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An Improved Solution to the Classical Near-Wake Boundary-Layer Problem 

by 

D. Theodore Scalise and John Newman 

Mechanical Engineering Department and 
Inorganic Mate rials Research Division, Lawrence Berkeley La bora tory, and 

Department of Chemical Engineering, University of California, Berkeley 

February 1974 

Abstract 

The (luid flow in the boundary layer adjoining all solid surfaces 
presents a singular-perturbation problem. A change in, the boundary 
conditions may gene rate additional regions in which different treatments 
are necessary. 

This singular-perturbation property is exhibited in (jold stein 1 s 
(1930) classical investigation of a fundamental p'roblem of fluid mec·hanics-­
that of determining the fluid velocity distribution in the near-wake boundary 
layer of a flat plate. Using one set of coordinate_ variables in the series 
expansion, he found an approximate solution valid only .for the inne r·region 
near the plane of the plate; with 'another set of coordinate variables he 
found an approximate solution valid only for the outer .region, the part of 
the boundary layer lying farther from the plane of the plate. 

In thi~ contribution, we construct a uniformly valid expansion to the 
classical near-wake problem, using the method of matched asymptotic 
exp<!nsions. This is compared with Goldstein 1 s inner and outer solutions 

.at a downstream distance. of half the plate length. The great improvement 
is evident in the fact that whereas the old solutions are discontinuous in the 
central region, the new solution is continuous throughout the whole flow 
domain,· merging to the old solutions at both extrem"itie s. 
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1. Introduction 

The study of the velocity distributions along, and in the near-wake' 

of, ah infinitely-thin flat plate in steady laminar incompressible flow 

has been of great interest for nearly three•quarters of a century. 

Goldstein's (1930) analysis, using the Blasuis (1908) solution for the 

trailing-edge as an initial profile fbr the wake flow, is a classical 

treatment of this subject (described by some,. with whom we agree, as one 

of the most significant contributions of the twentieth century to the 

theory _of fluid mechanics). ' 

, We define the "classical" near-wake boundary-"layer' problem for a 

flat plate as one which uses the Blasuis solutiori as.the initial profile 

for the wake flow. Thus, the Goldstein analysis and the present study 

provide solutions to this classical problem. Other studies (for 

example, Scalise', 1971) which use a different initial profile (to account 

for the Kuo (1953) and Im~i (1957) second-order flat plate drag) are 

directed toward solutions of different formulations of the near-wake 

problem. 

' 

In the present study t,he method of matched asymptotic ,expansions 

(described for example by Van Dyke, 19~4) is used to construct a 

composite-expansion of the stream function. The analysis is presented 

in Section 2.; numerical and graphical results are presented in 

Section 3. 

For convenience, a summary is included in the Appendix of the 

derivations of the first-order approximations to the Navier-Stokes 

equations including the Goldstein (1930) solution. Fikure 1 shows the 
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FIG. 1. FLOW REGIMES AND COORDINATE SYSTEM FOR 
FIRST -ORDER THEORY. 

(Not to -scale) 

I = Inviscid region, 
III = Goldstein inner region, 

II = B~a sius boundary-layer region, 
IV = Goldstein outer-region. 

' ' 

<. 



-5-

4.-----.-----.-----.-----.-----~--~ 

3 

CD c'omputed points for Goldstein outer solution 

@ Computed points for Goldstein inner solution · 

@ Grophicol
11

interpolotion
11 

by Goldstei/n 

y 2 

t •, 

0~----~--~_. ______ ~----~-------_.-------~ 
0.4 0.5 0.6 0.7 

u--+ 
0.8 0.9 1·0 

XBL735- 2977 
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corresponding flow regimes together with the coordinate system. 

