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Despite the advent of high throughput genomics technology and the wealth of data charac-

terizing transcription that followed, it remains difficult to relate genomic sequence to transcriptional

activity. Next generation sequencing techniques, including ChIP-seq, RNA-seq, and ATAC-seq,

have enabled high resolution mapping of transcriptional activity, including RNA expression and

histone modifications, as well as the localization of transcription factors and DNA binding proteins

that regulate transcription. By integrating of these activity maps using statistical methods and

high-performance computing, a model has emerged in which transcription factors recognize and

bind to short DNA sequence motifs (words) to recruit cellular machinery such as RNA polymerase,

which is necessary for transcription. Previous studies have also demonstrated that transcription
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factors often bind together in a cell type and context specific manner, setting the foundation for

a genomic grammar in which combinations of transcription factors recognize ”sentences” that

specify cell type and context specific transcriptional activity. Using this foundational model as

our starting point, we devised a machine learning framework named TBA (a Transcription factor

Binding Analysis), for investigating the sequence specificity of transcription factors by jointly

weighing the contributions of hundreds of DNA motifs. We applied TBA to a systematic map of the

binding profiles for the AP-1 transcription factor family, which share a conserved DNA binding

domain. We observed that each family member demonstrated interactions with distinct sets of

motifs, which varied from cell type to cell type, and in different cellular states. Next we applied the

TBA framework to hundreds of transcription factor ChIP-seq data sets, demonstrating that like AP-1,

transcription factors generally interact with dozens of other transcription factors genome-wide and

with 3-4 transcription factors at a given locus in a cell-type specific manner. We used these findings

describing transcription factor behavior to devise a neural network with an attention mechanism

that calculates locus specific maps of how motifs interact to predict transcriptional activity. These

studies demonstrate machine learning approaches that reveal additional insight into a transcriptional

grammar that coordinates eukaryotic gene expression.
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Chapter 1

Introduction

The Central Dogma of biology describes a flow of information that begins with the the

genome, an instruction set that describes the attributes of a living organism, and that ultimately

arrives at proteins, one of the physical manifestations of these instructions. Using the four DNA

nucleotides - A (adenosine), C (cytosine), G (guanine), and T (thymine) - that serve as the alphabet

of the genome, nature has composed a rich library of genomes that specifies the unique appearance

and behavior of the diverse organisms that roam the earth. Additionally in complex organisms, such

as mammals, there may be hundreds of different cell types, many of which are conserved, that each

express the genome in a cell type specific manner. Within mammalian genomes, there are on the

order of tens of thousands of genes (sequences of nucleotides) that are transcribed to RNA, which

may then be translated into proteins that give rise to cellular function. Each cell type expresses a

distinct repertoire of these genes, allowing for cell type specific behavior and function20 . It remains

an ongoing challenge to explain how cell type specific gene expression patterns are encoded by the

genome.

A critical piece of this puzzle is RNA polymerase, an enzyme that synthesizes RNA by

using DNA as a template. And so, RNA polymerase must be recruited to each gene in a cell type

specific manner in order to effect cell type specific gene expression. RNA polymerase itself cannot

recognize the genes, and more specifically promoters, the DNA sequences at the start of genes

where RNA transcription starts40. RNA polymerase’s localization to the promoter of genes depends

in part on interactions with general transcription factors (TFIIB, TFIID, TFIIE, TFIIF, and TFIIH),
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which recognize and bind to short DNA sequences located at promoters40. As general transcription

factors are broadly expressed across all cell types, they cannot be the primary determinant of cell

type specific gene expression. In addition to the general transcription factors, there are hundreds of

other transcription factors that can have cell type specific patterns of expression96. Transcription

factors are categorized into families according to conserved protein domains including their DNA

binding domains104. Each family of transcription factors may contain dozens of members which

bind to highly similar DNA sequences33;82. Despite recognizing similar DNA sequences, members

of a transcription factor family can have distinct biological functions and bind to distinct locations

in the genome, suggesting that a transcription factor’s DNA binding domain is not not the sole

determinant of its binding targets27;35;37;73;101.

Previous work has identified combinations of transcription factors that are critical to the

identity of a cell type. These combinations of transcription factors, which are also referred to as

lineage determining transcription factors. Examples of lineage determining transcription factors

include the Yamanaka factors, Oct2, SOX4, and Nanog, which are critical for the identity of

pluripotent stem cells as well as PU.1 and CEBPa, which are important in macrophage cells28;29;89.

Studies have shown that the binding sites of each lineage determining transcription factors often

are in close proximity, suggesting collaborative binding activity29. Indeed, studies on the effect

of natural genetic variation in diverse mouse strains have shown that a disruption in the binding

site of one lineage determining transcription factor can affect the binding of another28;65. Lineage

determining transcription factors are also referred to as pioneer factors as they are thought to be able

to make an closed chromatin, inaccessible region of the genome, accessible to other transcription

factors, allowing transcription factors to bind to cell type specific regions31. Thus, collaborative

binding of transcription factors is likely an important mechanism necessary for activating chromatin

regions and imparting cell type specific gene expression29. The phenomena of collaborative binding

suggests that cell type specific gene expression can be encoded as arrangements of transcription

factor motifs at promoters as well as enhancers. Enhancers are regulatory DNA sequences located

throughout the genome that are thought to modulate gene expression levels by looping to interact
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with promoters31.

High throughput sequencing technology has allowed for us to examine the workings of the

genome at unprecedented resolution83. In addition to maps of the genome that have been completed

for humans and model organisms, sequencing technology has allowed for the interrogation of the

state of the genome, including at promoters and enhancers79. Sequencing of RNA allows for the

construction of cell type specific gene expression profiles. Chromatin immunoprecipitation followed

by sequencing (ChIP-seq) allows for the isolation of DNA bound by a specific transcription factor,

with sequencing to map the binding sites of a transcription factor. Analysis of sequences enriched at

a transcription factor’s binding sites allows for the identification of DNA motifs recognized by that

transcription factor31. The DNA binding motif of hundreds of transcription factors are available in

several databases38;68;102. ChIP-seq can also be used to epigenetic modifications of the genome

such as histone methylation and acetylation110. Assays such as Assay for Transposase Accessible

Chromatin (ATAC-Seq), MNase-Seq and DNase-Seq allow for the assessment of which regions of

the genome are accessible for transcription factor binding12;36;45;106.

The scale of high throughput sequencing data, has made the study of the genome an

increasingly computational field of study where big data has been matched with high performance

computing. Machine learning has emerged as a promising technique for relating genomic attributes

such as DNA sequence, epigenetic modifications, and transcriptional activity using high throughput

sequencing data1;22;46;55;76. Machine learning is a natural choice for analyzing high throughput

genomics data for two primary reasons. First, machine learning requires the use of large data

sets, which is easily met by the scale of sequencing data. Second, machine learning models

can learn complex, nonlinear relationships in large data sets, which allows for the modelling

of sophisticated biological phenomena influenced by multiple factors such as the combinatorial

binding of transcription factors or enhancer activation1;46;76. Despite the scale of sequencing data,

it remains a challenge to systematically profile all the components that may play a role in regulating

transcription. Just within the nucleus, there are hundreds of transcription factors that would need

to be profiled using ChIP-seq. And so, sequence based models that leverage existing databases of
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DNA binding motifs to infer transcription factor binding are a powerful tool for investigating how

transcriptional regulation is encoded by the genome1;22;46;55;76.

This work began with the broad question - how is the genome interpretted or read? Over

time, this work became focused on the identification of sequence elements that can be used to

predict genomic features such as transcription factor binding, accessible regions of the genome, and

enhancer activation. We began with the puzzle of how members of the AP-1 transcription factor

family can recognize the same DNA sequence, yet bind to distinct regions in the genome. As part

of our solution to this puzzle, we developed a machine learning model, which used a library of

DNA motifs to learn combinations of DNA motifs that are enriched at the binding sites of each

AP-1 family member. In addition to interactions with lineage determining transcription factors, we

found that each family member potentially interacted with dozens of other transcription factors.

This was true not just for the AP-1 family members, but broadly for hundreds of transcription

factors whose binding sites were mapped by the ENCODE consortium. Using the same machine

learning approach, we were able to accurately predict which regions of the genome are accessible.

These studies led us to assess whether combinations of DNA motifs, and implicitly the collaborative

binding of transcription factors, can be used to predict enhancer activity. We then devised a neural

network with an attention mechanism that computes high resolution maps of how DNA motifs

interact with one another to predict transcriptional activity. Collectively, these studies demonstrate

both the promise of machine learning techniques for interpreting high throughput sequencing data as

well as the importance of combinations of DNA motifs in a transcriptional grammar that coordinates

eukaryotic gene expression.
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Chapter 2

Diverse motif ensembles specify DNA bind-
ing activities of AP-1 family members

2.1 Abstract

Mechanisms by which members of the AP-1 family of transcription factors play both

redundant and non-redundant biological roles despite recognizing the same DNA sequence remain

poorly understood. To address this question, we investigated the molecular functions and genome-

wide DNA binding patterns of AP-1 family members in mouse macrophages. ChIP-sequencing

showed overlapping and distinct binding profiles for each factor that were remodeled following

TLR4 ligation. Development of a machine learning approach that jointly weighs hundreds of DNA

recognition elements yielded dozens of motifs predicted to drive factor-specific binding profiles.

Machine learning-based predictions were confirmed by analysis of the effects of mutations in

genetically diverse mice and by loss of function experiments. These findings provide evidence that

non-redundant genomic locations of different AP-1 family members in macrophages largely result

from collaborative interactions with diverse, locus-specific ensembles of transcription factors and

suggest a general mechanism for encoding functional specificities of their common recognition

motif.
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2.2 Introduction

Gene expression is controlled by sequence-specific transcription factors (TFs) which bind

to promoters and distal enhancer elements31;59;84. Genome wide studies of regulatory regions

in diverse cell types suggest the existence of hundreds of thousands of enhancer sites within

mammalian genomes. Each cell type selects a unique combination of ∼20,000 such sites that play

essential roles in determining that cells identity and functional potential2;53;79;99. Selection and

activation of cell-specific enhancers and promoters is achieved through combinatorial actions of the

available sequence-specific TFs5;23;28;42;54;95;103.

TFs are organized into families according to conserved protein domains including their

DNA binding domains (DBD)104. Each family may contain dozens of members which bind to

similar or identical DNA sequences33;82. An example is provided by the AP-1 family, which

is composed of 15 monomers subdivided into five subfamilies based on amino acid sequence

similarity: Jun (Jun, JunB, JunD), Fos (Fos, FosL1, FosL2, FosB), BATF (BATF, BATF2, BATF3),

ATF (ATF2, ATF3, ATF4, ATF7) and Jdp28;32;35;78;92. AP-1 binds DNA as an obligate dimer

through a conserved bZIP domain. All possible dimer combinations can form with the exception of

dimers within the Fos subfamily75. The DBD of each monomer of the AP-1 dimer recognizes half of

a palindromic DNA motif separated by one or two bases (TCASTGA and TCASSTGA)26;33;57;72;82.

Previous work has shown that dimers formed from Jun and Fos subfamily members bind the same

motif33. Given a conserved DBD, and the ability to form heterodimers, it naturally follows that

different AP-1 dimers share regulatory activities. However, co-expressed family members can play

distinct roles27;35;37;73;101. For example, Jun and Fos are co-expressed during hematopoiesis, but

knockout of Jun results in an increase in hematopoiesis whereas knockout of Fos has the opposite

effect35;37;73;101. The basis for non-redundant activities of different AP-1 dimers and heterodimers

remains poorly understood.

Specific AP-1 factors have been shown to form ternary complexes with other TFs such as

IRF, NFAT and Ets proteins, resulting in binding to composite recognition elements with fixed
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spacing9;71;98. However, recent studies examining the effects of natural genetic variation suggested

that perturbations in the DNA binding of Jun in bone marrow derived macrophages are associated

with mutations in the motifs of dozens of TFs that occurred with variable spacing65. These

observations raise the general question of whether local ensembles of TFs could be determinants

of differential binding and function of specific AP-1 family members. To explore this possibility,

we examined the genome-wide functions and DNA binding patterns of co-expressed AP-1 family

members in resting and activated mouse macrophages. In parallel, we developed a machine learning

model, called a Transcription Factor Binding Analysis (TBA), that integrates the affinities of

hundreds of TF motifs and learns to recognize motifs associated with the binding of each AP-1

monomer genome-wide. By interrogating our model, we identified DNA binding motifs of candidate

collaborating TFs that influence specific binding patterns for each AP-1 monomer that could not

be identified with conventional motif analysis. We confirmed these predictions functionally by

leveraging the natural genetic variation between C57BL/6J and BALB/cJ mice, and observing the

effects of single nucleotide polymorphisms (SNPs) and short insertions or deletions (InDels) on

AP-1 binding. Finally, we confirm the models prediction of PPARγ binding being specifically

associated with the selection of a single family member, Jun, using PPARγ-deficient macrophages.

2.3 Results

2.3.1 AP-1 family members have distinct regulatory functions in
macrophages

AP-1 family members are ubiquitously expressed with each cell type selecting a subset of

family members (monomers), which make up the AP-1 dimer. Each family member shares a con-

served DNA binding and dimerization domain but are dissimilar outside of the basic leucine zipper

(bZIP domain, Fig. 2.1A). For this study, we will focus on Thioglycollate elicited macrophages

(TGEMs). TGEMs, which are a classical primary macrophage population, are produced by injection

of thioglycolate into the peritoneal space. Macrophages are then recruited to the peritoneum and can

be easily isolated by flushing the peritoneal cavity three days after treatment. RNA-seq performed
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on TGEMs revealed ATF3, Jun, and JunD as the most expressed AP-1 family members under basal

conditions (Veh, Fig. 2.1A, Fig. 2.2A). Following activation of TGEMs with Kdo2 lipid A (KLA),

a specific agonist of TLR477, there is a marked increase in Fos, Jun and JunB expression, consistent

with AP-1 family members having context-specific roles (Fig. 2.1A).
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Figure 2.1 (next page). AP-1 proteins have overlapping and distinct transcriptional functions in
macrophages. A. Protein alignment of monomers (right) and mRNA expression of monomers in
TGEMs before and after 1-hour KLA treatment (left). B. Hierarchical clustering of genes that are
differentially expressed in iBMDMs subjected to CRISPR mediated knockdown of the indicated
AP-1 monomer with respect to scramble control. Expression values are given as the fold change
with respect to scramble; values are Z-score normalized across each row. Representative functional
annotations for each gene cluster are calculated using Metascape and the enrichment of each term is
quantified as the negative log transform of the p-value. C. Expression of a subset of genes in AP-1
protein knockouts. * indicates FDR < 0.05.
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To examine the regulatory function of individual family members, knockout cell lines for

ATF3, Jun and JunD were produced using CRISPR/Cas9-mediated mutagenesis in immortalized

bone marrow-derived macrophages (iBMDMs). Knockout efficiency was confirmed by western

blotting (Fig. 2.2B). RNA-seq analysis identified 2496 genes differentially expressed when

comparing the knockout to control cells (FDR<0.05, fold change >2, RPKM≥16 Fig. 2.1B, Fig.

2.2C). Clustering of differentially expressed genes revealed distinct clusters that were affected in

individual knockout cell lines, demonstrating that each family member can have distinct as well as

redundant activity within a single cell type and corroborating previous studies27;35;37;73;101. The

Jun knockout had a more modest effect on gene expression than the ATF3 and JunD knockout (125,

651, and 1564 differentially expressed genes respectively), suggesting that Jun may have more

redundant activity (Fig. 2.1B and Fig. 2.2C). Each of the gene clusters was enriched for Gene

Ontology terms for differing biological functions, including cell cycle, immune effector process

and NADPH complex assembly (Fig. 2.1B). Examples of affected genes are shown in Figure 1C.

Mmp12 is affected by knockdown of all three factors, whereas Marco and Fth1 exhibit minimal

changes in expression in ATF3 and Jun KO, but decreased expression in the JunD KO iBMDMs.

2.3.2 AP-1 family members can target distinct loci in addition to overlap-
ping loci

Given the distinct roles of individual family members in regulating macrophage transcription,

we used chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) to map the binding

of each family member in resting TGEMs treated with vehicle (Veh) or KLA for one hour (activated

TGEMs). Not surprisingly, these experiments detected a substantial number of binding sites (n

> 10000, IDR < 0.05) for family members with the highest mRNA expression (Fig. 2.2A, Fig.

2.4A). ATF3, Jun, and JunD binding sites were detected in both Veh and KLA treatment whereas

Fos, Fosl2 and JunB bind predominantly after KLA treatment (Fig. 2.4A). Despite high RNA

expression in Veh treatment, JunB protein expression was not detected in the nucleus by western

blot, explaining a lack of ChIP-seq signal (Fig. 2.4B). Though ATF4 is highly expressed by RNA,

we were anable to detect ATF4 by ChIP-seq using several conditions and several different antibodies
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Figure 2.2. A genome-wide map of AP-1 activity in macrophages. A. mRNA expression of all
AP-1 monomers in Vehicle and 1-hour KLA treated TGEMs by RNA-seq. B. Western blot analysis
of ATF3, Jun and JunD expression in CRISPR mediated knockout of ATF3, Jun and JunD in
iBMDM cells. C. Scatterplots showing RNA-seq expression between scramble control and CRISPR
mediated knockout of ATF3, Jun and JunD.
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(data not shown). Hierarchical clustering of all 50664 AP-1 binding sites (Fig. 2.3A) found in

either Veh or KLA treated TGEMs according to the relative binding strength of the family members

(normalized to a maximum of 1 at each locus) yielded distinct subclusters that highlight the specific

binding patterns of AP-1 family members as well as the reorganization of AP-1 cistromes in KLA

treated macrophages (Fig. 2.3A). Representative regions that show distinct binding patterns of

AP-1 family members are shown (Fig. 2.3B, Fig. 2.4C).

The gain and loss of binding sites of ATF3, Jun and JunD after KLA treatment provided an

opportunity to correlate changes in their DNA occupancy with local changes in enhancer activity.

