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An Improved Solution to the Claésiéal Near-Wake BoundaryéLayer Problem

- -

by

D. Theodore Scalisé and John Newman

_ Mechanical Engineering Department and v
Inorganic Materials Research Division, Lawrence Berkeley Laboratory, and
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Abstract

The fluid flow in the boundary layer adjoining all solid surfaces
presents a singular-perturbation problem. A change in the boundary
conditions may generate additional regions in which different treatments
are necessary. ' : '

, This singular-perturbation property is exhibited in Goldstein's

(1930) classical investigation of a fundamental p’roblerh of fluid mechanics--
that of determining the fluid velocity distribution in the near-wake boundary
layer of a flat plate. Using one set of coc')'rdinate‘variables in the series
expansion, he found an approximate solution valid only for the innerregion
near the plane of the plate; with another set of coordinate variables he
found an approximate solution valid only for the outer region, the part of
the boundary layer lying farther from the plane of the plate. '

In this contribution, we construct a uniformly valid expansion to the
‘classical near-wake problem, using the method of matched asymptotic
expansions. This is compared with Goldstein's inner and outer solutions
.at a downstream distance of half the plate length. The great improvement
is evident in the fact that whereas the old solutions are discontinuous in the
central region, the new solution is continuous throughout the whole ‘flow
domain, merging to the old solutions at both extremities.
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1. Introduction
The study of the velécity distributions along, and in tﬁe near;wake‘

of, an infiﬁiteiy-thin flat plate in steady laminar-inéompressible flow
has been of great interesf for nearly three-quarters of a century.
Goldstein's (i930) analysis, using the Blasuis (1908) solufion for the
trailing-edge as an initial profile for the wake ﬁléw, is a classical
treatment of this subjéctv(described by some, with whom we agree,>as one
of the most sigﬁificant contributions of the twehtieth century to thé
:theory\pf fluid mechanics). - |

 We define the "classical" near-wake boundary-layer problem for a
fiat plate as one which uses thefBiasuis solutidﬁ as;the‘initial profilé
for the Qake flow. Thus, the Gol&stein analysié‘and the present study>
provide solutions to this classical probiem. Other sfudies (for |
example; S;alise; 1971) which use a different initial profile (to‘éccount )
for'thé Kuo (1953) and Imai (1957) secpnd-order flaf plate drag) are

directed toward solutions of different formulations of the near-wake

<

pfoblem.

In the presenf study the method of matched aéymptqtic expansions
(described for exaﬁple by Van Dyke, 1964) is uséq to construct a
compositeéexpansion of the'Stream functioﬁ. The énalySis is presented
in Secfioh 2.} numerical and graphicallresulfs are'pfésented in
Section 3. |

For convenience, a summar} is included in theﬁAppendix of the
derivations of the first;order approximations fo the Navier-Stokes

equations- including the Goldstein (1930) solution. Figure 1 shows the
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corresponding flow regimes together with the codrdinate system.

2. Uniformly-Valid Solution by Method -of Matched Asymptotic ExPansions

\

The classical near-wake problem for a flat.piate is to find the
‘ L

\

composite stream-function wc such that:

o )
R R R SV W
4L C* C_ C C= & a
oY BXIBY | Bxl SYZ \8Y3
-9
—?5 ~1 as Y > b
oY
< e
1451 *.F
wc ~ éi T gBQ as Xx;.> o . . <
v, W, |
=0, ==0 at Y=0, x;, >0 d
5 2 9x : 1
Y 1 :
. SN

To do this we construct a composite-expansion from Goldstein's inner

~

stream function wi and his outer stream function we where

by = E[Em » Fmed « Fme® ] )
and : : '
v, .
Vo (EY) = Y () + ¥ (DE + 21— .. (2-3)

with £ the streamwise coordinate, n "the similarity variable for

~

inner region and Y the outer transverse coordinate defined by:

. i B
£ = (x/4L)3 e

. 1 \
Y = 0.5 Ri y,/L (2-5)

n=Y/GE . (2-6)



