
UC Davis
UC Davis Previously Published Works

Title
Genomic analysis of four strains of Corynebacterium pseudotuberculosis bv. Equi 
isolated from horses showing distinct signs of infection

Permalink
https://escholarship.org/uc/item/63t485sd

Journal
Environmental Microbiome, 12(1)

ISSN
2524-6372

Authors
Baraúna, Rafael A
Ramos, Rommel TJ
Veras, Adonney AO
et al.

Publication Date
2017-12-01

DOI
10.1186/s40793-017-0234-6

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/63t485sd
https://escholarship.org/uc/item/63t485sd#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


SHORT GENOME REPORT Open Access

Genomic analysis of four strains of
Corynebacterium pseudotuberculosis bv. Equi
isolated from horses showing distinct signs
of infection
Rafael A. Baraúna1*, Rommel T. J. Ramos1, Adonney A. O. Veras1, Pablo H. C. G. de Sá1, Luís C. Guimarães1,
Diego A. das Graças1, Adriana R. Carneiro1, Judy M. Edman2, Sharon J. Spier2, Vasco Azevedo3 and Artur Silva1

Abstract

The genomes of four strains (MB11, MB14, MB30, and MB66) of the species Corynebacterium pseudotuberculosis
biovar equi were sequenced on the Ion Torrent PGM platform, completely assembled, and their gene content and
structure were analyzed. The strains were isolated from horses with distinct signs of infection, including ulcerative
lymphangitis, external abscesses on the chest, or internal abscesses on the liver, kidneys, and lungs. The average
size of the genomes was 2.3 Mbp, with 2169 (Strain MB11) to 2235 (Strain MB14) predicted coding sequences
(CDSs). An optical map of the MB11 strain generated using the KpnI restriction enzyme showed that the approach
used to assemble the genome was satisfactory, producing good alignment between the sequence observed in
vitro and that obtained in silico. In the resulting Neighbor-Joining dendrogram, the C. pseudotuberculosis strains
sequenced in this study were clustered into a single clade supported by a high bootstrap value. The structural
analysis showed that the genomes of the MB11 and MB14 strains were very similar, while the MB30 and MB66
strains had several inverted regions. The observed genomic characteristics were similar to those described for other
strains of the same species, despite the number of inversions found. These genomes will serve as a basis for
determining the relationship between the genotype of the pathogen and the type of infection that it causes.

Keywords: C. pseudotuberculosis, Biovar equi, Ulcerative lymphangitis, Horse, Genomic

Introduction
As of February 2016, thirty-three genomes of the species
Corynebacterium pseudotuberculosis had been deposited
into the National Center for Biotechnology Information
database. This species is an animal pathogen that infects
goats and sheep, causing caseous lymphadenitis, as well
as horses, which can show distinct signs and symptoms.
C. pseudotuberculosis can be classified into two biovars
based on its ability to reduce nitrate to nitrite [1]. Non-
reducing, i.e., nitrate-negative, strains are grouped into
the ovis biovar and are responsible for CL. The reducing,
i.e., nitrate-positive, strains are grouped into the equi
biovar and mainly infect horses.

Recent increases in the number of infections in horses
have led to C. pseudotuberculosis bv. equi being classi-
fied as a re-emerging pathogen. In Texas, USA, the
number of cases increased 10-fold between 2005 and
2011, with a cumulative increase in annual incidence
from 9.3 to 99.5 infections per 100,000 horses over the
same period [2]. Kilcoyne et al. [3] analyzed the number
of cultures positive for C. pseudotuberculosis in samples
isolated from infected horses in 23 states in the USA.
The proportion of positive cultures was higher for the
most recent years, 2011 and 2012 (54% of the total num-
ber of samples), than for the period spanning 2003 to
2010 (46% of the total number of samples). These
current data show the growing numbers of infections
caused by this bacterium and emphasize the need for
new studies on the genotypic characteristics of the
biovar.
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C. pseudotuberculosis bv. equi infection is commonly
known as “pigeon fever” because it leads to the forma-
tion of external abscesses on the chest of the animal,
making it expand, similar to a pigeon breast. Despite its
common name, the bacteria can also cause other types
of infections with distinct signs and symptoms, such as
the formation of internal abscesses or ulcerative
lymphangitis, which is characterized by the infection of
limbs and compromises the lymphatic system [4]. It is
currently believed that the major vectors of the disease
are domestic flies of the species Haematobia irritans,
Stomoxys calcitrans, and Musca domestica [5].
The pathogenesis of C. pseudotuberculosis is intrinsic-

