gradient direction matrix from DICOM headers. If this is not
the case, the workflow generates error messages to the user.
The following QC vectors are computed: (1) the SNR; (2) CoM
computed for each gradient direction volume; (3) histogram of
image intensities and its related descriptive statistics for each
volume are generated within the head mask; (4) the mean
signal intensity (MSI) and SNR for volumes associated with each
gradient direction; and (5) the displacement from the mean of
the CoM in each of the X, Y, and Z directions is calculated
for each gradient direction. Using TrackVis7, the following
features as volume maps are computed and visualized for users
to examine: B0, fractional anisotropy (FA), mean diffusivity
(MD) and apparent diffusion coefficient (ADC) volumes. The
3D rendering of WM fibers is generated using streamline
tractography methods (Mori et al., 1999; Lazar et al., 2003).
A detailed report containing information about the number of
voxels, mean intensity, standard deviation, and minimum and
maximum intensities for each slice is also generated.

Workflow and Metrics for fMRI
For each point in an fMRI time series, capabilities are provided
to calculate the following scalar metrics: (1) MSI per volume;
(2) the average temporal SNR; (3) the frame-wise displacement
(FD): the mean displacement of the head for each frame from
the first frame volume using the algorithm of Power et al. (2012).
The maximum FD and the number of the volume frames with
FD > 0.5 are also computed; and (4) DVARS: The algorithm
of Power et al. (2012) is also used to compute the root-mean-
squared change in blood oxygenation level-dependent (BOLD)
signal across time, which is known as the DVARS measure.
We used FSL tools called fsl_motion_outliers to compute FD
and DVARS. We further compute the maximum DVARS, the
number of frames with DVARS > 50. Plots across time (i.e.,
across the volume frames) are also provided for the following
quantities: (1) FD; (2) DVARS; (3) the volume mean of SNR;
(4) estimated head translations and rotations in each dimension;
(5) the volume mean of the signal intensity; (6) the volume mean
of the running difference (‘velocity’); (7) percentage of outlier
voxels [using the 3dToutcount function in the AFNI software
package (Cox, 1996)]; (8) the FWHM in each dimension; (9) the
CoM change in each dimension; (10) the mean and maximum
of the fMRI signal’s frequency spectrum over the brain-masked
volume; and (11) the image intensity variation per slice and the
signal-to-fluctuation noise ratio (SFNR) computed as described
by Friedman and Glover (2006). In the processes where the
alignment was required, we used FSL-FLIRT and MCFLIRT tools
with the cost function of the normalized correlation.

Workflow and Metrics for Phantoms
The LONI QC system accommodates data collected from MRI
phantoms as a separate category and all the metrics described
above for human data can be computed automatically for MRI

7http://www.trackvis.org

Frontiers in Neuroinformatics | www.frontiersin.org 6 August 2019 | Volume 13 | Article 60

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET
http://www.fil.ion.ucl.ac.uk/spm/
http://www.trackvis.org
https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00060 August 26, 2019 Time: 15:35 # 7

Kim et al. LONI MRI Quality Control

phantoms as well. This process can be essential for helping
the user to decide on acceptable values and ranges for metrics
computed from human data. The QC protocol for phantoms is
similar to that for each type of imaging (sMRI/CT, DTI or fMRI),
with minor differences. The QC metrics reported for phantoms
are the MSI, odd-even slice intensity differences, the SFNR, the
CoM in each dimension, and to obtain plots of the raw fMRI
signal and Fourier spectrum magnitude.

Image QC (Figure 1-3)
User’s Qualitative and Quantitative QC of Image Data
Once the image data were processed and QC metrics have been
computed, the system awaits the users’ evaluation. The graphical
user interface (GUI) of LONI QC system then is provided for
users’ visual inspection of the quality of images as well as their
quantitative evaluation of QC metrics (Figure 2):

• Visual inspection: The GUI is fully integrated with the LONI
Viewer based on a web-enabled neuroimage viewing engine.
For sMRI volumes, the LONI viewer allows users to inspect
neuroimaging slices in the axial, sagittal and coronal planes.
For DTI volumes, a magnetic field gradient direction table
is provided in addition to FA, MD and ADC images. DTI
tractography files can be inspected using the LONI Viewer with
an online 3D visualization module.
• Quantitative evaluation: Using the GUI of the system, the

users can view and examine the resulting QC metrics as in
value for the following metrics [sMRI: SNR, CNR, SVNR,
CVNR, TCTV, COV, FHWM [x,y,z], CoM [x,y,z]; fMRI:
average temporal SNR, maximum FD, number of frames with
FD > 0.5, minimum DVARS, maximum DVARS, number of
frames with DVARS > 50; DTI: N/A], as in graph plotting
the vector of image arrays (sMRI), gradient volume series
(DTI), and time series profiles (fMRI) for the following
metrics: [sMRI: MSI; DTI: MSI per gradient volume, SNR
changes, CoM change in each dimension; fMRI: FD, DVARS,
volume mean of SNR, head translations, and rotations in each
dimension, volume mean of signal intensity, volume mean
of running difference (‘velocity’), percentage of outlier voxels,
FWHM in each dimension, CoM change in each dimension,
mean and maximum of the fMRI signal’s frequency spectrum
over the brain-masked volume, image intensity variation per
slice and signal-to-fluctuation noise ratio], and as in voxel-wise
volume map (sMRI: SNR; DTI: SNR, B0, FA, MD, ADC; FMRI:
SNR, temporal mean, temporal SD).

Automated QC and User’s Revision
It is almost impossible for users to perform image QC for all the
data in instances of the analysis of large or multisite datasets.
Even analyzing a smaller dataset, image QC for every single
subject is time-consuming. To facilitate, the LONI QC system
provides a user-friendly automated QC system that flags each
scan with ‘good,’ ‘questionable’ or ‘bad’ and suggests the user to
carry out an additional visual QC on those with ‘questionable’
or ‘bad’ flags. This feature is currently available for the sMRI
and fMRI data where we have single-value QC metrics whereas
the QC metrics for DTI are in a vector format. The system’s

GUI provides the users a way to set a range for each QC metric,
with which they can classify the resulting metric to the ‘good,’ or
‘bad’ category (note: ‘questionable’ is merged into either ‘good’
or ‘bad’ in autoQC, see Evaluation section). This is performed
by comparing the location of each metric value with a user-
defined cut-off range. Metrics whose values fall outside this
interval are then labeled automatically as ‘bad.’ In the current
study, the criteria for the classification of ‘good’ or ‘bad’ were
determined compared to the visual QC as the gold standard.
More specifically, the criteria were defined based on the cut-off
values which we determined at the best performance in terms
of (sensitivity + specificity)/2. More details and the best cut-off
values used for the current version of autoQC are found in the
Evaluation section. Finally, if more than a user-specified number
(system default: 3) of computed metrics are flagged as ‘bad,’ the
system flags the assessed case as ‘bad’ and suggests it to be more
closely checked.

