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A Sub-Cellular Viscoelastic Model for Cell Population
Mechanics
Yousef Jamali*, Mohammad Azimi, Mohammad R. K. Mofrad

Molecular Cell Biomechanics Laboratory, Department of Bioengineering, University of California, Berkeley, California, United States of America

Abstract

Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to
understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with
the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical
and ‘in silico’ (computational) models as an alternate solution. This paper introduces a single-cell-based model representing
the cross section of a typical tissue. Each cell in this model is an individual unit containing several sub-cellular elements,
such as the elastic plasma membrane, enclosed viscoelastic elements that play the role of cytoskeleton, and the viscoelastic
elements of the cell nucleus. The cell membrane is divided into segments where each segment (or point) incorporates the
cell’s interaction and communication with other cells and its environment. The model is capable of simulating how cells
cooperate and contribute to the overall structure and function of a particular tissue; it mimics many aspects of cellular
behavior such as cell growth, division, apoptosis and polarization. The model allows for investigation of the biomechanical
properties of cells, cell-cell interactions, effect of environment on cellular clusters, and how individual cells work together
and contribute to the structure and function of a particular tissue. To evaluate the current approach in modeling different
topologies of growing tissues in distinct biochemical conditions of the surrounding media, we model several key cellular
phenomena, namely monolayer cell culture, effects of adhesion intensity, growth of epithelial cell through interaction with
extra-cellular matrix (ECM), effects of a gap in the ECM, tensegrity and tissue morphogenesis and formation of hollow
epithelial acini. The proposed computational model enables one to isolate the effects of biomechanical properties of
individual cells and the communication between cells and their microenvironment while simultaneously allowing for the
formation of clusters or sheets of cells that act together as one complex tissue.
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Introduction

One of the important phenomena in cell engineering and

developmental biology is the shape of tissue and the cell’s

organization. Depending on the cell type and environmental

conditions, cells can create unique shapes such as flat sheets, self-

enclosed monolayers, cysts, or elongated tubes. The more

important question is how these cells interact and how their local

interaction causes a global geometrical distinctive shape for tissues

like the heart or kidney [1–6]. The geometrical interactions and

coordinated adhesion among neighboring cells and between the

cells and local environment are critical for structure and function

of epithelial tissue [7–13]. Any perturbation of these orchestrated

interactions can cause abnormality in behavior and function of

tissue and often lead to initiation of tumor growth and invasion

[14–15]. Another interesting subject is embryogenesis, when a

stem cell with consecutive rapid divisions and differentiation can

create different tissues, wherein the interactions between cells and

environmental biochemical and biomechanical signals have

critical, yet nearly unknown roles [16–17]. However, in the last

two decades, improved experimental techniques and develop-

ments in new laboratory instruments have allowed for more

detailed understanding of cell-cell communication and the cell’s

response to biochemical and biomechanical environmental signals.

Nevertheless, biological experiments are expensive and depend on

many parameters that are mostly difficult to control and test in

isolation. As a complementary method, mathematical modeling

and ‘in silico’ (computational) experiments are a good candidate to

help explore the behavior of the individual tissue cells along with

investigating their response to environmental cues. Due to easy

isolation in in-silico, computational models, incorporating the

related fundamental physical and biological parameters can

explain how specific biochemical or biomechanical parameters

may affect the tissue cells and their arrangement. Such a model

can help reduce the number of experiments required to obtain

meaningful observations by eliminating unlikely hypothesis while

providing a better explanation of observations.

For example, to investigate how individual cells cooperate and

contribute to the overall structure and function of a particular

tissue, a proper computational model must be capable of allowing

cells to be defined as individually deformable shapes, time- and

space-dependent individually regulated cell turnover, and cell-cell

and cell-ECM interaction. Many models have been developed to

mimic cell behavior, such as response to external mechanical and
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biochemical signals, cell-cell interaction, cell motility, and cell

morphology. For example, some models have attempted to mimic

cell collection behavior such as cancer invasion through the use of

continuum and/or discrete approaches [18–19] (Figure 1; Method

1), where each cell is represented by a finite element and follows a

cellular automata (CA) method [14,20–24]. Several models are

based on the extended Cellular Automata method (Figure 1;

Method 2), e.g. the lattice-gas based cellular automata (LGCA),

and the cellular potts model (CPM) [25] (Figure 1; Method 3). In

other approaches, cells are modeled as colloidal objects capable of

interacting with their environment [26–29]. In such models, cells

are capable of migrating, growing, dividing, and changing their

orientation. For example, in a model proposed by Galle, Loeffler

et al. (2005), the cells move according to the Langevin dynamics

framework and can interact based on a combination of attractive

and repulsive forces (Figure 1; Method 4). The aim of these models

is to replicate the multi-cellular growth phenomena. By focusing

on monolayer culture, Galle et al. [29] have investigated the effect

of key factors on rate and quality of culture growth. They also

analyzed the underlying processes involved in multi-cellular

spheroids, intestinal crypts, and other aspects of developmental

biology. These models are robust in mimicking various aspects of

cell population, but fail to examine the effects of cell deformation

and morphology on pattern formation and growth processes. To

investigate the effects of cell morphology on a multi-cellular

structure, Newman and colleagues [30–31] developed a phenom-

enological model involving a number of identical sub-cellular

elements, whose dynamics and interactions are defined by

intracellular potentials, which are stronger and bind elements

belonging to the same cell as well as intercellular potentials, which

are weaker and bind elements of neighboring cells (Figure 1;

Method 5). This model can simulate cell growth and division, and

when modeling the growth of a multi-cellular cluster from a single

cell, this algorithm simulates cellular shapes and multi-cellular

structures in 3D. Some models are based on the viscoelasticity of

cells [32–37], where each cell includes certain elastic and viscous

elements. Such models lend themselves to easy incorporation of

the cell-cell adhesion and repulsion, and various forces acting on

individual cells in the cluster. For example, a 3D deformable cell

model with cell adhesion and signaling was developed by Palsson

and colleagues [32–33], where each cell is taken as an ellipsoid,

with its axis composed of a combination of springs and viscous

elements (Figure 1; Method 6). This model was used to investigate

the role of cell signaling, cell adhesion, chemotaxis, and

coordinated differentiation in the morphology of a developed

organism. Another biomechanical approach developed by Rejniak

and colleagues [35–37] represents cells as deformable viscoelastic

objects that can be arranged into tissues of various topologies.

Rejniak’s model employs an immersed boundary method with

distributed sources (Figure 1; Method 7). This approach joins

elastic cell dynamics with a continuous representation of a viscous

incompressible cytoplasm. The model covers many aspects of

cellular behavior such as cell growth, division, apoptosis and

polarization. With this model it is possible to investigate the

biomechanical properties of cells and cell-cell interaction, the

effects of the microenvironment on a cellular cluster, and how

Figure 1. A comparison of existing models for cell morphology based on model realism and computational cost. A = Advanced,
S = Simple, N = None; L = Low, M = Moderate, H = High.
doi:10.1371/journal.pone.0012097.g001

Cell Population Models
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individual cells work together and contribute to the structure and

function of a particular tissue. Some applications of this model

include the following: the folding of a trophoblast bilayer [38],

tumor growth [35] and self-arrangement into a hollow acinus [36].

More recently, Coskuna et al. [34] developed a mathematical

model for ameboid cell movement in which a viscoelastic (spring–

dashpot) system was used to represent the cytoskeleton. This

model was used to solve an inverse problem of amoeboid cell

motility and to find the variation of spring and dash-pots

parameters in time. The research shows that the model and the

solution to the inverse problem for simulated data sets are highly

accurate. In general, cell mechanics has been modeled based on

non-living structures using different approaches [39] ranging from

the soft glassy material model [40–41], to the cortical shell–liquid

core model [42–43], and tensegrity architecture [44–51]. Few of

the theoretical models that have been proposed for analyzing the

mechanical properties of adherent living cells are capable of

simultaneously incorporating (i) the discrete nature of the

cytoskeleton, (ii) cell–cell and/or cell–extracellular matrix (ECM)

interactions, and (iii) the cellular pre-stress [48]. To address this

shortcoming, a new biomechanical model for the cell is proposed

here that is able to incorporate all these properties of the cell

simultaneously. In this model, inspired by the tensegrity concept,

each cell is capable of changing its morphology, and performing

various cellular processes such as growth, division, death, and

polarization. The modeled cells are able to interact with each

other and with their environment. Each cell in this model is an

individual unit containing several subcellular elements, such as the

elastic plasma membrane, encompassed by viscoelastic elements

that perform the function of the cytoskeleton, and the viscoelastic

elements of the cell nucleus (Figure 1; Method 8). Additionally, the

cell membrane is divided into segments where each segment (or

point) incorporates the cell’s interaction and communication with

its environment, such as adherens junctions. The qualities of the

various models discussed above are summarized in Figure 1. The

remainder of this paper is organized as follows. In Methods, the

mathematics of the model have been discussed. In Result and

Discussion, the model has been used to mimic several relevant

biological examples to show validity and the capabilities of the

model. In Conclusions, the model and its capabilities are

summarized and future steps for improving the model have been

suggested.