ally linked to its genetic content. Several virulence
factors have previously been described in the literature
that strongly influence the ability of the bacteria to inter-
act with the host, causing infection. Phospholipase D,
the iron uptake system, and pili proteins are examples of
these factors [6]. Characterization of these and novel
virulence factors depends on the sequencing of new
genomes from the biovar, as the vast majority of the ge-
nomes in databases belong to the ovis biovar. Therefore,
to generate data that allows for a more robust genotypic
analysis of the equi biovar, four genomes from strains
isolated from horses with distinct signs of infection by
C. pseudotuberculosis were sequenced using the next-
generation Ion Torrent PGM platform.

Organism information
Classification and features
C. pseudotuberculosis bv. equi is a facultative intracellular,
beta-hemolytic, pleomorphic (Fig. 1), non-sporulating,
unencapsulated, non-mobile, facultative anaerobic, Gram-
positive pathogen. [6]. The main characteristics of the spe-
cies are shown in Table 1. C. pseudotuberculosis is
taxonomically classified in the phylum Actinobacteria,
class Actinobacteria, order Corynebacteriales, family Cory-
nebacteriaceae, and genus Corynebacteria. The strains

included in this study were isolated from horses in the
state of California, USA. The animals had distinct signs
and symptoms of infection. Strain MB11 was isolated
from a 6-month-old American Paint horse with ulcerative
lymphangitis. Strain MB14 was isolated from an Arab/
Saddle horse with abscess formation in internal organs
(liver and kidney). The animal also presented hepatic lipid-
osis and myocardial fibroses. Strain MB30 was isolated from
the pectoral abscess of a 2-year-old Quarter horse. Finally,
strain MB66 was isolated from a 20-year-old Polish Arab
mare with metastatic melanoma and multiple external and
internal abscesses. These distinct signs, such as pectoral ab-
scesses (“pigeon fever”), abscesses on the internal organs, or
abscesses on the limbs (ulcerative lymphangitis), suggest that
the equi biovar can interact in several ways with the host
animal to cause infection. All strains were isolated over the
period of October-1996 up to June-2002.
A dendrogram was calculated with the Neighbor-

joining statistical method using a bootstrap analysis with
1000 replicates. The rpoB gene, which codes for the beta
subunit of the RNA polymerase enzyme, was used as a
marker when constructing the dendrogram. The analysis
was performed using the NCBI reference sequence for
the species, retrieving from the database at least one
representative from each genus in the Corynebacterium,
Mycobacterium, Nocardia, and Rhodococcus group
(Fig. 2). This group is composed of species that share
cellular characteristics, such as a cell wall composed of
peptidoglycan, arabinogalactan, and mycolic acids, as
well as a genome with a high GC content [6]. The first
phylogenetic studies on the CMNR group used the 16S
rRNA gene as a marker. These studies demonstrated
that the genera in the family Corynebacteriaceae form a
monophyletic clade composed of four groups, in which
C. pseudotuberculosis is phylogenetically closest to the
species C. ulcerans and C. diphtheriae [7]. Recently,
Khamis et al. [8] proposed that the gene rpoB could be
used as a marker to identify clinical isolates of the genus

Fig. 1 Transmission Electron Micrograph of three strains sequenced in this study. The electron micrographs of a MB11, b MB30 and c MB66,
demonstrate the pleomorphic morphology of the species
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Corynebacterium. The positive results for identification
using the rpoB gene were greater than those of the 16S
rRNA gene, indicating that rpoB is useful for taxonomic
classification the family Corynebacteriaceae [8]. The
dendrogram in Fig. 2 shows the phylogenetic proximity
between the sequenced biovars of the species C. pseudo-
tuberculosis. In addition, it corroborates the analyses
performed with the 16S rRNA gene, which designated C.
diphtheriae as the species most closely related to C.

pseudotuberculosis. The results show that each genus in
the CMNR group is divided into clades supported by
high bootstrap values.