Changes in the expression of enhancer-associated RNAs (eRNAs) are highly correlated with changes

in enhancer function and nearby gene expression42. To detect eRNAs, we performed Genome

Run-On Sequencing (GRO-seq) in TGEMs, which provides a quantitative measure of nascent

RNA13. We examined GRO-seq signal at ATF3, Jun and JunD binding sites exhibiting gain, loss

or no change in binding after KLA treatment. In each case, AP-1 occupancy was associated with

greater GRO-seq signal (Fig. 2.3C). These findings suggest that ATF3, Jun and JunD primarily

function as transcriptional activators.
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Figure 2.3 (next page). AP-1 monomers bind at unique loci that cannot be explained by differences
in the DNA binding domain. A. Hierarchical clustering of the relative strength of binding of
each monomer at all AP-1 binding sites in Vehicle and 1-hour KLA treatment conditions. B.
Representative browser shots of ChIP-seq peaks for Veh specific monomers ATF3, Jun and JunD.
C. GRO-seq at sites where ATF3, Jun and JunD was lost, gained or unchanged after one hour KLA
treatment. D. Venn diagram of ATF3, Jun and JunD peaks in Vehicle (left) and table indicating
the de novo AP-1 motifs found in each subset of peaks and the percent of peaks in each subset
that contain one of the two AP-1 motif variants (right). E. Binding strength comparison of ATF3
chimeras. The ATF3 DNA binding domain (blue) is replaced the DNA binding domains of Fos
(yellow) or Jun (Green) and then transduced into ATF3-deficient iBMDM cells with a lentivirus
vector (left). The binding of each chimera is shown as a heatmap of ChIP-seq tags centered on
ATF3 chimera binding sites (replicates indicated in separate rows) that were found to be specific for
ATF3 (blue) or Jun binding in TGEMs (Green). F. Heatmap showing the percent of unique binding
sites for each monomer that contain a de novo motif calculated from each set of unique peaks.
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2.3.3 Family member specific binding sites are associated with the same
AP-1 motif

While 10514 of the binding sites of ATF3, Jun and JunD in the vehicle condition are shared

by all three factors, a greater number of binding sites (11530) are not (Fig. 2.3D). To ensure that

the unique sites were not technical artifacts, we ranked the peaks of each family member according

to the number of ChIP-seq tags detected and then calculated the percent of peaks that were unique

after filtering away binding sites that fell below a given percentile threshold. We found that unique

peaks were present even at higher thresholds, supporting our observation that AP-1 family members

can bind to distinct loci (Fig. 2.4D).

Using de novo motif enrichment analysis, we observed that the binding motif for each

combination of monomers was nearly identical (Fig. 2.3D). To investigate whether family members

preferred either variant of the AP-1 motif, we calculated the percent of peaks bound by each

combination of monomers that had the TRE variant of the AP-1 motif (TGASTCA) and the CRE

variant of the motif (TGASSTCA)25;33. Consistent with previous studies, we found both variants

of the AP-1 motif at regions bound by each combination of monomers, but there was a preference

for the TRE motif (Fig. 2.3D)33. These results suggest that differences in the AP-1 DBD cannot

explain the majority of family member specific binding.

To test the prediction that differences in the AP-1 DBD do not explain binding patterns, we

created ATF3 chimeras by replacing the DBD of ATF3 with that of Fos and Jun (Fig. 2.3E, 2.4E).

The DBDs of these three factors are highly conserved, with identity at 8 and charge conservation at

3 of 11 amino acids directly involved in DNA interaction (Fig. 2.4E)26. We transduced expression

vectors for ATF3 chimeras with either an ATF3, Fos or Jun DBD into ATF3 KO iBMDMs and

then measured the genome-wide binding patterns of each chimera by performing ChIP-seq using

an antibody specific for ATF3 (Fig. 2.3E). Globally, we observed that the chimeras had stronger

binding at ATF3 specific sites in comparison to Jun specific sites and that each chimera exhibited

similar binding across all loci visualized as normalized tag counts in a heatmap (Fig. 2.3E).

Representative browser shots showing similar binding between chimeras are shown at Cxcl10 and
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Spsb1 which are loci specifically bound by ATF3 and Jun respectively (Fig. 2.4F).

Given that the family members all recognized a common DNA binding motif, we hypothe-

sized that differential interactions with locally bound factors mediated by non-conserved protein

contact surfaces may explain unique monomer binding sites. We calculated de novo motifs enriched

at the unique peaks for ATF3, Jun, and JunD individually, and then calculated the percent of each

family members specific binding sites that contained a match to each de novo motif. We identified

motifs for key TFs in macrophages28;65 such as PU.1, CEBP, and Runx (Fig. 2.3F). Composite

motifs for AP-1 and IRF or NFAT occurred at similar frequencies at the unique peaks for each family

member (∼5% and ∼3% of peaks respectively). However, we found no significant differences in

the relative enrichment of motifs associated with ATF3, Jun, and JunD specific peaks that would

explain their specific binding profiles (Fig. 2.3F).
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Figure 2.4 (next page). Extended characterization of AP-1 binding cistrome. A. Quantification of
the number of binding sites for each monomer that are present in vehicle, 1-hour KLA, or shared in
both treatment conditions. B. Western blot testing the nuclear protein expression of JunB in Vehicle
and KLA-1h treated TGEMs. C. Representative browser shots of ChIP-seq peaks for KLA specific
monomers Fos (top), FosL2 (middle), and JunB (bottom). D. Percent of peaks that are unique to
each monomer at different thresholds for the number of reads at each peak. 100 indicates 100% of
the peaks and 10 indicates the top 10% of peaks when sorting by the number of reads. E. Protein
alignment of AP-1 monomer DNA binding domains by Clustal Omega. Black background denotes
identity while grey background denotes similar charge. Amino acids involved in DNA binding are
indicated by stars. F. Representative browser shots of ChIP-seq peaks from ATF3 DNA binding
domain chimeras at an ATF3 specific site (left) and Jun specific site (right).
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2.3.4 A machine learning model that relates combinations of motifs to
transcription factor binding

Given the robustness of the family member specific peaks (Fig. 2.4D), we considered

additional biological mechanisms that might be leveraged for detection of motifs differentially

associated with each family member. Current methods for calculating enriched motifs analyze

each motif individually despite data demonstrating that TFs bind cooperatively in groups9;31.

Additionally, collaborative binding by TFs allows for partners to bind to more degenerate motifs,

which are ignored in de novo motif analysis28. We incorporated these concepts into a machine

learning model that relates the presence of multiple TF motifs, which may be degenerate, to the

binding of a TF. Machine learning models are often considered difficult to interpret due to their

complexity. In building our model, we emphasized simplicity and as a consequence, interpretability.

Figure 3A summarizes our model, TBA (Transcription factor Binding Analysis). TBA

uses logistic regression to learn to distinguish the binding sites of a TF from a set of GC-matched

background loci. For each binding site and background locus, TBA calculates the best match to

hundreds of DNA binding motifs, drawn from the JASPAR library, and quantifies the quality of the

match as the motif score (aka log likelihood ratio score). To allow for degenerate motifs, all motif

matches scoring over zero are considered. The motif scores are then used to train the TBA model

to distinguish TF binding sites from background loci. TBA scores the probability of observing

binding at a sequence by computing a weighted sum over all the motif scores for that sequence. By

considering all motifs simultaneously, TBA can learn to recognize combinations of motifs that are

co-enriched at TF binding sites but that are not individually enriched over genomic background.

The weight for each motif is learned by iteratively modifying the weights until the models ability

to differentiate binding sites from background loci no longer improves. The final motif weight

measures whether the presence of a motif is correlated with TF binding. The significance of a given

motif can be assigned by comparing the predictive performance of a trained TBA model and a

perturbed model that cannot recognize that one motif with the likelihood ratio test.
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Figure 2.5 (next page). TBA, a Transcription factor Binding Analysis. A. Schematic workflow of
TBA. Binding sites for a transcription factor (green boxes) are mixed with random GC-matched
background sequences (grey boxes). Motifs from the JASPAR library are merged to create a
non-redundant motif library. Motif scores are calculated for all sequences at all binding sites and
GC-matched background and then used to train a TBA model. Model weights from the trained
model indicate whether a motif is positively or negatively correlated with the occupancy of a
transcription factor. The performance of the full model and a perturbed model with one motif
removed are compared to identify motifs that are important to the model. The intersection of
important motifs that affect model performance and the model weights learned by the classifier can
be used to infer the binding partners of a transcription factor. B-C. Distribution of Variance Inflation
Factor for each motif in the TBA merged motif library and JASPAR motif library for experiments
performed in (B) Vehicle and (C) KLA treated TGEMs.
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Machine learning models, including TBA, can be confounded by collinearity, which in

our case corresponds to the presence of motifs that are highly similar or redundant6. Collinearity

can cause inaccurate weight and significance to be assigned to motifs. To assess the extent of

collinearity, we calculated the Variance Inflation Factor (VIF)6 for the scores of each motif in the

JASPAR library at AP-1 binding sites. A VIF above 10 would indicate problematic collinearity and

that the scores for a motif are highly correlated with the scores of another motif. We found that a

substantial number of motifs were collinear with at least one other motif (VIF > 10) (Fig. 3B, 3C).

To address the presence of redundant motifs we clustered the JASPAR library, identifying groups of

motifs that are highly similar (Fig. 2.6, colored clades), and merged these motifs together (Pearson

Correlation > 0.9, Fig. 2.6, Fig. 3), resulting in a condensed library of 196 motifs formed from

519 JASPAR motifs. Multiple collinearity was substantially reduced in our condensed library (VIF

< 10, Fig. 3B, 3C).
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Figure 2.6 (next page). Curation of the JASPAR motif library to eliminate highly similar motifs.
Hierarchical clustering of all motifs in the JASPAR non-redundant library. Colored clades give
highly similar motifs (Pearson Correlation ≥ 0.9, indicated by the dotted line) and blue leaf nodes
give motifs that are distinct from all other motifs (Pearson Correlation < 0.9). Representative clades
are indicated on the left and right (with the motif logos indicated).
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2.3.5 TBA identifies combinations of binding motifs that coordinate AP-1
recruitment

To identify motifs associated with specific AP-1 family members, we trained TBA models

for each monomer in resting TGEMs, and probed for differences in the identified motifs. Ranking

each motif according to the mean p-value, we found that all family members shared a core set of

highly significant motifs both positively and negatively correlated with binding (Fig. 2.7A, i and ii,

respectively). The motifs exhibiting strong positive correlation included the AP-1 motif as well as

motifs of macrophage collaborative binding partners for AP-1, such as PU.1 and CEBP28;42;65. To

determine a significance threshold for more moderately ranked motifs, we compared significance

values calculated by TBA models trained on replicate ChIP-seq experiments. We determined that

motifs with a mean p-value<1e-2.5 tended to have similar significance values (absolute likelihood

ratio∼1, Fig. 2.8A). The motif weights that exceeded this threshold were highly correlated between

replicate experiments (Fig. 2.8B). Outside of the core group of motifs shared by all monomers, we

observed∼50 motifs with differential affinities (likelihood ratio > 100 between at least 2 monomers)

for each monomer as defined by TBA (Fig. 2.7A, center panel, shaded regions). Differential motifs

positively correlated with binding (Fig. 2.7A left heatmap in red) included motifs unique to a

monomer such as the PPAR half site with Jun. The full PPARγ motif was negatively correlated with

both ATF3 and JunD, suggesting that PPARγ positively influences the binding of Jun to a greater

extent than the other AP-1 monomers (Fig. 2.7A right heatmap in blue). These results suggest that

AP-1 monomers have distinct sets of collaborating TFs that affect their binding patterns.
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Figure 2.7 (next page). TBA identifies motifs predicted to specify differential AP-1 monomer-
binding in resting TGEMs. A. DNA motifs rank order based on the significance of the motif
according to the likelihood ratio test. The black box represents the most significant motifs positively
correlated with binding for all AP-1 monomers and are listed in (i) and the most significant motifs
negatively correlated with binding for all AP-1 monomers are shown in the grey box and are listed
in (ii). The significance of motifs positively correlated with binding that show a 100-fold likelihood
difference between two monomers are shown on the left heatmap (red); the right heatmap (blue)
gives the significance of corresponding motifs negatively correlated with binding. B. Comparison of
the performance of TBA against the AP-1 motif score alone, Bayesian Markov Model (BaMM) motif
score, and gapped k-mer SVM as measured by the area under the Receiver Operating Characteristic
curve (aucROC). Error bars indicate the standard deviation of aucROC across 5 cross validation sets.
C. Number of motifs that pass an in-silico mutagenesis test for significance (the likelihood ratio test
comparing the performance of a full model that uses all the motifs and a mutated model with one
motif removed) at various p-value thresholds. D. Predictive performance of TBA when predicting
ATF3, Jun and JunD binding as motifs are iteratively removed starting from the least important
motif based on the weights calculated by TBA. Inset shows performance values beginning at 150
motifs removed where predictive performance begins to drop.
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2.3.6 Evaluation of collaborating TF motifs that coordinate AP-1 binding

To assess whether the additional motifs identified by TBA are useful for identifying AP-1

sites, we compared TBAs ability to predict the binding of each monomer to several other sequence

based approaches. Predicting TF binding using just the AP-1 TRE motif score had the worst

performance as measured by the area under the receiver operating characteristic curve (aucROC

(Fig. 2.7B). Bayesian Markov Model motifs (BaMM)86, which assesses dependencies between

the positions within the binding motif, improved upon the simple AP-1 motif score by ∼15% (Fig.

2.7B). The TBA model and the gkm-SVM model achieved even higher performance, demonstrating

that additional sequences outside of a TFs motif may contribute to binding site selection (Fig. 2.7B).

The performance of gkm-SVM exceeded that of TBA (by ∼3%). However, a greater number of

motifs related to the binding of a TF can be extracted from TBA in comparison to gkmSVM. The

authors of gkm-SVM described a procedure to retrieve up to three PWMs from k-mers ranked by

gkmSVM22, while TBA identified over 50 motifs that passed a significance threshold of p<1e-2.5

(Fig. 2.7C). To examine the impact of statistically significant (p<1e-2.5) but moderately ranked

motifs, we calculated TBAs performance while iteratively removing motifs from the model (starting

with the least significant motif) (Fig. 2.7D). The performance of the model started declining when

the motifs from the top 50 were removed, demonstrating that the local sequence environment outside

of the AP-1 motif affects AP-1 binding (Fig. 2.7D, inset).

2.3.7 Cell type specific binding preferences of JunD

To further test the hypothesis that distinct sets of collaborating TFs can affect AP-1 binding,

we examined JunD binding in a panel of cell lines. Each cell type expresses a distinct repertoire of

TFs that are available as binding partners for JunD. We trained TBA models for ChIP-seq of JunD in

each cell line and then extracted the 20 most significant motifs from each model. Motifs which are

bound by TFs known to be important for particular cell lines were found to be correlated with JunD

binding. For example, the Gata motif was positively correlated with JunD binding in K562 cells,

an erythroid lineage erythroleukemia, while Pou motifs (e.g. OCT4) were important in h1-hESCs
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(Fig. 2.8C)34. Differences in the motifs identified by TBA for each cell line corresponded to large

differences in the loci bound by JunD (Fig. 2.8D), suggesting that JunD interacts with different

TFs depending on the expressed binding partners available in each cell type100.

2.3.8 KLA treatment changes the collaborating TFs available to AP-1 and
remodels the AP-1 cistrome

Given that AP-1 binds collaboratively with other TFs, the selection of binding sites for each

monomer will depend on the available of collaborating partners. To study effects of changes in

collaborating TF availability, we examined AP-1 binding before and after KLA treatment. Treatment

of TGEMs with KLA resulted in 178 mRNAs increasing 2-fold (FDR<0.05) or greater (Fig. 2.10A).

A total of 29 genes encoding TFs with known binding motifs (20 upregulated and 9 downregulated)

had a significant change in expression (FDR < 0.05) including AP-1 monomers Fos, Fra2 and

JunB (Fig. 2.10A, blue points). In addition, TLR4 activation by KLA results in the activation

of several latent transcription factors, including NFκB and interferon regulatory factors (IRFs).

Correspondingly, AP-1 monomers showed changes in their global binding patterns with Fos and

JunB displaying drastic upregulation in binding sites (Fig. 2.4A, Fig. 2.9A).

To examine motifs associated with AP-1 binding after KLA treatment, we trained TBA

models for each monomer in KLA treated TGEMs. Again, we observed that all AP-1 monomers

shared a common group of highly significant motifs positively correlated with binding, including

AP-1, CEBP, PU.1, REL, and Egr, and negatively correlated with binding, such as the Zeb1 motif

(Fig. 2.10B, Table 2.1, Table 2.2). Many of the moderately ranked motifs showed large differences

in significance between the monomers (Fig. 2.10B, C: likelihood ratio > 100).

We found that AP-1 monomers with substantive binding before KLA treatment (ATF3, Jun,

and JunD) showed changes in their preference (as measured by the likelihood ratio for each motif

when comparing the KLA and Vehicle TBA models) for motifs bound by upregulated TFs such

as Rel, Irf3/7/8/9, Irf2 and Nfat (Fig. 2.9B, likelihood ratio > 10e4). Conversely, down regulated

TFs were found to have reduced significance for all AP-1 monomers after 1-hour KLA treatment

including Usf (Fig. 2.9B, likelihood ratio < 1e-4). AP-1 monomers activated after 1-hour KLA
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Figure 2.8. Characterization of TBA on individual replicate experiments and JunD ChIP-data from
different cell lines. A. Distribution of the absolute ratio of the likelihood value for each motif that
has mean likelihood below the threshold indicated on the horizontal axis, when comparing models
trained on individual replicate experiments. Likelihood values for each individual replicate are
calculated using the likelihood ratio test, and then averaged across 5 cross validation sets. Error
bars indicate the standard deviation. B. Comparison of the weights of significant motifs (p<1e-2.5)
from TBA models calculated from individual experiments. The similarity of each pair of models,
measured by the Pearson correlation coefficient, is annotated in each panel. C. Significance values
for the 20 most significant motifs for TBA models trained for JunD binding in a several of cell lines.
Red hues indicate motifs positively correlated with binding and blue hues indicate motifs negatively
correlated with binding. D. Overlap of JunD binding sites from various cell lines. Labels indicate
the number of binding sites that overlap between a combination of the cell lines.
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treatment (Fos, FosL2 and JunB) (Fig. 2.3A, 2.9A) also showed an affinity for the Rel, Nfat,

Irf3/7/8/9 and NFκB motifs (Fig. 2.9B).

To assess the extent to which individual TF motifs could explain the change in binding after

KLA treatment, we calculated the correlation of each motifs score to the change in binding after

KLA treatment at all loci (Fig. 2.9C). We found that motifs with large changes in significance when

comparing the Vehicle and KLA TBA models for each monomer showed higher correlations to the

change in binding after KLA treatment and that these motifs corresponded to well established TLR4

activated TFs such as Rel, NFAT, and NFκB (Fig. 2.9B, C)9;42. To demonstrate that combinations

of TFs can better explain the change in AP-1 binding after KLA treatment, we used TBA to predict

the change in binding after KLA treatment. We calculated a predicted change in binding by taking

the difference of the predicted binding strength given by the Vehicle and KLA model for each

monomer (Fig. 2.9D-F). We found that TBA could predict the change in binding after KLA

treatment better than any individual motif (Fig. 2.9C).
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Figure 2.9 (next page). AP-1 binding is context-dependent and affected by the availability of
binding partners. A. Heatmap of the change in binding of AP-1 monomers after 1-hour KLA
treatment quantified as the Log2 ratio of KLA binding to Vehicle binding. B. Heatmap showing the
TBA assigned significance of DNA motifs that had a 10e4 absolute likelihood ratio between the
KLA and Vehicle value for each monomer. C. Pearson correlation of individual motif scores and
TBA predictions with the change in binding after one hour KLA treatment. D. E. F. TBA predicted
change in ATF3, Jun, and JunD binding after KLA-1h treatment versus actual change in binding.
PCC indicates the Pearson Correlation coefficient of TBA predictions to the log2 fold change in
binding of each monomer after one hour KLA treatment.
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Table 2.1. Table of highly significant motifs, positively correlated with binding for all AP-1
monomers in KLA treated TGEMs.