The asymptotic large-n form of the inner expansion is given by
T (@ ~AnfwBn+C
"o o o K}

F iy ~ a w5 4 3, 0.2 ;
f3 () A3n + Bsn + Csn_.+ D3n + Esn + F3 - (2-7)

6

8 7 . ’
+ C6n’ +7... + HGn_+ I

?g (c0) -~ A6n + B6n o

where the remainders are exponentially small and the coefficients
Aj’ Bj’ Cj’ ... are known,

Using additive composition (i.e. the sum of the inner and outer
expansions is corrected by subtracting the part-they have in commbn,

'so that it is not counted twice),

we have : ,
(N-1) . (N-1) - (N-1) :

oM = 0By, (D) - ¥ (eB) ¢ 0D (2-8)
uniforgly valid to_gN‘— order. The guperscripts denote the highest
degrge of £ ih each‘term;.the subtracted term denotes the ésymptotic
large-n form of the inner expansion.

Substituting (2-2), (2—3); and (2-7) in (2-5) and writing in
summatidn notation: -

j*2 N-19.(Y) . N-3

o N-3 i _ j+2 N
Ve =X EH ME + X 8- Y E () Er0E)
0 o I o J.
with - | | S (2-9)
£,% f,f,%,F = o



- For example the uniformly valid stream function to 0(&3) is

0 = F,ER © u 00+ b E + e

- {Aoﬁz_* B.n + co}gz + o(gz) R T -

We now wish to obtain the unifofﬁly valid expresSion for the Qelocity
distribution; It will be seen, in the next,paragféph, that téking
the partial derivative of thé uﬁiformly valid Etfeam function will
not give a uniformly Valid velocity distrfbution;vinstead éach term
must be examined to insure it proporates the same order error into

the sum.

- Taking the\partial derivative of (2-9) and noting from (2-6) that
i .a._f— g;f_?ﬂ .._l_gi we ) e.t
| 3Y “dn 3 " 3Eadn "8
N) - ST . =
™ Nz gF . N-1 ¢! N-3 . dF.(®) .
c_ - 1 ] g3+l o 1 j+1 -
oY (Z) Tdn & g 3! g R e (2-10)

The highest degree'bf £ in the fifst, second, and third sums

.respectively is EN-Z ,/£N71 -1 R EN-, EN_I

, EN-Z corresponding to EN
order errors. Thus we cannot say that eqn. (2-10) is characteriied
by a uniform error.

" To insure that each sum in (2-10) propagates the same order error

we change the upper limits in the first and second sums, getting

™) = _ - -
w \"W N2 | dF. . N-1y'(Y) . N-2 , df.(=) .
(N) - c I § j+1 iv 7 1 L 2j+l N
Ve ‘(a'v"‘), = lsg v g8 g v v 0@
e ' (2-11)
with f, , % ,f, ,f ,F ,f...=0
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Equation (2-11) gives the uniformly valid velocity distribution to EN -

- order. For eia@ple for.O(gz)? we have X
dF | A B

(2) _1 "o gy ) o 5. 2

U g BV Uy (NE - = B 0(ED)

w

We now wish to investig;te the behavior:of the uniform velocity
distribution (2-11) at a downstream wake positidnvof x,/L = 0.5 fér
several Qrders of errors. Note that Goldstein's inner solution re-
quired thé numerical evaluation of‘derivatives f;y(n), ?g'(n), ?g‘(n)
for only small -In valuesvwhereas‘in (2-11) w§ néed to know the value
of these derivatives for 411 vaiues of n in the fldwvdomain. For example

at xl/L = .5 with -

vy

1]
~
-
~
F=N
~—

and
n

i
e
~
—
(7]

‘We are interestgd in .the range o §_Y_5_3.3 which corresponds to-
0 <n< 2.2 Goldstein's paper tabulates ?5' (n) for o < n < 1.4,
Therefore, we numerically ihtegrated the set of ordinary differentiai
eQuatioﬁs (Appendix A-5.6) fo.ext;nd the domain to n-= 2;? before
“evaluating eduation (2-11). Thelrésults are discussed in(the nexf section
3. Results - |

Figures 3 through 6 show graphical repfesentatibns of the
‘calculated velocity distribution'at *i/L = 0.5 uniformly valid to
52, Es,.and ES - orders , compares these solutions ﬁith_théir‘inner
terms only (first sum in eqn. 2-11)-and their outer terms 6n1y (second
sum in eqn. 2:11), and with the Goldsﬁein inner: and outér solutioﬂs.