Genome sequencing information
Genome project history
The four C. pseudotuberculosis genomes in this short re-
port are part of a collaboration between the University
of California, Davis, USA, and the Federal Universities

Table 1 Classification and general features of the species strain designationT [cite MIGS reference]

MIGS ID Property Term Evidence codea

Classification Domain: Bacteria TAS [22]

Phylum: Actinobacteria TAS [23]

Class: Actinobacteria TAS [24]

Order: Corynebacteriales TAS [25, 26]

Family: Corynebacteriaceae TAS [27, 28]

Genus: Corynebacterium TAS [28, 29]

Species: C. pseudotuberculosis TAS [28, 30]

strain: MB11, MB14, MB30 and MB66 IDA

Gram stain Positive TAS [31]

Cell shape Pleomorphic TAS [31]

Motility Non-motile TAS [31]

Sporulation Non-sporulated TAS [31]

Temperature range Mesophilic TAS [32]

Optimum temperature 37 °C TAS [32]

pH range; optimum 7.0–7.2 TAS [32]

Carbon source Glucose, fructose, maltose, mannose, and sucrose TAS [6]

MIGS-6 Habitat Soil and animal pathogens TAS [4, 33]

MIGS-6.3 Salinity Up to 2 M NaCl TAS [32]

MIGS-22 Oxygen requirement Facultative anaerobe TAS [6]

MIGS-15 Biotic relationship Intracellular facultative pathogen TAS [6]

MIGS-14 Pathogenicity Equus caballus TAS [4]

MIGS-4 Geographic location California, USA IDA

MIGS-5 Sample collection MB11: Oct-96
MB14: Dec-96
MB30: Nov-00
MB66: Jun-02

IDA

MIGS-4.1 Latitude MB11 - 38°21′23″
MB14 - 37°00′20″
MB30 - 39°39′32″
MB66 - 38°32′41″

IDA

MIGS-4.2 Longitude MB11 - 121°59′15″
MB14 - 121°34′05″
MB30 - 121°37′52″
MB66 - 121°44′25″

IDA

MIGS-4.4 Altitude MB11 - 180 ft
MB14 - 196 ft
MB30 - 351 ft
MB66 - 55 ft

IDA

aEvidence codes - IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement (i.e.,
not directly observed for the living, isolated sample, but based on a generally accepted property of the species or anecdotal evidence). These evidence codes are from
the Gene Ontology project [cite this reference]
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of Minas Gerais and Pará, Brazil. The project seeks to
determine the genomic characteristics of 12 strains of
the equi biovar isolated from horses in California
showing distinct signs and symptoms of infection.
Isolation was performed over several years from dif-
ferent horse breeds (Table 2). One of the major aims
of the project is to determine if a relationship exists
between the genetic content of the strains and the
type of infection that it causes (i.e., ulcerative lymph-
angitis, external abscesses, or internal abscesses). In
parallel, the project seeks to increase the amount of
genomic data for the species C. pseudotuberculosis in
databases, which will form the basis for broader func-
tional studies. The genomes obtained in this study
have been deposited into the NCBI database under
accession number CP013260, CP013261, CP013262,
CP013263. The project information is also presented
in Table 2.

Growth conditions and genomic DNA preparation
After isolation, the bacteria were maintained in 25%
glycerol at −80 °C, and the medium was refreshed
routinely. To extract genomic DNA, the bacteria were

first cultured in liquid brain heart infusion (BHI)
medium at 37 °C with shaking. DNA was extracted
during the log-phase of cell growth according to the
protocol described by Pacheco et al. [9] for clinical
isolates. The extracted DNA was subjected to electro-
phoresis on a 1% agarose gel to determine the quality
of the material.