2. Uniformly-Valid Solution by Method of Matched Asymptotic Expansions 

The classical near-wake problem for a nat plate is to find the 
I 

composite stream-function 1/Jc such that: 

a 

b 

(2-1) 

c 

'dljJ 
c 

0,-ax--==0 
1 

Y == 0 , x
1 

> 0 d at 

To do this we construct a composite-expansion from Goldstein's inner 

stream function 1/Ji and his outer stream function 1/Je where 

(2-2) 

arid 

(2-3) 

with ~ the streamwise coordinate, n the similarity variable for 

inner region and y the outer transverse coordinate defined by: 

(2-4) 

(2-5) 

n = Y/(3~) (2-6) 
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The asymptotic large-n form of the inner expansion is given by 

f (oo) - An 2 l+ B n + c 
0 0 0 0 

f3 (oo) - A3n 
5 + s3n 4 

+ c3n 3 . + o
3
n 2 + E3n + F3 (2-7) 

1"6 (oo) . - 8 B n7 -6 H6n + 16 A6n + + c6n + .... + 
6 

where the rema-inders are exponentially small and the coefficients 

A., B., C., ... are known. 
J J J 

Using additive composition (i.e .. the sum of the inner, and outer 

expansions is corrected-by subtracting the part-they have in common, 

so that it is not counted twice), 

we have 

(2-8) 

unifo~ly valid to ~N - order. The superscripts denote the highest· 

degree of~ in each'term; the subtracted term denotes the asymptotic 

large-n form of the inner expansion. 

Substituting (2-2), (2-3), and (2-7) in (2-8) and writing in 

summation notation: 

tj;(t)J) 
N-3 j+2 N-1 1/J. (Y) 

~j 
N-3 j+2 N 

= ~ f. Cn) ~ + ~ J ~ I. (oo) ~· + 0 (~ ) c J . I 
J 0 0 

J. 
0 

with (2-9) 

II, £2 £4, fs, £7, £8, ... - o. 
' 
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For example the uniformly valid stream function to 0(~3 ) is 

'''c(3) -- -fo(n)~2 + ,,, (Y) ,,, (Y)~ ,,, (Y)~2 ~ ~ ~0 + ~l ~ + ~2 ~ 

We now wish to obtain the uniformly valid expression for the velocity 
,. 

distribution; It will be seen, in the next paragraph, that taking 
-

the partial derivative of the uniformly valid stream function will 

not give a uniformly valid velocity distribution; instead each term 

must be examined to insure it proporates the same order error into 

the sum. 

Taking the partial derivative of (2-9) and noting from (2-6) that 

af" df an 1 df get· ay = dn ay = 3~ dn 
we 

a\jJ (N) . N-3 1' df. . 1 N-1 1/J! N-3 
1 

df. (co) 
~j+l c I -~ ~J+ I J- I J (2-10) ay = + 

3 dn . I 3 dn 
0 0 J· 0 

The highest degree of ~ in the first, second, and third sums 

. l . ~N- 2 ~N- 1 ~N- 2 d . ~N- 1 , ~N ' ~N- 1 respect1ve y 1s ~ .~~. , ~ correspon 1ng to ~ ~ ~ 

order errors. Thus we cannot say that eqn. (2-10) is characterized 

by a uniform error. 

To insure that each sum in (2-10) propagates the same order error 

we change the upper limits in the first and second sums, getting 

uCN) 
c (

a\jJ )(N) N-2 df.' . N-1 \jJ! (Y) . 
= _c = I· .!. ~ ~J+l + I ~ 1 · ~J 

()Y , 
0 

3 dn 
0 

J· 

f 
5 

T 
8 

N-2 l df. (co) . l 
\' - J I ~J+ + O(~N) 
L 3 · dn 
0 

(2-11) 
- 0 
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Equation (2-11) gives the unif~rmly valid velocity distribution to ~N 
~ 2 order. For example for.O(~ )~ we have 

l df " 12A 
Uc (2) = 3, d~ ~ + ljio(Y) + Wl (Y)~ - 3o n~ + 

We now wish to investigate the behavior of the uniform velocity 

distribution (2-11) at a downstrea~ wake position of x1/L = O.S for 

several orders of errors. Note that Goldstein's inner solution re-
_I _I _I 

qui red the numerical evaluation of derivatives f 
0 

(n), f 6 (n), f6 (n) 

for only small - n values whereas.in (2~11) we need to know the value 

/ of these derivatives for all values of n in the flow domain. For example 

at x1/L = .5 with 

1 
~ = (.5/4)3 = .5 

and 
n = Y/1.5 

we are interested in.the range o < Y < 3.3 which corresponds to 

o < n < 2.2. - - Goldsteinis paper tabulates f. 
J 

(n) for o 2_ n 2_ L4. 

