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Entanglement in Finitely Correlated Spin States

S. Michalakis* and B. Nachtergaele†

Department of Mathematics, University of California at Davis, Davis, California 95616, USA
(Received 7 June 2006; published 4 October 2006)

We consider entanglement properties of pure finitely correlated states (FCS). We derive bounds for the
entanglement of a spin with an interval of spins in an arbitrary pure FCS. Finitely correlated states are also
known as matrix product states or generalized valence-bond states. The bounds become exact in the case
where one considers the entanglement of a single spin with a half-infinite chain to the right of it. Our
bounds provide a proof of the recent conjecture by Benatti, Hiesmayr, and Narnhofer that their necessary
condition for nonvanishing entanglement in terms of a single spin and the memory of the FCS is also
sufficient. We also generalize the study of entanglement in the Affleck-Kennedy-Lieb-Tasaki model by
Fan, Korepin, and Roychowdhury. Our result permits a more efficient calculation, numerically and in
some cases analytically, of the entanglement of arbitrary finitely correlated quantum spin chains.

DOI: 10.1103/PhysRevLett.97.140601 PACS numbers: 05.50.+q, 03.67.Mn

Entanglement properties of quantum spin chains have
recently attracted attention from researchers in quantum
information theory and condensed matter physics. From
the perspective of quantum information theory, the distri-
bution of entanglement over long ranges via local opera-
tions on a spin chain [1–5] has obvious applications to
teleportation-based models of quantum computation [6–
8]. Moreover, it has recently been shown that entanglement
in finitely correlated chains [9] can be used to achieve
universal quantum computation [10] and provide a compu-
tational tool for adiabatic quantum computation [11]. On
the other hand, the scaling behavior of quantum correla-
tions in infinite spin chains is intimately related to their
critical behavior (recent work has established a general
mathematical framework for studying entanglement in
infinite quantum spin chains [12]).

Finitely correlated states (FCS’s) are a generalization of
the so-called valence-bond solid states, which arise as the
exact ground states of a considerable variety of quantum
spin Hamiltonians [13,14]. Interestingly, FCS’s also pro-
vide approximate ground states of any quasi-one-
dimensional spin system with finite-range interactions
[15]. In particular, density matrix renormalization group
calculations produce numerical approximations of the
ground state of spin chains that can be regarded as FCS’s
[16].

Motivated by the potential applications of distributed
entanglement in finitely correlated chains, Benatti et al. in
Ref. [1] give a necessary condition for entanglement be-
tween a spin and a subset of other spins, namely, that the
entanglement between a spin and the ‘‘memory’’ of the
finitely correlated state must be nonzero. They, further-
more, conjecture that the same condition is sufficient, in the
sense that it implies entanglement between a spin and a
subset of other spins. We present here a proof of that
conjecture by showing that the entanglement between a
spin and its neighbors converges exponentially fast (in the
number of neighboring spins) to the entanglement between

a spin and the memory of the finitely correlated state.
Moreover, we show that entanglement between distant
spins vanishes exponentially fast in the length of their
separation.

Since finitely correlated states provide the exact ground
states for generalized valence-bond solid models [13], our
result generalizes the calculation of entanglement [2] for
the Affleck-Kennedy-Lieb-Tasaki model [14].

More importantly, our result implies a simple and com-
putationally efficient way for detecting distributed entan-
glement in finitely correlated states. Namely, the positive
partial transpose (PPT or Peres-Horodecki) criterion
[17,18] can be applied to the state describing the interac-
tions of a spin with the memory of the finitely correlated
state, to detect entanglement between a spin and a subset of
other spins.

The setup and main result.—We will work with trans-
lation invariant pure FCS’s [9] on the infinite one-
dimensional lattice. For each i 2 Z, the spin at site i of
the chain will be described by the algebra A of d� d
complex matrices. The observables of the spins in an
interval �m; n� are given by the tensor product A�m;n� �

�nj�m�A�j. The algebra AZ describing the infinite chain
arises as a suitable limit of the local tensor-product alge-
bras A��n;n� :� �nj��n�A�j. Any translation invariant
state ! over AZ is completely determined by a set of
density matrices ��1;n�, n 	 1, which describe the state of n
consecutive spins. In the case of a pure FCS, as was shown
in Ref. [19], these density matrices can be constructed as
follows:

The memory, B, of a FCS is represented by the algebra
of b� b complex matrices. Let E: A �B � B be a
completely positive unital map of the form E�A � B� �
V�A � B�Vy, where V: Cd � Cb � Cb, is a linear map
such that VVy � 1B. We define the completely positive
map Ê: B � B, by Ê�B� � E�1A � B�. The condition on
V implies that Ê is unital: Ê�1B� � 1B. In Ref. [19] it is
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proved that for any pure translation invariant FCS, it is
always possible to choose B and V such that there is a
unique, nonsingular b� b density matrix, �, with the
property Tr�Ê�B� � Tr�B, for all B 2 B.