To finalize a QC report review and submission, the user
provides an overall evaluation of the volume on the basis of the
result of the auto QC as well as that of their own qualitative
QC. The users can either accept the auto QC result or submit
their revised annotation. Once reviewed, the report can be saved
only, or saved and submitted to the QC database. If the report
is only saved, additional changes can still be made until its final
submission to the QC database. In each case, the users can
convert the report into either PDF or CSV format for further
download, distribution, or offline analysis. The entire QC process
can be completed within less than a minute for each scan by an
expert neuroimaging researcher who has been trained on how
to use the system.

QC Study Summaries
One feature being provided by the QC system is the ability
is to compile summaries of volume quality over a study or
multiple studies with hundreds to thousands of participants,
over particular acquisition types (sMRI, DTI, fMRI, etc.), over
distinct project sites and over user-defined date ranges when the
data were acquired.

Evaluation of the QC Metrics and the
Auto QC
To aid in a better understanding of the QC metrics used by
the system and provide a guideline to set up the cutoff ranges
for the auto QC, we performed the following evaluations with
various datasets:

Distribution of QC Metrics in Data Collected Using a
Single MRI Sequence
We computed the QC metrics on sMRI data (n = 642;
age = 74 ± 8 years, 25–75% = 68–78 years) that have been
collected in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) using the same imaging parameter setting (T1-weighted
Sagittal MP-RAGE; details found in Table 1). In the following
analyses, we used the magnitude of each CoM and FWHM by
computing

√
a2

x + a2
y + az

z , where a is either CoM or FWHM,
instead of analyzing each of x, y, z directional metrics separately.
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TABLE 1 | Acquisition parameters for structural MRI of the ADNI dataset.

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Sequence Sagittal MP-RAGE/IR-SPGR

TR [ms] 7

TE [ms] 3

TI [ms] 400

Flip angle [degrees] 11

Matrix 256 × 256

Voxel size [mm3] 1 × 1 × 1

FOV [mm] (260 – 270) × (252 – 262)

Number of axial slices 176 – 196

Number of scans 642

TR, repetition time; TE, echo time; TI, inversion time; FOV, field of view; MP-
RAGE, magnetization-prepared rapid acquisition gradient echo; SPGR, spoiled
gradient recalled echo.

To assess the distribution of the QC metrics, we plotted the
histogram for each of them. The distributions characterized using
the histogram were used as the reference in the following analysis
of the data using the multi-sites multi-sequences. For fMRI, we
analyzed 657 scans that were selected also from the ADNI project
(age = 74 ± 7, 25–75% = 69–78), which were acquired using a
single set of imaging parameters (ADNI Axial resting state fMRI
protocol) shown in Table 2.

Reproducibility of QC Metrics on Data Collected
From Multi-Sites, From Different Scanners and Using
Multi-MRI Sequences
For sMRI, we used multisite datasets including data from
Parkinson’s Progression Markers Initiative (PPMI) (Kang et al.,
2016) and Transforming Research and Clinical Knowledge in
Traumatic Brain Injury (TRACK-TBI) projects while using the
ADNI data as the reference of the single sequence imaging
data. For TRACK-TBI data, we included only those with

TABLE 2 | Acquisition parameters for the two different resting state-fMRI dataset:
ADNI represents data acquired using a single set of imaging parameters whereas
Track-TBI represents dataset acquired using various parameters from multi-sites
for the cross-validation.

ADNI Track-TBI

Sequence ADNI2 Axial resting-
state fMRI

Axial Resting State fMRI

TR [ms] 3000 3000 – 3671

TE [ms] 30 30

TI [ms] N/A N/A

Flip angle [degrees] 80 80

Matrix 64 × 64 (60 – 480) × (64 – 512)

Voxel size [mm3] 3.3 × 3.3 × 3.3 (2.8 – 3.4) × (2.75 – 3.4) ×
(1 – 3.4)

FOV [mm] 212 × 206 (64 - 512) × (62 – 497)

Number of axial slices 48 39 – 52

Number of frames 140 140, 200

Number of scans 657 1555

TR, repetition time; TE, echo time; TI, inversion time; FOV, field of view.

non-visible injury on images in the analysis. As a result,
we analyzed 1196 T1-weighted imaging data from PPMI
(age = 62 ± 10, 25–75% = 56–69) and 1569 from TRACK-TBI
projects (age = 37± 17, 25–75% = 24–52). For fMRI, we analyzed
1555 from TRACK-TBI (age = 37 ± 16, 25–75% = 24–52). The
information of MRI acquisition parameters used in these sMRI
and fMRI datasets are presented in Tables 2, 3.

To assess the distribution of the QC metrics, we plotted the
histogram for each of them. For each modality of sMRI or
fMRI, we created the histogram separately for each of the two
datasets and compared the distribution of each metric between
the two datasets. To this end, we first computed the z-score per
QC metric using the pooled datasets of the two datasets. Then,
the histogram in each dataset was normalized using the same
number of the bins and by dividing the height of each bin by
the area of the histogram, resulting in an empirical probability
density map. Finally, to evaluate whether the manufacturer of the
scanner affect the distribution of the QC metrics, we compare
the histogram of the QC metrics measured in the subjects
scanned on the Siemens scanner which comprised the major
portion (n = 655; 42%; more information in Table 3) of the
TRACK-TBI dataset with those measured in the whole TRACK-
TBI dataset.

More subject motion is presumed to be involved in pediatric
samples. Furthermore, more CSF volume, less cortical GM
volume and smaller GM/WM tissue intensity contrast are
expected in elderly (Steen et al., 1995; Salat et al., 2009) and
dementia populations (Westlye et al., 2009; Salat et al., 2011).
These factors possibly influence the measurement of the QC
metrics. Thus, we correlated the age at scanning and each
QC metrics. Visual inspection of the shape for each dataset’s
probability density map and computing the Dice overlap index
between them assessed their similarity.

Finally, a user may expect one or a combination of QC
metrics to characterize a different aspect of the image artifacts.
To evaluate the independency of a given QC metric to others for
each modal image data, we constructed a matrix, each component
of which computed a Pearson’s correlation efficient between the
given metric and one of the rest of the metrics.

Reproducibility of QC Metrics for the Cases Scanned
on the Same Scanner With the Same MRI Protocol
Four healthy volunteers, as well as a BIRN MRI phantom
(Friedman and Glover, 2006), were scanned at 1-week intervals
for a month (four scans) using the ADNI3 (Weiner and
Veitch, 2015) neuroimaging protocol. This consisted of (A)
structural MRI scans, including (i) a magnetization-prepared
rapid acquisition gradient echo (MP-RAGE) T1-weighted scan,
(ii) a spoiled gradient-echo (SPGR) T2

∗-weighted scan and
(iii) a fluid-attenuated inversion recovery (FLAIR) scan, (B) a
126-direction DTI scan, and (C) an fMRI scan. The acquisition
parameters for each of these are listed in Table 4. These volumes
were acquired using the 3 T Siemens Prisma MRI scanner at the
Mark and Mary Stevens Neuroimaging and Informatics Institute.
All volunteers scanned in the single MRI machine provided
written informed consent and the study was undertaken with the
approval of the Institutional Review Board at the Keck School of
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TABLE 3 | Acquisition parameters for the multi-site datasets used for the cross-validation: structural MRI.