Therefore,we numerically integrated the set of ordinary differential 

equations (Appendix A-5.6) to extend the domain to n = 2.2 before 

·evaluating equation (2-11). The results are discussed in the next section 

3. Results 

Figures 3 through 6 show graphical representations of the 

calculated _velocity distribution' at ~/L = 0. 5 uniformly valid to 

2 5 8 . 
~ , ~ , and ~ - orders , compares these solutio'ns with their inner 

terms only (first sum in eqn. 2-11) and their outer terms only (second 

sum in eqn. 2-11), and with the Goldstein inner' and outer solutions. 

Tables I & II give the numerical results used to plot the curves in· 

Figures 3 through 6. 



-10-

Examination of these figures shows that 

1. The Goldstein (1930) inner and outer solutions do not merge .in the 

middle region (Fig. 2) 

2. The improvement of the uniformly valid solutions is evident by its 

continuity throughout the whole flow domain and its merging to 

the Goldstein solutions at both extremeties (Fig. 6) -

3. The behavior of the inner and outer terms of the uniformly valid 

solutions is graphically depicted in N = 2, 5, 8 (F'ig. S) 

In summary, the method of matched asymptotic expansions was used to 

construct' a uniformly valid expansion to the classical near-wake 

problem. This expansion is compared to Goldstein's inner and· outer 

solutions at a downstream distance of half the plate length.· The 

great improvement is evident by the fact that whereas the old solutions 

·are discontinuous in the central region, the new solution is continuous 

throught the whole flow domain, merging to the old solutions at both 

extremities. 

-II 
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~Outer terms only 
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XBL735- 2978 

FIG. 3. COMPOSITE SOLUTION UNIFORMLY VALID TO e- 2
-0RDER. 
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XBL735- 2979 

FIG. 4. COMPOSITE SOLUTION UNIFORMbY VALID TO e- 8 -0RDER. 
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a) Inner terms only 

0.6 

b) Outer 

0.6 

0.6 

Q.7 

terms 

0.7 

0.7 
u--+ 

o.8 

only 

0.8' 

0.8 

Q.9 1.0 

0.9 1.0 

0.9 1.0 

XBL735-2976 
FIG. 5. COMPARISON OF COMPOSITE SOLUTIONS UNIFORMLY VALID 

TOo SECOND, FIFTH, AND EIGHTH ORDER 
x1/L = 0.5 
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Composite solution 

(~ 8 - order r -
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XBL 735-2981 

FIG. 6 •. COMPARISON OF COMPOSITE SOLUTION 
WITH GOLDSTEIN INNER AND OUTER SOLUTIONS. 
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TABLE I. CALCULATED COEFFICIENTS IN THE FLHST TWO SUM.3 OF,(2-11) FOR U - c 

X 1/L = .5 _, ' ' 

I 
o/0, ' ' ·•. ~I""}' ~·u. 'lr:)' 

£3 £6 ~ 
·r:-

fo if -- --l .,, 
y 'l 

.-. ~' 5: .l• 1:.,. 
/ 

! 
0. o. 3.6787 -3.5418 8. 1174 i 0. .6790 0. 0. -.6366 0. 0. 

• 30 I .20 3.9428 -4.8454 14.0990 . 1989 . 6750 -.0206 -. 442 5 -.6063 . 12 31 ]. 3073 

' . 60 I .40 4.6649 -8.7917 34. 7420 . 3938 .·6474 -.0787 -.8423 -.4045 . 4469 2.4931 
I 

.90 . 60 5.6800 ~15.6700 80. 3770 . 57 48' . 5785 -. 1566 -1.1062 . 0573 . 7647 2. 7024 

l. 20 .80 6.8276 -26.3880 175. 4600 . 7290 . 4664 -.2199 -l. 1442 .6712 .7503 ]. 13 52 

l. 50 i. 00 8. 0 l49 -42. 5930 368.4500 .8461 . 3300 -.2356 -. 9533 ]. 1475 .2741 . 1812 