Motif Mean p-val
ap-1 1.00E-50
cebp 1.00E-50
spi1-c 1.00E-50
rel 1.00E-50
egr 1.15E-50
atf7 batf3 creb5 1.64E-33
pax2 2.76E-28
runx 4.26E-25
elk etv 4.48E-23
maf nrl 1.34E-15
irf1 2.70E-13
mzf1 1.14E-07
tcfl5 1.82E-07
spib 2.32E-07
xbp1 1.39E-06
elf 2.77E-06

Table 2.2. Table of highly significant motifs, negatively correlated with binding for all AP-1
monomers in KLA treated TGEMs.

Motif Mean p-val
zeb1 2.20E-46
yy1 1.53E-20
figla id4 snai2 tcf3 tcf4 4.78E-11
onecut 1.04E-07
tbp 3.04E-07
msc myf6 tfap4 6.38E-07
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Figure 2.10 (next page). TBA identifies motifs that coordinate the binding of each AP-1 monomer
in KLA-1h treatment. A. mRNA expression of transcripts before and after KLA-1h treatment.
Differentially expressed (FDR<0.05) factors with known DNA motifs are highlighted in red
(up-regulated) and blue (down-regulated) , labeled and listed to the right. B. DNA motifs rank
order based on the significance of the motif according to the likelihood ratio test. C. Heatmap
representing the negative log10 p-value of each motif that shows a 100 fold likelihood ratio between
two monomers when using the likelihood ratio test.
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2.3.9 Leveraging natural genetic variation between mouse strains to
validate TBA results

To validate the results of our machine learning model genome wide, we used natural genetic

variation found between C57BL6/J and BALBc/J mice, which differ genetically by ∼5 million

single nucleotide polymorphisms (SNPs) and insertions/deletions (InDels)44. We have previously

shown that mutations which occur within DNA binding motifs can be used to predict genetic

interactions between TFs28;65. We performed ChIP-seq targeting expressed AP-1 monomers, ATF3,

Fos, FosL2, Jun, JunB and JunD in TGEMs isolated from BALB/cJ mice. Mutations can be found

in ∼17% of each monomers binding sites, and one third of those loci show strain specific binding

(fold change >2), as shown for ATF3 (Fig. 2.11A). These binding differences cannot be attributed

to differences in mRNA or protein expression levels, which are highly similar (Fig. 2.12A, B). We

observed that TBA models trained on either strain could be used to predict binding in the other

with no loss of predictive ability (Fig. 2.12C), suggesting that each monomer, which has identical

protein sequence in both strains, interacts with the same repertoire of collaborating TFs in both

strains.

To assess the extent to which SNPs/InDels in individual motifs explain strain-specific

binding, we calculated the difference between the best matching motif score at every loci between

the strains and then calculated the Pearson Correlation to the change in binding (Fig. 2.11B,

2.12D). Mutations in individual motifs showed a weak correlation to strain specific binding (Fig.

2.11B, 2.12D). We found that motifs identified with TBA (p<1e-2.5) are enriched at strain specific

peaks in comparison to non-strain specific peaks, but that mutations in any individual motif do not

occur frequently enough to explain the majority of strain specific binding (Fig. 2.11C, 2.12E). We

integrated the contributions of multiple motifs to strain specific binding, by weighting the motif

score difference with the TBA calculated weight, and were able to predict strain specific binding

with a 2-fold improvement in performance in comparison to using the AP-1 motif score (Fig. 2.11B,

2.12D)

Next, we created a variant of our model, which we call TBA-2Strain, that directly learns
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from genetic variation (Fig. 2.11D). TBA-2Strain takes genetic variation as input (quantified as the

change in motif scores between the two strains) and the extent of strain specific binding for each

AP-1 monomer. Using TBA-2strain, we predicted strain specific binding at all binding sites with a

mutation (Fig. 2.11B). In comparison to TBA, TBA-2Strain has better predictive performance (Fig.

2.11B). This may be attributed to TBA-2Strain being able to observe sites that contain mutations but

do not exhibit strain specific binding. The ability of TBA-2Strain to predict strain specific binding

improves upon deltaSVM, a state of the art tool for predicting the effect of genetic variation22

( 2.11B, 2.12D).

We then extracted significant motifs from TBA-2Strain using the F-test (p < 0.05) and

intersected these motifs with motifs identified by TBA model (Fig. 2.11E, 2.7A). We found

that the motifs from both models overlapped substantially (Fig. 2.11E, p < 0.05, Fisher’s exact

test), reinforcing the notion that dozens of motifs contribute to coordinating the targeting of AP-1

monomers. Significance values for motifs identified by both models are shown from resting and

activated TGEMs (Fig. 2.11E, 2.12F). Notably, the PPARγ half-site was detected by both the TBA

and TBA-2Strain models.
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Figure 2.11 (next page). Leveraging the effects of genetic variation to validate TBA predictions
in resting macrophages. A. Comparison of the mean strength of binding (number of quantile
normalized ChIP-seq tags) for ATF3 in resting TGEMs isolated from C57Bl/6J and Balb/cJ versus
the extent of strain specific binding. Loci with a mutation are indicated in blue (fold change ≥2)
when there is strain specific binding and grey otherwise. B. Comparison of different models for
predicting strain specific binding of each monomer as measured by the Pearson correlation of a
models predictions versus the extent of strain specific binding in resting TGEMs. Models that
integrate multiple motifs deltaSVM, TBA, TBA-2Strain, are represented as diamonds. Individual
motifs are indicated using round points. C. Frequency of mutations in significant motifs (from
TBA model, p<1e-2.5) at strain specific (fold change ≥2) versus non-strain specific peaks resting
TGEMs. D. Schematic of TBA-2Strain model. Binding sites for a transcription factor with at least
one SNP or indel (red boxes) and binding sites with no mutation (grey) are identified. Next, genetic
variation is quantified as the difference in the motif scores between the sequences from the two
strains and then used as input to train the TBA-2Strain model to predict the extent of strain specific
binding. Model weights from the trained model indicate whether a mutation in a motif is correlated
with strain specific binding. E. Heatmap of significance values for motifs that intersected between
the TBA and TBA-2Strain model for each monomer in resting TGEMs. Blue indicates motifs
negatively correlated with binding and red indicates positively correlated motifs.

40



A

C
5
7
/B

A
L
 L

o
g
2
 F

C

8

4

0

-4

-8

Non SS: 11.96%

SS: 5.65%

102 4 6 8

ATF3 Veh

Log2 Mean Tags

C Mutation Frequency 

w
ith

 m
o
tif

 m
u
ta

tio
n

SS peaks
0.12

0.00

0.04

0.08

0.12

0.00 0.06

AP-1

PU.1

Cebp

ATF3
Jun
JunD

N
o
n
-S

S
 p

e
a
k

with motif mutation

Positive Significant Motifs

E

A
P

-1
 C

R
E

M
E

g
r

M
e
f2

a
/b

/d
M

a
f/
N

rl
P

a
x2

Ir
f1

E
lk

/E
tv

E
lf

R
u
n
x

A
P

-1
 T

R
E

M
D

n
p
/H

lf/
T
e
f

S
p
4

P
U

.1
C

e
b
p

S
p
ib

Tc
fl5

N
r2

e
1

Z
n
f1

4
3

M
a
fg

M
yo

g
/T

cf
1
2

X
b
p
1

A
rn

tl/
M

it
f

R
e
l

U
sf

D
u
xA

Tc
f2

1
M

yb
P

a
x5

E
b
o
x

T
fc

p
2

P
o
u
6
f2

Ir
f3

/7
/8

/9
H

o
xA

5
R

fx
C

e
n
p
b

P
p
a
rγ

 1
/2

 s
ite

A
sc

l2
/N

h
lh

1
Ir

f2
Z

b
tb

3
3

C
re

m
G

sc
N

fil
3

L
e
f1

N
fi

E
w

sr
1
/F

li1
S

p
z1

Z
n
f4

1
0

E
b
f1

P
p
a
rγ

G
rh

l1
A

ri
d
3
a

H
ic

Z
b
tb

7
M

sc
/M

yf
6
/T

fa
p
4

F
ig

la
/I
d
4
/S

n
a
i2

/T
cf

3
/4

Y
y1

Z
e
b
1

ATF3

Ju
nD

Ju
n

B

ATF3 Jun JunD

0.2

0.0

-0.2

C
o

rr
e

la
ti
o

n
 t

o
 S

tr
a

in

0.5

V
e

h
 s

p
e

c
iifi

c
 b

in
d

in
g

In
d

iv
id

u
a

l 
M

o
ti
fs

AP-1 TRE

TBA predictions

TBA-2strain

TBA

-0.1

0.1

0.3

0.4

deltaSVM

Peak calling 

Strain specific
Strain similar

Merged 
Library

TF  
ChIP-seq

Score motifs in  
seq from both strains

Train 
TBA-2Strain 

Motifs positively 
correlated w/ strain 

specific binding 
Best1

5 kb
Fth1

C57Bl/6EiJ
Balb/cJ

Quantify  
genetic variation

0

0

0

0

1

4

-5

0

6

0

0

0

0

8

5

5

9

0

4

2

8

9

4

0

6

1

5

1

9

8

5

7

9

0

4

2

7

5

9

0

0

1

5

1

9

0

0

2

C57Bl/6EiJ Balb/cJ

Motifs negatively 
correlated w/ strain 

specific binding 

D

024

Negatively Correlated Motif Significance
-Log10 p-val

>5 420

Positively Correlated Motif Significance
-Log10 p-val

>5

41



Figure 2.12 (next page). Leveraging the effects of genetic variation to validate TBA predictions
in activated macrophages. A. Western blot showing protein expression of AP-1 family members
in TGEMs after Veh and one hour KLA treatment using nuclear extracts. B. mRNA expression of
monomers before and after 1-hour KLA treatment in C57Bl/6J and BALB/cJ. C. Model performance
when varying the strain of the data used for training and testing the TBA model. TBA was trained
on AP-1 monomers in either Veh or KLA and on one strain and tested for predictive ability on
either strain. D. Predictive performance of various models for predicting strain specific binding of
each monomer as measured by the Pearson correlation of a models predictions versus the log2 fold
change in binding between the Balb/cJ and C57Bl/6J at all AP-1 binding in activated, one hour
KLA treated, TGEMs. The performance of models that integrate multiple motifs deltaSVM, TBA,
TBA-2Strain, are represented as diamonds. The correlation of the change in an individual motifs
score (due to a mutation) to strain specific binding is indicated using round points. E. Frequency of
mutations in significant motifs (from TBA model, p<1e-2.5) at strain specific versus non-strain
specific peaks for each monomer in KLA treated macrophages. F. Heatmap of significance values
for motifs that intersected between the One Strain and Two Strain model.
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2.3.10 Validation of PPARγ as a preferential modifier of Jun binding

TBA and TBA-2Strain predicted that PPARγ is a preferential collaborating TF specific to

Jun in resting macrophages (Fig. 2.7A, Fig. 2.11E). To confirm this prediction, we performed

ChIP-seq for ATF3, Jun, JunD and PPARγ in wild type and PPARγ knockout mouse TGEMs (Fig.

2.13 A-C)67. Representative browser tracks are shown for Jun binding in wild-type and PPARγ

knockout macrophages (Fig. 2.13D). The protein expression of ATF3, Jun and JunD are unchanged

in PPARγ knockout TGEMs in comparison to wild type (Fig. 2.13E). ChIP-seq experiments in

PPARγ knockout TGEMs show a marked reduction in Jun binding (Fig. 2.13A). In contrast, ATF3

and JunD show little change in binding (Fig. 2.13B, C). We found that PPARγ bound loci where

Jun binding is lost in the PPARγ knockout tended to score higher for the PPARγ half site motif

in comparison to Jun bound loci that did not overlap with PPARγ binding (independent T-test

p<5e-05). To verify the specificity of the Jun antibody we also performed ChIP-seq on Jun in

CRISPR mediated Jun knockout iBMDM cells and iBMDM transduced with scramble control.

We observed substantial loss of Jun binding in the Jun KO cells in comparison to iBMDM cells

transduced with scramble control (12 versus 25041 peaks detected with IDR < 0.05) (Fig. 2.14).

Collectively, these results confirm that PPARγ specifically affects Jun recruitment.

We then probed the interactions between PPARγ and AP-1 family members by co- immuno-

precipitation. ATF3, Jun, and JunD co-precipitated with PPARγ (Fig. 2.13E). As AP-1 binds as

a dimer, ATF3 and JunD may be interacting with PPARγ indirectly by dimerizing with Jun. To

confirm that Jun is required for interaction of ATF3 and JunD with PPARγ , we performed Co-IP

from iBMDM cells in which Jun was knocked out using CRISPR/Cas9 (Fig. 2.2B). We found a

loss of interaction between PPARγ and ATF3 or JunD in JunKO cells as compared to scramble

control (Fig. 2.13F). This suggests that ATF3 and JunD do not interact with PPARγ in the absence

of Jun.
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Figure 2.13 (next page). The Jun-specific DNA binding program is preferentially altered in PPARγ

knockout macrophages. A-C. Changes in binding strength all binding sites in wild type macrophages
in PPARγ-KO macrophages (left) and venn diagrams summarizing the change in binding at binding
sites that overlap with PPARγ (right) for Jun (A), ATF3 (B) and JunD (C). D. Representative
browser shots of Jun in WT and PPARγ-KO TGEMs and PPARγ in WT TGEMs. E. Western blot
analysis of co-immunoprecipiation experiments between AP-1 monomers ATF3, Jun and JunD and
PPARγ in TGEMs. F. Western blot analysis of co-immunoprecipiation experiments between AP-1
monomers ATF3 and JunD and PPARγ in scramble iBMDM or CRISPR mediated Jun knockout
iBMDM
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Figure 2.14. CRISPR mediated knockout of Jun leads to a drastic reduction in Jun binding by
ChIP-seq. ChIP-seq was performed on iBMDM where Jun knockout was performed using CRISPR,
leaving 12 peaks in comparison to the 250041 detected in scramble CRISPR treated iBMDMs and
15548 in TGEMs. Representative browser shot for Jun ChIP-seq at the Spi1 locus is shown.

2.4 Discussion

We demonstrate that AP-1 monomers have both distinct and overlapping transcriptional

functions and genome-wide binding patterns in macrophages. Monomer-specific differences in DNA

binding are not due to differences in the DBD contact residues as demonstrated by ATF3 chimeras

with Jun or Fos DBDs. These observations led us to hypothesize that monomer-specific DNA

binding patterns result from locus-specific interactions with different ensembles of collaborating

TFs. To address this question, we developed a machine learning model that identified combinations

of motifs that are correlated with the binding of a TF. Through this approach, we inferred TF

cooperation via the presence of DNA motifs correlated with the binding of each AP-1 monomer.

Leveraging the natural genetic variation found between C57BL/6J and BALB/cJ, we confirmed that

mutations in motifs predicted by TBA affect AP-1 binding. Finally, we confirmed that PPARγ plays

a preferential role in coordinating Jun binding in TGEMs.
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In designing our machine learning model, we optimized for interpretability. We leveraged

logistic regression, a relatively simple method, to accurately predict TF binding, and we were

able to extract TF motifs underlying these predictions, allowing for the generation of biological

hypotheses that can be experimentally validated. A secondary benefit of this approach is that

the software can be readily used without specialized computing equipment or a high level of

computational understanding. To improve the ability of TBA to robustly identify motifs of interest,

we programmatically curated a library that ”captures” the core of each motif, thereby mitigating

collinearity, which can cause machine learning models to produce inaccurate results. By jointly

weighing this library of motifs, TBA enables the detection of combinations of TF binding sites

that can predict the distinct and overlapping DNA binding of families of TFs that recognize similar

sequences. More broadly, TBA can be applied to predict of the effects of mutations on TF binding,

and identify determinants of enhancer activation and open chromatin.

There are additional complexities in TF binding and enhancer activation we have not

explored. Transcriptional regulation may be encoded by the spacing between motifs as well as the

specific arrangement of motifs. Recent neural network architectures, such as CapsuleNets, could

allow modeling of these complex properties17;81;97. Although more complex machine learning

techniques can be applied to predict TF binding and chromatin state1;46;76, it is challenging to

extract insights from these models. Efforts to build more advanced methods to extract information

from machine learning models will allow not only for interpretation of future models of greater

complexity, but also better understanding of existing models85. For example, the procedure used by

Ghandi and Lee et al to retrieve motifs from gkm-SVM can likely be improved to retrieve additional

PWMs22.

Collectively, our findings suggest two classes of collaborative TFs: 1) highly ranked TFs

that are strongly correlated with the binding of all AP-1 monomers, including TFs important to

macrophage identity such as such as PU.1 and C/EBPs28;30;42;69;91;95 (Fig. 2.7A, black and grey

boxes), and 2) moderately ranked TFs that specify the binding of individual AP-1 monomers (Fig.

2.7A, red and blue boxes). The former likely consists of TFs that play a role in opening chromatin
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while the latter class of TFs may allow for tuning the optimal level of transcriptional activation

or response. These two classes of motifs were also seen in TLR4 activated macrophages where

highly ranked motifs, such as NFκB, were correlated with the binding of all AP-1 family members

(Supp Table 1), while a large set of moderately ranked motifs distinguished each AP-1 monomer

(Fig. 2.10C). Overall, these studies provide evidence that collaborative interactions of TFs allow a

single DNA motif to be used in a wide variety of contexts, which may be a general principle for

how transcriptional specificity is encoded by the genome.

2.5 Methods

2.5.1 Statistical Analyses

In Fig. 2.1C, differences in gene expression was tested using the independent T-test (degree

of freedom=1, two-tailed) on two replicate experiments (n=2). Differentially expressed genes in

Fig. 2.1B were identified using EdgeR80 with default parameters, and using the cut offs FDR<0.05

and log2 fold change ≥2. In Fig. 2.3C, differences between each group (Veh, Shared, and KLA

1h) were examined using independent T-test (degree of freedom=1, two-tailed); the number of loci

in each group for each monomer are as follows ATF3 (Veh=1447, Shared=7460, KLA=6997),

Jun (2390, 3751, 3401), JunD (1351, 5976, 6422). Significance for motifs in Fig. 2.7A was

calculated using the likelihood ratio test (degree of freedom=1) comparing the predictions made by

the full TBA model and the perturbed TBA model at all loci bound in Veh treated macrophages for

Atf3 (n=23160), Jun (n=15548), and JunD (n=19653). Significance for motifs in Fig. 2.8C was

calculated using the likelihood ratio test (degree of freedom=1) comparing the predictions made by

the full TBA model and the perturbed TBA model at all loci bound by JunD in GM12878 (n=7451),

H1-hESC (n=12931), HepG2 (n=41318), K562 (n=47477), and SK-N-SH (38960). Significance for

motifs in Fig. 2.9B, Fig. 2.10B, and Fig. 2.10C were calculated using the likelihood ratio test

(degree of freedom=1) comparing the predictions made by the full TBA model and the perturbed

TBA model at all loci bound in KLA treated macrophages for Atf3 (n=36745), Jun (n=17481),

JunD (n=31641), Fos (n=24365), Fosl2 (n=10619), and JunB (n=13376). Significance values for
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Fig. 2.11F and 2.12F were calculated using the F-test; the number of loci analyzed for monomers

in Vehicle treated macrophages are: ATF3 (n=4163), Jun (n=3004), and JunD (n=4148); the number

of loci analyzed for monomers in KLA treated macrophages are: Atf3 (n=4577), Jun (n=3232),

JunD (n=4366), Fos (n=4477), and JunB (n=3616).