Track-TBI PPMI

Sequence Sagittal 3D T1 MPRAGE / 3D T1 IR-SPGR Sagittal 3D T1 MPRAGE or 3D T1 IR-SPGR

TR [ms] 4 – 35 1160 – 2530 5 – 11 1650 – 2400

TE [ms] 1 – 8 2 – 20 2 – 6 2 – 20

TI [ms] 400 – 750 500 – 1300 400 – 500 844 – 1100

Flip angle [degrees] 8 – 30 7 – 160 8 – 30 8 – 160

Matrix (224 – 512) × (256 – 512) (204 – 512) × (245 – 512) (256 – 512) × (160 – 512) (192 – 560) × (192 – 560)

Voxel size [mm3] (0.4 – 1.4) × (0.4 –
1.4) × (0.5 – 3)

(0.4 – 1) × (0.4 – 1) × (0.5 – 3) (0.4 – 1.2) × (0.4 – 1) ×
(0.7 – 2)

(0.4 – 1.3) × (0.4 – 1.3) ×
(0.5 – 3)

FOV [mm] (220 – 350) × (2134 – 340) (220 – 260) × (214 – 252) (160 – 266) × (155 – 258) (220 – 270) × (214 – 262)

Number of axial slices 60 – 336 64 – 208 72 – 256 72 – 240

Number of scans 800 769 286 910

Scanner name (n) Simens Triotrim (655)
Simems Skyra (145)

Philips Achiava (531) GE
Signa-HDXT (238)

N/A N/A

TR, repetition time; TE, echo time; TI, inversion time; FOV, field of view; MP-RAGE, magnetization-prepared rapid acquisition gradient echo; SPGR, spoiled gradient
recalled echo; N/A, not available.

Medicine of USC and according to the Declaration of Helsinki.
The ages of the volunteers were 24, 25, 25, and 35; all were right-
handed and healthy, with no history of a neurologic or psychiatric
disease. We expected a very small variability in the QC metrics
across these images which were acquired in the same scanner
relative to data collected from different scanners with different
image sequences. We thus performed an F-test of Variance on a
ratio as SD_multi_scanner2/SD_single_scanner2, by comparing
the variance of each metric for these four individual images
with the variance for the multi-site datasets mentioned above.
This sample was created by consisting of only subjects in
the same range of age as the four volunteers. The smaller
the ratio SD_within_scanner/SD_multi_scanner was, the more
reproducible the QC metrics were within a scanner.

Performance of Auto QC
We assessed the performance of the auto QC in comparison
to the result of the visual inspection. To find the best cutoff

values as well as compare these values with the human visual QC
results, we used the sMRI data of the TRACK-TBI dataset and
tested various cutoff values to identify the QC labels (‘good’ vs.
‘bad’) that best agreed with the labels created by systematically
performed expert’s visual inspection. Here, we tested only sMRI
data as visual inspection of sMRI was performed solely using the
evaluation of the original images without checking QC metrics.
Visual inspection of fMRI normally entails the examination of
the QC metrics as well, which could bias the inspection result.
Furthermore, no scalar QC metrics were calculated for DTI
data and thus the auto QC of DTI was not included in the
current system. For visual inspection, we used the following
categories of the artifact to identify ‘questionable (or moderate)’
and ‘bad’ quality images: ringing artifacts due to motion or
aliasing, zipper artifact related to blood flow, impulse noise that
likely drops the SNR, magnetic susceptibility creating image
geometric distortion, wrap around artifacts happening when the
size of the imaged object is larger than the field of view and

TABLE 4 | Acquisition parameters for the four healthy volunteers and 1 phantom scanned using the 3T Siemens Prisma MRI scanner at the Mark and Mary Stevens
Neuroimaging and Informatics Institute.

sMRI DTI fMRI

Weighting T1 T2
∗ FLAIR T2

∗ N/A

Sequence MP-RAGE SPGR SE EPI FSE EPI

TR [ms] 2300.00 650.00 4800.00 3400.00 607.00

TE [ms] 2.95 20.00 441.00 71.00 32.00

TI [ms] 900.00 N/A 1650.00 N/A N/A

Flip angle [degrees] 9 20 120 90 50

ETL 1 1 243 87 88

Acquisition type 3D 2D 3D 2D 2D

Matrix size 256 × 240 256 × 192 256 × 256 116 × 116 88 × 88

In-plain voxel size [mm] 1.05 × 1.05 0.86 × 0.86 1.00 × 1.00 1.00 × 1.00 2.50 × 2.50

Slice thickness [mm] 1.2 4.0 1.2 2.0 2.5

Phase FOV [%] 93.75 100.00 100 100 100

Bandwidth [Hz/pixel] 240 200 850 2270 2365

The imaging parameters used in this acquisition were chosen in accordance with ADNI3 protocol. sMRI, structural magnetic resonance imaging; DTI, diffusion tensor
imaging; fMRI, functional MRI; MP-RAGE, magnetization-prepared rapid acquisition gradient echo; SPGR, spoiled gradient recalled echo; SE, spin echo; EPI, echo planar
imaging; FSE, fast SE; TR, repetition time; TE, echo time; TI, inversion time; ETL, echo train length; FOV, field of view; 2D, two-dimensional; 3D, three-dimensional.
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small head coverage. The details of the visual inspection are
provided in Supplementary Data 3. Using this protocol and
being independent of the auto QC results, one rater (HT) labeled
1,569 individual t1-weighted sMRI data in the TRACK-TBI set
and another rater (RECB) did this for a randomly subsampled
100 cases to test their reproducibility. The ‘questionable’ quality
data in the visual assessment were either merged to ‘good’ or ‘bad.’

To assess the binary classification accuracy of each QC metric
with respect to various cutoff values, we first changed the cutoff
values per QC metric from z-score = −5 to z-score = 5 with
a very small step size (z-score = 0.05). To compute sensitivity
and specificity compared to expert labeling, we calculated
the receiver operating characteristics (ROCs) and the related
area under the curve (AUC). The logistic ROC analysis used
a threefold cross-validation approach to estimate AUC and
optimal cutoff score that resulted in the greatest accuracy as
‘(sensitivity + specificity)/2′. Larger AUC values indicated the
more accurate classification of participants.

In the Auto QC, more than a user-specified number of
computed metrics were flagged as ‘bad’ and the system flagged
the assessed case as ‘bad.’ Therefore, we assessed how many ‘bad’
flagged QC metrics should be used to best agree with the labels in
the visual inspection. Using the optimal cutoff values that were
determined previously, we flagged all the 7 QC metrics either
into ‘good’ or ‘bad’ and counted the number of the ‘bad’ labeled
metrics per image. At each threshold from 1 to 7, we computed
the specificity, sensitivity, and accuracy compared to the visual
inspection results.

All p-values were corrected using Bonferroni adjustment.