Methods

The details of our computational model are outlined here while

Table 1 summarizes the parameters of this paper and Table 2

provides quantitative values that were used in this model that are

valid for a typical cell. In this model, cells are represented as

objects with initial circular structures. The cell and nuclear

membranes are initially discretized, arbitrarily, into N0 nodes

(points), where a mass is associated with each point representing

altogether the total mass of the nucleus and cytoskeleton. Each

point on the cell and nuclear membranes is then 1=N0 of the mass

of the cytoskeleton and nucleus, respectively (Figure 2). Hereafter,

unless explicitly mentioned, the subscripts of parameters refer to

the cell number and point number. Superscript m indicates that

the point is on the cell membrane, and superscript n represents a

point on the nuclear membrane. If neither m nor n is specified, the

given point can be assumed to lie on either the cell membrane or

nucleus. For example, the k0th membrane point of the i0th cell is

represented by Pm
i,k, the corresponding point in the nucleus is

represented by Pn
i,k, and Pi,k represent the general point k of i0th

cell.

Force balances at each point have been considered as follows.

The total force Ftot
i,k , acting on Pm

i,k is calculated according to

Ftot
i,k ~Finner

i,k zFcell cell
i,k zFcell ECM

i,k zFext
i,k zFmitosis

i,k ð1Þ

Here Finner
i,k is the total force that acts on Pi,k due to the inner

structure of the cell (Figure 3 and Figure 4), i.e. the cytoskeleton,

membrane, and the cytoplasm, Fcell cell
i,k is the total force resulting

from the interaction with other cells (cell-cell interaction),

Fcell ECM
i,k is the force due to an interaction with a substrate(cell-

ECM interaction), Fext
i,k represents the external forces, (as described

below) and Fmitosis
i,k is the sum of the forces acting on Pi,k, when the

cell undergoes the cell division process (Figure 5). This force is due

to the shortening of the spindle fibers; a contractile ring is formed

by contractile forces acting on opposite sides of the cell boundary.

In the following subsections, these forces will be discussed and

described further in the context of various cellular events.

a. Inner cell structure
To model the inner cell structure, a viscoelastic Voigt model,

represented by a purely viscous element (a damper) and purely

elastic element (a spring) connected in parallel, is used (see

Figure 2). The force of a Voigt subunit connected to points Pi,k

and Pj,l is given as:

f v
i,k(Pj,l ,m,ks,l)~ks

Ri,k(t){Rj,l(t)
�� ��{l

Ri,k(t){Rj,l(t)
�� �� Ri,k(t){Rj,l(t)

� �
zm Vi,k(t){Vj,l(t)
� � ð2Þ

Here Ri,k(t) and Vi,k(t) are the position and velocity correspond-

ing to Pi,k respectively, l is the rest length of the spring, ks is the

spring constant, and m represents viscosity. It should be noted that

m,ks and l vary with time and position and depend on ith, jth cells

and kth, lth points, i.e. the two points that are connected by this

element (see Figure 2). The inner force Finner
i,k (see Figure 3 and

Figure 4) can be represented by the equation:

Finner
i,k ~Fcsk

i,k zFmem
i,k zF

p
i,k,

where Fcsk
i,k is the force from the cytoskeleton, F

p
i,k is the force due

to liquid in the inner cell, i.e. cytoplasm, and Fmem
i,k is the force

from the membrane acting on Pi,k.

Cytoskeleton. The mechanical properties of the

cytoskeleton, like elasticity and viscosity, are critical to the

validity of the model. Voigt subunits are effective for modeling a

viscoelastic system; the spring constants of the model are linear

approximations to the elasticity of the inner cell. Additionally, all

springs are subjected to a damping force resulting from the

viscosity of the cytoplasm, where linear dash-pots are used to

approximate the viscosity of the cytoskeleton. In the present

model, the cytoskeleton is divided into N uniformly radial

distributed parts, each of which is represented by a Voigt

subunit radiating from the nucleus (Figure 3, blue subunits).

Each subunit connects two points of the cell and nuclear

membrane, which are aligned in a radial direction from the

center of the nucleus. The nucleoskeleton is represented as a

viscoelastic model involving an actomyosin system (Figure 3, red

subunits). The model also contains N Voigt subunits in the nucleus

(Figure 3, red subunits), each of which connects two nuclear

membrane points n and n’ in which n’{n equal to N=3½ �

Cell Population Models
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(Figure 3). This allows the nucleus to show more resistance to

changes in its shape and volume due to exterior pressures when

compared to simply connecting opposing points on the cell

membrane. Only elements from the cytoskeleton act on each point

in the cell membrane, therefore, it can be said (see Figure 3):

Fm,csk
i,k ~f v

i,k(Pn
i,k,mcsk,kcsk

m ,lcsk) ð3Þ

For nuclear membrane points (see Figure 3):

Fn,csk
i,k ~f v

i,k(Pm
i,k,mcsk,kcsk

m ,lcsk)zf v
i,k(Pn

i,kz½N=3�,m
ncsk,kncsk

m ,lncsk)

zf v
i,k(Pn

i,k{½N=3�,m
ncsk,kncsk

m ,lncsk)
ð4Þ

Where ncsk refers to the nuclear cytoskeleton.

As a note, the inclusion of additional cellular elements into a

biomechanical model should be justified. In our model, an

additional yet key biomechanical element that is considered is the

structure of the nucleus’ cytoskeleton (actin filaments [52] and

nuclear lamina) which is connected to the cytoplasm cytoskeleton

via connected proteins (LINC) [53]. Our model attempts to

incorporate key aspects of the cell that play an important role in

cell biomechanics while maintaining simplicity. Additionally, not

all cells are flat nor are their nuclei positioned in the center of the

cell. The fact that the nucleus is not positioned in the center of the

cell plays an important role in the shape of the cell (e.g. satellite

shape of fibroblasts). Furthermore, under some mechanical

conditions, the nucleus plays an important role in the final shape

of the cell. Moreover, the mechanical behaviors of the nuclear

region (e.g. kinetochore microtubule shortening) play a key role in

mitosis. Inclusion of the nucleus in the model helps substantially in

modeling the dynamics of mitosis based on what happens in the

real cell during this process. In cellular mechanotransduction, the

nucleus itself may play an important role in the response of the cell

to force [54] and the forces acting on the nucleus are believed to

be important in eliciting events such as gene expressionas shown

by Wang et al [55]. Subsequently, through inclusion of the nucleus

in our model, we can investigate the effect and intensity of forces

that act on the nucleus from the external environment through the

cytoskeleton. The inclusion of the nucleus is ultimately necessary

in multi-scale modeling of the cell. From a modeling point of view,

if we were to ignore the nucleus, we would need to connect all of

Table 1. List of variables and their definitions used in this paper.