Tables I § II give the numerical results used to plot the curves in-

Figures 3 through 6.
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Examination of\thege figures shows that

1. The Goldstein (1930) inner and outer sohﬂﬁons‘do~n0trnerge.hlﬁhe
rniddle region CFig.IZ)_ |

2. The imprévement of the uniformly valid golutions ig evident by its
coﬁtinuity throughout the whole flow domain'and its merging to
the Goldstein solﬁtions at both ektremétiesv(Fig. 6) -

3. Thebbehavibr 6f the inner and outer terms of.the uniformly valid

solutions is graphically depicted in N = 2, 5, 8 (Fig. 5)

N

-In summary, the method of matched asymptotic expansions was used té
construct;a‘uniformly valid e¥panéion to the classical ﬁear4wake
proﬁlem, This expansion is compared to Goldstein's inner andtduter
solﬁtions at a downstream distance of hglf the plate length. The

great improvement is evident by the fact that whereas the olé solutions
‘are distontinuous in the central region, the new solu;ion is continuous
throﬁght the whole flow domain, merging to the old solutions at both

extremities.
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FIG. 4. COMPOSITE SOLUTION UNIFORMLY VALID TO &8.ORDER.
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T T 1 1

2 ) a) lnner terms only 4

/b) Quter terms onl"yv

c)Composite solution
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2r f — order N
Y £°- order
t g8 order

0.4 0.5 0.6 0.7 0.8 0.9 1.0
B u—> - -

: XBL735 2976

" FIG. 5. COMPARISON OF COMPOSITE SOLUTIONS UNIFORMLY VALID
TO. SECOND FIFTH, AND EIGHTH ORDER : '
Xl/L = 0 5
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Composite solution
' («fa-orde_r Y N

Goldstein outer

- solution = ~——
- }"’ ”—,.—ﬁ Goldstein
- _ “inner solution
(@) I ] | . S | . L
04. 0.5 06 07 08 09 1.0
XBL735-298I

FIG. 6>. ' COMPARISON OF COMPOSITE SOLUTION
WITH GOLDSTEIN INNER AND OUTER SOLUTIONS.