RESULTS

Processing Time
The processing times for the preprocessing (e.g., brain masking)
and calculation of QC metrics (mean ± SD) were approximately
7 min for sMRI, 6 min for CT, 8 min for fMRI and 4 min for
DTI on a single Intel i7 CPU. Including the queuing process and
possible network traffics, the average computational times were
22.8 ± 6.6 min for sMRI, 18.5 ± 5.9 min for CT, 16.0 ± 4.2 min
for fMRI and 7.6± 2.2 min for DTI.

Distribution of QC Metrics in Data
Collected Using a Single MRI Sequence
For sMRI, the histogram of each QC metric is shown in Figure 3.
Their mean and SD were: SNR = 21.4 ± 3.0; SVNR = 233 ± 56;
CNR = 7.45 ± 3.33; CVNR = 788 ± 1680; TCTV = 1.00 ± 0.58;
FWHM = 5.30 ± 0.3; CoM = 17.4 ± 3.8. A visual evaluation
found that the distribution of SNR, SVNR, CNR, and FWHM
was left-right symmetric and similar to the shape of a Gaussian
function whereas that of CVNR and CoM was skewed and close
to the shape of an F-distribution function. The distribution of
TCTV displayed with two modes and was like the function of a
bimodal Gaussian mixture function.

For fMRI, the histograms are shown in Figure 4. The
mean and SD of each QC metic were: maximum FD
(maxFD) = 1.60 ± 8.80; the number of frames with FD > 0.5

(FD > 0.5) = 17.4 ± 24.3; average temporal signal-to-
noise ratio (avgTSNR) = 126 ± 31; maximum DVARS
(maxDVARS = 83.4 ± 37.4; minimum DVARS (minDVARS) =
23.0 ± 6.1; the number of frames with DVARS > 50
(DVARS > 50) = 21.9 ± 28.4. The distribution of avgTSNR, and
minDVARS tended to be left-right symmetric and similar to the
shape of Gaussian function whereas that of maxDVARS, maxFD,
FD > 0.5 and DVARS > 50 was skewed. The estimated FWHM
along each of the x, y, and z axes for fMRI was included in the
system. However, because the resultant measurement is not a
scalar but a time series vector, we did not include this in the result
because of the complexity of the time-series vector metric.

Reproducibility of QC Metrics for Data
Acquired on a Scanner Using a Single
Imaging Sequence
sMRI
All the individual QC metrics computed for the four volunteers’
longitudinal scans are provided in Tables 5–7. The means of
all the QC metrics for the T1w MRI data were similar to those
computed using the ADNI dataset and the multi-site PPMI and
TRACK-TBI datasets whereas the variations for these single-
scanner-acquired data were significantly smaller than those
acquired from the multiple sites (F-test; F > 19; p < 0.00001).
The distribution of each metric did not differ among the four
individuals (ANOVA; F < 2.0; p > 0.3). The computation of the
QC metrics in T2∗ and FLAIR imaging data showed different
characteristics of their means and SDs compared to T1-weighted
data (paired t-tests; t > 3.7; p < 0.05), advising the choice
of different cutoff values in the auto QC setting depending on
the used acquisition sequence. As expected, the mean SNR for
the phantom was approximately 3–5 times higher for all three
sequences. Similar differences between human subjects and the
phantom were observed for the SVNR and FWHM.

fMRI
The computed QC metrics are shown in Table 8. As in sMRI,
their means were similar to those computed using TRACK-TBI
and ADNI datasets except minimum DVARS and maximum
DVARS (t > 4.2; p < 0.005). The variations for all the metrics
were significantly smaller (F-test; F > 15; p < 0.00001). Results
illustrated that, as expected, the temporal SNR was four times
higher in the phantom whereas the FD and DVARS values were
many times larger in human subjects (t > 21; p < 0.00001).
This was because both FD and DVARS reflect greater subject
motion, such that larger values are associated with more motion
during the scan.

Reproducibility of QC Metrics for
Multi-Site and Multi-Scanner Data
sMRI
All the distributions of the sMRI QC metrics are shown in
Figure 3. The overall shapes of the histogram for all the metrics
were similar between the PPMI and ADNI single sequence
datasets. The distributions in all the QA metrics of PPMI data
were well overlapped with those in the ADNI data, whereas the

Frontiers in Neuroinformatics | www.frontiersin.org 10 August 2019 | Volume 13 | Article 60

https://www.frontiersin.org/journals/neuroinformatics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroinformatics#articles


fninf-13-00060 August 26, 2019 Time: 15:35 # 11

Kim et al. LONI MRI Quality Control

FIGURE 3 | Distribution of sMRI QC metrics for two different datasets that were acquired with multiple imaging parameter settings and collected from multi-sites.
The PPMI dataset is colored in blue and the TRACK-TBI in red while the ADNI dataset that was acquired using a single imaging parameter setting is used a reference
and shown with the black outline. All the images included in this analysis were based on T1-weighted acquisition (The image sequence parameters are described in
Table 3). The Dice similarity index was computed for each QC metric to evaluate the overlap between the distributions from the two multi-sites datasets. This was
used as a measure of reproducibility of the metrics. Dice index: 0.6–0.8 – good; 0.8–1.00 – excellent (Altman, 1999).

distributions of SNR and CNR in TRACK-TBI data displayed a
shift of the whole shape from the PPMI and ADNI data, driven
by their higher mean (SNR:+3.1; CNR =+4.2). Indeed, TRACK-
TBI data displayed significantly higher mean SNR (26.6± 6.0 vs.
27.8 ± 5.8; t = 4.6; p < 0.001), and higher mean CNR (27 ± 0.1
vs. 27 ± 0.1; t = 4.8; p < 0.001) than PPMI data. No other QC
metrics differed in their means (p> 0.2).

The overlap between PPMI and TRACK-TBI datasets
was generally very high across metrics (Dice index:
µ ± σ = 0.88 ± 0.03, range: 0.85–0.93) except SNR and
CNR (0.76 ± 0.04) that displayed relatively smaller overlap.
The largest overlap was observed in CoM (Dice index = 0.93),
followed by CVNR (0.89), FWHM (0.87), TCTV (0.86), SVNR

(0.85), SNR (0.78) and CNR (0.73), respectively. Despite the
high overlap of the main distribution between TRACK-TBI and
PPMI datasets, the FWHM displayed significant smaller peaks
unequally located in the right-hand tail for both data sets. We
found this was driven by a number of cases with artifacts.

The overlap between Siemens data of the TRACK-TBI
and the whole TRACK-TBI data was also high across all
the metrics (Dice index: µ ± σ = 0.90 ± 0.05, range:
0.73–0.93) except CoM (0.73) that displayed relatively smaller
overlap. The largest overlap was observed in CVNR (Dice
index = 0.95), followed by SVNR (0.89), CNR (0.87), TCTV
(0.86), SNR (0.85), FWHM (0.82) and CoM (0.73), respectively
(Supplementary Data 4).
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FIGURE 4 | Distribution of fMRI QC metrics for two different multi-site data. The ADNI set that was acquired using a single imaging parameter setting is colored in
blue while the TRACK-TBI set that was acquired using multiple imaging parameter settings is in red. All the images included in this analysis were based on Axial
Resting State fMRI sequence (details in Table 3). The Dice similarity index was computed for each QC metric to evaluate the overlap between the distributions from
the two datasets. This was used as a measure of reproducibility of the metrics.