Subscripts Parameters

i,j i0th and j0th cells N0 number of nodes (points) on the perimeter of the cell and nucleus (i.e. their membranes)

k,l k0th and l0th points P point

a anterior region of cell F force

p posterior region of cell f v
i,k force of a Voigt subunit acting on Pi,k

m viscosity of a Voigt subunit

ks spring constant of a Voigt subunit

Ri,k position of Pi,k

Superscripts Vi,k velocity of Pi,k

m cell membrane Pros inner pressure

n cell nucleus Pr0 environmental pressure

tot total of all related parameters Vs stop volume region

inner inner cell Vg growth volume region

cell cell cell-cell interactions Vc current volume of the cell

cell ECM cell-ECM interactions Vr rest volume of the cell

ext external parameters as stop volume region coefficient

mitosis mitosis process ag growth volume region coefficient

csk cytoskeleton f n
div dividing force that acts on nucleus points

ncsk nucleus cytoskeleton f m
con dividing force that acts on membrane points

mem membrane dsep distance separating two daughter cells

p pressure D drag coefficient of each point

adh adhesion dadh
0

maximum separation between two points for initiating adhesion

rep elastic cell-cell or cell-ECM repulsion dadh
hys

minimum separation between two points for disrupting adhesion

d
rep
0

maximum separation between two points for elastic interaction

d
j
i,k

distance between Pi,k and the membrane surface of j0th cell or ECM

kf form factor

V total occupied area of cells

ncell number of cells

r cell edge density

Lb sum of the lengths of all internal cell boundaries plus half of the perimeter of the patch

doi:10.1371/journal.pone.0012097.t001
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the end points of the cytoskeleton elements to each other at a

single central point. In this situation this point will play a critical

role in simulations and can cause some singularities and abnormal

behavior during simulation and impose many limitations on the

model. Conversely, with the current structure, the force is

distributed around the nucleus and the whole system is more

stable (A possible alternative is to connect each point on the

membrane to the point on the opposing side of the membrane; in

this case each force on one point is directly transmitted to the other

side of the cell and causes artificial behavior).

Membrane. To represent the viscoelasticty of the membrane,

or, more correctly, the viscoelasticty of the cortical cytoskeleton,

two consecutive membrane points are connected with a Voigt

subunit (Figure 4, a and b, green subunits); hence the model

includes N Voigt subunits on the cell membrane and N subunits

on the nuclear membrane.

Fmem
i,k ~f v

i,k(Pi,kz1,mmem,kmem
m ,lmem)zf v

i,k(Pi,k{1,mmem,kmem
m ,lmem) ð5Þ

Cytoplasm. The cytoplasm is a viscous incompressible fluid,

naturally hindering the cell’s shape and volume changes. On the

other hand, osmotic pressures caused by the relatively higher

concentrations of proteins and other molecules inside the cell

compared to its external environment [56] act on the membrane.

This internal pressure is involved in the determination of cell

shape and morphology and affects the driving force of cell

movement [57–60]. In addition, the curved shape of microtubules

in the cell (despite their large effective persistence length compare

to the length of the cell [39,61]) implies that they must push the

cell membrane outward [39]. To represent these, a normal stress

(pressure) field acting on each point of the cell membrane is

defined, whose direction is outward and perpendicular to the cell

membrane (Figure 4c):

F
m,p
i,j ~(Pr

os
{Pr

0
)
dR

2

dR~DRi,j(t){Ri,jz1(t)DzDRi,j(t){Ri,j{1(t)D
ð6Þ

where Pros and Pr0 are the inner pressure and environmental

pressure, respectively. However, we make the approximation that

pressure in the cell is constant and independent of volume in

equilibrium conditions. This approximation is not very speculative

as various membrane channels allow for the flow of intracellular

fluid into or out of the cell at equilibrium, not allowing for the

buildup of hydrostatic pressure due to intracellular fluid

accumulation.

b. Cellular processes
Growth. To implement cell growth in the proposed model,

the number of membrane points, i.e. the number of viscoelastic

compartments, is allowed to increase as follows. First an integer

random number in the range (1,N) is generated, say j, providing

the location of the point j on the perimeter, then a point between

j0th and (jz1)0th points in the cell membrane is added and the

Table 2. The parameters for a typical cell, most of the parameters adopted from [34].

P Definition of Parameters Units Value

Kcyt Radial spring constants kg=s2 4:0|10{18

Bcyt Damping constants for radial springs kg=s 1:5|10{15

Kncyt Nucleus spring constants kg=s2 3:0|10{16

Bncyt Damping constants for nucleus springs kg=s 0

Km,adh
i,k

Adhesion spring constants kg=s2 4:0|10{17

Bm,adh
i,k

Damping constants for adhesion spring kg=s 0

Km,mem
i,k Cell membrane spring constants kg=s2 6:5|10{17

Bm,mem
i,k Damping constants for cell membrane springs kg=s2 2:0|10{15

Dm,mem
i,k Drag coefficients at the cell membrane kg=s 13:5|10{16

Kn,mem
i,k nucleus membrane spring constants kg=s2 3:0|10{16

Bn,mem
i,k Damping constants for the springs kg=s 1:0|10{14

Dn,mem
i,k Drag coefficients at the nucleus membrane kg=s 2:5|10{15

N0 Number of initial points 30

lad
i,k

Adhesion spring rest lengths mm 0

Rcell Cell radius mm 5:0

Rn Nucleus radius mm 1:0

Mcell Cell mass Kg 1:0|10{12

Mnuc Nucleus mass Kg 1:0|10{13

as Percent of rest volume where growth ends under this volume 85

ag Percent of rest volume that growth continues above this volume 95

dt Time step s 10

T Temperature 0k 300

doi:10.1371/journal.pone.0012097.t002
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same is done for the nuclear membrane. As a result, four subunits

are added to the system, one Voigt subunit for each the cell

membrane, nuclear membrane, inner nucleus, and cytoplasm).

The parameters of these new subunits are calculated from the

average of the first neighboring homogeneous subunit parameters.

With the additional ‘growth’ point, the circumferential length of

the membrane increases in proportion to
Nz1

N
. Hence, the rest

volume (in 2D), i. e. the volume of cell when it grows freely without

any inner or outer constraint, must increase proportional to
Nz1

N

� �2

, therefore the rest length of radial springs is increased

proportionally to
Nz1

N
. Two regions of volume, stop volume

region, Vs, and growth volume, Vg are defined as:

Vc [Vs if VcvasVr

Vc [Vg if VcwagVr

ð7Þ

Where Vc is the current volume of the cell, Vr is the rest volume (as

defined above), as and ag are the coefficients that define the extrema

of these regions (asƒag). Often, due to external pressures and

environmental space limitations, notwithstanding cell growth, the

cell’s volume cannot increase and will hence fall in the stop volume

region, i.e. the cell ceases to grow. Under this condition, the cell

cannot continue its growth until its volume fills the available space.

Mitosis. The present model allows for a growing cell to

divide, provided that its volume falls in the growth volume region

(see definition above). Key biomechanical aspects of cell

proliferation are included in our model. When the cell area (or

volume in 3D) is doubled, the axis of cell division is selected, so

that the orientation depends on the cell shape, extracellular

environment and cell polarization status [62–64]. In a dividing

unpolarized cell, this axis, usually perpendicular to the direction in

which the cell elongates, causes the cell to split into approximately

two equal parts. In a partially polarized cell, however, the axis of

cell division is orthogonal to the part of the cell membrane that is

in contact with the ECM. Two new daughter nuclei are then

placed orthogonal to the axis of cell division, (see Figure 5). This

axis must include the center of mass of the nucleus. After the

selection of division axis, the model finds the nearest membrane

point to this axis, i.e. point Pm
d (Figure 5a). As the structure of the

nucleus, during mitosis collapses [65], the nuclear subunits in our

model will be eliminated during mitosis, followed by the formation

of new nuclear subunits for the daughter cells. In mitosis there are

two major mechanical forces that occur. First, during the anaphase

stage of mitosis, the shortening of the spindle fibers causes the

kinetochores to separate and the chromatids (daughter

chromosomes) to be pulled apart and to begin moving toward

the poles of the cell [65]. Secondly, during the cytokinesis process,

a contractile ring is formed by contractile forces acting upon

opposite sides of the cell boundary [65]. This results in the

formation of a contractile furrow and causes division of the cell

into two daughter cells. In our model, the cell points are divided

into two groups, A and B, where the A group consists of

membrane points from Pm
d to Pm

dzN
2

and nucleus points from Pn
d to

Pn
dzN

2

and the remaining points belong to group B, see Figure 5a).

To model the first mechanical force, the points of the nucleus in A

and B are pulled apart, in an orthogonal direction of axis division

with the force f n
div.