TABLE I, "CALCULATED COEFFICIENTS IN THE FIRST TWO SUMS OF (2-11) FOR UC

XI/L .5 R B o . 1 ' Z ‘ w”' W, .i',L_v ‘,',- ‘f'_' ot
. T £ T, A ¥, B ~ _L 5 L i 8.
Y g : 3 L 51 & v 8!
0. 0. 3.6787 -3.5418 8.1174 . .6790.1 0. 0. -.6366 0. 0. 1 1.4858 0.
.30 .20 3.9428 ~4.8454 14,0990 . 1989 L6750 | -.0206 -. 4425 -. 6063 L1231 1.3973 1.3107 {4 -.60
.60 .40 4.6649 -8.7917 34,7420 .3938 6474 -.0787 -.8423 -. 4045 . 4469 2.4931. . 1858 -2.06
.90 .60 5.6800 215,6700 80.3770 . 5748 . 5785 <. 1566 | -1.1062 . 0573 ..-764\7 2.7024-4 -2.1020 -2.80
1.20 .80 6.8276 -26.3880 175. 4600 . 7290 . 4664 -.2199 | -1.1442 L6712 . 7503 1.7352 | -4.2663 -.98
1,50 1.00 8.0149 ~42.5930 368.4500 L8461 . 3300 -.2356 -.9533 | 1.1475 L2741 . 1812 | =4.3R70 2.62
1.-80 1.20 9.2095 -66.4720 745. 5400 .9233 L2006 -. 1978 -. 6407 1.2448 -. 3695 -.9011 -2.2293 4,58
2.10 1.40 10. 4050 -100. 5400 1450. 0600 . 9670 . 1033 -.1319 -. 3469 . 9871 -.7419 | -1.0515 . 3287 3.20
2.40 1.60 11.6000 -147. 6400 '2715. 3000 . 9878 . 0447 -.0705 | -.1512 ' .6008 -.7076 -. 6544 1.5698 .46
2.70 1.80 12.7960 -210.9000 4892. 7000 .9962 .0162 -.0305 -.0530 . 2878 .. 4585 -.2522 1.4493 ~1.15
3.00 2.00 13.9910 -293.8500 8506. 3000 . 9990 . 0049 -.0107 -.0149 . 1103 -.2212 -. 0506 . 8349 -1.25
3.30 .12._ 20 15.1870 -400.3100 14305, 0000 . 9998 . 0012 -, 0031 -.0033 .0341 -.0827 . . 0052 . 3477 -.74
TABLE II. CALCULATED VALUES OF UC(N) FROM (2-11) WITH N :_2, 5, 8
\ COMPARED TO GOLDSTEIN INNER AND OUTER SOLUTIONS
AT X /L =.5 : '
Goldstein Solutions . ) . ‘
calculated herein over Ull_formly Valid Solu_tlon_s
extended Y-domain N =2 N-5 ] N -8
Inner Outer- (2) Inner Outer (5) Inner - Outer i (8) Inner Outer
Y Solution’ Solutiow ST Terms., Terms U Terms Terms Terms Terms
to 0@8) - to 0(59) < only only ¢ only only c only only
0. .560 .311 613 .613 .339 " 539 .539 .300 . .561 . 560 311
. 300 .593 | . 472 .655 .657 .536 . 559 . 556 . 438 .591 .593 . 474
. 600 ~ 685 .614 .757 L7177 LT717 L617 . 594 . 567 . 667 . 685 .622
. 900 .830 . 729 .874 . 947 . 864 .706 . 620 .690 . 754 .830 . 740
1.200 1. 045 . 820 . 964 1,138 . 962 . 810 -~ .588 . 806 . 827 1. 045 . 823 -
1.500 1.408 . 892 1.011 1.336 1.011 . 905 . 448 . 905 . 882 . 1.408 . 882
- 1,800 2.092 . 947 1.024 1.535 1. 024 .972 . 150 .972 . 929 2.092 . 929
2.100 3.416 979 1.019 1.734 1.019 1,004 -.360 1,004 .964 3.416 L9067
2.400 - 5.929 . 993 1.010 1.933 1.010 1.011 -1, 142 1.011 .991 5.929 ©.991
2.700 10,480 . 997 1.004 2.133 1,004 1.008 -2.261 - . 1.008 1.001 10.480 1.001
3.000 18.362 . 998 1.001 2.332 1. 001 1. 004 - =3.790 " 1.004 1.'002 18,362 1.003
3.300 31,444 . 999 1. 000 2,531 1.000 1.001 ~5.809 1.001 1. 000 31,444 1.002

-vl; ‘_
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Nomenclaturé B
L plate length
p pressure .
RL UwL/v‘, the Reynolds ngmber »
u,U velocity in x di?éction, parallel to plate
v,V veiocity in y direction, perpendicular to plate
x diépance parallel to plate measﬁred dowﬁétream from leading

edge, and divided by the plate length

X x -1

y * distance measured perpendicularly from the plane of the plate,
and divided by the plate length ‘ ' '

Y stretched distance from plane of plate

[  stream function for Blasius solution '
! - stream fuﬁction, u, = awl/ayl

Iv kinematfc Qiscosity

o 1nassden$ﬂy o F\

Subscripts .. . |

c composite solution

i . inner solution |
e external or outer solution

B vBlasius solution |

1 dimensional variable (eicept in the‘expansioh‘of»,wé ; equa;ions.