2.5.2 Generating Custom Genome for BALB/cJ

A custom genome for BALB/cJ by replacing invariant positions of the mm10 genome with

alleles reported by the Mouse Genomes Project (version 3 VCF file)44. For C57BL/6J the mm10

reference genome from the UCSC genome browser was used. To allow for comparisons between

BALB/cJ and C57BL/6J during analysis, the coordinates for the custom genome for BALB/cJ

was shifted to match the positions of the mm10 reference genome using MARGE65. We did not

analyze any reads that fell within deletions in BALB/cJ. Reads that overlapped with an insertion

were assigned to the last overlapping position in the reference strain.

2.5.3 Analysis of ChIP-seq Peaks

Sequencing reads from ChIP-seq experiments were mapped to the mm10 assembly of the

mouse reference genome (or the BALBc/J custom genome) using the latest version of Bowtie2 with

default parameters52. Mapped ChIP-seq reads to identify putative transcription factor binding sites

with HOMER29 findPeaks command (with parameters -size 200 -L 0 -C 0 -fdr 0.9), using the input

ChIP experiment corresponding to the treatment condition. In order to reduce the number of false

positive peaks, we calculated the Irreproducible Discovery Rate (IDR) at each peak (using version

2.0.3 of the idr program) with the HOMER peak score calculated for each replicate experiment as

the input to IDR and then filtered all peaks that had IDR ≥ 0.0561. De novo motifs were calculated

with the HOMER findMotifsGenome.pl command with default parameters. Enrichment of de novo

motifs was calculated using the findKnownMotifs.pl program in HOMER with default parameters.

Quantification of RNA Expression Reads generated from RNA-seq experiments were aligned

to the mm10 mouse reference genome (or the BALBc/J custom genome) using STAR aligner with

default parameters16. To quantify the expression level of each gene, we calculated the Reads Per
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Kilobase of transcript per Million mapped reads (RPKM) with the reads that were within an exon.

Un-normalized sequencing reads were used identify differentially expressed genes with EdgeR80;

we considered genes with FDR < 0.05 and a change in expression between two experimental

conditions two fold or greater differentially expressed. To quantify the expression of nascent RNAs

we annotated our ChIP-seq peaks with the number of GRO-seq reads (normalized to 10 million)

that were within 500 bps of the peak center using the HOMER annotatePeaks.pl command.

2.5.4 TBA Model Training

For each AP-1 monomer under each treatment condition, we trained a model to distinguish

binding sites for each monomer from a set of randomly selected genomic loci. The set of random

background loci used to train each model was selected according to the following criteria: 1) the GC

content distribution of the background loci matches the GC content of the binding sites for a given

monomer, 2) contain no ambiguous or unmappable positions, and 3) the number of background

sequences matches the number of binding sites k. For each of the sequences in the combined set

of the binding sites and background loci, we calculated the highest log-odds score (also referred

to as motif score) for each of the n motifs that will be included in the model88 Motif matches

in both orientations were considered. Log-odds scores less than 0 were set to 0. Per standard

preprocessing procedures prior to training a linear model, we standardized the log-odds scores for

each motif, scaling the set of scores for each motif so that the mean value is 0, and the variance is

1. Standardization scales the scores for all motifs to the same range (longer motifs have a larger

maximum score) and also helps to reduce the effect of multi-collinearity on the model training. And

so, the features used for training our model is an n by 2k matrix of log-odds scores standardized

across each row. To generate the corresponding array of labels, we assigned each binding site a

label of 1 and each background loci a label of 0. Using this feature matrix, and label array, we

trained weights for each motif using an L1 penalized logistic regression model as implemented by

the scikit-learn Python package74. Motif weights shown in our analysis are the mean values across

five rounds of cross validation, using 80% of the data for training and 20% for testing in each round.
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Models were trained for ChIP-seqs generated in this study as well as data downloaded from the

NCBI Gene Expression Omnibus (accession number GSE46494) and the ENCODE data portal

(www.encodeproject.org).

2.5.5 Quantification of Multiple Collinearity

To assess the extent of multi-collinearity in the motif score features we used to train our

models, we took each feature matrix corresponding to each experiment and calculated the Variance

Inflation Factor (VIF) for each motif6. To calculate the VIF, we first determine the coefficient

of determination, R2, for each motif by regressing the log-odds scores for one motif against the

log-odds scores of the remaining motifs. Next using the coefficient of determination, the tolerance

for each motif can be calculate as the difference between 1 and the coefficient of determination

(1−R2). The VIF is the reciprocal of the tolerance 1
1−R2 . We used the linear model module of

sklearn Python package to calculate the coefficient of determination.

2.5.6 Motif Clustering and Merging

We scored the similarity of all pairs of DNA sequence motifs by calculating the Pearson

correlation of the aligned position probability matrices (PPMs) corresponding to a given pair of

motifs66. The Pearson correlation for a pair of motifs A and B of length i is calculated using the

formula:

ΣiΣ
4
j(Ai j−Āi)(Bi j−B̄i)√

(ΣiΣ
4
j(Ai j−Āi))2

√
(ΣiΣ

4
j(Bi j−B̄i))2

PPMs were first aligned using the Smith-Waterman alignment algorithm87. Shorter motifs are

padded with background frequency values prior to alignment. Gaps in the alignment were not

allowed and each position in the alignment was scored with the Pearson correlation. The Pearson

Correlation was then calculated using the optimal alignment. Next, sets of motifs that have PPMs

with a Pearson correlation of 0.9 or greater were merged by iteratively aligning each PPM within

the set, and then averaging the nucleotide frequencies at each position.
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2.5.7 Assessing Significance of Motifs for TBA

p-values for TBA were calculated using the log likelihood ratio test. Each motif was removed

from the set of features used to train a perturbed TBA model (using five-fold cross validation). We

then used the full model (containing all motifs) and the perturbed model to calculate the likelihood

of observing binding on all binding sites and background sequences for a given monomer and all

the background regions. The difference in the likelihoods calculated by the full model and the

perturbed model was then used to perform the chi-squared test for each motif. The chi-squared test

was performed using the scipy python package39

2.5.8 Comparison to other Methods

BaMM motif and gkm-SVM were both run with default parameters. We used the lat-

est version of the larger scale gkm-SVM, LS-GKM (compiled from source code downloaded

from github.com/Dongwon-Lee/lsgkm on 8/25/16), and BaMM motif (v1.0 downloaded from

github.com/soedinglab/BaMMmotif56;86. Both models were trained using five-fold cross validation.

Model performance was scored using roc auc score and precision score functions from the metrics

module of sklearn.

2.5.9 Predicting changes in AP-1 binding after one-hour KLA treatment

To predict the change in binding after KLA treatment, we leveraged the motif weights

learned for each of the n motifs (wn) by a TBA model trained on the Vehicle treated data

(Wveh = [wveh,1, ...wveh,n]) and a TBA model trained on the one-hour KLA treated data (Wkla =

[wkla,1, ...wkla,n]) for each AP-1 monomer. The predicted change in binding for each sequence is

then then the difference between the dot product of the standardized motif scores calculated for the

sequence each of the k binding sites (Sk = [s1,k, ...,sn,k]) with the KLA motif weights and the dot

product of the motif scores and the Veh motif weights (∆kla−veh,k =Wkla ·Sk−Wveh ·Sk). Predictions

were made for all genomic loci that intersected with a peak for one of the AP-1 monomers in either

the vehicle or KLA treatment condition.
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2.5.10 Predicting strain specific binding with TBA

To predict strain specific binding, we leveraged the motif weights learned for each of the

n motifs (wn) by a TBA model (W = [w1, ...,wn]) for each AP-1 monomer using the C57BL/6J

data, and the motif scores calculated for each of the k binding sites using the genomic sequence

for C57BL/6J and BALBc/J (SC57,k = [sC57,1,k, ...,sC57,n,k],SBAL,k = [sBAL,1,k, ...,sBAL,n,k]). Next,

we computed the difference of the motif scores for C57BL6/J and BALBc/J ([Dn = [sC57,n,1−

sBAL,n,1, ...,sC57,n,k− sBAL,n,k]) and then standardized the score differences for each motif across all

the k binding sites that had a mutation when comparing BALBc/J to C57BL/6J, yielding standardized

motif score differences for each binding site (Zn = standardize(Dn) = [zn,1, ...,zn,k]). Finally, we

then made a prediction for strain specific binding by computing the dot product of the motif weights

and the standardized difference of the motif scores between C57BL6/EiJ and BALBc/J for the kth

mutated binding site (∆C57−BAL =W · [z1,k, ...,zn,k]).

2.5.11 TBA-2Strain Model Training

For each genomic loci that intersected with a peak for one of the AP-1 monomers, in either

C57BL/6J or BALBc/J, we calculated the highest log-odds score for each of the n motifs that will

be included in the model, using the genomic sequence from both strains, yielding a two sets of motif

scores for each of the k binding sites (SC57,k = [sC57,1,k, ...,sC57,n,k],SBAL,k = [sBAL,1,k, ...,sBAL,n,k]).

Motif matches in both orientations were considered. Log-odds scores less than 0 were set to 0.

Using the motif scores, we compute the standardized difference of the motif scores across the two

strains as described in the above section (Zn = [zn,1, ...,zn,k]).And so, the features used for training

our model is an n by k matrix of log-odds scores standardized across each row. Next, we calculated

the log2 fold ratio of the number of ChIP-seq reads in C57BL/6J compared to BALBc/J to represent

the extent of strain specific binding. Using this feature matrix, and setting the log2 fold ratio of

binding between the two strains as the dependent variable, we trained weights for each motif using

linear regression as implemented by the scikit-learn Python package. Motif weights shown in our

analysis are the mean values across five rounds of cross validation, using 80% of the data for training
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and 20% for testing in each round. Predictions for strain specific binding can be made using the

calculated weights following the procedure in the previous section.

2.5.12 Code Availability

All algorithms relating to training and testing our model, TBA, has been implemented using

Python. Source code and executable files are available at: https://github.com/jenhantao/tba.

2.5.13 ChIP protocol

Protein A and G Dynabeads 50/50 mix from Invitrogen are sued for ChIP (10001D, 10003D).

IP mix consists of 20ul beads/2ug antibody per 2 million cell ChIP. Antibodies against AP-1 family

members were chosen for targeting of non-conserved regions to minimize the potential for non-

specific binding. Antibodies are listed in 2.3. For preparation, beads were washed with 2x with

0.5%BSA-PBS, then beads-antibody were incubated with 0.5%BSA-PBS for at least 1h on rotator

(4°C). Wash 2X with 0.5%BSA-PBS, then resuspended in dilution buffer (1% Triton, 2mM EDTA,

150 mM NaCl, 20 mM Tris-HCl (pH 7.4), 1X Protease Inhibitors). Double Crosslinking for ChIP.

Media was decanted from cells in 10 cm plates, wash once briefly with PBS (RT). Disuccinimidyl

glutarate (Pierce Cat # 20593) (diluted in DMSO at 200mM)/PBS (RT) was used for 10 min. Then

Formaldehyde was added to a final concentration of 1% for an additional 10 min. Reaction was

quenched with 1:10 1M Tris pH 7.4 on ice. Cells were collected and washed twice with cold PBS,

spinning at 1000xg for 5 min. Nuclei Isolation and Sonication. Resuspend cell pellets in 1 ml of

Nuclei Isolation Buffer (50 mM Tris-Ph 8.0, 60 mM KCl, 0.5% NP40) + PI and incubate on ice for

10 minutes. Centrifuge 2,000xg for 3 minutes at 4°C. Resuspend nuclei in 200 ul of fresh Lysis

Buffer (0.5% SDS, 10mM EDTA, 0.5mM EGTA, 50mM Tris-HCl (pH 8))+ PI. Sonication. Nuclei

were then sonicated (10 million cells) for 25 minutes in a Biorupter (settings= 30 seconds=On,

30 seconds=Off, Medium) using thin wall tubes (Diagenode Cat# C30010010). After sonication

spin max speed for 10 minute at 4°C. ChIP set up. Sonicated DNA was diluted 5X with 800

Dilution Buffer (1% Triton, 2mM EDTA, 150 mM NaCl, 20 mM Tris-HCl (pH 7.4), 1X Protease

Inhibitors). An aliquot is removed for input samples (5%). Samples ON at 4° C while rotating.
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Table 2.3. A List of Antibodies used in this study.

Reactivity Description Company Cat #

ATF2 Rabbit polyclonal Santa Cruz sc-187
Atf3 Rabbit polyclonal Thermo PA5-36244
Atf4 Rabbit polyclonal Cell Signaling 11815
Atf4 Rabbit polyclonal Sigma ABE387
Fos Rabbit polyclonal Santa Cruz sc-7202
FosL1 Rabbit polyclonal Santa Cruz sc-605
FosL2 Mouse monoclonal Santa Cruz sc-166102
Fosb Rabbit polyclonal Cell Signaling 2251
Jun Rabbit polyclonal Santa Cruz sc-1694
JunB Rabbit polyclonal Santa Cruz sc-73
JunD Rabbit polyclonal Santa Cruz sc-74
Jdp2 Rabbit polyclonal Thermo PA5-19692
Batf Rabbit polyclonal Brookwood Biomedical PAB4003
Batf2 Rabbit polyclonal Santa Cruz sc-241891
Batf3 Rabbit polyclonal Abnova H00055509-M04
CEBPa Rabbit polyclonal Santa Cruz sc-61
Pu.1 Rabbit polyclonal Santa Cruz sc-352
PPARg Rabbit polyclonal Santa Cruz sc-7196
PPARg Rabbit monoclonal Cell Signaling C26H12
PPARg Rabbit polyclonal Diagenode C15410133

Washing. ChIP are washed 1X with TSE I (20mM Tris-HCl pH7.4, 150mM NaCl, 0.1%SDS, 1%

Triton X-100, 2mM EDTA), 2X with TSE III (10mM Tris-HCl pH7.4, 250mM LiCl, 1%IGEPAL,

1%Deoxycholate, 1mM EDTA), 1X with TE+0.1%TritonX-100, transfer to new tube and then

wash another time with TE+0.1%TritonX-100. Elution. Elute with 200 µL Elution Buffer (1%

SDS, 10mM Tris pH7.5) for 20 minutes at RT, shaking on the vortex or a nutator or rotator. De-

crosslinking. Add 10 µL of 5 M NaCl and incubate ON at 65 C (or at least 8 hours). Clean up

samples using Zymo ChIP DNA Clean and Concentrator. Elute in 100 µL. Take 40 µL and proceed

to library prep protocol.

2.5.14 PolyA RNA Isolation and Fragmentation

RNA isolation. RNA was isolated using TRIZOL-reagent (ambion cat# 15596018) and

DIRECT-ZOL RNA mini-prep kit (cat# 11-330MB). Poly-A RNA isolation. Use 0.2 Total RNA as
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starting material for ideal mapping efficiency and minimal clonality. Collect 10 µL oligo (dT) (NEB

cat# S1419S) beads per RNA sample. Beads were washed twice with 1x DTBB (20mM Tris-HCl

pH7.5, 1M LiCl, 2mM EDTA, 1% LDS, 0.1% Triton X-100). Beads were resuspended in 50 µL of

2x DTBB. 50 µL of beads were mixed with 50 µL RNA and Heated to 65 °C for 2 min. RNA-beads

were then incubated for 10 min at RT while rotating. RNA-beads were then collected on a magnet

and washed 1x each with RNA WB1 (10mM Tris-HCl pH7.5, 0.12 M LiCl, 1mM EDTA, 0.1%

LDS, 0.1% Triton X-100)and WB3 (10mM Tris-HCl pH7.5, 0.5M LiCl, 1mM EDTA). Add 50µL

Tris-HCl pH7.5 and heat to 80°C for 2 min to elute. Collect RNA and perform a second Oligo-dT

bead collection. After washing the second collection, instead of eluting was 1X with 1X First strand

buffer (250 mM Tris-HCl (pH 8.3), 375 mM KCl, 15 mM MgCL2 (ThermoFisher SSIII kit Cat#

18080093). Fragmentation. Then Add 10µL of 2X First strand buffer plus 10mM DTT and fragment

DNA at 94°C for 9 min. Collect beads on magnet and transfer eluate containing fragmented mRNA

to a new PCR strip. Should recover 10 µL fragmented RNA. First strand synthesis. We mixed

fragmented RNA with 0.5µL Random Primer (3 µg/µL) Life Tech #48190-011, 0.5µL oligo-dT

(50µM from SSIII kit), 1µL dNTPs (10mM Life Tech, cat 18427088) and 0.5µL SUPERase-In

(ThermoFisher Cat#AM2696) and heat 50°C for 1 min. Immediately place on ice. We then added

5.8µL ddH2O, 0.1 µL Actinomycin (2ug/µL Sigma cat#A1410), 1µL DTT (100mM Life Tech

cat# P2325), 0.2µL of 1% Tween and 0.5 µL of Superscript III and incubate 25°C for 10 min, then

50°C for 50 min. Bead clean up. We added 36 µL of RNAClean XP (ampure XP) and mixed,

incubating for 15 min on ice. The beads were then collected on a magnet and washed 2X with 75%

ethanol. Beads were then air-dried for 10 min and elute with 10 µL nuclease free H2O. Second

strand synthesis. 10µL of cDNA/RNA was mixed with 1.5µL 10X Blue Buffer (Enzymatics cat#

B0110L), 1µL dUTP/dNTP mix (10mM Affymatrix cat# 77330), 0.1µL dUTP (100mM Affymatrix

cat# 77206), 0.2µL RNase H (5U/µL Enzymatics cat# Y9220L), 1µL DNA polymerase I (10U/µL

Enzymatics cat#P7050L), 0.15 µL 1% Tween-20 and 1.05µL nuclease free water. Reaction was

incubated at 16°C for 2.5 hours. Bead clean up. DNA was purified by adding 1µL Seradyn ”3

EDAC” SpeedBeads (Thermo 6515-2105-050250) per reaction in 28µL 20% PEG8000/2.5 M NaCl
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(13% final concentration) and incubating at RT for 10min. Beads were then collected on a magnet

and washed 2X with 80% Ethanol. Beads were air-dried for 10min and eluted in 40µL of nuclease

free water. DNA is ready for library prep.