Fn,mitosis
i,k ~

f n
div if k [A

{f n
div if k [B

�
ð8Þ

During the nucleus separation, the contractile force, f m
con, acts on

the boundary points of groups A and B to model the second

mechanical force. That is,

Fm,mitosis
i,k ~

f m
con if k is boundry po int A or B

0 if k is boundry po int A or B

�
ð9Þ

After the nucleus is divided, i.e. the distance between the center of

mass of the nucleus points in groups A and B exceed a certain

value, dsep, the cell will be divided into two daughter cells i.e. the

subunits which join the boundary points of A and B are eliminated

and bind to new first neighbor points in the same group with a

new subunit (see Figure 5).

When the area (or volume) of the cell doubles, the number of

defining membrane points increases to
ffiffiffi
2
p

N0, where N0 is the

number of membrane points on the initial cell. After division takes

place, each daughter cell will only have

ffiffiffi
2
p

2
N0 points, and as a

result it is possible to simultaneously add 1{

ffiffiffi
2
p

2

 !
N0 points to

each cell. To add membrane points, two consecutive points in the

membrane are found that have the longest distance and insert a

new point between them, and repeat this process until the number

of cell points become N0.

Figure 2. Cell structural model. a) The perimeter of the cell and
nucleus (i.e. their corresponding membranes) are initially discretized
into N0 nodes (points). The superscript m indicates that the point is on
the cell membrane and superscript n represents a point on the nuclear
membrane. If neither m nor n are specified, the given point can be
assumed to lie on either the cell membrane or nucleus. For example,
the k0th membrane’s point of i0th cell represented by Pm

i,k . Each line that
connects two points (red, green and blue lines) refers to a Voigt
subunit. The total force that acts on each point is F tot and is calculated
by Eq(1) b) Voigt subunit. A linear Kelvin-Voigt solid element,
represented by a purely viscous element (a damper) and purely elastic
element (a spring) connected in parallel. The force that is exerted on
Pi,k from this subunit is f v

i,k (Eq.(2)). ks is the spring constant and m
represents viscosity.
doi:10.1371/journal.pone.0012097.g002
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The main phases of cell growth and division are presented in

Figure 5b.

Motility. Cell motility is an important biological phenomenon

that plays a key role in morphogenesis, metastasis, and wound healing

[66]. Cell motility involves the interplay between three different

processes, namely, protrusion, adhesion, and contraction. Protrusion

occurs during the process of cytoskeletal assembly where the cell front

pushes out the cell’s leading edge. Next, adhesion occurs with the

extracellular environment, whereby the cell establishes adhesion to

the surface at the front end and slowly retracts from the back end.

Figure 4. Structure of cell membrane and cytoplasm. a,b) To represent the viscoelasticty of the membrane and cortical cytoskeleton, two
consecutive membrane points are connected with a Voigt subunit (green subunits); hence, the model includes N Voigt subunits on the cell
membrane and N subunits on the nuclear membrane. The forces acting on each cell from membrane subunits is calculated by Eq. (5); as the figures
show, each point is subject to two adjacent subunits. c) An osmotic pressure will act on the membrane. This internal pressure is involved in cell
morphology and affects the driving force of cell movement [57–60]. Knowing the persistence lengths of micotubles, and the fact that they appear
curved in the cell, it follows therefore, that this filament pushes the membrane outward [39]. Therefore, a pressure field acting upon each point of the
cell membrane, representing cytoplasmic pressure with an outward and perpendicular direction to the cell membrane can be defined as F

m,p
i,j by Eq.

(6).
doi:10.1371/journal.pone.0012097.g004

Figure 3. Inner cell structure and forces. The mechanical properties of the cytoskeleton are modeled using Voigt subunits; the spring constants
of the model are linear approximations to the elasticity of the inner cell. All springs can be considered subject to a damping force due to the viscosity
of the cytoplasm, where linear dash-pots are used to approximate the viscosity of the cytoskeleton. In our model, the cytoskeleton is divided into N
uniformly radial distributed parts, each of which is replaced by a Voigt subunit radiating from the nucleus (blue subunits). Each subunit connects two
points of the cell and nuclear membrane, which are located at a radial direction from the center of the nucleus. The model also contains N Voigt
subunits in the nucleus (red subunits), each of which connect two nuclear membrane points n and n’ in which n’{n equal to N=3½ �, This allows the
nucleus to show more resistance to changes in its shape and volume due to exterior pressure. Fm,csk

i,k is the cytoskeletal force acting on Pm
i,k and is

calculated by Eq. (3). F n,csk
i,k is the force acting on Pn

i,k from the cytoskeleton and nuclear cytoskeleton and is calculated by Eq. (4).
doi:10.1371/journal.pone.0012097.g003
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Finally, contraction of the actomyosin filaments causes the rest of the

back end of the cell to pull up. These processes cooperate in a spatially

heterogeneous structure to generate a complex topology for cell

motion and correlation. Coordination between these processes has a

significant role on the motility of the cell [66]. To model these three-

stages, the cell is first polarized by categorizing the points into two

groups, anterior and posterior. The cytoskeletal subunit parameters of

these stages will change periodically in a coordinated fashion. In

addition, to model the adhesion with a substrate, the drag coefficient

for each point is used. These points will also change periodically in

coordination with various subunit parameters, as follows:

l~la,0zsign(sin(vt))la,m

D~Da,0{sign(sin(vt))Da,m

	
if k [ Anterior Points

l~lp,0zsign(sin(vt))lp,m

D~Dp,0zsign(sin(vt))Dp,m

	
if k [ Posterior Points

ð10Þ

l is the rest length of cytoskeleton subunits spring, the subscript a and

p refer to the anterior and posterior region, subscript 0 shows the

Figure 5. Mitosis and involved forces. a) Several bio-mechanical aspects of cell proliferation are included in our model. First, the cell area (or
volume in 3D) is doubled. The axis of cell division is selected (dash-line), in a dividing unpolarized cell, this axis usually is perpendicular to the cell
elongation direction in such a way as to split the cell into two approximately equal parts. In a partially polarized cell, however, the axis of cell division
is orthogonal to the part of the cell membrane that is in contact with the ECM. Two new daughter nuclei are then placed orthogonal to the axis of cell
division. After the selection of division axis, the model finds the nearest membrane point to this axis, i.e. point Pm

d In mitosis there are two major
mechanical forces, first in the Anaphase stage of mitosis, shortening the spindle fibers caused by the kinetochores separation, and the chromatids
(daughter chromosomes) are pulled apart and begin moving to the cell poles [65]. Second, a contractile ring is formed by contractile forces acting on
the opposite sites of the cell boundary in the cytokinesis process [65]. This results in the formation of a contractile furrow and causes division of the
cell into two daughter cells. The cell points can therefore be divided into two groups, A and B, where group A consists of membrane points from Pm

d

to Pm

dzN
2

and nucleus points from Pn
d to Pn

dzN
2

and the remaining points belong to group B. To model the first mechanical force, the points of the

nucleus in A and B are pulled apart, in the orthogonal direction to the division axis with force f n
div (Eq.(8) ). During the nucleus separation, the

contractile force, f m
con, acts on boundary points of A and B groups to model the second mechanical force(Eq. (9)). b) The main phases of cell growth

and division. (I) Cell growth. To implement cell growth in the proposed model, the number of membrane points, i.e. the number of viscoelastic
compartments, is allowed to increase. When we add two points on each the cell and nuclear membranes, four subunits are added to the system, with
the parameters of these new subunits calculated from the average of the first neighbor’s homogeneous subunit parameters. With the additional
‘growth’ point, the circumferential length of the membrane increases in proportion to Nz1

N
. Hence, the rest volume i. e. the volume of the cell when it

grows freely without any inner or outer constraint, must increase proportional to Nz1
N

� �2
. Therefore, the rest length of radial springs is increased in

proportion to Nz1
N

. When the area (or volume) of cell doubles, the number of defining membrane points increases to
ffiffiffi
2
p

N0 , where N0 is the number

of membrane points on the initial cell. (II,III) Mitotic process: two types of forces act on points to divide the cell. Due to these forces the cell elongates

and prepares for division. (IV) Two new daughter nuclei are then placed orthogonal to the axis of cell division. After the nucleus separates, i.e. the

distance between the center of the mass of nuclear points exceeds a certain value, dsep , the cell will divide into two daughter cells, i.e. the subunits

which join the boundary points will be eliminated and will bind to a new first neighbor point in the same group with a new subunit. V) After division

takes place, each daughter cell will only have
ffiffi
2
p

2
N0 points, and as a result it is possible to simultaneously add 1{

ffiffi
2
p

2


 �
N0 points to each cell. To add

membrane points, two consecutive points in the membrane are found that have the longest distance and a new point is inserted between them, and

this process is repeated until the number of cell points becomes N0. f) Adhesion of the two daughter cells.
doi:10.1371/journal.pone.0012097.g005
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initial value and subscript m refers to the threshold of parameters in

motility, for example la,m shows the threshold of the spring rest length

that is anterior of the crawling cell. v is the variation frequency of

parameters in the posterior and anterior position. D is the drag

coefficient of each point (Figure 6) and its value is proportional to the

number of adhesions. This idea of relating the number of adhesions to

the drag coefficient has been used in other models of cell motility [67–

69]. The variation of l represents the protrusion and retraction in the

cell that is formed by actamyosin systems.