Genome sequencing and assembly
Genomic DNA was sequenced on the Ion Torrent
PGM (Thermo Scientific) platform using the 318 chip
v2 in accordance with the manufacturer’s instructions.
The quality of the reads was analyzed using FastQC
software [10]. The reads were then trimmed and fil-
tered to remove those with a phred-scaled quality
score less than 20. Next, the reads were assembled
using Mira 4 software [11]. Redundancy within the
assembled contigs was eliminated using the SeqMan
Pro tool in the Lasergene software package (DNAS-
TAR). The few remaining gaps after redundancy
removal were manually closed using local BLAST or
a program developed by our research group called
GapBlaster [12], which uses a reference genome to

Fig. 2 Dendrogram of the representative genomes in the CMNR group. The analysis was performed using MEGA 5.10. Only bootstraps greater
than 50% are shown in the branches of the dendrogram. The accession numbers for the sequences used in the analysis are: C. pseudotuberculosis
MB11 (CP013260), C. pseudotuberculosis MB14 (CP013261), C. pseudotuberculosis MB30 (CP013262), C. pseudotuberculosis MB66 (CP013263), C.
pseudotuberculosis 316 (CP003077), C. pseudotuberculosis 258 (CP003540), C. pseudotuberculosis 1002 (CP001809), C. pseudotuberculosis C231
(CP001829), C. diphtheriae NCTC 13129 (BX248353), C. glutamicum ATCC 13032 (BA000036), C. striatum ATCC 6940 (GCA_000159135), C. accolens
ATCC 49725 (GCA_000159115), C. pseudogenitalium ATCC 33035 (NZ_ABYQ00000000), C. jeikeium K411 (NC_007164), N. brasiliensis ATCC 700358
(CP003876), N. farcinica IFM 10152 (NC_006361), M. bovis AF2122/97 (BX248333), M. ulcerans Agy99 (CP000325), M. smegmatis MC2 155
(CP000480), R. equi 103S (FN563149), R. fascians NBRC 12155 (GCA_001894785), R. erythropolis PR4 (NC_012490), R. jostii RHA1 (NC_008268)
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assemble similar sequences to close the gap using the
sequencing reads. For this analysis, we used C. pseu-
dotuberculosis biovar equi strain 316 as a reference.
An optical map using KpnI restriction sites was gen-
erated to evaluate the quality of the genome assembly
for the MB11 strain (Fig. 3). The optical map was an-
alyzed using MapSolver v.3.2.0 (OpGen). Figure 3
shows that the in silico assembly for strain MB11 was
very satisfactory; the positions of the restriction sites
were corroborated by the optical map analysis.

Genome annotation
An automatic annotation was first conducted using the
online software Pannotator [13], which provided the
.fasta files for the assembled genomes and a reference
.embl file for C. pseudotuberculosis 316. The results were

then manually curated to meet the gene annotation
standards set by UniProt [14] using Artemis software
[15] to visualize the coding sequences. Next, pseudo-
genes were also manually curated to resolve mismatches
using CLC Genomics Workbench 5 (CLC Bio) and Arte-
mis. Predicted genes for the four genomes were classi-
fied by the clusters of orthologous groups functional
category, as shown in Table 3.

Genome properties
All of the genomes were completely closed, resulting
in a size of 2,363,423 bp for strain MB11,
2,370,761 bp for MB14, 2,364,377 for MB30, and
2,372,202 bp for MB66. The approximately 2.3 Mbp
size is similar to other previously studied and
published equi strains [16–18]. Four ribosomal RNA
clusters were observed in all of the genomes. The
strains had an average GC content of 52% and a total
of 51 tRNAs predicted by tRNAscan-SE for each
strain [19]. MB11 had a total of 2179 CDSs and 37
pseudogenes after manual curation. MB14 had 2235
CDSs and 20 pseudogenes, while MB30 had 2225
CDSs and six pseudogenes, and finally, MB66 had
2201 CDSs and 54 pseudogenes. A more detailed de-
scription of the genomic statistics is presented in
Table 4.
A circular map was generated using the CGView