2.5.15 Library Prep Protocol

dsDNA End Repair. We mixed 40µL of DNA from ChIP or RNA protocols with 2.9µL

of H2O, 0.5µL 1% Tween-20, 5µL 10X T4 ligase buffer (Enzymatics cat# L6030-HC-L), 1µL

dNTP mix (10 mM Affymetrix 77119), 0.3 µL T4 DNA pol (Enzymatics P7080L), 0.3µL T4 PNK

(Enzymatics Y9040L), 0.06µL Klenow (Enzymatics P7060L) and incubated for 30min at 20°C.

1µL of Seradyn 3 EDAC SpeedBeads (Thermo 6515-2105-050250) in 93 µL 20% PEG8000/2.5M

NaCl (13% final) was added and incubated for 10 min. Bead clean-up. Beads were collected on

a magnet and washed 2X with 80% ethanol. Beads were air-dried for 10 min and then eluted

in 15µL ddH2O. dA-Tailing. DNA was mixed with 10.8µL ddH2O, 0.3µL 1% Tween-20, 3µL

Blue Buffer (Enzymatics cat# B0110L), 0.6µL dATP (10mM Tech 10216-018), 0.3µL Klenow

3- 5 Exo (Enzymatics P7010-LC-L) and incubated for 30min at 37°C. 55.8µL 20% PEG8000/2.5

M NaCl (13% final) was added an incubated for 10 min. Then bead clean up was done. Beads

were eluted in 14µL. Y-Shape Adapter Ligation. Sample was mixed with 0.5µL of a BIOO

barcode adapter (BIOO Scientific cat# 514104), 15µL Rapid Ligation Buffer (Enzymatics cat@

L603-LC-L), 0.33µL 1% Tween-20 and 0.5µL T4 DNA ligase HC (Enzymatics L6030-HC-L)

and incubated for 15 min at RT. 7 µL of 20% PEG8000/2.5 M NaCl was added and incubated for

10min at RT. Bead clean up was performed and beads were eluted in 21µL. 10µL was then used

for PCR amplification (14 cycles) with IGA and IGB primers (AATGATACGGCGACCACCGA,

CAAGCAGAAGACGGCATACGA).

2.5.16 GRO-seq

Nascent transcription was captured by global nuclear run-on sequencing (GRO-seq). Nuclei

were isolated from TGEMs using hypotonic lysis (10mM Tris-HCl (pH 7.5), 2mM MgCl2, 3mM

CaCl2; 0.1% IGEPAL CA-630) and flash frozen in GRO-freezing buffer (50mM Tris-HCl (pH 7.8),
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5mM MgCL2, 40% Glycerol). Run-on. 3-5 x 106 BMDM nuclei were run-on with BrUTP-labelled

NTPs with 3x NRO buffer (15mM Tris-Cl (pH 8.0), 7.5mM MgCl2, 1.5mM DTT, 450mM KCl,

0.3U/µL of SUPERase In, 1.5% Sarkosyl, 366µM ATP, GTP (Roche), Br-UTP (Sigma 40 Aldrich)

and 1.2µM CTP (Roche, to limit run-on length to ∼40 nucleotides)). Reactions were stopped after

five minutes by addition of 500µL Trizol LS reagent (Invitrogen), vortexed for 5 minutes and RNA

extracted and precipitated as described by the manufacturer. RNA pellets were resuspended in 18µL

ddH2O + 0.05% Tween (dH2O+T) and 2µL fragmentation mix (100 mMZnCL2, 10mM Tris-HCl

(pH 7.5)), then incubated at 70°C for 15 minutes. Fragmentation was stopped by addition of 2.5µL

of 100mM EDTA. BrdU enrichment. BrdU enrichment was performed using BrdU Antibody (IIB5)

and AC beads (Santa Cruz, sc-32323 AC, lot #A0215 and #C1716). Beads were washed once with

GRO binding buffer (0.25xsaline-sodium-phosphate-EDTA buffer (SSPE), 0.05% (vol/vol) Tween,

37.5mM NaCl, 1mM EDTA) + 300mM NaCl followed by three washes in GRO binding buffer

and resuspended as 25% (vol/vol) slurry with 0.1 U/µL SUPERase-in. To fragment RNA, 50µL

cold GRO binding buffer and 40µL equilibrated BrdU antibody beads were added and samples

slowly rotated at 4°C for 80 minutes. Beads were subsequently spun down at 1000xg for 15 seconds,

supernatant removed and the beads transferred to a Millipore Ultrafree MC column (UFC30HVNB;

Millipore) in 2x 200µL GRO binding buffer. The IP reaction was washed twice with 400µL GRO

binding buffer before RNA was eluted by incubation in 200µL Trizol LS (Thermo Fisher) under

gentle agitation for 3 minutes. The elution was repeated a second time, 120µL of dH2O+T added to

increase the supernatant and extracted as described by the manufacturer. End repair and decapping.

For end-repair and decapping, RNA pellets were dissolved in 8µL TET (10mM Tris-HCl (pH 7.5),

1mM EDTA, 0.05% Tween20) by vigorous vortexing, heated to 70°C for 2 minutes and placed on

ice. After a quick spin, 22µL Repair master mix (3µL 10x PNK buffer, 15.5µL dH2O+T, 0.5µL

SUPERase-In RNase Inhibitor (10 U), 2µL PNK (20U), 1µL RppH (5U)) was added, mixed and

incubated at 37°C for 1 hour. To phosphorylate the 5’end, 0.5µL 100mM ATP was subsequently

added and the reactions were incubated for another 45 minutes at 37°C (the high ATP concentration

quenches RppH activity). Following end repair, 2.5µL 50mM EDTA was added, reactions mixed
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and then heated to 70°C for 2 minutes before being placed on ice. A second BrdU enrichment was

performed as detailed above. RNA pellets were dissolved in 2.75µL TET + 0.25µL Illumina TruSeq

3’Adapter (10µM), heated to 70°C for 2 minutes and placed on ice. 7 of 3’master mix (4.75µL 50%

PEG8000, 1µL 10x T4 RNA ligase buffer, 0.25µL SUPERase-In, 1µL T4 RNA Ligase 2 truncated

(200U; NEB)) was added, mixed well and reactions incubated at 20°C for 1 hour. Reactions were

diluted by addition of 10µL TET + 2µL 50mM EDTA, heated to 70°C for 2 minutes, placed on ice

and a third round of BrUTP enrichment was performed. RNA pellets were transferred to PCR strips

during the 75% ethanol wash and dried. Samples were dissolved in 4µL TET (10mM Tris-HCl

(pH 7.5), 0.1mM EDTA, 0.05% Tween 20) + 1µL 10µM reverse transcription (RT) primer. To

anneal the RTprimer, the mixture was incubated at 75°C for 5 minutes, 37°C for 15 minutes and

25°C for 10 minutes. To ligate the 5’ Illumina TruSeq adapter, 10µL 5’master mix (1.5µL dH2O +

0.2% Tween20, 0.25µL denaturated 5’TruSeq adapter (10µM), 1.5µL 10x T4 RNA ligase buffer,

0.25µL SUPERase-In, 0.2µL 10mM ATP, 5.8µL 50% PEG8000, 0.5µL T4 RNA ligase 1 (5U;

NEB)) was added and reactions were incubated at 25°C for 1 hour. Reverse transcription was

performed using Protoscript II (NEB) (4µL 5x NEB FirstStrand buffer (NEB; E7421AA), 0.25µL

SUPERase-In, 0.75µL Protoscript II (150U; NEB)) at 50°C for 1 hour. After addition of 30µL

PCR master mix (25µL 2X LongAmp Taq 2X Master Mix (NEB), 0.2µL 100µM forward primer,

2.8µL 5M Betaine and 2µL 10µM individual barcoding primer), mixtures were amplified (95°C

for 3 minutes, (95°C for 60 seconds, 62°C for 30 seconds, 72°C for 15 seconds) x13, 72°C for 3

minutes). PCR reactions were cleaned up using 1.5 volumes of SpeedBeads (GE Healthcare) in

2.5M NaCl/20% PEG8000. Libraries were size selected on PAGE/TBE gels to 160-225 base pairs.

Gel slices were shredded by spinning through a 0.5 ml perforated PCR tube placed on top of a

1.5ml tube. 150µL Gel EB (0.1% LDS, 1M LiCl, 10mM Tris-HCl (pH 7.8)) was added and the

slurry incubate under agitation overnight. To purify the eluted DNA, 700µL Zymogen ChIP DNA

binding buffer was added into the 1.5ml tube containing the shredded gel slice and the Gel EB,

mixed by pipetting and the slurry transferred to a ZymoMiniElute column. Samples were first spun

at 1000xG for 3 minutes, then 10,000xG for 30 seconds. Flow through was removed, and samples
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washed with 200 ul Zymo WashBuffer (with EtOH). Gel remainders were removed by flicking and

columns washed by addition of another 200µL Zymo WashBuffer (with EtOH). Flow through was

removed, columns spun dry by centrifugation at 14,000xG for 1 minute and DNA eluted by addition

of 20µL pre-warmed Sequencing TET (10mM Tris-HCl (pH 8.0), 0.1 mM EDTA, 0.05% Tween

20). Libraries were sequenced.

2.5.17 Western Blotting

Cells were lysed with Igepal lysis buffer (50mM Tris pH8.0, 150mM NaCl, 0.5% Igepal)

and protein concentrations were determined with BioRad protein assay reagent using BSA as

a standard. Proteins were separated on NuPage 4-12% Bis-Tris gradient gels (Invitrogen) and

transferred onto a nitrocellulose membrane (Amersham). Membranes were blocked in TBS with

0.1% Tween-20 and 5% BSA. Membranes were blotted with the indicated primary overnight at 4oC.

Horseradish peroxidase conjugated secondary antibodies were detected using ECL plus western

blotting detection system (Amersham).

2.5.18 Animals and Cell Culture

TGEMs were collected 3 days after injection from male 8 week C57Bl/6J, or BALB/cJ

mice, and plated at 20 x 106 cells per 15 cm Petri dish in DMEM plus 10% FBS and 1x penicillin-

streptomycin. One day after plating, cells were supplemented with fresh media and treated with

PBS (Veh) or 100 ng/mL KLA for 1 hour, and then directly used for downstream analyses. iBMDM

are produced by infection of BMDM with a retrovirus containing myc and Braf V600E21. The

immortalized cells are then grown out over several weeks. All animal experiments were performed in

compliance with the ethical standards set forth by University of California, San Diegos Institutional

Annual Care and Use Committee (IUCAC).

2.5.19 Lentivirus Production

pLentiguide was modified to contain a U6-bsmbi-spgRNA scaffold and a CMV promoter

driving tagBFP2. 2 CRISPR guides were inserted for each target via PCR amplification with the
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Table 2.4. Guide RNAs used for CRISPR experiments

Target Guide Sequence Source

ATF3-mouse GTCAAATACCAGTGACCCAGG This study
ATF3-mouse GCTTGGTGACTGACATCTCCA This study
Jun-mouse gcttcccagtgtcacctccg This study
Jun-mouse GCTCTCGGACTGGAGGAACGG This study
JunD-mouse gctcaggttggcgtagaccg This study
JunD-mouse gccgagtctcgaaagagtccg This study
Scramble-mouse GCACTACCAGAGCTAACTCA This study

H1 promoter (bsmbi site/guide1/scaffold/H1 promoter/guide 2/bsmb1 site) for a total of 2 guides

per virus (U6 and H1 driven) ( 2.4). Virus was made with pVSVg/ppAX2 system. 2 days post

transfection, media was collected and centrifuged at 4°C for 2 hours at 20,000xg. Cell pellet was

reconstituted overnight at 4°C in OPTI-MEM and stored at -80°C.

2.5.20 Production of CRISPR KO iBMDMs

KO iBMDMs were produced using lentiviral infection. iBMDM-CAS9-IRES-EGFP were

infected with MOI 100, as measured on 293T cells, with Lentiblast (OZ biosciences) (5µL each

reagent) in OPTI-MEM. This was then centrifuged at 1300g for 1h at room temperature. Media

was then removed and cells were supplemented in bone marrow media (30% L-cell, 20% FBS, 1%

penicillin/streptomycin in DMEM) for two days. Cells were then sorted for infection by expression

of a transgene on the viral sequence (tagBFP2).

2.5.21 Data Availability

Data generated for this study has been deposited to the NCBI Gene Expression Omnibus

(GEO) under the accession number GSE111856. Previously published data was downloaded from

GEO (accession number GSE46494) and the ENCODE data portal:

(https://www.encodeproject.org).
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Chapter 3

A method for describing transcription fac-
tor binding specificity as a set of DNA mo-
tifs

3.1 Abstract

The sequence specificity of DNA binding transcription factors (TFs) has typically been

described using position weight matrices (PWMs). While PWMs are intuitive, PWMs poorly

discriminate TF binding sites from random genomic sequences. In contrast, machine learning

models are more complex and difficult to interpret. Here, we describe a machine learning approach

inspired by the biological phenomena that TFs bind collaboratively with one another. Our machine

learning model learns to characterize the binding specificity of a TF as an ensemble of enriched

and depleted PWMs. Information extracted from our model can yield mechanistic insight into

the activity of TFs as well as the non-coding regulatory regions bound by multiple TFs. We

present a machine learning tool, ABTBA (A Bigger TF Binding Analysis), for the analysis of

TF binding motif interactions in the context of non-coding regulatory elements. ABTBA uses a

programmatically curated library of motifs formed from the JASPAR and CISBP databases that

reduces multiple collinearity and enhances the interpretability of the model. ABTBA then analyzes

genomic sequence to learn combinations of motifs that are associated with regulatory elements. We

apply ABTBA to 363 ENCODE ChIP-seq data sets, and extract information suggesting that each TF

interacts with dozens of other TFs genome-wide and 3-4 TFs at a single locus in a cell type specific
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manner. Additionally, we demonstrate that ABTBA can detect cell type specific combinations of

motifs that can be integrated with RNA-seq to identify TFs that establish accessible chromatin

landscape within the hematopoietic stem cell lineage.

3.2 Introduction

Gene expression in mammalian organisms is a complex process that allows for the same

genome to be interpreted uniquely in a spectrum of environmental contexts encountered by many

different cell types. This diversity in transcriptional activity is, in part, enabled by the activity

of sequence specific transcription factors (TFs) that bind to gene proximal regulatory sequences

(promoters) and distal regulatory sequences (enhancers)31;59;84. TFs bind collaboratively with one

another28;31;65;103 to tens of thousands of enhancers in a given cell type out of hundreds of thousands

of possible enhancers present in mammalian genomes2;79;99. The target DNA sequence motif of a

TF has typically been described using a Position Weight Matrix (PWM), which summarizes the

frequency of each nucleotide at a given position of a TF’s binding site. The quality with which a

sequence matches to the PWM can be described using the log-odds score (also referred to as motif

score)88. Experimentally, a PWM for a TF can be inferred using chromatin immunoprecipitation

followed by high throughput sequencing (ChIP-seq), protein binding microarrays, as well as HT-

SELEX3;11;38. Thousands of PWMs are currently available in TF motif databases such as JASPAR

and CISBP47;51;68;102.

While use of the PWM is widespread due to its intuitive nature, more recent machine

learning based models have been introduced that can more accurately discriminate TF binding sites

from unbound genomic sequences. Machine learning models can learn to relate sequence based

features, such as the frequency of k-mers per sequence, to TF binding1;22;55. In comparison to

PWMs, which can be described using tens of parameters, machine learning models use thousands

of parameters and, as a consequence, are more difficult to interpret. Additionally, although machine

learning models considerably improve upon the performance of the PWM, the biological insight

extracted from these models has been limited; often restricted to a couple DNA motifs represented
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as PWMs. And so, no information beyond a PWM is learned or represented. However, given the

superior performance of machine learning models, there is likely further insights into TF mechanism

and behavior that can be gleaned using machine learning approaches.

Here we present a machine learning tool that builds upon our previous work19 that leverages

public motif PWM databases to model TF binding with high performance and interpretability.

Our improved tool, ABTBA (A Bigger TF Binding Analysis) features additional capabilities for

analyzing motif databases and characterizing multiple collinearity that allows ABTBA to leverage

hundreds of PWMs drawn from the JASPAR and CISBP databases as well as additional user

specified databases without diminishing the interpretability of the model. Modeling the collaborative

binding behavior of TFs, ABTBA uses logistic regression to learn to represent the binding specificity

of a TF as an ensemble of motifs drawn from a programmatically curated library of motifs. In

our application of logistic regression, the probability that a genomic sequence is bound by a TF is

calculated as the weighted sum of how well that sequence matches to each motif in our curated

motif library. The weight of each motif can be used to determine the importance of each motif to

the model. The interpretation of the model weights from logistic regression can be confounded by

multiple collinearity, or the presence of highly correlated features. While multiple collinearity does

not affect the performance of the model, it severely limits the amount of useful information that

can be extracted from the model coefficients6. To reduce multiple collinearity, we merge highly

similar motifs, using the Variance Inflation Factor (VIF) to assess the presence of collinear features,

thereby stabilizing the weights learned by ABTBA6. The ensemble of motifs learned by ABTBA

for a TF describes the binding preference of that TF as not only the TF’s PWM but also the PWMs

of potential binding partners and depleted motifs, giving additional insight into the binding behavior

of that TF beyond a single PWM. We apply our approach to hundreds of TF ChIP-seq datasets from

ENCODE and extract information from our model that suggests that on average each TF interacts

with dozens of other TFs genome-wide and with 3-4 other DNA binding TFs on a per locus basis.

Additionally, we demonstrate that our model can be used to extract lineage determining TFs for the

hematopoietic cell lineage from open chromatin regions identified by ATAC-seq.
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Figure 3.1. Overview of ABTBA model. Input sequences from ChIP-seq or ATAC-seq peaks
(mixed with background sequences) are first scored for the best match to hundreds of motifs drawn
from the JASPAR and CISBP databases. After examining the extent of collinearity in the set of
motif scores, highly similar motifs are merged together to form a curated motif library. Motif scores
for matches to the curated motif library are used to train a logistic regression model to predict
whether or not a sequence corresponds to a peak or a background sequence. Model weights can be
extracted to identify enriched and depleted motifs in peak sequences and motifs that are depleted.

3.3 Methods

3.3.1 ABTBA Model

ABTBA learns to distinguish target regions of interest, such as a set of TF binding regions

Tn identified with ChIP-seq or a set of open chromatin regions determined using ATAC-seq, from

genomic background regions (Fig. 3.1). For each target region, a background region (that contains

no ambiguous or unmappable positions) is randomly selected from the genome such that the entire

set of background regions Bn is matched for GC content with respect to the regions of interest. The

genomic sequence of target and background of regions is retrieved and then the best match to each

motif in a library M is calculated for each sequence. How well a sequence s (encoded as a one-hot

vector) within the combined set, S = T ∪B, matches to a motif m of length K can be calculated
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using the log-odds score, which is also known as the motif score (equation 3.1)88.

l = Σ
K
k=0log2(

sk ·mk

0.25
) (3.1)

We calculate the motif score for each subsequence at position i within each sequence and

take the best score considering the sequence in the forward and reverse complement orientation

(equation 3.2).