We introduce the density matrix �A�B associated with
the state encoding the interaction between the spin at site 1
and the memory of the FCS:

 Tr A�B��A�BA � B� � TrB��E�A � B��:

Using the cyclicity of trace we also have �A�B � Vy�V.
We are now ready to define the density matrices ��1;n�:

 ��1;n� � TrB�V
y
n �A�BVn�;

where Vn � �1A � V��1A�2 � V� 
 
 
 �1A�n�1 � V�.
An important property, intimately related to the expo-

nential decay of correlations in a pure FCS is that the
peripheral spectrum of Ê is trivial; that is, 1B is the only
eigenvector of Ê with eigenvalue of modulus 1 [19]. This
implies that the iterates of Ê converge exponentially fast to
Ê1 given by Ê1�B� � limn!1Ê

n�B� � Tr��B�1B. More
precisely, for any � such that j�ij< �< 1, for all eigen-
values �i of Ê different from 1, there exists a constant c
such that for all n 	 1:

 kÊn � Ê1k � c�n; (1)

where the norm is the 1-norm on B considered as a
Banach space with the 1-norm.

Our object of study is the entanglement of formation
(EoF) [20]. The EoF is defined for states of composite sys-
tems with a tensor-product algebra of observables X1 �
X2.

Definition 1 (Entanglement of Formation).—The entan-
glement of formation of a bipartite state over X1 �X2

with associated density matrix �12 is given by:

 E�X1;X2�
��12� � inf

X
i

piS�TrX2
��i12��;

where S��� � �Tr� log� is the von Neumann entropy and
the infimum of the average entropy is taken over all convex
decompositions �12 �

P
ipi�

i
12 into pure states.

Whenever X1 is finite dimensional, as will be the case
for us, the infimum can be replaced by a minimum in the
above definition, i.e., there is an optimal decomposition,
fpi; �

i
12g, where the infimum is attained (see Ref. [21] for

details). We call fj�iig an ensemble for the density matrix
� whenever the latter can be decomposed as � �P
ij�iih�ij. There are an infinite number of ensembles

corresponding to a given density matrix. The following
lemma provides us with a complete classification:

Lemma 2 (Isometric Freedom in Ensembles, [22,23]).—
Let fjeiigdi�1 be the ensemble corresponding to the eigen-
decomposition of the density matrix �, where d �
rank���. Then, fj iigmi�1 is an ensemble for � if and only
if there exists an isometry U: Cd � Cm such that

 j ii �
Xd
j�1

Ui;jjeji; 1 � i � m:

The above lemma implies that any two ensembles for the
same density matrix, fj jig

M1
j�1, and fj�iig

M2
i�1, are similarly

related via a partial isometry W: CM1 � CM2 .
Our main result is the following theorem:
Theorem 3.—For any pure translation invariant FCS we

have

 0 � E�A;B���A�B� � E�A;A�n�1����1;n�� � ��n�; (2)

where ��n� decays exponentially fast in n.
Proof of the theorem.—The lower bound is proven in

Ref. [1]. For the sake of completeness, we include here the
following proof.

The definition of ��1;n� implies that every decomposition
of �A�B into pure states induces a decomposition of ��1;n�.
Moreover, the restrictions to the spin at site 1 of the ith
state in the corresponding decompositions of �A�B and
��1;n� are equal. To see this, note that since the operators Vn
leave the first spin invariant, the cyclicity of the trace
implies

 Tr A�n�1��i
�1;n�� � TrA�n�1�B�V

y
n �iA�BVn�

� TrB��
i
A�B�;

where we have used VnV
y
n � 1A � 1B. It follows that for

each decomposition of �A�B there is a corresponding
decomposition of ��1;n� with equal average entropy. Since
the average entropy of ��1;n� is minimized over a (possibly)
larger set of decompositions, the lower bound follows.