TABLE 5 | QC metrics for T1-weighted sMRI scans.

SNR SVNR CNR CVNR TCTV FWHM CoM

S1 29.3 ± 0.5 251 ± 60 12.5 ± 0.1 83 ± 61 1.99 ± 0.34 10.7 ± 0.1 0.16 ± 0.00

S2 31.8 ± 3.4 316 ± 52 10.3 ± 6.0 148 ± 111 1.44 ± 0.55 11.0 ± 0.2 0.18 ± 0.01

S3 30.6 ± 0.8 260 ± 17 15.9 ± 6.8 374 ± 52 1.44 ± 1.06 10.4 ± 0.1 0.17 ± 0.01

S4 30.9 ± 1.8 259 ± 28 14.4 ± 0.6 140 ± 112 1.93 ± 0.91 11.2 ± 0.2 0.15 ± 0.01

All 30.7 ± 1.7 272 ± 26 13.3 ± 3.4 184 ± 83 1.70 ± 0.78 10.8 ± 0.1 0.17 ± 0.01

P 125.9 ± 2.5 569 ± 30 – – – 27.8 ± 0.4 0.13 ± 0.01

Shown are the mean µ and standard deviation σ for each subject (S1, S2, S3, and S4) as well as for the phantom (P). CNR, CVNR and TCTV for the phantom were not
computed as GM/WM tissue contrast is not defined.

TABLE 6 | QC metrics for T2
∗ sMRI scans.

SNR SVNR CNR CVNR TCTV FWHM CoM

S1 26.1 ± 0.3 214 ± 4 2.2 ± 0.9 343 ± 32 0.21 ± 0.09 21.3 ± 0.3 0.19 ± 0.01

S2 30.5 ± 0.2 285 ± 5 1.1 ± 0.9 335 ± 56 0.09 ± 0.08 21.2 ± 0.5 0.20 ± 0.00

S3 28.7 ± 1.5 252 ± 18 1.3 ± 0.6 235 ± 34 0.11 ± 0.05 22.7 ± 0.2 0.19 ± 0.01

S4 25.9 ± 0.7 243 ± 10 1.0 ± 0.5 475 ± 80 0.08 ± 0.04 20.9 ± 0.3 0.18 ± 0.01

All 27.8 ± 0.7 248 ± 9 1.4 ± 0.7 347 ± 51 0.12 ± 0.07 21.5 ± 0.3 0.19 ± 0.01

P 107.5 ± 2.1 582 ± 17 – – – 35.9 ± 0.5 0.19 ± 0.01

Shown are the mean µ and standard deviation σ for each subject (S1, S2, S3, and S4) as well as for the phantom (P). CNR, CVNR and TCTV for the phantom were not
computed as GM/WM tissue contrast is not defined.
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TABLE 7 | QC metrics for FLAIR sMRI scans.

SNR SVNR CNR CVNR TCTV FWHM CoM

S1 21.4 ± 0.5 154 ± 12 8.6 ± 2.2 43.5 ± 17.7 1.31 ± 0.40 8.81 ± 0.27 0.14 ± 0.01

S2 25.7 ± 0.9 212 ± 14 13.2 ± 0.3 34.1 ± 2.1 1.81 ± 0.04 9.59 ± 0.29 0.16 ± 0.01

S3 25.0 ± 0.8 199 ± 16 11.0 ± 0.4 19.4 ± 4.1 1.66 ± 0.08 9.81 ± 0.20 0.15 ± 0.00

S4 23.2 ± 1.2 196 ± 19 11.7 ± 0.9 34.3 ± 3.4 1.61 ± 0.20 9.73 ± 0.22 0.14 ± 0.01

All 23.8 ± 0.8 190 ± 15 11.1 ± 0.9 32.8 ± 6.8 1.60 ± 0.18 9.49 ± 0.24 0.15 ± 0.01

P 67.0 ± 3.9 186 ± 36 – – – 18.3 ± 0.6 0.13 ± 0.01

Shown are the mean µ and standard deviation σ for each subject (S1, S2, S3, and S4) as well as for the phantom (P). CNR, CVNR and TCTV for the phantom were not
computed as GM/WM tissue contrast is not defined.

TABLE 8 | QC metrics for fMRI.

max (FD) No. FD > 0.5 max (DVARS) min (DVARS) No. DVARS > 50 Temporal SNR

S1 0.868 ± 0.591 11.4 ± 14.0 104.2 ± 18.9 30.7 ± 0.8 20.2 ± 10.1 101.8 ± 7.6

S2 0.57 ± 0.318 6.2 ± 7.7 106.9 ± 64.3 29.4 ± 4.9 16.0 ± 11.3 128.9 ± 13.8

S3 0.505 ± 0.118 7.7 ± 7.2 76.7 ± 11.2 36.1 ± 1.7 11.3 ± 15.6 112.4 ± 5.9

S4 2.38 ± 0.648 14.0 ± 12.3 160.8 ± 31.2 33.9 ± 1.6 15.6 ± 17.6 88.5 ± 11.7

All 1.08 ± 0.419 11.1 ± 13.5 112.2 ± 31.4 32.6 ± 2.3 20.1 ± 18.5 108.0 ± 9.8

P 0.047 ± 0.011 0.05 ± 0.01 13.7 ± 0.9 13.1 ± 0.9 0.05 ± 0.01 438.5 ± 40.1

Shown are the mean µ and standard deviation σ for each subject (S1, S2, S3, and S4) as well as for the phantom (P). SNR averages are computed across time. FD
values are multiplied by 100 to facilitate comparison.

Analysis of the age at scanning showed no correlation of
any QC metric with aging in any dataset (Pearson’s correlation
coefficient: r < 0.2; p > 0.1). Subgrouping the TRACK-TBI data
into the pediatric (<20 years, n = 220) and adult (>20 years,
n = 1349) groups did not display a difference in any QC
metric (t < 1.0; p > 0.4) between these two groups. However,
subgrouping the TRACK-TBI data into the elderly (>60 years,
n = 260) and non-elderly (<60 years, n = 1309) showed a
significant drop-down in SNR and CNR in the elderly group
relative to the non-elderly (t > 4.7; p< 0.001). The mean of SNR
and CNR in the elderly group of TRACK-TBI did not differ from
those computed in PPMI or ADNI dataset (t < 1.3; p > 0.3).
A subsequent investigation found that the lower SNR in the
elderly than in the non-elderly group was driven by a significantly
lower mean signal intensity within the head (the numerator of
SNR; t = 6.1; p < 0.0001) while a variance of intensity in the
background (the denominator of SNR) did not differ between
the two age groups (F = 1.4; p > 0.1). The lower CNR in the
elderly was due to a lower mean tissue contrast (the numerator of
CNR; t = 10; p < 0.00001) while the variance of brain intensity
(the denominator) was not different between the elderly and
non-elderly group.

fMRI
All the distributions of the fMRI QC metrics are shown in
Figure 4. The overall shapes of the histogram for all the metrics
were also very similar between the TRACK-TBI dataset with
multiple settings of imaging parameters and ADNI dataset with a
single setting of imaging parameters. The overlaps between these
two datasets were very high (Dice index: µ ± σ = 0.86 ± 0.05,
range: 0.80–0.94). The largest overlap was observed in maxFD
(Dice index = 0.94), followed by DVARS > 50 (0.88), FD > 0.5

(0.87), avgTSNR (0.82), minDVARS (0.82), and maxDVARS
(0.80), respectively. The mean and the variance of each metric
did not significantly differ between ADNI data than TRACK-TBI
(p > 0.1). There was no correlation between any QC metric and
the age in either of the two groups (r < 0.2; p> 0.1).