∀s ∈ S,∀m ∈Mls,m = max(max(s f wd,0:k, . . . ,s f wd,i:i+k),max(srev,0:k, . . . ,srev,i:i+k)) (3.2)

We take the ||M|| by ||S|| matrix of motif scores, Lm,s and a corresponding label vector

Y ∈ 0,1 of length ||S||,indicating whether a sequence is a region of interest or a background region,

to train a logistic regression model using the scikit-learn library74. Prior to training, we standardize

the scores for each motif, which helps to reduce the effect of multiple-collinearity and ensures that

the scores for each motif fall within a similar range (larger motifs have a larger possible motif score).

Our logistic regression model learns to calculate a weighted sum (using learned weights W ) over all

the motif scores calculated for a sequence to score the probability that a sequence is a region of

interest as opposed to random genomic background (equation 3.3). To discourage the model from

selecting too many motifs, we use an L1 penalty term, giving the objective function in equation 3.4

(where λ is a scaling factor).

p(ys = 1) =
1

1+ e−(Σm∈Mwm·Lm,s)
(3.3)

min
W

λ ||W ||1 +Σs∈Slog(e−ys·W T ·Lm,s +1) (3.4)

By default, ABTBA models are trained using five-fold cross validation (80% of the data is

used for training the model 20% for evaluating the model in each iteration of cross-validation) and

the mean values across all iterations are reported.
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3.3.2 Assessment of Multiple Collinearity

We can quantify the extent of multiple collinearity using the Variance Inflation Factor (VIF)6.

For each motif m represented in the motif score matrix Lm,s, we regress Lm against the motif scores

of all other motifs LM−m,s. The VIF for motif m can then be calculated using the coefficient of

determination R2 (equation 3.5).

V IF =
1

1−R2 (3.5)

A VIF greater than 4 is considered problematic6. The VIF for each motif is calculated separately

for each data set.

3.3.3 Motif Library and Curation

The JASPAR CORE non-redundant motif collection and the CISBP database forms the basis

of the motif library used for training ABTBA models38;102. The similarity of each pair of motifs is

calculated as the Pearson Correlation coefficient of the aligned motifs66. Motifs are aligned with

the Smith Waterman algorithm and using the Pearson correlation to score each position within the

alignment87. Smaller motifs are padded with background frequency values when they are aligned

with larger motifs. We empirically determined that merging all motifs that have Pearson Correlation

of 0.80 or greater would reduce the mean VIF of each motif across all datasets we analyzed to less

than 4. Values for a merged motif are computed by averaging the value for a given position across

all motifs that are merged together. We performed two successive rounds of motif merging to obtain

a library of 299 motifs.

3.3.4 Extracting Motif Sets from ABTBA

Weights for each motif within in the ABTBA model can be directly interpreted. As we apply

an L1 penalty when training our model, most motifs will have a weight close to 0. Motifs that have

a positive weight are enriched in target regions T and motifs with a negative weight are depleted.

Motifs with a weight of greater magnitude indicate greater enrichment in target regions. To assess

the importance of a motif in the context of all other motifs within the model, we implement the
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likelihood ratio test. In the likelihood ratio test, the importance of a motif is quantified as the

difference in the performance of a perturbed model missing that motif versus the full model with all

motifs, and then a significance value is assigned using the chi-squared test. By default, ABTBA

performs the likelihood ratio test five times using separate iterations of cross validation.

3.3.5 ChIP-seq Data Processing

We downloaded all TF ChIP-seq data sets for GM12878, HepG2, and K562 human cell

lines from the ENCODE data portal (www.encodeproject.org). We excluded all data sets that were

flagged for a potential data quality issue. As we were interested in examining cell type specific

properties of TF binding, we excluded all data sets that involved a genetically modified variant of a

TF. In total we used TF binding sites (BED files using hg38 genomic coordinates) filtered according

to the optimal IDR threshold calculated by ENCODE, from 363 ENCODE data sets for analysis

with ABTBA.

3.3.6 ATAC-seq and RNA-seq Data Processing

We downloaded ATAC-seq and RNA-seq data from primary human hematopoietic lineage

cell types from the Gene Expression Omnibus (accession GSE75384)12. To improve read mapping

the ATAC-seq and RNA-seq we trimmed all reads to 40 bp using the HOMER command ”homer-

Tools trim”29. Trimmed ATAC-seq and RNA-seq reads were then mapped the hg38 genome build

using Bowtie2 and STAR, respectively16;52. For RNA data, the HOMER analyzeRepeats.pl (using

the parameters -count exons -condenseGenes -rpkm) was used to quantify gene expression in terms

of Reads Per Kilobase Mapped (RPKM). For ATAC-seq data, putative open chromatin regions were

called using the HOMER findPeaks command (with parameters -L 0 -C 0 -fdr 0.9 -style factor -size

200). High confidence open chromatin regions were identified using the Irreducible Discovery Rate

(IDR) algorithm60. We then selected regions with IDR < 0.01 for analysis with ABTBA.

70



3.4 Results

3.4.1 Characterizing TF behavior with ABTBA

To test the performance of our model, we examined TF binding in three different cell

lines GM12878 (lymphoblastoid), HepG2 (liver carcinoma) and K562 (chronic myeloid leukemia).

For 363 ENCODE TF ChIP-seq experiments across the three cell lines, we trained ABTBA to

discriminate TF binding sites from genomic background and compared the performance of ABTBA

against the PWM with the best performance from the JASPAR or CISBP motif database (Fig. 3.2a).

ABTBA generally had better performance (as measured by the area under the Receiver Operating

characteristic curve (auROC). ABTBA’s performance was highly correlated with the performance

of a state-of-the-art machine learning model, gkmSVM (Fig. 3.3a), suggesting that ABTBA is

broadly applicable for analyzing TF ChIP-seq data despite using considerably less parameters than

gkmSVM (∼300 parameters for ABTBA versus tens of thousands of parameters). For several

TFs, the performance of the single PWM was similar to that of ABTBA (p < 0.05, Z-test on the

ratio of ABTBA performance to PWM performance, blue points, Fig. 3.2a). We observed that

the motifs that could be well-predicted by a single PWM were those that had a strong difference

between the mean score for that PWM at the binding sites and the background regions; this suggests

that TFs that can be accurately predicted with a single PWM recognize motifs that occurs less

frequently throughout the genome. We found that these TFs with highly predictive PWMs did not

necessarily recognize a more specific motif (with fewer degenerate positions). The degeneracy of a

TF’s best-matching PWM (quantified using information content) showed only a weak correlation to

predictive performance (Fig. 3.3b).

For each TF, we counted the number of enriched and depleted motifs that pass a series

of significance thresholds for the likelihood ratio test (Fig. 3.2c). At a threshold of 1e-10, we

observed that on average genome-wide each TF interacts with genome-wide with dozens of motifs

of significantly enriched motifs. Typically, only a few motifs are significantly depleted at a given

TF’s binding sites. To identify the number of motifs per sequence that are used by ABTBA to predict
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Figure 3.2. ABTBA learns to predict TF binding sites by learning ensembles of enriched and
depleted motifs. (a) Performance of ABTBA versus the best matching PWM as measured by the
area under the ROC curve for 363 TF ChIP-seq experiments. Higher color intensity indicates higher
concentration of data points. Marginal distributions are indicated on the adjacent axes. Experiments
where ABTBA and the PWM had highly similar performance (blue points) and where they had
highly dissimilar performance (green) are indicated. (b) Distribution of the number of enriched
and depleted motifs for each ChIP-seq experiment that pass a given significance threshold. (c) The
mean difference between motif score of the best matching PWM found at peak sequences and that
of background sequences versus the predictive performance of the PWM. ChIP-seq experiments
where ABTBA and the PWM had highly similar (blue points) and highly dissimilar performance
(green) are indicated. (d) Distribution of the mean number of significant motif terms observed
at each sequence for peak sequences and background sequences correctly classified by ABTBA
(ABTBA TP and ABTBA TN, respectively) and peak sequences correctly classified by the best
matching PWM (PWM TP)
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(a) (b)

Figure 3.3. Supplementary characterization of ABTBA performance. (a) Performance of ABTBA
versus the best matching gkmSVM as measured by the area under the ROC curve for 363 TF ChIP-
seqs. Higher color intensity indicates higher concentration of data points. Marginal distributions
are indicated on the adjacent axes. (b) The information content of best matching PWM versus the
predictive performance of that PWM. ChIPs where ABTBA and the PWM had highly similar (blue
points) and highly dissimilar performance (green) are indicated.

TF binding, we examined the individual terms in the model (each term is the product of a motif’s

weight and the log-odds score of the best-matching instance) at each sequence. We considered each

term that was 3 standard deviations from the mean value of all terms (which are normally distributed

and pass D’Agostino and Pearson’s test for normality) to be significant, indicating that ABTBA

is using the motif corresponding to the term to make its prediction. At TF binding sites correctly

classified by ABTBA, ABTBA typically observes 3-4 enriched motifs per sequence, and less than

2 depleted sequences (ABTBA TP, Fig. 3.2d). In contrast, at background sequences correctly

classified by ABTBA, less than 2 enriched motifs and 2 to 3 depleted sequences are observed by

ABTBA (ABTBA TN, Fig. 3.2d). Notably, at TF binding sites that can be identified using the

best matching PWM, ABTBA still observed 3-4 enriched motifs per binding site (PWM TP, Fig.

3.2d); this suggests that while some sites have a good match to a PWM, groups of TFs recognizing

combinations of 3-4 motifs determine the collaborative binding of most TFs.

Next, we examined whether the motifs enriched at the binding sites of a TF varied in a cell

type specific manner. Data was available for 9 TFs in GM12878, HepG2, and K562 cells. We

identified enriched motifs that were highly significant in at least one cell type (likelihood ratio test,
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Figure 3.4. Comparison of motifs identified in ABTBA for TF ChIP-seqs performed in HepG2,
GM12878, and K562 cell lines. (a) Heatmap of motif rankings calculated by ABTBA (darker hues
indicate higher ranked motifs) grouped by cell type. Boxed regions indicate motifs common to TFs
for a given cell type. (b) Heatmap of motif rankings calculated by ABTBA (darker hues indicate
higher ranked motifs) grouped by TF. Boxed regions indicate the best matching motif for each TF.

p < 1e−50), and then ranked the identified motifs for each cell type according to the p-value. When

we clustered the experiments by cell type, we observed that within each cell type, 3-4 motifs were

highly ranked for all 9 TFs (boxed regions, Fig. 3.4a), which indicates the presence of TFs that are

of general importance to a cell type. For example, POU and TCF7 motifs were generally enriched

at TF binding cells in HepG2 cells. Both Oct4, which is required for HepG2 cells to maintain

stemness, and TCF7, which is constitutively active due to beta-catenin activation, are known to be

important activators in HepG2 cells50;60;70. When we clustered the experiments according to ChIP

target, we find that the motif of the ChIP target is enriched for all experiments (boxed regions, Fig.

3.4b. However, additional motifs, presumably bound co-factors associated with each factor, varied

considerably amongst the different cell lines. This suggests that while a TF consistently binds its

target sequence, the local DNA environment, modulated by the TFs expressed in a given cell type,

can affect the binding specificity of a TF.
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(a) (b) (c) (d)

Figure 3.5. ABTBA generates a curated library of motifs that improves model stability. (a) The
mean extent of multiple collinearity (measured using the VIF - Variance Inflation Factor) for
motif scores calculated using the merged motif library curated by ABTBA for the peak sequences
(and corresponding background sequences) of 91 HepG2 TF ChIP-seqs versus the mean extent of
multiple collinearity for the unmerged motif library. (b) Mean stability of non-zero coefficients
(Z-score ≥1), measured using the coefficient of variation, for 68 high performing ABTBA models
(that achieved auROC ≥0.80) trained using the merged motif library curated by ABTBA versus
models trained using the unmerged motif library (c) Example visualization of motif clustering
produced by ABTBA. Colored clades indicate motifs that would be merged together. (d) Example
HTML report produced by ABTBA that summarizes the motifs merged together (Crem and CREB1)
as well as other similar motifs (scored by Pearson correlation)

3.4.2 Motif library curation using ABTBA

The presence of highly correlated features, multiple collinearity, can confound the inter-

pretation of linear models such as ABTBA6. The extent to which a single feature contributes to

multiple collinearity, which in our case corresponds to the presence of similar PWMs within our

model, can be quantified using the VIF. ABTBA reduces multiple collinearity by aligning and

merging highly similar motifs. The motif library used by ABTBA is formed using PWMs from

the JASPAR and CISBP motif databases. To quantify ABTBA’s effectiveness at reducing multiple

collinearity, we calculated the mean VIF for every motif for each of the HepG2 datasets (91 TFs)

using ABTBA’s merged motif library and the unmerged set of PWMs from JASPAR and CISBP,

observing a reduction in the mean VIF by more than an order of magnitude (Fig. 3.5a. This

reduction in multiple collinearity corresponds to increased stability of the coefficients learned by the

ABTBA model. For the 71 HepG2 datasets where we were able to fit ABTBAs with auROC ≥ 0.80,

we quantified the stability of sizable coefficients (with absolute value one standard deviation greater

than mean coefficient value) using the coefficient of variation and plotted the mean coefficient of
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variation for each ABTBA model (lower values indicate greater stability, Fig. 3.5b).

While ABTBA uses a merged library formed from JASPAR and CISBP by default, ABTBA

features several tools to help users incorporate motifs from other databases. ABTBA can produce

dendrograms to visualize the similarity (measured using Pearson Correlation) of a set of motifs (Fig.

3.5c). Using the dendrogram, users can specify the level of similarity at which they would like to

merge motifs together (colored clades that fall below the dotted line would be merged together,

Fig. 3.5d). The results of motif merging in ABTBA are presented as a series of HTML reports that

details the logo and PWM of the merged motif, the contributing motifs that were merged to form

the merged motif, as well as related motifs (Fig. 3.5d).

3.4.3 Integration of ABTBA results and RNA-seq

Given ABTBA’s ability to discern cell type specific ensembles of motifs using ChIP-seq, we

applied ABTBA to ATAC-seq data (from GEO accession GSE75384) to assess whether ABTBA

can identify important TFs for a cell type from open chromatin regions. Using HOMER and IDR,

we identified between 53012 and 144164 open chromatin regions from each hematopoietic cell

type. We trained ABTBA models using the open chromatin regions for each cell type, achieving

an average performance of auROC 0.873 (Table 3.1). In addition to being able to distinguish

open chromatin regions from each cell type from random genomic background, ABTBA was also

able to distinguish the open chromatin regions unique to a cell type from regions that are already

accessible in hematopoietic stem cells (Table 3.1). We selected the top 5 motifs identified using

the likelihood ratio test as representative motifs for each cell type. Principal component analysis

(PCA) of these top coefficients for the top motifs across the 12 cell types resolved the cells into

clusters consistent with hematopoiesis lineages Fig. 3.6a). Additionally, the resulting clusters are

qualitatively similar to those formed when performing PCA on quantile normalized gene expression

(quantified as RPKM, genes expressed less than < 4 RPKM are not considered) for each cell type.

In both analyses, erythroblasts clustered distinctly from leukocyte lineage cells (Fig. 3.6b). Notably,

PCA of ABTBA motif weight effectively clustered terminally differentiated lymphoid lineage cells,
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Figure 3.6. ABTBA Analysis identifies TFs in hematopoietic cell differentiation. a, b Principal
component analysis of gene expression and ABTBA motif weights reveal similar clustering patterns.
ATAC and RNA-seq generally separate lymphoid cells from myeloid and erythroid lineages. Gene
expression is quantified using RPKM, transcripts with expression < 4RPKM are filtered and then
results are quantile normalized. Motif weights were restricted to the five most significant motifs
identified using the likelihood ratio test for each cell type. The amount of variance explained by each
principal component is indicated in parentheses on the axes. c Each of the top 20 TF motifs identified
by ABTBA were linked to a TF with the highest average expression in the hematopoietic cell dataset,
revealing specific TFs known to be essential for differentiation of particular hematopoietic cell
lineages, such as SPI1. Motif significance (upper heatmap) is expressed as a log-likelihood ratio
relative to the motif’s significance in hematopoietic stem cells. TF expression (lower plot) is
expressed as log2 fold change in expression relative to TF expression in hematopoietic stem cells.
For motifs with multiple expressed TFs, the TF with the highest average expression is displayed.
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Table 3.1. ABTBA performance for predicting open chromatin regions in hematopoietic lineage
cell types.

Cell Type Background auROC
hematopoietic Stem Cell Genomic background 0.866

B-Cell
Genomic background 0.867
HSC peaks 0.896

CD4 T-Cell
Genomic background 0.875
HSC peaks 0.870

CD8 T-Cell
Genomic background 0.869
HSC peaks 0.857

Common Lyphoid Progenitor
Genomic background 0.864
HSC peaks 0.900

Common Myeloid Progenitor
Genomic background 0.868
HSC peaks 0.890

Erythroblast
Genomic background 0.890
HSC peaks 0.888

Granulocyte Myeloid Progenitor
Genomic background 0.875
HSC peaks 0.875

Lymphoid-primed Multipotent Progenitor
Genomic background 0.869
HSC peaks 0.850

Megakaryocyte-Erythoid Progenitor
Genomic background 0.869
HSC peaks 0.904

Monocyte
Genomic background 0.897
HSC peaks 0.864

Multipotent Progenitor
Genomic background 0.861
HSC peaks 0.842

Natural Killer Cell
Genomic background 0.868
HSC peaks 0.877

including CD4+ T cells, CD8+ T cells, B cells, and natural killer cells, separately from myeloid and

erythroid lineage cells.

In order to match each enriched TF motif with an expressed TF responsible for cell type-

specific open chromatin profiles, we integrated the enriched motifs identified by ABTBA with gene

expression profiles measured using RNA-seq for each cell type. The 20 motifs we identified as being

critical for hematopoiesis corresponded to 81 distinct TFs, but only 49 of these TFs were expressed

at an RPKM > 4 in any hematopoietic cell type. We reasoned that the TFs driving hematopoesis

that recognized these 20 critical motifs is likely to be highly expressed in at least one cell type. And

so for each motif, we selected the TF that had the highest expression level when considering all
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the cell types. Comparing ABTBA motif significance with RPKM expression identified TFs with

expression profiles that support ABTBA motif significance values. For example, the EBF1 motif is

highly significant in common lymphoid progenitor (CLP) cells, which express greater than 4-fold

more EBF1 mRNA than any other hematopoietic cell line we examined, while also being necessary

for CLP lineage function64;70;109.