Apoptosis. The structure and morphology of apoptotic cells

show the cell undergoing dramatic changes, including detachment

from the neighboring cells, collapse of the cytoskeleton, shrinkage

of cell volume and alterations in the cell surface resulting in an

irregular bulge in the plasma membrane, called bleb [65]. The

process of apoptosis progresses quickly and its products are

removed immediately. To model these events, cell adherens

junctions first disassemble with the neighboring cells and/or

substrates. Then, the rest length of each subunit spring is reduced

arbitrarily (five-fold in the current simulations) and the inner

pressure of the cell is removed so that the cell collapses and its area

gradually reduces until a prescribed minimal value is reached. At

this time, the cell is considered to be dead and will be removed

from the system. These stages of cell apoptotic death are

represented in our model by a gradual reduction in cell area

and changes in shape as shown in Figure 7.

Cell polarization. The membrane points are devised in such

a way that they can be specified independent of each other.

Hence, the properties of each point and its corresponding subunits

can be controlled. That is, the points can be categorized into two

or more subgroups. By changing their properties independently,

apical, basal and lateral regions in our model can be easily defined.

c. ECM
Before the interaction of the cell with its environment can be

investigated, the extracellular matrix (ECM), which is a complex

structural entity surrounding and supporting cells that are found

within mammalian tissue must be modeled. The ECM is often

referred to as connective tissue and the cells can connect to the ECM

via adhesion receptors. Two methods can be defined for modeling the

ECM; in a 2D culture, the ECM or substrate is the area under the

cells, hence the cells interact with the ECM by adhesions and

adhesions are controlled by a ‘‘drag coefficient’’, so the drag coefficient

Di,k can be related to Pi,k. As mentioned before, referring the drag

coefficient to the adhesion intensity is used in previous models such as

[62–64], so in the following, if a 2D culture is modeled, the adhesion

intensity is equivalent to the drag coefficient. In 3D cultures, our

model allows for investigations of a cross section of the real system and

the cells immersed in the ECM. In 2D, the contact region of the ECM

and cell is a line that surrounds the cell, so an enclosed curve (or ring)

can be used for the ECM that surrounds the cells. The ECM is

modeled using a chain of subunits connected in series (Figure 8), where

each point connects two subunits. These subunits can interact with cell

points in the same manner as the interaction of two points of different

cells. Depending on the model, the cells are embedded in the outer

region of the ECM ring or the inner region. This curve is flexible and

the number of its corresponding points can be increased or decreased.

The drag coefficient property of each membrane point indicates the

interaction of the cell with other cells or with the ECM, which is

situated perpendicularly to the cross-sectional region. The model can

also incorporate a cellular automata model for the ECM, allowing for

the investigation of the diffusion of mobile receptors and signals in the

ECM.

d. Environmental effect
Cell-cell and cell-substrate interaction. Each cell can

interact with other cells and substrates in two methods, adhesion

and repulsive forces due to elasticity (Figure 9).

Fcell{cell
i,k ~Fm,adh

i,k zF
m,rep
i,k

Fcell{ECM
i,k ~Fm,adh

i,k zF
m,rep
i,k {Di,kVi,k

ð11Þ

Cells are not often found in isolation, but rather tend to stick to

other cells or non-cellular components of their environment. They

Figure 6. Motility. Cell crawling is generated by the interplay between three different processes, namely, protrusion, adhesion, and contraction.
These processes cooperate in a spatially heterogeneous structure to generate a complex topology for cell motion while correlation and coordination
between them has a significant role on the motility of the cell [66]. To model these three-stage events, the cell is first polarized by categorizing the
points into two groups, the anterior and posterior, where their cytoskeleton subunit parameters will change periodically in a coordinated fashion. In
addition to modeling the adhesion with a substrate, the drag coefficient is used for each of the points which will change periodically in coordination
with variation of subunit parameters. The method for the variation of the parameters is shown in Eq.(10).
doi:10.1371/journal.pone.0012097.g006
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usually bind directly to one another through cell-surface proteins

that form specialized cell-cell junctions. These cell adhesive

properties are especially important in epithelial tissues since they

constitute barriers between different body compartments.

In our model, all points located on the cell membrane serve as

potential sites of cell-cell connections, which can be transformed to

either adherent or repulsive forces. Here, simple rules can be

considered for the formation of cell adherents and tight junctions

that depend only on the cell phenotype and on the distance

between neighboring cells, that is whether or not the membrane

receptors of one cell fall into the minimum distance, dadh
0 , of

another cell. Gap junctions and chemical signals are not explicitly

included, but it can be assumed that cells are able to communicate

and signal information with neighboring cells. Each of the two

points from different cells or cell-substrates connect each other

with a subunit, if they are within a minimum separation distance of

dadh
0 (Figure 9a).

For each cell, specific parameters for subunit attachment are

assigned, making the adhesion subunit parameters between two

cells a function of these parameters. For adhesion between Pm
i,k

and Pm
j,l ,it can be said:

Fm,adh
i,k ~f v

i,k(Pm
j,l ,

�BB, �KK ,0)

�BB~
1

Bm,adh
i,k

z
1

Bm,adh
j,l

 !{1

�KK~
1

Km,adh
i,k

z
1

Km,adh
j,l

 !{1

ð12Þ

Where Bm,adh
i,k ,Km,adh

i,k are the attachment subunit parameters of

Pm
i,k and Bm,adh

j,l ,Km,adh
j,l are the attachment subunit parameters of

Pm
j,l . When the cells are pulled apart, they deform, but points

remain stuck until a distance rij:dadh
hys wdadh

0 at which point their

contact ruptures, displaying typical hysteresis behavior. It must be

mentioned that sometimes, for example, in apoptosis, the adhesion

Figure 7. Apoptosis. The structure and morphology of apoptotic cells undergo dramatic changes, including detachment from the neighboring
cells, collapse of the cytoskeleton, shrinkage of the cell volume and alternations in the cell surface. Apoptosis progresses quickly and its products are
quickly removed. To model these events, cell adherens junctions with their neighboring cells and/or substrate are initially disassembled (top right).
Then, the spring constant length of all subunits are reduced arbitrarily and the inner pressure is removed (bottom left), so the cell will collapse and
the cell area is gradually reduced until it reaches a prescribed minimal value (bottom right). At this time, the cell is considered to be dead and will be
removed from the system.
doi:10.1371/journal.pone.0012097.g007
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can be disrupted unilaterally by one cell without satisfaction of the

above condition.

A repulsive force acts as a short range force. It is a passive force

resulting from the elastic interaction with neighboring cells and

acts on each point of the cell where the distance to the other cell

points or substrate falls shorter than rij:d
rep
0 vdadh

0 . The

magnitude of the repulsive force is a function of the distance of

two surfaces and its direction is perpendicular to the membrane,

pointing inward to the inner cell (Figure 9b).

F
m,rep
i,k ~

F
rep
0

d
j
i,k

ð13Þ

Where d
j
i,k is the nearest distance between Pm

i,k and the membrane

surface of j0th cell or ECM.

External field. The cell can be subjected to an external force,

such as pulling forces by the surrounding tissue or under certain

fields, e.g. electromagnetic fields. This can be represented by

adding an external force Fext to each point on the cell membrane.

e. Justification for the use of Voigt elements
It should be noted that although the individual Voigt elements

are simple, they combine to form a complex system (Figures 1,2,3

and 8) with dynamics that are beyond the simplicity of individual

linear elements. Although our model is composed of a network of

linear Voigt elements, the behavior and dynamics of these

elements are not linear for several reasons. First, model parameters

such as spring constants and viscosity coefficients change

dynamically through time based on mechanical and biochemical

signaling as well as the state of the cell as previously mentioned.