Association of a Given QC Metric With
Other Metrics
sMRI (Figure 5A)
Analysis of the correlations between a given QC metric and
others in the pooled dataset of TRACK-TBI and PPMI sets
showed that most of metrics were not significantly associated
(r < 0.5; p > 0.1) whereas the following pairs were highly
correlated: SNR-SVNR, CNR-TCTV, and CoM-FWHM (r > 0.5;
p < 0.05). The reason for their significant correlation was likely
due to that SNR and SVNR used the same denominator; CNR
and TCTV used the same numerator and; CoM and FWHM
characterized similarly about the head shape: i.e., the position
and the blurriness.

fMRI (Figure 5B)
Analysis of the correlations between a given QC metric and
others in the pooled dataset of TRACK-TBI and ADNI sets
showed that the following pairs were highly correlated: maxFD-
FD> 0.5, maxFD-maxDVARS, FD> 0.5-maxDVARS, FD> 0.5-
minDVARS, DVARS > 50-FD > 50, DVARS > 50-maxDVARS,
and DVARS> 50-minDVARS, (r > 0.3; p< 0.05). The avgTSNR
did not correlate with any other metrics (r < 0.12; p> 0.2).

Evaluation of the Auto QC System
In the visual inspection of 1569 sMRI data in the TRACK-
TBI project, 1345 images (85.7%) were classified into ‘good,’
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FIGURE 5 | Correlation matrices. Each cell indicates the Pearson’s correlation coefficient computed between two indicated QC metrics. SNR, signal-to-noise ratio;
SVNR, signal variance-to-noise ratio; CNR, contrast-to-noise ratio; CVNR, Contrast variance-to-noise ratio; TCTV, tissue contrast-to-tissue (intensity) variance;
FWHM, full width-at-half maximum; CoM, center of mass; FD MAX, maximum Frame-wise displacement (FD); FD > 0.5, the number of frames with FD is larger than
0.5 mm; AVG TMP SNR, average temporal SNR; DVARS, the root-mean-squared change in blood oxygenation level-dependent signal across time; DVARS > 50,
the number of frames with DVARS > 50; DVARS MAX, maximum DVARS; DVARS MIN, minimum DVARS.
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TABLE 9 | ROC analysis QC metrics for fMRI.

Bad vs. Good and Bad and Questionable

Questionable vs. Good

SNR AUC 0.7235 0.6732

Sensitivity/Specificity 0.7090/0.7500 0.6465/0.6547

Cutoff (Z-score) 13.0972 (−2.5500) 14.2491 (−2.3500)

SVNR AUC 0.7369 0.5596

Sensitivity/Specificity 0.6870/0.7083 0.5685/0.4798

Cutoff (Z-score) 57.0564 (−1.6500) 77.4662 (−1.5000)

CNR AUC 0.9189 0.728

Sensitivity/Specificity 0.8171/0.8696 0.6744/0.6528

Cutoff (Z-score) 5.6558 (−0.9500) 9.5552 (−0.2000)

CVNR AUC 0.6169 0.5131

Sensitivity/Specificity 0.6047/0.5652 0.4465/0.5648

Cutoff (Z-score) 106.2423 (−0.400) 228.6781 (−0.300)

TCTV AUC 0.8689 0.696

Sensitivity/Specificity 0.7999/0.8261 0.5444/0.7963

Cutoff (Z-score) 0.4680 (−1.1000) 1.3580 (0.2500)

FWHM AUC 0.8447 0.5346

Sensitivity/Specificity 0.8935/0.8261 0.5667/0.4861

Cutoff (Z-score) 14.3189 (1.3000) 9.9080 (−0.3500)

CoM AUC 0.8774 0.5559

Sensitivity/Specificity 0.9446/0.7391 0.7428/0.3843

Cutoff (Z-score) 0.2877 (2.8500) 0.0615 (0)

For each QC metric, the area under the ROC curve (AUC), as well as the
sensitivity, specificity and cutoff value at the best performance are displayed. For
an easier choice of the cutoff values, we provide the readers the cutoff values
in the original metric and z-score. We tested two different classifications: (1) Bad
vs. Good and Questionable categories; (2) Bad and Questionable vs. Good. We
found that the classification of (1) is overall more accurate using the QC metrics
used in our system.

199 (12.8%) into ‘questionable’ and 25 (1.5%) into ‘bad’ quality.
The kappa statistic of the two raters (HT, RECB) was 92%,
indicating excellent agreements between the raters using the
protocol described in Supplementary Data 3. When merging
the ‘questionable’ cases to the ‘good’ group, the auto QC for all
QC metrics showed higher agreements with the visual inspection
results compared to when merging the ‘questionable’ cases to the
‘bad’ group (0.61–0.91 vs. 0.51–0.73). The QC metric yielding
the largest AUC was CNR (0.91 for good + questionable, 0.73
for bad + questionable), followed by CoM (0.88, 0.56), TCTV
(0.87, 0.70), FWHM (0.85, 0.54), SVNR (0.74, 0.56), and CVNR
(0.62, 0.51), respectively. At the best cutoff values, the auto QC
of FWHM showed the highest classification accuracy, which was
0.86, followed by the analyses of CNR (0.84), CoM (0.84), TCTV
(0.81), SNR (0.73), SVNR (0.70), and CVNR (0.58). The results
including the cutoff values used for the best performance of the
auto QC are summarized in Table 9 and Figure 6. We found that
3 or more QC metrics with ‘bad’ flags could be used to identify
an image as ‘bad’ and result in the best agreement with the visual
inspection (sensitivity = 85%, specificity = 87%, accuracy = 89%;
overall AUC = 0.93). This was 3, 0, and 2% higher in sensitivity,
specificity, and accuracy compared to the results using the CNR
only that yielded the best result among all the QC metrics.