Integrating mRNA expression with ABTBA motif weights identified previously reported

TFs that play important roles across several cell types. The Ets-related factors 3 merged motif is

highly significant in hematopoietic stem cells, B-cells, and monocyte lineage cells. Of the two

TFs that bind the Ets-related factors 3 merged motif, only Spi1 is expressed at an RPKM > 4

in any of the cell types examined. Spi1, also known as PU.1, has been well characterized as a

lineage determining TF important for establishing both B-cell and monocyte cistromes29. ABTBA

analysis also identified the EBF1 motif as an enriched motif in B-cells in addition to CLP cells.

Both CLP and B-cells show a high level of expression of EBF1. Previous work has shown that

EBF1 is required for B-cell differentiation from CLPs, suggesting that EBF1 is a necessary lineage

determining transcription factor in B-cell development64;70;109. In erythroblasts, the EBF1 motif

is enriched and EBF1 expression is high, possibly indicating a similar role in development of

erythroblasts from CMPs.

Our analysis also identified motifs that are thought to be signal responsive TFs as opposed

to constitutively expressed lineage factors. The interferon regulatory factor 5 motif was identified in

our set of 20 top motifs and was a significant predictor of binding in B-cells and monocytes. IRF

has a defined role in the differentiation of B-cells into plasma cells49;62. In the myeloid lineage,

IRF5 expression increases as cells differentiate into monocytes. IRF4, 5, and 8 are also essential in

cellular response to Toll-like receptor (TLR) signaling. Monocyte TLR signaling is a key pathway

that mediates cellular responses to bacterial and viral compounds in their environment90;108. Taken

together, these results demonstrate that integrating mRNA expression data with ABTBA results

identifies biologically relevant TFs and motifs with cell specific functions.
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3.5 Discussion

While ABTBA models allow for greater insight into TF binding, there remains other

aspects of the genomic grammar read by TFs that we have not incorporated into our model. For

example, previous studies have indicated that multiple instances of a TF’s motif may be required for

binding24;63. Multiplicity of a motif at a single locus can be captured by k-mer counts, potentially

contributing to gkmSVM’s improved performance over ABTBA. Our model also does not consider

dependencies between positions within a motif, such as those calculated in Bayesian Markov

models86. Supposing a similarity metric between two TF binding sites captured by Bayesian

Markov models can be developed, the overall framework of ABTBA can be used for Bayesian

Markov models as well. Recent reports have indicated that the spacing and arrangement of TF

motifs can play an important role in the functional output of an enhancer18. Modeling spacing

and arrangement of motifs may necessitate the use of more sophisticated models such as neural

networks, which have been demonstrated to be highly flexible function approximates in a wide set

of problem domains.

The ABTBA model describes the binding specificity of a TF as a set of motifs that include the

binding motif of the TF as well as the motifs of potential collaborative binding partners. Exploring

the motifs of potential collaborating TFs provide an opportunity for the integration of orthogonal

data types in the analysis of ATAC-seq and ChIP-seq datasets. We demonstrate the utility of

combining RNA-seq data with an ABTBA analysis of ATAC-seq data by identifying previously

validated TFs acting in specific hematopoietic lineages such as the TF PU.1, which is a known

lineage determining factor in B-cells and monocytes29. Beyond RNA-seq, other data types could

be readily combined with ABTBA to yield biological insight. For example, whole cell or nuclear

mass spectrometry (MS) data could be used to integrate protein quantity information with the motif

weights calculated by ABTBA.

Biological network data could also be used to select motifs identified by ABTBA with

a high likelihood of physical or biological interactions. For example, affinity purification mass
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spectrometry (AP-MS) data could be readily combined with ChIP-seq ABTBA analysis to predict

site specific larger scale transcriptional complexes.

TFs with a high ABTBA score that also exhibit physical interactions identified by AP-MS

could be acting collaboratively as part of a larger activation or inactivation complex. Such a

hypothesis could be readily tested using co-immunoprecipitation studies or by knocking out the

collaborative partner.

The genome contains potentially millions of copies of each DNA motif, yet ChIP-seq

experiments typically find that only tens of thousands of these motifs are actually bound by a TF. It

has been suggested that TFs bind in combination as a means to control and direct binding. Here,

we find that open target chromatin by ATAC and ChIP -seq predicts 3-4 quality DNA motifs in

each distinct region, suggesting 3-3 TFs are necessary to activate a region of chromatin(Fig. 3.2d).

Further, we predict dozens of DNA motifs as significant in each cell line (Fig. 3.2c). Though some

DNA motifs are predicted with much higher significance, indicating ABTBA found these at a higher

frequency, the identification of dozens of significant motifs by ABTBA suggests a large number

of possible transcriptional complexes. Allowing for a large number of possible transcriptional

complexes based on 3-4 DNA binding TFs from a panel of 20-30 would provide a cell with a large

repertoire of available transcriptional units to generate responses to diverse signals. Future work

will involve designing machine learning networks to determine the groups of collaborating TFs

which are able to form transcriptional units within a cell and the frequency at which they occur.

3.6 Conclusion

With the aim of balancing the simplicity of a PWM and the performance of machine learning

models, we developed a machine learning tool that draws from a programmatically curated motif

library to describe TF binding specificity as a set of enriched and depleted motifs. We applied our

tool to an extensive collection of TF datasets and by inspecting the behavior of our model, estimated

that each TF interacts with dozens of other TFs genome wide and with 3-4 other TFs at a single

locus. These results corroborates previous findings that the combinatorial binding of TFs forms
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the basis of a genomic grammar in a cell type specific manner18;28;29;31. As our tool can model the

combinatorial interaction of TFs, we demonstrated that ABTBA can be applied to ATAC-seq data

sets to retrieve combinations of motifs that can be cross referenced with RNA-seq data to identify

TFs that establish the open chromatin landscape in a variety of cell types. Our tool, ABTBA, is built

to be compatible with future advances in motif databases and can be readily applied to study motif

interactions at other genomic regions of interest.
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Chapter 4

Learning Composition Rules for Mam-
malian Circuits with Neural Attention

4.1 Abstract

The expression of each gene in mammalian cells is controlled by regulatory sequences called

enhancers. Regulatory logic encoded at enhancers is interpreted by transcription factors (TFs),

which recognize individual ‘words’ in the genome. Here we describe a neural network with an

attention mechanism that learns to discriminate enhancers from random genomic sequences as well

as predict the activity of an enhancers. We distill the parameters learned by our model to identify

combinations of TF target sequences that signal activation of an enhancer in response to specific

cellular stimuli.

4.2 Introduction

Regulation of gene expression in mammalian cells is mediated in part by hundreds of

sequence specific TFs that bind to their individual binding motifs at enhancers, which are distal

regulatory elements located thousands of basepairs away from a gene31. The binding of TFs

at enhancers mediates the recruitment of machinery necessary for transcription such as RNA

polymerase. Prior studies have suggested two classes of TFs: 1) lineage determining TFs (LDTFs)

and and 2) signal dependent TFs (SDTFs)28. LDTFs bind to cell type specific enhancers while

SDTFs bind at enhancers bound by LDTFs in response to a cellular stimuli, resulting in cell type
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specific activation of an enhancer in response to stimuli28. These studies suggest that context

specific gene expression in a cell type is genetically encoded by combinations of TF binding motifs

at millions of enhancers scattered throughout the genome11.

Given the evidence that TFs act collaboratively to activate enhancers, it follows that indi-

vidual TF motifs are poor predictors of whether or not a sequence is an enhancer. The biological

activity of an enhancer may depend on the composition of TF motifs - arrangement and spacing

between TF motifs, as well as the degeneracy of each motif18. And so, we endeavored to teach

an attentive neural network (ANN) to distinguish accessible enhancer elements from background

genomic sequences as well as to predict enhancer activation (measured using ChIP-seq targeting

H3K27Ac) in macrophage cells, a cell of the innate immune system. Neural networks have been

previously applied to predict enhancers1;46;76. However, most of these previous models report only

individual motifs that are enriched and do not describe how TF motifs interact. Our ANN uses

a neural mechanism, which is at the heart of current models for modeling sequences of words in

natural language processing applications such as language translation and sentiment analysis10;97.

In our ANN, neural attention allows the model to focus on the TF motifs that are functional at an

enhancer and ignore dozens of other nonfunctional motifs (Figure4.1). By extracting information

learned by our network, we can identify combinations of TF motifs that signal the activation of an

enhancer in response to cellular stimuli as well as learn how these TF motifs interact (Figure4.1).

4.3 Methods

4.3.1 Data Processing

Raw sequencing data (fastq files) were mapped to the mm10 build of the mouse genome

using version 2.2.9 of Bowtie252. Open chromatin regions were identified with the HOMER (version

4.8.3) findPeaks command using replicate ATAC-seq experiments29. Open chromatin regions were

scored for consistency between replicate experiments using the Irreproducible Discovery Rate

(IDR)61 and only peaks with IDR < 0.01 were used for analysis. IDR scores were calculated using

version 2.02 of the IDR program. The activity at an open chromatin region was quantifed as the
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Specific Enhancers

Motifs Motifs

Attentive Neural Network

Signal A 
Specific Enhancer Motifs
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Specific Enhancer Motifs

Motifs Motifs

Signal A Signal B

Figure 4.1. Attentive neural network learns to ignore non-functional motifs (faded gray boxes)
thereby revealing TF motifs that control activation in response to signal A and B respectively

number of H3K27Ac ChIP-seq reads that fell within a 1000 basepair window centered at each

open chromatin region. Differentially acetylated regions were identified using EdgeR (version 3.7)

using biological replicates and defined as sites with False Disovery Rate < 0.05 and a fold change

between two treatment conditions greater than two80.

4.3.2 Model Architecture

The architecture of our ANN model is shown in (Figure4.2). To learn motifs recognized

by TFs, our ANN model applies a 1-dimensional convolution, convm over 4 channels to the input

sequence, s, encoded as a one hot vector1;46. We uses 150 convolution kernels in total. To learn

relationships between motifs, we eschew recurrent layers, which require many parameters that

are hard to interpret, and use neural dot product self attention only76;97. The rectified convolution

output, R = rect(convm(s), which quantifies how well each position in a sequence matches to a

motif, is then fed to the attention layer. Using the notation of Vaswani et al, we project R using

3 separate sets of weights, forming RW Q,RW K,RWV . The product A = (RW Q)(RW K)T forms an

attention matrix, which can be used to identify interactions between positions within a sequence.

The attention matrix also highlights which positions of the sequence are being used by the model to

make a prediction. The output of the attention layer, (RW Q)(RW K)T (RWV ) is a weighted sequence
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Figure 4.2. Overview of attentive neural network model. A sequence is encoded as a binary one-hot
vector and then convolved to quantify how well each subsequence matches to a DNA motif. The
motifs present at each pair of positions are used to calculate an attention matrix, which weights the
importance of each position. The output of the convolutional layer is weighted using the attention
matrix and the fed to a single dense neuron which then makes a prediction

of motifs where higher magnitude weight indicate that a position is more important; a positive

weight would indicate that a motif is positively correlated with the prediction target and conversely,

a negative weight would indicate that a motif is negatively correlated with the prediction target. The

output of the attention layer is then fed to the output layer, which quantifies the number of motifs

positively and negatively correlated with the prediction target. The structure of the output layer will

vary according to the prediction target. For binary classification (eg. open chromatin versus genomic

background, we use a single dense neuron with a sigmoid activation function. For regression (eg.

predicting the level of H3K27Ac) we would use a dense neuron with a Relu activation function

instead. For multi-target tasks, the prediction layer would use a dense neuron for each prediction

target. Models were implemented version 2.2.0 of Keras and version 1.7.0 of TensorFlow using the

Python (version 3.6.1) API.
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4.3.3 Motif Library Model Variant

Although, our ANN model uses relatively few parameters in comparison to a comparable

neural network that uses recurrent neurons, our ANN model would still require roughly ten thousand

data points (Parms, 4.3). In response to a stimuli, only thousands of loci may become activated in

a macrophage. And so, we created a variant of our ANN model that can use a mix known motifs

drawn from public databases38;102 and de novo motifs learned using convolution kernels. To use

existing motifs we initialize a convolution kernel for each known motif and set the weights of that

kernel to the log-transformed values of the position weight matrix for that known motif in the

same fashion as4. We used a motif library formed from motifs from the JASPAR and CISBP motif

libraries where highly similar motifs have been merged together19. As each de novo motif costs

four times the size of the motif to learn in terms of parameters, the amount of parameters saved can

be considerable for a model that considers many motifs (Table 4.3).

4.3.4 Model Training

Each model for predicting open chromatin was trained using 20,000 open chromatin regions

that are accessible in each treatment condition and a 20,000 GC matched genomic background

regions. We employ five-fold cross validation when training all models, and so 80% of the data is

employed for training the model and 20% of the data is used for evaluating the performance of the

model. Models were trained by optimizing performance of the model using cross entropy as the

loss function and using the ADAM optimizer48.

Models trained to predict the level of H3K27Ac were trained using all open chromatin

sites detected in any treatment condition. The log2 transform of the number of H3727Ac reads at

each open chromatin region. These models were trained using five-fold cross-validation. Models

for predicting H3K27Ac levels were trained by optimizing performance of the model using mean

absolute error as the loss function and using the RMSProp optimizer.
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4.3.5 Identification of subgroups of open chromatin regions

Subgroups of open chromatin regions were identified using the output of the attention layer

of our ANN model for each open chromatin region. The output of the attention layer is a weighted

version of the output of the convolutional layer, a matrix that gives motif scores for each motif (or

convolution kernel) considered by the model at each position within the open chromatin region.

In the attention layer, important positions are assigned greater weight and motif scores at that

position would increase in magnitude. Conversely, positions that are unimportant will have motif

scores closer to zero after weighting. The sign of the attention weight indicates whether a motif

is enriched (positive weights) or depleted at open chromatin sites. For each motif, we took value

with the greatest absolute value across all positions within a sequence, giving us an attended score

matrix with length equal to the number of open chromatin regions and width equal to the number

of motifs/kernels. We then calculate the principal components of this score matrix and use the

principal components to cluster the open chromatin regions. The principal components, which are

linear combinations the attended scores for each motif, can also be used to identify motifs that

co-occur. We performed clustering using the k nearest neighbor algorithm implemented in the

Seurat R package7;58;107. Results of the clustering is then visualized using t-Distributed Stochastic

Neighbor Embedding (t-SNE). We used five principal components and perplexity of 100 for t-SNE

visualization.

4.3.6 Software and Code Availability

Source code for our ANN model is available at: github.com/jenhantao/genomic grammar.

4.4 Results

4.4.1 Profiling macrophage chromatin landscape

We profiled the open chromatin landscape of bone marrow derived macrophages (BMDMs)

from C57Bl6/J mice using ATAC-seq12. To assay for active regions of the genome, we performed

ChIP-seq targeting H3K27 acetylation (H3K27Ac). We performed these experiments in resting
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(vehicle treated) and macrophages stimulated with either Kdo2 lipid A (KLA, one hour treatment,

a model for M1 polarized macrophages) or IL4 (24 hour treatment, a model for M2 polarized

macropahges). These experiments identified tens of thousands of open chromatin regions (Table

4.1) in each treatment context as well as thousands of deferentially acetylated regions (Table 4.2).

Table 4.1. Number of open chromatin regions detected using ATAC-seq

Treatment Open Chromatin Regions
Vehicle 31553
KLA-1h 21783
IL4-24h 33581

Table 4.2. Number of differentially acetylated regions detected using H3K27Ac ChIP-seq

Treatment Up-regulated Down-regulated
KLA vs. Veh 7311 8264
IL4 vs. Veh 1121 297
KLA vs IL4 4869 6386

4.4.2 Open chromatin prediction

We began by training a model to discriminate open chromatin regions present in each

condition from GC-content matched genomic background regions. To assess the performance of

our ANN model architecture, we compared the performance of our ANN model against the current

state of the art, a convolutional network. We trained our ANN model and an implementation of

DeepBind, a previously described convolutional network1, to distinguish active enhancers from

random genomic sequences. The performance of our ANN model exceeded that of the convolutional

model, in terms of model accuracy and precision (Figure4.3). To ensure that the improvement in the

performance of our ANN model is not due to the greater number of free parameters (Figure4.3),

we also trained a large convolutional network (with 54 convolution kernels and 108 dense neurons

versus 16 convolution kernels and 32 neurons in the original model). We also quantified a variant

of our ANN model where the convolution kernels (Figure 4.2) are initialized using a library of

known motifs (see Model Design section). We found that the performance of the model variant that
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only used the motif library achieved similar performance to the large convolutional neural network

while using substantially less parameters (LargeConv, Lib, Table 4.3. We found that the difference

in performance between the library model and the large convolutional network can be narrowed

by introducing just 16 convolutional kernels that learn de novo motifs to the motif library based

variant of our ANN model (LargeConv, Att+Lib, Table 4.3). Overall, models using the attention

mechanism were able to achieve better performance, suggesting that the attention mechanism is

capable of extracting additional useful information beyond what is learned by the convolutional

neural networks93;94. We believe that the the neural network with an attention mechanism is able to

learn a sparse representation of each sequence where uninformative motifs are ignored (Fig. 4.1).

An example of an attention matrix (used by our ANN model to weight raw motif scores) is shown

on the left in Fig. 4.3 adjacent to the unweighted motif scores on the right.