We now focus on the upper bound. We start with the
following decompositions of �A�B and ��1;n� into (unnor-
malized) pure states:

 �A�B �
Xb
i�1

Vyj�iih�ijV (3)

 ��1;n� �
Xb
i;j�1

Gyn;jV
yj�iih�ijVGn;j; (4)

where fj�iigbi�1 is the eigen-ensemble of � and Gn;j �

Vn�1A�n � j�ji=k�jk�. The term in parentheses in the
expression for Gn;j comes from the Kraus operators in
the decomposition of the completely positive map TrB.

By the observation following Lemma 2, we have that the
(unnormalized) states j�n

l i in the optimal decomposition of
��1;n� are given by

 j�n
l i �

Xb
i;j�1

Ul;�ij�G
y
n;jV

yj�ii; 1 � l � L; (5)

for some partial isometry U: Cb2
� CL, whose depen-

dence on n we suppress. Moreover, it is easy to check that
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 j�li �
Xb
i;j�1

Ul;�ij�V
yj�ii; 1 � l � L; (6)

is an ensemble for �A�B.
To calculate the EoF we need the restrictions of

fj�n
l ih�

n
l jg and fj�lih�ljg to A:

 

~�n
l � TrA�n�1�j�n

l ih�
n
l j�; ~ l � TrB�j�lih�lj�: (7)

Define the density matrices �n
l �

~�n
l =�

n
l and  l � ~ l=�l,

where �nl � k ~�n
l k1 � Tr� ~�n

l �, �l � k ~ lk1 � Tr� ~ l�.
From the definition of the EoF and the optimality of

f ~�n
l g
L
l�1 we get

 E�A;B�B���A�B� � E�A;A�n�1����1;n�� �
XL
l�1

�l�n�; (8)

where �l�n� � �lS� l� � �
n
l S��

n
l �.

It remains to show that
PL
l�1 �l�n� is exponentially

small. We estimate each term in the sum as

 j�l�n�j � �ljS� l� � S��
n
l �j 
 j�l � �

n
l j logd; (9)

since rank��n
l � � d.

To bound jS� l� � S��n
l �j we use Fannes’s inequality

for the continuity of the von Neumann entropy [24]:

 jS� l��S��
n
l �j� �logd
2�k l��

n
l k1
	�k l��

n
l k1�;

(10)

where 	�x� � �x logx and log is the natural logarithm. By
the triangle inequality we have

 j�l � �
n
l j � jk

~ lk1 � k ~�n
l k1j � k ~ l � ~�n

l k1: (11)

Another application of the triangle inequality gives

 k l ��n
l k1 �

k�l l � �
n
l �

n
l k1 
 k��

n
l � �l��

n
l k1

�l
;

which simplifies, with the use of (11), to the following
inequality:

 k l ��
n
l k1 � 2

k ~ l � ~�n
l k1

�l
: (12)

Combining Eqs. (9)–(12) and setting

 
nl � k ~ l � ~�n
l k1=�l; (13)

we get the following bound for �l�n�:

 j�l�n�j � �l��logd3 
 4�
nl 
 	�2

n
l ��: (14)

where we have assumed that 2
nl � 1=e, to assure 	�x� is
increasing.

To complete the proof, we show that 
nl is exponentially
small for large n. Since each Gn;j leaves the spin at site 1
invariant, the cyclicity of the trace yields

 

~�n
l �

Xb
i;i0;j;j0�1

U�l;�i0j0�Ul;�ij�TrB�V
yj�iih�i0 jVGn;j0G

y
n;j�;

but Gn;j0G
y
n;j�1A� Ê

n�1�j�j0 ih�jj�=�k�j0kk�jk�. Substi-
tuting Ê1 for Ên�1 we get

 