1. 80 l. 20 9.2095 -66.4720 745.5400 . 92 3 3, . 2006 -. 1978 -.6407 1.'2448 -. 369 5 -. 90 ]] 

2. 10 1. 40 10.4050 -100.5400 1450.0600 . 9670 . 1033 -. 1319 -. 3469 . 9871 -. 7419 -1.0515 
2.40 l. 60 11.6000 -147.6400 2715.3000 . 9878 . 0447 -.0705 -. 1512 . . 6008 -. 7076 -.6544 

2.70 1. 80 12.7960 -210.9000 4892.7000 . 9962 . 0162 -.0305 -.0530 .2878 -.4585 -.2522 

3.00 2.00 13.9910 -293.8500 8506.3000 .9990 . 004,9 -. 0107 -.0149 . 11'03 -.2212 -.05b6 
3. 30 2,20 15. 1870 -400. 3100 14305.0000 . 9998 . 0012 -.0031 -.,0033 . 0341 -.0827 . 0052 

I -- ----L_ __ ---- '---- . -

-
TABLE II. CALCULATED VALUES OF U (N) FROM (2-11) WITH N = 2, 5, 8 

c -
COMPARED TO GOLDSTEIN INNER AND OUTER SOLUTIONS 

ATX 1/L=.5 

Goldstein Solutions 
calculated herein over 

Uniformly V a 1-i d So 1 uti o n_s 

extended Y .:domain N = 2 N o 5 ·- ---
Inner Outer· (2) Inner Outer U (S) 

!nne r Outer (8) 
.Y Solution Solutio,· u Terms. Terms Terms Terms u 

to 6' ( ~ 8 ) to 11(~9) c only_ .onlv 
c only only c 

-
0. .560 . 311 . 613 .613 . 339 . 539 . 539 . 300 ' . 561 

. 300 .593 . 472 .655 .657 . 536 . 559 . 556 . 438 . 591 

. 600 '---' .685 . 614 . 757 . 777- . 717 . 617 . 594 . 567 . 6'67 

.900 .830 .729 .874 .947 . 864 .706 .620 .690 . 754 
1. 200 1. 045 . 820 . 964 1. 138 . 962 . 810 ,--- .588 . 806 . 827 
1.500 I. 408 . 892 1. 011 1. 336 1. 0 II .905 . 448 . 905 . 882 
I. 800 2.092 . 947 1. 024 1. 535 ' 1. 024 . 972 . 150 . 972 .929 
2. 100 3.416 . 979 1. 019 1. 734 I. 019 1.004 -.360 I. 004 . 964 
2.400 5.929 . 993 1. 010 I. 933 1. 010 1.011 -I. 142 I. 011 . 991 
2. 700 10.480 . 997 I. 004 2. 133 I. 004 1. 008 -2.261. 1. 008 I. 00 I 
3.000 is. 362 . 998 I. 00 I 2.332 I. 00 I I. 004 -3.790 I. 0.04 1.'002 
3.300 31. 444 . 999 I. 000 2·. 531 1.000 I. 001 -5.809 I. 001 I. 000 I - I -

- -2t------ --

d, • 

_:{_· 

I• 

I. 48 58 
l. 3 I 07 

. 1858 
-2. 1020 
-4.2663 
~4. 3R70 
-2.2293 

. 3287 
I. 5698 
l. 4493 
.8349 
. 34 77 

-- ---

---

N 8 
Inner 
Terms 
only 

. 560 

. 593 

. 685 

.830 
l. 045 
I. 408 
2. 092 
3.416 
~- 929 

10.480 
IR.362 
31.444 

., I 
·:rs' 

8! 