Figure 4.3. Example of attention matrix calculated for an accessible open chromatin region in KLA
treated macrophages. The attention matrix is on the left and lighter values indicate that the model
is focusing on a particular position. Unweighted motif scores are shown on the right, and darker
hues indicate better matches to each motif (columns). The most attended/important motif at each
position is indicated on the left side of the panel. Red boxes are drawn to indicate that the attention
values at each position corresponds to a set of motif scores for each motif.
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Table 4.3. Comparative performance of various models for predicting open chromatin. Performance
metrics (n=3), accuracy and precision, of our attentive neural network (Att.), a convolutional network
(Conv), a large convolutional network (LargeConv), a variant of our attentive neural network using
a library of 299 motifs and 16 convolution kernels for learning 16 de novo motifs (Att+Lib), and a
variant of our attentive neural network that uses only a motif library of 299 motifs (Lib) are shown
for 3 treatment conditions (Veh, KLA, IL4)

Model
Att Conv LargeConv Att+Lib Lib

Params 12750 2129 14657 4590 2990

Veh
Acc. 0.896 0.870 0.880 0.895 0.888
Prec. 0.900 0.877 0.877 0.907 0.889
auROC 0.965 0.944 0.954 0.960 0.956

Tx
KLA

Acc. 0.863 0.833 0.846 0.852 0.843
Prec. 0.862 0.810 0.850 0.852 0.852
auROC 0.936 0.914 0.927 0.928 0.919

IL4
Acc. 0.888 0.878 0.885 0.888 0.881
Prec. 0.899 0.865 0.880 0.881 0.886
auROC 0.957 0.949 0.958 0.959 0.954

4.4.3 Subtypes of open chromatin regions

To begin examining the motifs that drive the performance of the classifier, we adapted

several clustering techniques typically used for single cell RNA-seq analysis, principal component

analysis and t-SNE, to analyze the attended motif scores calculated by our ANN model. The

attended motif scores calculated by our ANN model is structurally similar to single cell RNA-seq

data in that both types of data are sparse and are high dimensional. Instead of finding clusters of

cells that express different sets of genes, we hope to identify clusters of open chromatin sites that

enrich for different sets of motifs. To facilitate ease of analysis, we analyzed the variant of our

ANN model that used the motif library only (Lib in Table 4.3 so that we did not have to match each

convolution kernel to a motif as was done in previous studies1;46;76. Following previously described

single cell RNA-seq analysis procedures, we began by performing principal components analysis

on the attended motif scores calculated by our ANN model (see methods) and then used these

principal components for visualization using t-SNE93;94. To determine the number of principal

components to use, we examined the amount of variance explained by each principal component

in each treatment condition and observed that the amount of variance explained by each principal
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component dropped considerably after the fifth principal component 4.4. And so, we used t-SNE to

visualize the first five principle components. Visually, we observe that t-SNE separates the open

chromatin sites detected in each condition into distinct clusters (Fig. 4.5c, 4.6c, 4.7c). Cluster

assignments were determined using the k-nearest algorithm7.
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Figure 4.4. Amount of variance explained by each principal component for attended motif scores.
Individual panels are shown for each treatment: vehicle (4.4a), KLA-1h (4.4b), and IL4-24h (4.4c)

Visually, the clusters of open chromatin regions formed using the attended motif scores

learned by our ANN model were more distinct than clusters formed using un-weighted motif scores

(Fig. 4.5a, 4.6a, 4.7a). Additionally, we calculated clusters formed using the output of the dense

layer of the large convolutional network 4.5b, 4.6b, 4.7b). Each neuron in the dense layer of the

convolutional network calculates linear combination of the convolutional layer and is essentially a

combination of motif scores. The effectiveness of clustering where the ground truth clusters are

unknown (we do not actually know how the open chromatin regions cluster together biologically)

can be quantified using the Silhouette Coefficient. The Silhouette Coefficient is defined using b,

the mean distance between each data point and the points in the nearest cluster and a, the mean

distance between each data point and the points in the cluster, as: b−a
max(a,b) . Data that is clustered

with distinct clusters that have little overlap between clusters would have Silhouette Coefficient

approaching 1. Clustered data that has clusters that overlap would have a Silhouette Coefficient

approaching 0. Negative Silhouette Coefficients indicate poor clustering where many data points

have been potentially assigned to the incorrect cluster. Open chromatin regions clustered using

attended motif scores calculated by our ANN model had higher Silhouette Coefficients than when
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the same regions were calculated using motif scores or the output of the dense layer of the large

convolutional network (Table 4.4. These results suggests that our ANN model is better able to

identify subgroups of open chromatin regions.

Table 4.4. Comparison of cluster structure using Silhouette Coefficient. Higher coefficients indicate
better clustering.

Representation
Motif Score Attended motif Score LargeConv

Veh 0.12 0.21 0.19
Tx KLA 0.13 0.26 0.18

IL4 0.13 0.19 0.17

(a) (b) (c)

Figure 4.5. t-SNE visualization of sequence representations learned by various models for open
chromatin regions accessible in resting macrophages (vehicle treatment). Panel 4.5a gives t-SNE
clustering results using unweighted motif scores (299 motifs). Panel 4.5b gives t-SNE clustering
results for the sequence representation calculated by the large convolutional neural network (output
of dense layer). Panel 4.5c gives t-SNE clustering results using the sequence representation learned
by our neural network with an attention mechanism (output of attention layer).

To examine the motifs that are enriched within each cluster, we used the Wilcoxon Rank

Sum test to compare the attended motif scores in one cluster versus the rest of the clusters. As most

of the open chromatin sites in vehicle treated, KLA treated and IL4 treated macrophages overlap, we

show just the top 25 motifs that are significantly enriched in at least one cluster for vehicle treated

macrophages (Fig. 4.8). We observed 10 clusters that each enriched for a distinct set of motifs,

suggesting that different combinations of TFs are responsible for establishing the open chromatin

landscape in macrophages.
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(a) (b) (c)

Figure 4.6. t-SNE visualization of sequence representations learned by various models for open
chromatin regions accessible in KLA treated macrophages. Panel 4.6a gives t-SNE clustering
results using unweighted motif scores (299 motifs). Panel 4.6b gives t-SNE clustering results for
the sequence representation calculated by the large convolutional neural network (output of dense
layer). Panel 4.6c gives t-SNE clustering results using the sequence representation learned by our
neural network with an attention mechanism (output of attention layer).

4.4.4 Enhancer Activity Prediction

Encouraged by the performance of our ANN model at predicting open chromatin, we applied

our ANN model to predicting the level of H3K27Ac under a given treatment at all open chromatin

regions detected in any treatment condition. Again, we observe that our ANN model (Att, Table 4.5)

performs better than both the convolutional network (Conv) and the large convolutional network

(LargeConv). Variants of our ANN model that were initialized using a motif library performed

similarly to the large convolutional network despite using considerably less parameters (Table

4.5). Notably, each of the models performed far better at discriminating open chromatin from

genomic background (Table 4.3. This could be due to the fact that while chromatin accessibility

is largely determined by TF binding, which can be indirectly observed via motifs, there are

additional biological processes that govern enhancer/promoter activation. The global conformation

of the genome and trans interactions between different regulatory elements may play a role15;105.

Additionally, protein modifications such as phosphorylation may affect the activity of both TFs and

cellular machinery recruited by TFs43.
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(a) (b) (c)

Figure 4.7. t-SNE visualization of sequence representations learned by various models for open
chromatin regions accessible in IL4 treated macrophages. Panel 4.7a gives t-SNE clustering results
using unweighted motif scores (299 motifs). Panel 4.7b gives t-SNE clustering results for the
sequence representation calculated by the large convolutional neural network (output of dense layer).
Panel 4.7c gives t-SNE clustering results using the sequence representation learned by our neural
network with an attention mechanism (output of attention layer).

4.4.5 Subtypes of differentially acetylated regions

Considering the limited performance of our ANN model (and that of other models), we

decided to specifically examine open chromatin regions with differential acetylation after treatment

with KLA-1h or IL4-24h instead of all open chromatin sites. We reasoned that examining activated

and de-activated regions would give us the best chance to observe signal specific motifs. t-SNE

representations created using attended motif scores calculated by our ANN model of differentially

acetylated regions after KLA-1h treatment (Fig. 4.9a and IL4-24h treatment (Fig. 4.9b.

And in Figure 4.10, we show the enriched motifs within each cluster of differentially

acetylated regions. In differentially aceltylated regions in KLA treated macrophages, we of course

find that several clusters are defined by the enrichment of the Rel motif, which is the recognition

target of p65 (Fig. 4.10a). Additionally we find that the clusters are also stratified according to

the enrichment of Ets and IRF motifs which have been previously shown to play a role in the

macrophage TLR4 response41;42.

In IL4 stimulated macrophages, we find that several clusters enrich for STAT motifs; STAT

factors play an important role in the macrophage’s IL4 response14. Interestingly, two distinct STAT
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Figure 4.8. Motifs enriched in each open chromatin cluster in Vehicle treated macrophages. Color
intensities give the negative log10 transformed p-value, indicating greater enrichment of a particular
motif in a given cluster. Scores are calculated separately for both orientations of a motif (indicated
using +/-).

motifs were enriched in separate clusters (STAT 1 merged and Stat6). Additional motifs that that

define different clusters of differentially acetylated regions in IL4 treatment included IRF and bZip

factor motifs (Fig. 4.10b).

In KLA treated macrophages, we found that the clusters of differentially acetylated regions

formed using the attended motif scores also showed differences in activity before and after treatment

with KLA (Fig. 4.11a. Clusters 6, 8, 9, 10, and 11 appear to contain most of the regions that are

deactivated in response to KLA. Clusters, 6, 8, 10, and 11 show a depletion of the Rel/p65 motif

(Fig 4.10a). Interestingly, cluster 9 does show some enrichment for the Rel motif, which may
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Table 4.5. Comparative performance of various models for predicting enhancer activity. Perfor-
mance metrics (n=3) for our attentive neural network (Att.), a convolutional network (Conv), a
large convolutional network (LargeConv), a variant of our attentive neural network using a library
of 299 motifs and 16 convolution kernels for learning 16 de novo motifs (Att+Lib), and a variant
of our attentive neural network that uses only a motif library of 299 motifs (Lib) are shown for 3
treatment conditions (Veh, KLA, IL4). Performance was quantified as the Pearson Correlation of
the predicted level of H3K27Ac and the actual level of H3K27Ac at all chromatin regions detected
in any of the three treatment conditions.

Model
Att Conv LargeConv Att+Lib Lib

Params 12750 2129 14657 4590 2990
Veh 0.403 0.339 0.368 0.398 0.384

Tx KLA 0.517 0.493 0.505 0.497 0.484
IL4 0.397 0.366 0.372 0.387 0.373

suggest that the Rel motif is not the sole determinant of activation in response to KLA. Changes in

acetylation activity in IL4 treated macrophages did not stratify clearly across the different clusters

(Fig. 4.10b).

4.5 Discussion

In this study, we propose the a novel neural network architecture for analyzing regulatory

elements located throughout the genome. Our neural network with an attention mechanism is

capable of discriminating context specific (different treatment conditions) open chromatin regions

from genomic background at state of the art levels. Additionally, our neural network shows some

improvement over existing convolutional networks at predicting the level of H3K27Ac, a proxy for

promoter/enhancer activity. Additionally, we demonstrate that techniques for identifying groups of

functionally distinct cell groups using single cell RNA-seq can be adapted to identify groups of open

chromatin regions as well as motifs that are differentially enriched in each of these groups/clusters.

While this study began with the intention of showing that multiple combinations of motifs

are important for mediating signal response in macrophages, we currently have not achieved the

level of results to make that claim. There are however, several useful ideas that can be taken from this

work in the current state. First, we believe that it is an important problem to distinguish functional
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Figure 4.9. t-SNE visualization of sequence representations learned by our ANN model for differ-
entially acetylated regions. Panel 4.9a gives t-SNE visualization of differentially acetylated regions
in KLA treated macrophages using the sequence representation learned by our neural network
with an attention mechanism (output of attention layer). Panel 4.9b gives t-SNE visualization of
differentially acetylated regions in KLA treated macrophage

motifs from motifs that are present (Fig. 4.1). In this study, we have tried to tie function to motifs

by examining motifs in several signaling contexts. We believe the neural attention mechanism we

have described is a potential solution. Second, given growing evidence for the collaborative binding

of TFs19;28;29;65, we believe it is important to look for groups of motifs, and not individual motifs.

4.6 Future Work

4.6.1 Data Analysis

While we are encouraged by the performance of our ANN model, we believe that additional

efforts need to invested in extracting insights from the parameters learned by the neural network

and refining our analysis approach.

First, there is remaining work to be done with respect to the design of our model. The

model described by Vaswani et al used a position encoding, which we did not implement. Previous

studies have noted that motif positioning can have a periodicity that is potentially due to the turn
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Figure 4.10. Motifs enriched in cluster of differentially acetylated regions with respect to Vehicle
treatment in KLA-1h and IL4-24h treated macrophages. Color intensities give the negative log10
transformed p-value, indicating greater enrichment of a particular motif in a given cluster. Scores
are calculated separately for both orientations of a motif (indicated using +/-).

of the DNA helix; the sin based positional encoding used by Vaswani could be used to model

this periodicity. The model used by Vaswani et al featured multiple attention matrices, which can

be used to model the behavior of a transcription factor in multiple signaling contexts. We have

previously demonstrated that a transcription factor’s binding partner may change depending on

the cell type as well as the signaling context (see Chapter 2 and 3). The original intuition behind

using data from multiple signal contexts stems from the observation that Vaswani et al constructed

a model that excelled at coupling a dense representation of a sequence (a sentence in one language)

with a corresponding dense representation of that sequence (a sequence in a different language). In

our application of an attention only model, we have a dense representation of a sequence, a matrix

of motif scores, and our original intuition was that we would require a corresponding dense vector

of activity states to identify functional motifs using this approach. And so, a multiclass learning

task (predicting the response of multiple signals simultaneously) may be more effective for tackling

the challenge of trying to predict enhancer/promoter activity.

Second, the tools we applied downstream of our ANN model have a number of parameters
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Figure 4.11. Change in H3K27Ac signal at differentially acetylated regions clustered using
attended motif scores. The vertical axis gives the log2 transformed fold change in H3K27Ac signal
between KLA and vehicle treated macrophages (Fig. 4.11a) and between IL4 and vehicle treated
macrophages (Fig. 4.11b)

that require tuning. The k nearest neighbor algorithm has a resolution parameter that controls the

number of clusters identified by the algorithm. In this study, we did not rigorously calculate the

expected number of clusters; this can be done by clustering the open chromatin regions according

to their activity state across many treatment contexts. Additionally, the t-SNE algorithm has a

perplexity parameter that approximates the number of neighbors a data point is expected to have.

Typical values for this perplexity parameters ranges from 5-50. However, we anticipate that hundreds

if not thousands of open chromatin regions may respond to a signal similarly and have similar

sequence compositions. The choice of the wilcoxon rank sum test, a nonparametric, for identifying

enriched motifs is a suitable and conservative choice, but there are likely better options that can be

selected upon more careful examination of the data.

4.6.2 Experimental Validation

Given the preliminary nature of this work, caution needs to be taken when considering

follow up experiments. To demonstrate that a TF is associated with the activity of a specific cluster,

one could perform knockdown of a specific TF and perform ChIP-seq to determine if the activity of

that cluster is specifically affected. knockdown can be effectively performed using CRISPR-Cas9

technology. Alternatively, one could try to over express a TF using an expression vector and attempt
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to specifically activate a cluster of enhancers. To identify the correct TF to target, further data

describing the availability of TFs need to be integrated into this study because multiple TFs can

recognize the same motif.

Assuming that sequene content is the primary determinant of enhancer activity (it may not

be), we can also use motifs enriched in each cluster to design artificial transcriptional units that

are cell type and signal specific. To do so would require additional analysis examining the spacing

and arrangement of the motifs. Such artificial transcriptional units may have clinically relevant

applications.For example, this would allow us to use well characterized, general delivery systems

such as adenovirus, which target cells indiscriminately. We can specify treatment activity by using

a synthetic target specific transcriptional unit designed using information from our attentive neural

network that drives the expression of a therapeutic transgene. As an example, a transcriptional unit

specific to cancer driving the expression of a immune reactive transgene would allow for immune

specific targeting of the cancer.
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Chapter 5

Conclusions

Here we describe machine learning models for interpreting genomic sequences that are

grounded by biological realities that were uncovered prior to this study. Large scale epigenomic

studies suggest the presence hundreds of thousands of regulatory elements - enhancers and promoters

- in mammalian genomes79. Each cell type selects tens of thousands of these elements, which play

important roles in determining the identity and function of each cell type2;53. Previous studies

established that the activity of promoters and enhancers depends in part on the binding of sequence-

specific transcription factors to their target sequence31;84. In mammals, there are on the order of

hundreds of transcription factors, which are organized into families that can share highly conserved

DNA binding domains104. The target binding motif of the majority of transcription factors has been

characterized using a combination of in vitro and in vivo assays and these DNA motifs have been

deposited in a variety of databases29;38;102. Given these prior results, the aim of this study was to

leverage machine learning to learn how these components of transcriptional regulation fit together

to enable cell type and context specific activity at enhancers and promoters.

Chapter 2 of this work detailed a generalization of the collaborative hierarchical model, a

previously described model for transcription factor binding and enhancer promoter activation28.

The collaborative hierarchical model suggests that transcription factors bind to cell type specific

regions by targeting sites already bound by simple combinations of lineage determining transcription

factors5;23;28;29;42;54;95;103. As we could not explain differences in the binding profiles of the AP-1

transcription factor family using simple combinations of motifs, we constructed a machine learning
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model that jointly considers hundreds of motifs simultaneously to predict transcription factor binding.

This model resulted in the realization that a single transcription factor may interact with dozens of

other transcription factors genome wide. Additionally, we identified two classes of collaborative

motifs: 1) highly ranked TFs that are likely to be important for cellular identity28;29;42;69;91;95 and

2) moderately ranked TFs that specify the binding of individual AP-1 family members. In chapter 3,

we extended this result to many transcription factors profiled by the ENCODE Consortium. Overall,

these two studies provide evidence that collaborative binding of TFs allow a single DNA motif to be

used in a wide variety of contexts; this may be a general principle for how transcriptional regulation

is encoded by the genome.

In chapter 4, we applied lessons from chapter 2 and 3 to construct a neural network with an

attention mechanism that allows us to better model combinations of transcription factor motifs. The

capability of this neural network is qualitatively distinct from previous models as it can account

for multiple occurrences of a motif at a single locus as well as leverage a mixture of known motifs

(drawn from public databases) and de novo motifs that are learned. We applied this neural network

to study macrophage signal response. Leveraging the attention mechanism, which computes high

resolution maps of how DNA motifs interact with one another, the model learns to ignore instances

of a motif that may not be functional while focusing on instances of motifs that co-occur with other

important motifs. Genome wide, there are millions of copies of each DNA motif, most of which

are not bound by a transcription factor. Generalizing this observation to a single locus, we would

expect that most occurrences of motifs at a single locus are nonfunctional and so it is important

for a model to learn to ignore motifs. Using this approach, we were able to identify subtypes of

regulatory elements that activate in response to a particular signal that are each identified by distinct

combinations of transcription factors. The results from these studies demonstrate that combinations

of transcription factor motifs are not only important for determining transcription factor binding

(as described in Chapters 2 and 3) but also for determining the activation of regulatory elements

themselves.

In these studies, we have largely focused on combinations of transcription factor motifs,
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which play a role in directing transcription factor binding and enhancer activation. However, there

are additional aspects of a how regulatory information is encoded at promoters and enhancers that

we have not explored. Transcriptional regulation may also be influenced by the spacing between

motifs and the specific arrangement of motifs18. As efforts to model these additional aspects of the

genomic grammar progress, which may require increasingly complex model architectures, equal

efforts need to be invested in developing methods to extract information from these complex machine

learning models. Models described in this study do not explicitly phenomena such as protein to

protein interactions, post translational modifications on transcription factors, or interactions between

multiple loci (eg. promoter enhancer looping); integrating this information could also potentially

result in more complex models. The proper application of machine learning for interpreting the

genome ought to be a two step process. After constructing a model with good performance, one also

needs to explain - in a biological fashion - how the the model has achieved good performance. In

order to test a hypothesis generated by a computational model while fully accounting for potentially

confounding biological processes, a biological experiment must be conducted as the complexity of

a living cell vastly exceeds that of any current computational model.And so, further studies of the

genome and transcriptional regulation will continue depend on the joint efforts of both experimental

scientists and computational scientists as much as these studies have.
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