Given that these parameters change dynamically, the elements can

no longer be considered linear. Second, during the cell cycle some

constant parameters are changed dynamically. For example, in

cell growth when a point is added to the membrane, the rest length

of radial springs is increased in proportion to
Nz1

N
. During

apoptosis the parameters change dramatically as previously

mentioned, the rest length of each subunit spring is reduced

resulting in the cell collapsing and its area gradually decreasing

and during motility, the cytoskeletal subunit parameters of these

elements will change periodically in a coordinated fashion to

generate movement. To further establish the non-linearity and

finite-extensibility of elements, the overall number of elements and

points changes accordingly during growth and mitosis while

during adhesion relevant elements can be created or destroyed

based on the distance between two points (on different cells/ECM)

which shows that elements are neither linear nor infinitely

extensible in all cases. Finally, in the process of developing this

model, we felt that the input parameters should best represent

those determined through experimental methods. As a result, we

selected those established by Coskuna et al. [34] for Voigt

elements rather than using arbitrary or speculative parameters for

more complex element types. However, the flexibility of this model

allows for easy implementation of more complex building blocks

such as Maxwell elements, given valid, experimentally derived

element parameters.

We acknowledge that the Voigt element is simpler than other

element types, however, as our results show; a model based on

Voigt elements is capable of reproducing cell behavior. We believe

as a rule that as long as a simple model satisfies our interest and

can reproduce desired behavior, there is no advantage to

increasing model complexity.

Figure 8. ECM. In 3D culture, our model allows for the investigation of
a cross section of the system and the cells that are immersed in ECM. In
2D, the contact region of the ECM and the cell is a line that surrounds
the cell; therefore, an enclosed curve (or ring) can be used for the ECM
that surrounds the cells (blue curve). The ECM is modeled using a chain
of subunits connected in series, where each point connects two
subunits (blue curve with red points). These subunits can interact with
cell points in a manner similar to the interaction of two points of
different cells. This chain is flexible and the number of its corresponding
points can be increased or decreased.
doi:10.1371/journal.pone.0012097.g008

Figure 9. Cell-cell interaction. Each cell can interact with another
cell and substrate in two methods, adhesion and/or repulsive forces
due to elasticity, as shown in Eq. (11). a) In this model, all points located
on the cell membrane serve as potential sites of cell-cell connections.
Each two points from different cells or cell-substrates are connected via
a Voigt subunit, once they are closer than a determined value of dadh

0 .
The adhesion subunit parameters between two cells are a function of
these parameters, for more detail see Eq. (12). b) The repulsive force
acts as a short range force. It is a passive force resulting from the elastic
interaction with neighboring cells and acts on each point of the cell,
when the distance to the other cell points or substrate is less than
rij:d

rep
0 vdadh

0 . The magnitude of the repulsive force is a function of the
distance of two surfaces (Eq. (13)) and its direction is perpendicular to
the membrane, pointing inward to the inner cell.
doi:10.1371/journal.pone.0012097.g009
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Results and Discussion

a. Case studies from relevant biological examples
Monolayer cell culture and effect of adhesion

intensity. It is well documented that cell shape, proliferation,

and ECM are important aspects of cell culture [70]. The adhesion

between cells and ECM can dramatically affect invasion of tumor

cells and the quality of the epithelial monolayer of the cell. The

first application of our model investigates this phenomenon by

simulating a monolayer culture of cells and the exploring the

effects of adhesions on tissue formation and morphology. The

process began from two cells, which were allowed to reproduce

freely while subject to ideal conditions that were suitable for

proliferation, without the occurrence of apoptosis.

Typical snapshots of proliferation under two different adhesion

intensities are shown in Figure 10. As the figures show, adhesion

intensity plays an important role in the morphology of each

culture. At low adhesion intensities (low drag coefficients) a filled

circular culture can be seen, whereas high adhesion intensities

(high drag coefficients) tend to show dendrite morphology, which

can be seen frequently in tumors. It is conceivable that this special

morphology is due to strong adhesions between cancer cells and

the ECM. Our results suggest that increased adherence may lead

to decreased culture growth; however, this result is not always

supported by experiments. This anomaly may be explained by the

fact that our model only incorporates the biomechanical behavior

of the cell, whereas there is some signaling pathway that stimulates

the growth factors when cells adhere to substrate. Possible methods

for incorporating biochemical effects into the model are discussed

later in this paper.

To characterize the geometry of the cells in a culture, a form

factor, kf , was introduced [71]:

kf ~r

ffiffiffiffiffiffiffiffi
V

ncell

s
ð14Þ

where V is total occupied area, ncell is number of cells, and r is cell

edge density, which is given by:

r~
Lb

V
ð15Þ

in which Lb is the sum of the lengths of all internal cell boundaries

plus half of the perimeter of the patch; it is assumed that these

edges are to be shared between the patch shown and a mirror

image patch that adjoins them. Physically, r corresponds to the

area density of the cell edges. Minimum value of kf ,
ffiffiffi
p
p

, occurs

when the cell has a circular shape. The value of kf for cultures

with 120 cells against adhesion intensity is shown in Figure 11.

This shows a linear relation between kf and the adhesion intensity,

which in turn suggests that the cellular shapes are almost circular

at low drag coefficients, and diverge from circular shape as the

drag increases.

On the other hand, the epithelial cells in a monolayer appeared

as polygonal cells. It also can be seen that the average number of

neighbors for any cell is 6, regardless of the value of the drag

coefficient.

Growth of epithelial cells and interaction with the

ECM. In this simulation, a cross-sectional perspective on cell

cultures can be seen where the ECM is a line of points to which

cells adhere. These point numbers are dynamic and can change if

needed. Most living tissues are typically separated from the

exterior by a delimiting interface of epithelial cells. These layers of

cells align with the cavities and surfaces of structures throughout

the body. Epithelial cells can take any shape and can be classified

by their shape or by the function of the cell where they are located.

They can take shape as squamous layers or monolayers and these

layers can be folded into circular acini or ducts. For example,

epithelial cells that are found in the thyroid or cornea of the eye

function in aligning fluid-filled lumens [72]. Mature epithelial cells

are highly polarized with separate apical and baso-lateral

membrane compartments. The basal cell surface is attached to

ECM material and in most epithelia the opposite apical surface is

free from an apposed extracellular layer. From the histological

organization of epithelium, it shows that attachment to the ECM is

essential in polarization, and plays an important role in directing

the polarity. Observation of epithelial cell growth and

morphogenesis in different environments show that morphology

in-vitro depends on both the structure and composition of the

external environment of the cells. The main morphological

distinction in 3-D embedded cultures is the formation of cysts,

i.e. the stable, self-enclosed monolayers. In suspension cultures,

epithelial cells form cysts as well, but the epithelial cells adopt an

inverted polarity, laying down basement membranes on the inside

of the cyst [1,3–4]. In plane culture, epithelial cells normally

constitute a smooth monolayer covering the whole ECM surface

like a wrap. Each of these three categories is a representative of the

growth of different epithelial cell types in-vitro, which have a

common morphological scheme [72–73]. This suggests that the

presence and relative locations of cells, ECM, and matrix-free (or

cell-free) space are very essential for the expected behavior of

epithelial cells. Cells plated on a layer of surface culture construct a

stable, uniform monolayer as they proliferate (Figure 12a). The

axis of division is perpendicular to the ECM, likely related to

polarized cells. If a cell detached from the ECM due to the loss of

polarity, it will activate the apoptosis pathway. In a different case

(see Figure 12b) a hole exists in the ECM, where a cell is located

and allowed to attach and proliferate. After polarization it starts to

proliferate and creates a stable, lumen-containing cyst, lined by a

single layer of epithelial cells. As it can be seen, the ECM is

deformed a bit due to the dynamical interaction between the ECM

and cells during the growth process. Figure 12c, on the other hand,

shows an inverted cyst. A circular ECM is located in a suspended

culture, to which a cell attaches and is polarized. Upon completion

of proliferation, cells surround the entire surface of the ECM and

create inverted cysts, with matrix deposited on the inside of the

cyst. If the process is allowed to continue, the cyst will grow further

and become larger, corresponding to a bigger ECM. This is due to

the fact that the volume of the ECM in our model can freely

increase.