0. 
~ -. 60 
-2. 06 
-2.80 
-.98 
2.62 
4. 58 
3. 20 -

. 46 
-1. 15 
-1. 25 
-. 74 

- -

I 
I 

-
Outer 
Terms 
only- - -

. 311, 

.474 

.622 

. 740 

.823 

. 882 

. 929 
· .. % 7 
. 991 

]. 00 J 

1.003 
I. 002 

I ... 
~ 
I 
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Nomenclature 

L plate length 

p pressure 

U L/v , , the Reynolds number 
00 

u,U velocity in x direction, parallel to plate 

v,V velocity in y direction, perpendicular to plate 

x distance parallel to plate measured downstream from leading 

edge, and divided by the plate length 

X X- 1 

y distance measured perpendicularly frof!l the plane of the plate, 

and divided by the plate length 

Y stretched distance from plane of plate 

~ · stream function for· Blasius solution 

v kinematic viscosity 

p mass density 

Subscripts __ 

c composite solution 

i inner solution 

' e external or outer solution 

Bt Blasius solution 

1 dimensional variable (except in the· expansion 'of l.J!e , equations 
2-3 and A-5. 8) 

x, y, Y partial differe.ntiation with respect to the variable indicated 

oo freestream value 
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APPENDIX 

SUMMARY OF .FIRST-ORDER THEORY FOR STEADY 2-DIMENSIONAL 

INCOMPRESSIBLE FLOW REGIONS SURROUNDING A FLAT PLATE 

~he derivation of the first-order approximate solutions to the 
exact Navier-Stokes fl.ow in various regions is. outlined below. The 
symbols, flow regions, and coordinate system are defined in the 
Nomenclature and in Fig. l. Abbreviations used herein are as follows: 
fct :: function; ode-prob :: ordinary differential equation problem 
(governing equations with boundary conditions); pde-prob =partial 
di-fferential equation problem. 

Description 

1. Navier-Stokes flow eqns. (l845)JExact) 

r· = X/1 
y = Y/L , u = u1/U

00 
, v = vl/Uoo} 

2 
RL = U L/v p = P/PUOO 1jJ = l.J!/U

00
L 

00 

t .: + 
v Clay) (u, v) = (31?_ 

- dX ' ~) + ;L v2 (u,v)~ : 

au av 
-+ -= 0 ax ay 

Integrate (l.2b) by defining 1jJ such that 

{ 
- Cll.jJ 

u - Cly , v = - Cll.jJ} 
ax 

Substitute (1.3) in (l.2a) and eliminate p to get 

2. Inviscid Euler flow eqns. (1755) 

Approximation: R + oo in (1.2) and (1.4)·gives 
L 

lu - + v - (u v) = - ~ { a a)' (a 
. ~ dX Cly ' dX 

-~)· au + av } 
Cly , ' dX Cly = O 

(Eqn. No.) 
Eqn. Name 

(A-1.1) 
Transform 

(A-1. 2) 
Governing 

(A-1.3) 

CA-l. 4 r 

(A-2.1) 
Governing 

(A-2.2) 
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3. Prandtl boundary-layer flow eqns. (1904) 

Approximations: 

{ 

RL -+- oo , y
1 

= !f(R~l/2 L) 

. within boundary-layer 

{V = R~/2y /L , V = Rt12
v 1/L , '¥ ~ Rti2 

I)! 1/ (U
00 
L)} 

} (A-3.1) 

(A-3.2) 
Transform 

Substitute (3.1),, (3.2) in (1.2) and neglect higher order terms 

to get boundary-layer eqns: 

YYY 

aul aul 1 apl 
ax 1 + v 1 ay 1 = - p axl + 

+ '¥ 
X 

'¥ 
YY 

an + a
2
u an -- au av o} ~ 2'~ O,rs-x+-= 

ox aY aY 0 a'i 

'¥ '¥ 
Y xY 

= - ~ dx 

4. Blasius flow eqns. for a flat plate (1908) 

Approximations: ~ = 0 dx 

{x1 = x1 + L , n =-} YNl:Joo/x1v , s8_q,cTi) .= w1;\fxN} 
Substitute (4.1) in (3.3} to get 

(A-3.3) 
Dimensional 

' (A-3. 4) 
Non-dim. 