~ l � ~�n
l �

Xb
i;i0;j;j0�1

U�l;�i0j0�Ul;�ij�TrB�Xi;i0Yj;j0 �;

where Xi;i0 � Vyj�iih�i0 jV and Yj;j0 � 1A � �Ê
n�1 �

Ê1��j�j0 ih�jj�=�k�j0kk�jk�.
Like all trace preserving quantum operations, the partial

trace is contractive with respect to the 1-norm. Hence, an
application of the triangle inequality for the 1-norm gives

 k ~ l � ~�n
l k1 �

Xb
i;i0;j;j0

jU�l;�i0j0�jjUl;�ij�jkXi;i0k1kYj;j0 k1

It is not hard to see that

 kXi;i0 k1 � k�ikk�i0k; kYj;j0k1 � kÊ
�n�1� � Ê1k;

and hence

 k ~ l � ~�n
l k1 �

�Xb
i�1

Xb
j�1

jUl;�ij�jk�ik
�

2
kÊ�n�1� � Ê1k:

Since
Pb
i;j�1 jUl;�ij�j

2k�ik
2 � �l, two applications of

Cauchy-Schwarz give

 k ~ l � ~�n
l k1 � b2�lkÊ

�n�1� � Ê1k: (15)

Finally, combining (1) with (15), Eq. (13) becomes

 
nl � c1�
n; c1 � cb2=�: (16)

To conclude the proof, we note that since the bound for

nl is independent of l, summing over l in Eq. (14) yields

 

XL
l�1

j�nl j � �logd3 
 4�c1�n 
 	�2c1�n�:

It is clear that for �0 > � there exists a constant c2 such
that

 	�2c1�n� � c2��0�n:

The only condition on n was imposed in Eq. (14) were we
assumed that 2
nl �

1
e . Using Eq. (16) we see that there is

an n0 such that the above condition is satisfied for all n 	
n0. The previous observations imply that for all �0 with
� < �0 < 1, there is a constant c3 such that

 ��n� � c3��
0�n 	

XL
l�1

j�nl j; for all n:

Finally, Eq. (8) implies that
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 E�A;B�B���A�B� � E�A;A�n�1����1;n�� � ��n�;

and this completes the proof of the theorem.
A natural question to ask at this point is the following:

How does the entanglement between the spin at site 1 and
spins at sites �p; n�, p 	 2, behave as p becomes large?
Since the state �1;�p;n� factorizes into �1 � ��p;n� as p! 1
[25], we expect that the bulk of the entanglement is con-
centrated near site 1. The following theorem confirms this:

Theorem 4.—For any pure translation invariant FCS and
n 	 p 	 2, the following bound holds:

 E�A;A�n�p
1���1;�p;n�� � ��p�; (17)

where ��p� decays exponentially fast in p.
Sketch of the proof.—The main observation is that the

trace distance between the states �1;�p;n� and �1 � ��p;n�
vanishes exponentially fast with p. This is a consequence
of the exponential rate of convergence described in Eq. (1).
Since E�A;A�n�p
1���1 � ��p;n�� � 0, a straightforward ap-
plication of Nielsen’s inequality for the continuity of the
EoF [26] yields the desired result. �

Discussion.—Having established such a strong connec-
tion between the states ��1;n� and �A�B, one can apply
various entanglement criteria on �A�B to deduce entan-
glement properties of the spin chain. To start with, we
note that for qubit chains with 2-dimensional memory
algebra B, the entanglement of ��1;n� can be computed
analytically (in the limit) by evaluating the concurrence
[27] of �A�B. For higher dimensions one can apply the
PPT criterion to �A�B to detect distributed entangle-
ment in the finitely correlated state. Specifically, the
main theorem in Ref. [28] implies that there can be no
PPT bound entanglement in �A�B since rank��A�B� �
b � maxfd; bg. Hence, if the partial transpose of �A�B is
positive, then �A�B is separable. On the other hand, if the
partial transpose of �A�B is negative, then for n large
enough ��1;n� becomes entangled. The amount of maxi-
mum entanglement in ��1;n� depends on the amount of
entanglement found in �A�B. From this point of view, it
would be very interesting to look at FCS that maximize
entanglement of �A�B. Moreover, understanding how en-
tanglement of �A�B varies with differentCPmaps E could
lead to a better understanding of how phase transitions
occur when we vary the parameters in the underlying
Hamiltonian of the system.

To conclude, we note that the conjecture of Benatti et al.
[1] follows as a corollary of Theorem 3. In particular, our
result implies that a spin at site 1 of the chain is entangled
with spins at sites �2; n� (for n large enough) if and only if
�A�B is entangled. Moreover, the entanglement of ��1;n�
approaches the entanglement of �A�B exponentially fast.
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