DISCUSSION

Here, we have introduced the LONI QC system, a web-based
and expandable system which features a rigorous workflow for
the review and assessment of multimodal MRI including sMRI,
fMRI, and DTI as well as CT. We also detailed the features
of the user-friendly GUI that facilitates user’s execution of
data uploading, initiating new QC, executing Auto QC, setting
parameters for QC, visualizing the resulting QC metrics, vectors
and 3D maps, evaluating and revising the QC results, and
submitting the final QC. All these functionalities are found in
the LONI QC website8 through the GUI that interacts with the
various menus, or panels that were explained in the previous
sections. A newly added tutorial helps the users follow the testing
with demo data9 (yellow ‘tutorial’ button on the top-left corner),
which will potentially increase the accessibility of the current
functionalities in the system.

In a thorough evaluation of the system using various sets
of data acquired from a single scanner and multiple sites and
we found a strong degree of similarity among the datasets
as well as distinguishing the characteristics specific to each
dataset. The QA metrics are generally reproducible both within
as well as consistent across subjects. In addition, we found
that some data specific properties would be useful to be added
as potential covariates in the automated QC method. Notably,
anatomical changes due to normal patterns of aging may need
to be considered in the user’s analyses, especially for SNR
and CNR metrics.

Here, we extensively evaluated the utility of the auto QC
by analyzing sensitivity and specificity of the cutoff value per
sMRI QC metric to the identification of ‘bad’ quality images
in comparison to visual inspection. Our results can be used as
a guideline for the proper settings for the QC process and as
users’ interpretation on the QC in their own data. To the best of
our knowledge, the LONI QC is the first online QC system that
uniquely supports to perform the image QC of multi-contrast and
multimodal brain imaging data. The LONI QC system provides
users a various level of image QC from the first aid of the
user’s own image quality assessment to the high-end QC that
automatically flags bad quality images based on the user’s setting
of cutoff values. This service provides various options of MRI QC
(i.e., computation of QC metrics, auto QC, user’s own evaluation
on QC metrics and visual QC), depending what type of the QC
the users prefer to perform. LONI QC differs from the previously
developed tools that push the QC to correction of bad quality
images by de-noising or removing the voxels or volume frames
affected with artifacts (Zhou et al., 2011; Li et al., 2013; Liu et al.,
2015). These correction processes are computationally costly.

Pros and Cons of LONI QC Compared to
Other Extant QC Systems
Compared to previously developed QC tools, the current QC
system has the following new features: It is the first completely
online system which is supported by various web-browsers and

8http://qc.loni.usc.edu
9https://qc.loni.usc.edu/dashboard
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FIGURE 6 | Receiver–operator characteristic (ROC) curves based on using sMRI QC metrics for classification. (A) ROCs for differentiating bad data from acceptable
data (questionable and good). CNR best differentiated bad data from the acceptable data as it yielded the largest area under the curve (AUC = 0.92). (B) ROCs for
differentiating poor (bad + questionable) data from good data. CNR and TCTV showed the best performance with AUC = 0.7–0.73. SNR, signal-to-noise ratio;
SVNR, signal variance-to-noise ratio; CNR, contrast-to-noise ratio; CVNR, Contrast variance-to-noise ratio; TCTV, tissue contrast-to-tissue (intensity) variance;
FWHM, full width-at-half maximum; CoM, center of mass.

requires no preinstalled software. The online system allows users
to anonymously upload imaging data to the LONI QC system,
either through LONI Integrated Data Archive (IDA) or using a
direct uploading interface, thus having no issue of identity theft
in the processed data. The automated QC has been set with the
default parameters using those determined as in Table 9, which
can be adapted to the user’s data. It computes a standard set
of QC metrics that have been described in the literature and
performs a standardized QC via an automated pre-processing
system which is specifically designed to generate a range of scalar
and vector statistics along with derived images. The QC data
processing is performed on the LONI processing grid in the
USC Mark and Mary Stevens Neuroimaging and Informatics
Institute making possible parallel computing using a cluster
of thousands of central processing units (CPUs) whereas the
previously developed approaches were designed to work on a
single-core of the personal computer where the source code was
downloaded. LONI QC system also features a user-friendly web-
based GUI and a tutorial with demo data that help particularly
novice users get familiar with the QC system.

There are several important considerations that potentially
improve the LONI QC approach compared to the current
limitations of other approaches: First, it is freely accessible
through the Internet so that it is impossible to process offline
data while also provided as a downloadable framework which
runs on the user’s local computing environment – but which does
necessitate the independent installation of prerequisite software.
The LONI QC system is partly dependent on the data archiving

capacity of the IDA. Large size image datasets are preferably
collected and archived in the IDA prior to the QC execution.
The direct data uploading module has been tested with a small
set of data (n < 30 at one uploading) with a small number of
simultaneous network connections (number of users < 5). This
eventually prevents the users from keeping their image data in
our online storage after QC reports are generated. The capacity
of the network traffic and the data storage in our computing
cluster when using the direct uploading module is currently
being expanded and tested by our developer team, allowing the
affordability of more users who have difficulty or are reluctant to
access LONI QC system through the IDA. Second, the current
system has yet to support the auto QC of DTI data as no scalar
QC metrics for DTI are computed. Roalf and his colleagues
in their recent work (Roalf et al., 2016) devised a number of
DTI QC metrics and showed a high degree of sensitivity and
specificity. Indeed, it is particularly challenging for a human
rater to assess the quality of the time series volumes of fMRI
and the multidirectional volumes of DTI data. Therefore, we
plan to include the quantitative metrics discussed by Roalf et al.
(2016) or equivalent ones, to support the auto QC of DTI data
in future releases of LONI QC. Third, the optimal setting of
cutoff values for auto QC may vary depending on the image
sequence and weighting methods, as also shown in the current
study. In pediatric imaging data, a greater degree of motion
artifact can be involved compared to adult data. This may require
an adaptive setting regarding such confounding effects. The
current version of the system provides the default setting with
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the parameters achieved in our evaluation (see Table 9) with
a flexibility of scaling cutoff values by the users. Furthermore,
the current system only analyzes each QC metric separately
using a univariate fashion. A machine learning approach using
multivariate modeling of the QC metric’s distribution can classify
the quality of each image data with a higher accuracy as found
in Pizarro et al. (2016), Esteban et al. (2017), and Fonov et al.
(2018). Fourth, recent studies (Li et al., 2013; Oguz et al., 2014;
Power et al., 2014) developed and evaluated methods to reduce,
correct or remove some types of artifacts existing on DTI and
fMRI images. Such image reconstruction or enhancement, albeit
with the possibility of inducing a bias, may help to decrease the
chance of permanent exclusions of the cases with a bad image
quality from the subsequent biological or clinical analyses. Fifth,
a previous study (Mortamet et al., 2009) designed QC metrics
that are sensitive to the identification of machine-inherent noises
(e.g., Gaussian noise, aliasing, zipper pattern) by masking out the
head area in measurement whereas we included a more variety of
QC metrics that can capture the types of noise occurring inside
(e.g., head motion) and outside the brain region. Finally, a future
improvement of the study is to evaluate the effects of running
LONI-QC on the performance in subsequent image analysis. This
can be hinted by the attempts made for the quality assurance
of post-image processing such as in the studies evaluating brain
structural segmentation on sMRI (Keshavan et al., 2017) and fiber
tractography extracted from DTI data (Sommer et al., 2017).