2-3 and A-5.8) .
X,y,Y partial differentiation with respect to the variable indicated

© freestream value
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APPENDIX

SUMMARY OF FIRST- ORDER THEORY FOR STEADY 2-DIMENSIONAL

INCOMPRESSIBLE FLOW REGIONS_SURROUNDING A FLAT PLATE

The: derivation of the first-order approximate solutions to the

exact Navier-Stokes flow in various regions is.outlined below. The
symbols, flow regions, and coordinate sysStem are defined in the
Nomenclature and in Fig. 1. ‘Abbreviations used herein are as follows:
fct = function; ode-prob = ordinary differential equation problem
(governing equations with boundary conditions); pde prob = partial
differential equation problem.
Description ‘ ] : ~ (Eqn. No.)
‘ I Eqn. Name
1. Navier-Stokes flow eqgns. (1845)(Exaét)
X = xl/L ) Y = )’l/L s U= ul/Uoo s V. = Vl/Uoo
\ , ) ) (A-1.1)
RL =UL/v,p-= pl/pU°° ; U= wl/UwL - Transform
(02 v D)am = (2 ). L
(“,ax Vo)) = -5 5y) R v (w,v) 8 (A-1.2)
: » - Governing
du , dv b
9x  dy
Integrate (1.2b) by defining such that
ST 1 i
{u = 3y V.= X (A-1.3)
Substitute (1.3) in (1.2a) and eliminate p to get
by 5 - b )T - —LV(vw) (A-1.4)
( y 3y x ox/ T R .
2. Inviscid Euler flow eqns. (1755)
Approximation: -RL + o in (1.2) and (1.4) gives
20 Dy - (2, 2), & 9§v_-='}7 (A-2.1)
{(u ax TV Yy W,v) = {5 > oy/.? 3x  3dy 0 Governing
3 N2, . ,
(¥ 5% - by 3y) 70 = 0 Rz




3. 7Prandt1 boundary-layer flow eqns. (1904)v‘
Approximations: R, + ®, Yy, = OQR-I/zL) << x '
L 1 L _ 1
) - (A-3.1)
within boundary-layer .
7 - pl/2 oo 1/2 _ 1/2 (A-3.2)
{Y = Ry yl/L s V=R Vl/L » ¥s v /(U I‘)} . Transform
Substifute (3.1),«(3.2) in (1.2) and neglect h;gher order terms
to get boUndary;laYer eqns:
. | . My 1%y . 9wy 2
1 3x 13y,  p ox 2 :
L 1 8 (A-3.3)
apl Ju v Dimensional
1 1
3y, 0, ox, dy =0
1 1 1 )
. 2 ‘ . )
bpovmoom o mo, m, Wb e
N X oy Y X a4y on-dim.
¥ +¥ ¥ -VY = --%R R - (A-3.5)
WYy X ¥ v x¥ x I Stream-fct
4.

Blasius flow eqns. for a flat plate (1908)

 Approximations: %E =0

- S N v N TR (A-4.1)
{XI =Xyt L= YNU/XY CBl(n) ! xlU“y} Transform
Substitute (4. 1) in (3.3) to get ‘

i o _ _ o - | (A-4.2)
{CBRH' * Lpglpy T 07r Tpg(0) = Lpe'(0) =0, Lpet () “‘} ode-prob

with two types of solutions as follows: ' )
(1) numerical solution holding for all n giving