Effects of gap in ECM. As a different test case, the effects of

gaps in the ECM on the formation of a confluent epithelial

monolayer are investigated. The ECM is considered to be rigid and

not affected by cells; however, cells still adhere to the ECM and are

polarized. Figure 13a shows the final results for various gap sizes. If

the gap width is denoted as d and the radius of a free epithelial cell as

R, then it can be seen that cells cannot line the gap for dv2R. For

d~2R the first cell who comes into contact with a gap will enter it,

although due to the pressure of the walls, it would not be able to

continue its growth and division, so it fills the entry and blocks the

gap. Other cells, accordingly, pass over the gap and again, create a

line monolayer. For d~4R cells could not ignore the gap and

penetrate it. They continue their proliferation interiorly, however,

when they reach the internal right corner, as the forerunning cells

are subject to direction change due to the limitation in space, the

growth is stopped and the cells are entrapped in the gap. For dw4R
the cells can enter and line the gap without any problem. It must be
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mentioned that in all of the above simulations, cells show different

behaviors at the corners. The growth rate of cells decreased at the

internal corner and increased at the external corner. In addition, at

external corners, due to the sudden decrease in contact area, cells

detach from the ECM more easily in response to the pressure of

neighboring cells. This, in turn, causes the loss of polarity and

apoptosis. Figure 13b shows snapshots of the growth process when

the gap is equal to 8R.

Tensegrity and Tissue Morphogenesis. Studies on the

mechanisms of epithelial morphogenesis and tubulogenesis have

revealed that local changes in ECM structure and its mechanics

play essential roles in tissue structure and remodeling. Using the

tensegrity-based architecture, a mechanical model of cell structure

explains how local changes in ECM mechanics may guide tissue

patterning according to that model [47,74]. It has been speculated

that up-regulation of the ECM due to local thinning within the

ECM can lower any stiffness that may occur. This in turn causes

the surrounding cells to apply tractional forces, thereby, causing an

increase of forces between the cell-ECM receptors causing changes

within cell shape and morphology. Therefore, based on this vision,

epithelial cell growth and relocation are restricted to particular

groups of cells that adjoin the thinned region. Outward budding

occurs when these cells extend and grow. Other cells along the

same ECM do not experience this stress and, therefore, remain

inactive.

At this stage, an attempt is made to try to model this hypothesis.

To do so, a monolayer of epithelial cell is placed on the ECM and

thinning of the ECM occurs by decreasing the drag coefficient at

the center of the ECM (showed in Figure 14 in white). The

program runs with two densities of cells, as shown in Figure 14.

The cells at this region have localized growth and motility, which

drives the ECM downward. As a result, cells find space for more

growth and proliferation. Therefore, they continue to drive the

ECM further, which finally leads to the creation of a bud. This

bud can be the first stage of tubulogenesis. In Figure 14 due to the

high density of cells, there is not enough space for the ECM to

grow and proliferate, so there is more order and less deformation.

But as can be seen in Figure 14b there is proliferation and less

symmetry, due to low cell density.

Formation of hollow epithelial acini. The epithelial acini

are experimental culture structures that help to explore the

detailed mechanism underlying epithelial cancers in-vitro, [2,75].

As discussed earlier, well developed epithelial acini are composed

of one layer of closely packed epithelial cells covering the hollow

lumen. Examples of such cell culture systems that cultivate in vitro

in a form of cysts or acini are Madin–Darby canine kidney

(MDCK) cells and mammary epithelial MCF-10A cells [1–2]. The

details of formation of acinar structures are not completely

understood. In general, the mechanism of obtaining an acinar

structure is similar in all types of cells. This process begins with a

single cell planting itself on the suitable media culture. This

pioneer cell starts growth and proliferation to form a small 3-

dimensional collection of randomly oriented cells. These cells can

be divided in two distinct groups. The first group consists of a

surface layer of cells in direct contact with the ECM and the

second group is internal cells enclosed entirely by other cells. They

do not have any direct contact with the ECM. To continue acini

development, cells in the outer layer are polarized and inhibit an

asymmetry in an apical-basal surface and become insensitive to

proliferative signals. Differentiation of outer cells coincides with

the start of the apoptosis pathway of inner cells. As a result, the

hollow lumen is formed and the acinar structure remains hollow

[2,75]. In this stage, an attempt is made to model self-arrangement

of individual eukaryotic cells into a stable hollow acinar structure.

In this model, a single cell (Figure 15, n = 1) undergoes several

consecutive divisions and gives rise to a small cluster of cells

containing two different populations (Figure 15, n = 100–217): the

inner cells entirely surrounded by other cells which do not have

access to the ECM, and the outer cells partially facing the ECM.

Further cell proliferation leads to the expansion of the whole

cluster. During this stage (Figure 15, n = 150–217) intercalation of

outer cells to inner cells (or inward) for preservation of the circular

shape of the tumor can be seen. It should be noted that if the

adhesion between cells is stronger the process of intercalation is

less prevalent. After this stage, when the tumor reaches a certain

age, the tumor undregoes further differentiation of outer cells

which results in their apical-basal orientation and self-arrangment

into one layer of polarized epithelial cells of regular cubical shapes

(Figure 15, n = 219). The inner cells are then triggered by

polarized cells to enter the apoptosis pathway. As a result, each cell

that does not have access to ECM, and is therefore not polarized,

will die (Figure 15, n = 219–225). This process then leads to the

creation of an inner lumen. Consequently, the proliferation of

Figure 11. Effect of adhesion intensity on monolayer cell
culture properties. The value of kf for cultures with 120 cells,
compared against the adhesion intensity. This graph shows a linear
relation between kf and the adhesion intensity, which in turn suggests
that the cellular shapes are almost circular at low drag coefficients, and
diverge from being circular as the drag increases.
doi:10.1371/journal.pone.0012097.g011

Figure 10. The monolayer culture of cells and the effects of adhesions on tissue formation and morphology. a) In this simulation,
D = 0.0001*D0 i.e. low intensity of adhesions. We began from two cells and allowed them to reproduce freely, subject to conditions that are suitable
for proliferation without the occurrence of apoptosis. Results show a filled circular culture and fast proliferation. n represents the dimensionless
elapsed time. b) D = D0 i.e. high intensity of adhesions. The process began from two cells which were allowed to reproduce freely. The results show
dendrite morphology for the culture which can be seen frequently in tumors. It is conceivable that this special morphology is due to strong adhesion
between cancer cells and the ECM. The process has a slower proliferation rate than part a. The epithelial cells in a monolayer appear as polygonal
cells. It also can be seen that the average number of neighbors for any cell is 6, regardless of the value of the drag coefficient.
doi:10.1371/journal.pone.0012097.g010
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polarized cells is suppressed and the final structure stabilizes in the

form of a hollow epithelial acinus (Figure 15, n = 250–450).

Moreover, the processes of cell proliferation, polarization and

apoptosis need to coordinate well in order to maintain the hollow

acinar structure in a stable manner. Otherwise overgrowth of the

cell may lead to intraductal carcinomas. This coordination shows

that this process is very dependent on proper biochemical

signaling between cells. The final shape of the tumor is very

dependent on the viscosity of the ECM. If the viscosity of the ECM

is high enough the tumor attempts to keep a circular morphology.

If the viscosity of the ECM is reduced, the tumor deviates from the

circular shape.

b. Conclusion
A biomechanical, cell based model was developed that describes

both individual cell behavior and cell-environment interaction

Figure 12. Growth of epithelial cell interacting with the ECM. In this simulation a cross-sectional perspective of cell culture can be seen.
Therefore, the ECM is a line of points to which the cells adhere. These points are dynamic and can change if needed. n represents the dimensionless
elapsed time. a) Cells plated on a layer of surface culture. As the cell proliferates, a stable, uniform monolayer will be constructed. The axis of division
is perpendicular to the ECM, likely related to polarized cells. If a cell detaches from the ECM due to the loss of polarity, it will activate the apoptosis
pathway. b) A hole exists in the ECM, where a cell is located for attachment and proliferation. After polarization, the cell starts to proliferate and
create a stable, lumen-containing cyst, lined by a single layer of epithelial cells. As it can be seen, the ECM is deformed a bit due to the dynamic
interaction between the ECM and cells during the growth process. c) Shows an inverted cyst. A circular ECM is located in a suspended culture, to
which a cell is attached and polarized. Upon completion of proliferation, cells surround the entire surface of the ECM and create inverted cysts, with
matrix deposited on the inside of the cyst. If the process is allowed to continue, the cyst will grow further and become greater, which corresponds to
a bigger ECM. This is because the volume of ECM in our model can freely increase.
doi:10.1371/journal.pone.0012097.g012
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based on cellular mechanics. The model has the ability to simulate

the global and local mechanical characteristics of the single cell.