web tool [20] that shows the relationship of the pre-
dicted proteins in the MB14, MB30, and MB66 ge-
nomes compared to strain MB11, in which the in
silico assembly was corroborated by the optical map
(Fig. 4). All of the genomes had similar sizes and a
similar number of CDSs, with few differences between
the coding regions of the genomes. Structural ana-
lyses were conducted by comparing the four genomes
with a local database using blastn, and the results
were analyzed using the Artemis Comparison Tool
[21]. The MB11 and MB14 strains showed extensive
structural similarity, while MB30 had a large inversion
of approximately 1.2 Mbp compared to MB14 (Fig. 5).
However, MB66 had the largest number of structural
rearrangements (Fig. 5). It is worth noting that two

Fig. 3 Optical map of Corynebacterium pseudotuberculosis MB11. The figure shows the alignment of the KpnI sites observed in the optical map
(bottom scale bar) with those predicted by the in silico assembly (top scale bar). Vertical lines connect identical restriction sites observed in the
optical map and those predicted by the assembly, demonstrating that the genome was assembled in the correct order

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Completed

MIGS-28 Libraries used Fragments library

MIGS 29 Sequencing
platforms

Ion Torrent PGM

MIGS 31.2 Fold coverage 842x (MB11); 867x (MB14);
309x (MB30); 658x (MB66).

MIGS 30 Assemblers MIRA4, Lasergene (DNASTAR), GapBlaster.

MIGS 32 Gene calling
method

Pannotator (FgenesB; Glimmer;
tRNAscan; RNAmer)

Locus Tag ATN02_ (MB11); ATN03_ (MB14);
ATN04_ (MB30); ATN05_ (MB66)

GenBank ID CP013260 (MB11); CP013261 (MB14);
CP013262 (MB30); CP013263 (MB66).

GenBank Date
of Release

2016-03-01

GOLD ID Gp0131493 (MB11); Gp0131495 (MB14);
Gp0131496 (MB30); Gp0131497 (MB66).

BIOPROJECT PRJNA256958

MIGS 13 Source Material
Identifier

Isolated directly from the infected
animal

Project
relevance

Animal pathogen
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Table 3 Number of genes associated with general COG functional categories

Code MB11 MB14 MB30 MB66 Description

Value %age Value %age Value %age Value %age

J 127 5.83 148 6.62 123 5.64 122 5.54 Translation, ribosomal structure, and biogenesis

A 1 0.05 1 0.04 1 0.05 1 0.05 RNA processing and modification

K 55 2.52 90 4.03 55 2.52 54 2.45 Transcription

L 63 2.89 96 4.29 67 3.07 66 3.00 Replication, recombination, and repair

B 0 0 0 0 0 0 0 0 Chromatin structure and dynamics

D 16 0.73 25 1.12 16 0.73 16 0.73 Cell cycle control, cell division, and chromosome partitioning

V 13 0.60 23 1.03 13 0.60 13 0.59 Defense mechanisms

T 17 0.78 55 2.46 17 0.78 16 0.73 Signal transduction mechanisms

M 55 2.52 82 3.67 55 2.52 54 2.45 Cell wall/membrane biogenesis

N 1 0.05 14 0.63 1 0.05 1 0.05 Cell motility

U 17 0.78 21 0.94 17 0.78 17 0.77 Intracellular trafficking and secretion

O 53 2.43 79 3.53 55 2.52 53 2.41 Posttranslational modification, protein turnover, and chaperones

C 73 3.35 121 5.41 74 3.40 73 3.32 Energy production and conversion

G 73 3.35 100 4.47 74 3.40 72 3.27 Carbohydrate transport and metabolism

E 122 5.60 180 8.05 122 5.60 122 5.54 Amino acid transport and metabolism

F 58 2.66 74 3.31 57 2.62 57 2.59 Nucleotide transport and metabolism

H 83 3.81 113 5.05 83 3.81 83 3.77 Coenzyme transport and metabolism

I 36 1.65 51 2.28 36 1.65 35 1.59 Lipid transport and metabolism

P 68 3.12 118 5.28 67 3.07 67 3.04 Inorganic ion transport and metabolism

Q 13 0.60 28 1.25 13 0.60 12 0.55 Secondary metabolite biosynthesis, transport, and catabolism