(A-3.5) 
Stream-fct 

(A-4. 1) 
Transform 

·{sst"' + z;; 8tz;;st" = o., z;; 8_q,CO) = z;; 8t' (O) = o 

with two types of solutions as follows: 

l; 1 (oo) = 2} (A-4'. 2) 
Bi · o~e-prob 

-(1) numerical solution holding for all n giving 

z;; 8{ co) = 1. 32824 

series solution holding for small -n giving (2) 

al ' a4 ' a7 in 

(A-4.3) 
small-n 

.' ' 
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5. Goldstein near-wake flow eqns. (1930) 

1/2 
= 2RL vl/Uoo~ (A-5.1) 

\Transform 

, u 

/ Substitute(5.1) in (3.2) to get 

au V au = Cl
2
u u- + a ax ay ay2 

au av 0 b -+ ay = ax 

au (A-5.2) 
X > 0 , y = 0 v = 0 ay = 0 c pde-pr?b 

\u~i , all y d 

X = 0 u - u -

lu~i ~ 0 
4 7 a 1Y + a

4
Y + a7Y , y << 1 e 

where uBi ~ Blasitis ·solution at trailing-edge of flat plate with 

superscripts N , S denoting numerical and series solutions and 

al = -
2
1 a a - .! 2

;41 . ~ c4- - 2 a . 

Integrate (5.2b) by defining 

lu 
aljJG 

v - aljJG ~ = ar = ax 

a) Inner-solution (small 

Let 

ljJG such that 

y , 0 < ~.2 . 5) . 

(A-5.3) 

(A-5.4) 
Transform 
Stream fct 
expansion 
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Substitute (S.3), (S.4) in, (S.2) and equate equat powers of t;, to 

zero getting 

f II I + 2f f II - f I 2 = 0 
0 0 0 0 

f II I 

3 + 2f f II 
0 3 

Sf 1f I 
0 3 + 

f II I + 2f f II Sf 1f I + 
6 0 6 0 6 

f (O) = I II (0) = 0 
r r 

which can be solved numerically. 

b) La.rge-n solution 

Sf 11f = 0 
0 3 

Sf 11f = 4f 12 Sf I II 
0 6 3 3 3 

as t;, ~ o , n ~ oo 

r = 1,3,6 

(A-S.S) 
ode-prob 

For large-n , the numerical solution of (S.S) is of the form: 

f Cn) , A 2 I 

"' on + B n + c 
0 0' o-

f 3{n) 
' s 4 

"' A3n + B3n + + F3 

f 6 (n) "' A6n 
s s6n 

7 
16 + + ... + 

where the coefficients A. , B. , C. , ... are known. 
J ' J J 

Substitute (S.6), (S.4a) in (S'.4p) to get 

ipi "' r;o[Ao(i v)2 + A3(j- v)s + A6(i v)s + .•• ] 

+ t;,l [sij v) + s3(j v)4 + s6(j- vf + ..• ] 

+ t;, 2 [ c 0 + c 3( j y) 3 + : • .J + ... 

which suggests, the large-n expansion 

(A-S.6) 

(A-S.7) 

(A-S.S) 

-· 



'-· 

A-5 

where the l/J. (Y) are giyen by (5. 7). Substitute '(5.8), (5.3) in 
J 

(5. 2a) to get 

\jJ lljJ I 
0 1 \jJ "l/J 

0 1 = 0 

\jJ lljJ I \jJ "l/J = \jJ \jJ " \jJ 112 
(A-5.9) 0 2 0 2 1 1 
ode-prob 

l 

At the plate trailing-edge (~ = 0) ! \jJ
0

1 (Y) = ~ t~1 so (5.9) can 

be integrated sequentially in closed form. Goldstein gives the 

solution for w
0 

through ljJ8 

Notes: 

1. The approximations in the Prandtl boundary-layer eqns. (3.1) 

" apply to the Blasius and Goldstein flows. 

2. The dimensional l/Jl is nondimensionalized by various factors 

(see eqns. (1.1), (3.2), (4:1), (5.1)) in the different flows. 

3. The dimensional coordinate x1 is nondimensiona1ized by 4L 

in the Goldstein flow and by L in the other flows.- For 

simplicity the same-symbol x is used for the nondimensional 

coordinate but the context (eqns. (1.1), (5.1)) clarifies which 

factor is used. 



r-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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