Each cell in this model is an individual unit containing several

subcellular elements, such as the plasma membrane, enclosed by

viscoelastic elements that play the role of cytoskeleton, and the

viscoelastic elements of the cell nucleus. The cell membrane is

divided into segments where each segment incorporates the cell’s

interaction and communication with its environment, such as

adherens junctions. These deformable cell models can mimic

many aspects of real cells such as growth, cell division, apoptosis

and attachment to other cells or ECM. It was shown that these cell

models can mimic various topologies of tissue such as cyst or

tumor or monolayer. In addition, it was demonstrated that the

model is capable to describe such phenomena such as interaction

of a culture with a geometrical gap in substrate or buds. This

model offers utility to investigate the role of individual cells as a

part of tissue and how the property of each individual cell may

affect the mechanical and morphological property of the tissue.

The model makes it possible to investigate mechanical and

physical behavior of different tissue in cell scale in various

mechanical conditions. The structure of the model is simple and is

based on a small number of parameters, allowing for high

performance computing of large cell populations in a reasonable

time. One of the important aspects of the model is ability to

simultaneously investigate the intra- and extra-cellular biome-

chanical behavior. By changing the model parameters, it is

possible to apply the model to different types of cells and

investigate their interaction in different cellular constructs. This

model is in the first stage of its life and needs many improvements,

for example finding the quantitative parameters for different cell

types or improving the inner cell structure such as the nucleus.

Most experimental investigations employ a two-dimensional

substrate; however, to gain further insight into the behavior of

epithelial cells in-vivo, we must switch from 2D to a 3D model.

With this modification, we can investigate the biomechanical

effects in a 3D environment. For this purpose, we must define a

3D cell and rather than a 1D curve for the cell membrane we will

have a surface and a network of nodes. Our model can be

extended to three dimensional space in a straightforward manner.

All equations can be carried over to 3D space without significant

changes. A more complex network of nodes and elements may be

needed to define the cell structure, but all additional boundary

points and forces can be incorporated into the 3D model

analogous to methods presented in this paper. The algorithms

defining cell processes can also be carried into 3D space with some

changes.

One of the biggest challenges in moving from 2D to a 3D model

is an increase in the number of total nodes which results in a

dramatic increase in the computational cost. For a cell membrane

with radius r and N discrete points of length dr we have:

Figure 13. Effects of a gap in ECM surface. ECM is considered to be rigid and not affected by cells; however, cells still adhere to ECM and are
polarized. a) Figure shows the final results for various gap sizes. If the gap width is denoted with d and the radius of a free epithelial cell with R, then
it can be seen that cells cannot line the gap for dv2R. For d~2R the first cell which meets the gap will enter it, although due to the pressure of the
walls it would not be able to continue its growth and division, so it fills the entry and blocks the gap. Other cells pass over the gap and again create a
linear monolayer. For d~2R cells cannot ignore the gap and penetrate it. They continue their proliferation into the gap; however, when they reach
the internal right corner, because of the limitation in space and the forerunning cells being subject to direction changing, the growth is stopped and
the cells are entrapped in the gap. For dw2R the cells can enter the gap without any problem and line it. b) A few snapshots of the growth process
when the gap is equal to 8R. n represents the dimensionless elapsed time. During simulation, cells show differing behaviors at the corners. The
growth rate of cells decreases at the internal corner and increases at the external corner. In addition, at external corners, due to the sudden decrease
in contact area, cells detach from the ECM more easily in response to the pressure of neighboring cells. This, in turn, leads to loss of polarity and
apoptosis.
doi:10.1371/journal.pone.0012097.g013
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If we move to a 3D environment where each surface dr2 contains a

single point from the set of points N’, the number of points on the

surface of the membrane will increase to:
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The ratio between the number of points in 3D compared to the

number of points in 2D will be *N. Since an additional element

(z) is added in 3D, the computational cost will be increased by

50%. Additionally, each point will be connected to 4 other points

of the surface rather than only 2 points in 2D and as a result, the

computational cost will be increased by a total of 6N times. In our

case studies, where the initial number of points of each cell was 40,

we would expect computational time to increase 240 times that of

the original. It should be mentioned that the majority of challenges

in transitioning from a 2D model to a 3D model are related to

computational obstacles and associated programming techniques

rather than biological or physical concepts.

Another major step in developing the model in the future is

importing the biochemical aspect of the cell into this model. Cells

can respond to a variety of environmental cues in a dynamic

environment. These cues can be biochemical or mechanical in

nature and can lead to changes in cell function and phenotype,

both under normal physiological conditions and in pathological

states. Most of the cells are surrounded by a highly complex ECM

that is important in maintaining tissue structure but also plays key

roles in guiding cell function. Cells bind to the ECM via specific

integrin receptors and this binding can directly affect cell function.

Furthermore, other signals that a cell receives from its environ-

ment are transmitted through and modulated by the ECM.

Biochemical signals (e.g., ions, small proteins, or growth factors)

must pass through the ECM and in some cases are sequestered

and released by the matrix. Mechanical signals (e.g., tensile,

compressive forces, or shear forces) are also transmitted by the

ECM to the cell via integrin receptors that link the external

environment to the cytoplasm and cytoskeleton.

Cell function is regulated by the entirety of the cellular

environment, including cell-cell interactions, ECM components,

humoral factors, local chemical conditions, and mechanical forces.

In vivo and in vitro studies have the advantage that they maintain

this complex environment, but the large number of variables that

are difficult to control makes it challenging to isolate specific effects

in experimental studies. In silico studies have the advantage that

treatment variables can be controlled.

The nodes on the membrane can play the role of receptors

allowing us to numerically insert chemotactic signals in our model

and to use the reaction diffusion system for external signals. With

knowledge about the internal biochemical pathway, we can model

the biochemical properties of our model. One foreseen challenge in

this work is that physical forces play a critical role in cell integrity and

development, but little is known regarding how cells convert

mechanical signals into biochemical responses [76]. Some molecules

like integrins, focal adhesion proteins, and the cytoskeleton in the

context of a complex cell structure—when activated by cell binding to

the ECM—associate with the skeletal scaffold via the focal adhesion

complex. Vinculin is presented as a mechanical coupling protein that

contributes to the integrity of the cytoskeleton and cell shape control,

and examples are given in literature of how mechanical signals

converge into biochemical responses through force-dependent

changes in cell geometry and molecular mechanics [77–81].

Figure 14. Tensegrity and Tissue morphogenesis. At this stage, an attempt is made to model the tensegrity hypothesis. To do so, a monolayer of
epithelial cells is placed on the ECM. This causes the ECM to get thinner, by decreasing the drag coefficient at the center of the ECM (color gradient
represents change in drag coefficient). The simulation is run with two densities of cells. The cells at this region have localized growth and motility, which
drive the ECM downward. As a result, cells find space for more growth and proliferation. Therefore, they continue to drive the ECM further, which finally
leads to the creation of a bud. This bud can be the first stage of tubulogenesis. a) Due to the high density of cells, they do not have enough space to
grow and proliferate, so there is more organization and less deformation. b) Shows proliferation and less symmetry due to low cell density.
doi:10.1371/journal.pone.0012097.g014
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In addition to the discretized approach for modeling the cell

object we should use another distinct approach for discretizing the

chemotactic signals. For signaling we will use cellular automata

(cellular automata can be viewed as spatially extended decentral-

ized system made up of number of individual components and

may serve as simple model of complex systems. According to this

interpretation, the CA can be traced back to biological modeling

especially in reaction diffusion systems). The interaction of two

distinct discretized models, i.e. cell and chemotactic signals are

very important and require additional effort.
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