" — : )
Cpy''(0) = 1.32824

.-

(2) series solution holding for small n giving

a; , a, ,a, in

uy, (M) =1 Lo0'® a0+ a ﬁ4 +a ﬁ? | (A-4.3)
BL 2B 1 4 7 ' small n




5. Goldstein near-wake flow eQns, {1930)

1/2 1/2

X = xl/4L , Y = 2 RL yl/L , U= ul/Uo° K V = 2RL 1/U°° (A-5.1)
dp : ‘ ‘ Transform
301 1 1 2
=0, v = 3 Ry UL
“ Substitute (5.1) in (3.2) to get
( . , '2 . \ h ‘ . \
u .é_l'i + V _@E = ——----a u ‘ a
X | aY 3Y2
du . vV _
x + —a—Y— = 0 b _
J . ' T (A-5.2)
x>0,Y=0:V=20, 37 = 0 St rc' pde-prob
SU§£ ,-all 'Y - o d
x =0 u = uO = 2 : ’
S 4 7 ;
‘ : Upg = alY + a4Y + a7Y , Y << 1} e
L~ , U
where Upo = Blasius solution at trailing-edge of flat platelwith
superscripts N , § denoting numerical and series solutions and
1 1- 2 3 '
= = o = - = ! = . ! = .
al 5 o . a, 5 O /4! a, 5.5a7/7! , a 1.32824
Integrate (5.2b) by defining . such that ' !
g Ve N R . (A-5.3)
YRS 0 YT T % - - : |
a) Inner-solution (small Y , 0 <& < .5)"
_ __1/3 _ : (A-5.4)
Let {g =X » N "Y/SE ) ' : 4 Transform
_ 2= = 3 = 6 Stream fct
‘PG ~ lpl (E)n) -'g [fé(n) + fS(n)E + f6(n)5] expansion



Sﬁfstitute (5.3), (5.4) in,(5.2) and equate equél powers of & to

 zero getting

which can be solved numerically.

‘b) Large-n solution

o )
?l'l + 2??11 _ fv = 0
o] o 0 o
F v FTEF v _ cF1F 1 F g -
f3 + 2fof3 Sfo f3 + Sfo f3 0
e F F v _ QF 1 F 1 F nf = 1 _ cfF Fn
ﬁ ' o+ 2F T, - 8T 'E0 + 8T NF, = 4T, - SE,T,
4 . 5 R A
' 1
BC: £ '/nn9a, ., £.0/n7v3Ta,, £/ v 3 A,
as &£ >0 ,'n-*oo
p— ‘= = - =. S
L T 0 =T "0 =0 r=1,36

(A-5.5)
ode-prob

“For large-n , the numerical solution of (5.5) is of thé'form:

—_ o 2
fo(n) v Aon'\+ B,n + Gy
v?(n)%\An5+Bn4+ + F
3 3 3 oo v Fg

—= 8 7
f6(n) N A6n + Bén + o0+ 1

where the coefficients A, ; j

Substitute (5.6), (5.4a) in (5.4b) to get

Cow A5 )T a3 ) e a3

+ gl [Bo(%- Y) . BS(% Y)4. + 36(% Y)7 N

‘ gz[co " Cs(% Y)3 ... ] R

which suggests. the large-n expansion

: . S oe,m
Ve VU EY) U (V) + Y (E + S &

,-B. , C. , ... are known.

(A-5.6)

(A-5.7)

(A-5.8)




A-5

where the b0 are given by (5.7). Substitute (5.8), (5.3) in

(5.2a) to get

Vo'¥y' - UMy = 0

Vo' Vo' - g,

N

1 ’ 2 . ’
Vit -y (A-5.9)
: : ode-prob

At thevpiate trailing-edge (£ = 0) , wo'(Y) = %Vcég“ so (5.9) can
be integrated sequentially in closed form. Goldstein gives fhe

solution for wo through w8 .

N

Notes:

1, The approximations in the Prandtl boundafy—layéf eqns. {(3.1)
apply ta the Blasius and Gd{dstein flows.')

2. The»dimensional' wl is nondimensionalized by various factors
(see eqhs. (1.1), (3.2); (4.1), (5.1)) in the'different.flows;

3. The dimensional coordinate'ix1 is‘nondimensionalized by 4L

‘in the Goldstéin flow and by L in the other,flows.~.For -

simplicity the same~symb61 x 1is used for the nondimensional

coordinate but the context (eqns. (1.1), ké.l)) clarifies which

factor is used.



LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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