R 113 5.19 275 12.30 111 5.09 110 5.00 General function prediction only

S 112 5.14 153 6.84 112 5.14 113 5.13 Function unknown

- 1010 46.35 389 17.40 1056 46.35 1044 47.43 Not in COGs

The total is based on the total number of protein coding genes in the genome

Table 4 Genome statistics

Attribute MB11 MB14 MB30 MB66

Value % of Total Value % of Total Value % of Total Value % of Total

Genome size (bp) 2,363,423 100.0 2,370,761 100.0 2,364,377 100.0 2,372,202 100.0

DNA coding (bp) 2,021,172 85.52 2,052,709 86.58 2,066,802 87.41 2,006,473 84.58

DNA G + C (bp) 1,067,329 52.09 1,235,085 52.1 1,231,731 52.09 1,235,856 52.1

DNA scaffolds 1 100.0 1 100.0 1 100.0 1 100.0

Total genes 2,260 100.0 2,317 100.0 2,237 100.0 2,334 100.0

Protein coding genes 2,179 96.41 2,235 96.46 2,225 99.46 2,201 94.30

RNA genes 63 2.79 63 2.78 63 2.82 63 2.70

Pseudo genes 37 1.64 20 0.86 6 0.27 54 2.31

Genes in internal clusters 775 34.29 785 33.88 779 34.82 774 33.16

Genes with function prediction 1,526 67.52 1,576 68.02 1,577 70.50 1,550 66.41

Genes assigned to COGs 1,169 51.72 1,847 79.71 1,169 52.26 1,157 49.57

Genes with Pfam domains 1,722 76.19 1,819 80.49 1,823 78.68 1,797 76.99

Genes with signal peptides 88 3.89 92 3.97 93 4.16 86 3.68

Genes with transmembrane helices 589 26.06 607 26.20 604 27.00 583 24.98

CRISPR repeats 3 0.01 3 0.01 3 0.01 2 0.01
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strains with distinct infection phenotypes (MB11 and
MB14) that were isolated eight years apart had largely
similar genomic structures, which did not occur in
the other analyzed strains.

Conclusions
Because of the large number of infections reported
for C. pseudotuberculosis biovar equi in recent years,
sequencing and analyzing genomes for this biovar is
an essential step towards new perspectives that will
improve our understanding of pathogen-host interac-
tions and facilitate the development of vaccines to
eradicate the disease. The four genomes presented in
this study showed structural differences, except for
strains MB11 and MB14. The phylogenetic relation-
ship is closer to other strains of the equi biovar, and

other genomic characteristics, such as the GC con-
tent, number of CDSs, and tRNA and rRNA clusters,
are similar to those described for other strains of the
same species. Virulence factors that were previously
described in the literature were identified in the ana-
lyzed genomes. In addition, in silico assembly of the
MB11 genome was validated by an optical map of the
KpnI restriction sites.
These initial data suggest that differences between

types of infection should be analyzed using a reduc-
tionist approach, taking into account factors such as
pathogenicity islands in each strain, the transmission
method, and the entry point of the pathogen for each
case, as well as expression levels and use of virulence
factors specific to the bacteria, among other factors.
Phylogenetic studies and the detection of small

Fig. 4 Circular map of the genome for the sequenced Corynebacterium pseudotuberculosis strains. The outermost ring in blue shows the features
extracted from the MB11 genome using a .gbk file. The next ring shows the CDSs predicted on the forward strand of MB11 in red, followed by
the CDSs on the reverse strand with their features in blue. The other three rings in red, green, and blue show proteins predicted by blastx for the
MB14, MB30, and MB66 genomes, respectively, compared to the MB11 genome. The two innermost rings show the GC content and GC skew,
followed by the size of the genome in base pairs

Baraúna et al. Standards in Genomic Sciences  (2017) 12:16 Page 7 of 9
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genetic changes such as SNPs and INDELs should
then be performed because the bacteria have a very
high gene density, and therefore, point mutations can
strongly affect the biological response of the
pathogen.
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