Reproducibility of the QC Metrics
Adopted in LONI QC System
The choice of metrics when evaluating the quality of a
neuroimaging dataset has substantial implications for how data
processing steps are carried out subsequent to image acquisition.
In the current system, we included a broad range of QC metrics
modeling various aspects of the image artifacts possibly occurring
during image acquisition. Many of these metrics were also chosen
or developed by other studies in the literature (Friedman and
Glover, 2006; Power et al., 2012; Li et al., 2013; Marcus et al.,
2013; Pizarro et al., 2016). The histogram analysis of these metrics
showed their reproducibility in multiple datasets including those
acquired with a single setting of imaging acquisition parameters
or with multiple settings of imaging parameters used in multiple
scanners. The distributions of these metrics were not significantly
influenced by different parameter settings if the analyzed images
were acquired using the same sequence (e.g., T1-weighted) and
the same modality (sMRI, fMRI, DTI). On the other hand, results
in the analysis of T1-weighted sMRI suggest that the means of
SNR and CNR can differ when imaging elderly or a dementia
patient populations. In the analysis of the possible introduction
of larger motion artifacts in younger subjects, we did not observe
the influence of the age variation on the QC metrics measured
in the data tested here. While this finding shows the age would
not be a confounding factor in younger adult cohorts of TRACK-
TBI, it does not necessarily imply that the severity of motion
artifacts in pediatric data is as same as that in adult data. Previous
studies indeed showed that some obvious bad quality images
displayed a significant correlation between QC metrics and age

(Roalf et al., 2016) and prospective motion correction improved
diagnostic sensitivity in pediatric data (Kuperman et al., 2011).

When data are collected in a single machine with uniform
imaging parameters, the variance of the QC metrics becomes
significantly smaller, suggesting that the variance in the multi-
site data partly explains the machine characteristics and the
difference in imaging parameters. On the other hand, differences
in the image sequence (e.g., T1-weighted, T2-weighted, FLAIR),
even acquiring a same modality image appear to create a
significant difference in their distribution, suggesting that the
direct comparison of the QC metrics resulting from two datasets
acquired using different image sequences may not be suitable.
The users may need to consider the aforementioned factors
in setting the proper cutoff values in the auto QC to identify
bad quality images.

Correlational analyses illustrated that the major proportion of
the QC metrics in sMRI were not associated each other whereas
many in fMRI showed significant correlations each other. The
main reason why the many fMRI QC metrics were correlated
is likely that these metrics characterize temporal signal changes
or head displacements that can be driven by head motion.
The LONI QC system was designed with this in mind, and
one of its strengths is that it calculates for the users not only
standard—and occasionally correlated—metrics such as the CNR
and CVNR, but also more information-rich evaluations. In doing
so, the LONI QC system provides a platform for evaluating the
relationships between a wide variety of QC metrics and allows
the users to choose those metrics which may be more relevant
in their studies. Generating QC vectors and 3D maps, a greater
variety of choices is given for the users to perform image quality
assurance and control in depth. This idea is not different from
those adopted in the previously published works (Oguz et al.,
2014; Esteban et al., 2017). Eventually feature reconstruction
approaches such as principal component analysis (Tenenbaum
et al., 2000) or independent component analysis (Cao et al.,
2003) may reduce the number of QC metrics while keeping their
QC performance by projecting them on to the axes that explain
larger variations of the data or better explain the information
implied in the data.

Auto QC: Comparison to Visual
Inspection
Recent studies have made an unprecedented effort to acquire
an enormous size of MRI dataset in line with the emergence of
the new generation of the analysis in ‘BIG’ data. Nearly every
week, more than 1000 new scans of sMRI, fMRI or DTI data
are archived in the repository of the LONI-IDA. The tedious
and time-consuming visual inspection in the quality of such
massive datasets is not practical. Automated QC that quantifies
image QC metrics, and labels the degree of image quality is of
major interest and there have been recent attempts to substitute
the manual QC procedure. In the current paper, we introduced
such an automated procedure that used various QC metrics
and their cutoff values to flag bad quality images. The strength
of LONI QC and other similar methods that were proposed
recently (Oguz et al., 2014; Pizarro et al., 2016; Roalf et al., 2016;
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Esteban et al., 2017) lies on the use of multiple QC metrics
that characterize various aspects of image artifacts involved in
the brain image acquisition. Furthermore, these metrics have
an ability to differentiate the degree of the artifact severity
as they are continuous and not categorical or dichotomous
(i.e., good or bad).

However, the results from automated QC and similarly those
previously published (Pizarro et al., 2016; Roalf et al., 2016;
Esteban et al., 2017) do not always fully agree with the visual
inspection results. This is because the univariate analysis of each
metric may be able to detect one type of the image artifact whereas
the visual assessment performs a comprehensive evaluation
where the deterioration in image quality is multifaceted with
simultaneously occurring multiple noise types. The use of
thresholds along with the number of simultaneously occurring
‘bad’ QC metrics further improved the classification accuracy.
Another study (Pizarro et al., 2016) used a multivariate analysis
by employing a support-vector machine-based classifier and
showed the potential improvement against univariate analyses.
Interestingly, the QC metrics utilized in LONI QC were more
sensitive to the classification when merging the ‘questionable’
or ‘moderate’ quality images to ‘good’ images. We separately
performed the 3-class classification, but this showed a worse
result (AUC = 0.5–0.6) than 2 class classification. This suggests
that questionable cases would not be clustered as an independent
"moderate" group, but their characteristics would be closer to
that of the "good" group. However, it is not clear whether or
not the questionable quality images are potentially problematic
in the post-image processing or the subsequent biological/clinical
analyses. Further examination of quality clustering will form the
basis of ongoing activities for the LONI QC framework.

CONCLUSION

Quality control of neuroimaging data is an essential, though a
complex and challenging component of image processing and
analysis. Although many previous studies have aimed to identify
an ideal set of measures which can distinguish between images
of good and bad quality, it remains the case that different
researchers have different intuitive, qualitative and quantitative
standards of what image quality should be, and of how that
quality ought to be quantified. The LONI QC system was
specifically designed with these considerations in mind, and is
the first both web-based and freely-available QC system which
provides users with the ability to specify their own standard of
image quality, automatically apply that standard to their data,
and then download the results of their QC analysis in CSV
and/or PDF format for further post-processing using the tools

and methods of their choice. Because it accommodates a wide
variety of imaging modalities, the LONI QC system can appeal
to a substantial cross-section of researchers in the neuroimaging
community who are interested in applying and maintaining the
highest standards of image quality to their image analyses and, by
extension, to their research efforts. The streamlined integration
of the LONI QC system with the LONI IDA and with the
LONI Pipeline—both of which are widely used by neuroimaging
researchers—throws additional weight behind the argument that
this novel, state-of-the-art system can be easily adopted by a
large number of neuroimaging researchers worldwide, thereby
potentially leading to the formulation and adoption of a much-
needed standardized protocol for neuroimaging QC and analysis.
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