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Semantic understanding and reconstruction of the surrounding 3D environment is a

necessary requirement for intelligent robots to autonomously fulfill various tasks like environment

exploration, surveillance, autonomous driving, indoor household and healthcare service, to name

a few. Although the progress on semantic understanding of 2D images is impressive, building

a 3D consistent, meaningful yet compact and scalable semantic map for robotics applications

is still challenging. In this dissertation, we develop 3D semantic map approaches for robots in

different form, including the dense semantic map and the object-level semantic map. We propose

TerrainMesh, a dense semantic map in the form of 3D mesh, for the terrain reconstruction from

the aerial images and the sparse depth measurements. The joint 2D-3D and geometric-semantic
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learning framework is proposed to reconstruct the local semantic meshes and the global semantic

mesh can be constructed by merging the local meshes with the help of the SLAM algorithm.

We investigate the object-level semantic map constructed from 3D measurements. We propose

CORSAIR, a retrieval and registration algorithm for point cloud objects. A 3D sparse convolution

neural network model is trained to extract the global features for similar shape retrieval and

the local per-point features for correspondence generation for pose registration with the help of

symmetry. We develop ELLIPSDF, a bi-level object shape model including a coarse level of

3D ellipsoid and a fine level of 3D continuous signed distance function (SDF). We also design

the approach to initialize and optimize the object pose together with the bi-level shape from the

multiple depth image observations. We also propose the object-level semantic map from the 2D

images and investigate its connections with the localization task. We introduce the object mesh

model and its observation model of semantic instance segmentation and semantic keypoints. We

derive the observation residual function and minimize it to optimize both the object states and

the camera poses. We develop OrcVIO, object residual constrained visual-inertial odometry with

object ellipsoid and semantic keypoints model. We implement the observation residual model

between the ellipsoid and its 2D semantic bounding box and semantic keypoints and connect

this with MSCKF framework to implement the online tightly coupled estimation of object and

IMU-camera states. The object-level semantic map also provides a meaningful yet efficient

representation of the environment. Finally we discuss the potential directions to further extend

the 3D semantic understanding technique for robotics.
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Chapter 1

Introduction

1.1 Motivation

Human beings have always worked hard to build tools to make our lives better. Robots,

which are expected to be highly autonomous and intelligent helpers, are definitely among the

most advanced tools that humans expect to have. Since the word ”robot” was first introduced by

a Czech writer Karel Čapek in his play R.U.R., or Rossum’s Universal Robots in 1921, there has

been a phenomenal evolution on the robot’s functionality and popularity in the past 100+ years.

Undoubtedly, robots can take on many dirty, dangerous, and dull jobs now. However, we are not

seeing that many of robots appearing in our daily life yet, besides some robot vacuums. Robots

today are still nowhere near the science fiction robot figures like R2-D2. Many robots now can

only work on a limited of tasks, in a fixed environment. There are several aspects that the current

robots need to improve to get closer to be a versatile agent. In this dissertation, we focus on the

semantic understanding and reconstruction of the scene or environment.

There are many industrial robots that can perform assembling task at a high precision

in a well-organized and fixed factory environment. In this case, it might be possible to execute

the task blindly without any understanding on the environment. However, in many situations,

the environment is dynamic. Also, we want to have a robot to be capable to work in different

environments, even the environment that it has never visited before. Therefore, it is important

to have the ability to perceive and reconstruct the working environment of the robot. Besides
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the direct measurement from the visual sensors, such as the RGB color and the occupancy

information, the semantic information is a higher level of information and has a more important

role. Comparing with a binary occupancy map that only indicates whether the space is free or

occupied, a semantic map that embed the dense semantic information, such as classifying the

road, the building and the vegetation region, or annotating the object category, pose and shape, is

definitely more useful. With such semantic representation of the environment, it would be easier

for human operator to specify task using more natural-language-like instruction so that more

people can benefit from robots without technical prerequisite. Also the robot can generalize to

perform more complicated tasks enabled by the semantic map. For example, in environmental

monitoring, a real-time semantic map can be useful for wildfire prevention and detection, and

traversable route prediction for first responders. In object manipulation, the object category, pose

and shape estimation can be useful to generate gripping pose. In safe autonomous navigation

scenario, the autonomous car need to detect the other vehicles and pedestrians and share the road

safely with them. We believe that the 3D semantic map reconstruction can release the potential

of robot to be deployed in our daily life.

1.2 Problem Formulation

We consider the tasks of building the 3D semantic map for mobile robots that are equipped

with various sensors. The sensors include the visual sensors like the monocular camera, stereo

cameras and depth camera. The 3D LiDAR can also be a good complement to provide direct 3D

measurements. The other sensors include the inertial measurement unit (IMU) or the GPS that

support the localization tasks. We investigate two forms of semantic map. One is dense semantic

map. We consider the 3D mesh representation of the scene with surface information. We want to

also have the semantic information attached to the mesh besides the geometric shape. The other

is a object-level map. We want to reconstruct a map consist of objects with category label, pose

and shape reconstructed.
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1.3 Related Work

In early days, researchers tried to estimate the semantic information of object classes

[182, 151], which are mainly described by hand-crafted geometric parameters. The other early

attempts on semantic mapping include the object detection and tracking for dynamic 3D scene

analysis [102] and indoor spatial and semantic hierarchical representation recovery [56]. The

computer vision technique made a great progress because of the large datasets like ImageNet [38]

and the deep learning technique [63]. The object detection [150, 71] and semantic segmentation

[169, 23] on 2D images has reached an impressive level of accuracy. Semantic object detection

[212, 201] and segmentation [143, 170, 80] can also be performed on 3D data. Such stronger

front-end perception ability largely improve the robot’s ability to reconstruct semantic map.

The semantic map reconstruction is used for robotics applications such as autonomous driving

[180, 140, 145], household [157, 113, 142], health care [44], agriculture [119, 160] and disaster

first response [132, 154]. For more related work on semantic mapping for robotics, the two

recent surveys [98, 57] cover a more comprehensive list of works.

1.4 Contributions

The high-level goal of the dissertation is to develop the technique of building 3D semantic

map to enhance the robot’s understanding of the environment. We specifically focus on two

forms of semantic map, the dense semantic map and the object-level semantic map.

In Chapter 2, we focus on the dense semantic mesh map. We introduce TerrainMesh, a

metric-semantic terrain mesh reconstruction algorithm using the RGB image and sparse depths.

We propose a joint 2D-3D learning method for metric-semantic mesh reconstruction using a

novel 2-step coarse-to-fine strategy, composed of mesh initialization and mesh refinement stages.

In the initialization stage, we use only the sparse depth measurements to fit a coarse mesh surface.

In the refinement stage, we extract deep convolutional 2D image features and associate them

with the initial mesh 3D vertices through perspective projection. The mesh is subsequently
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refined using a graph convolution model to predict both spatial coordinates and semantic features

residuals of the vertices. Employing our TerrainMesh method in combination with feature- and

keyframe-based odometry techniques allows reconstruction of global dense metric-semantic

mesh models with utility in environmental monitoring and semantic navigation applications.

In Chapter 3, we focus on building the object-level semantic map using 3D measure-

ments. We introduce CORSAIR, a fully Convolutional Object Retrieval and Symmetry-AIded

Registration algorithm. We design a sparse fully convolutional network to jointly regress global

and local point-cloud features, which are hierarchically correlated. The global feature enables

similar model retrieval, while the local features allow object pose registration. We also introduce

ELLIPSDF, an expressive yet compact bi-level Ellipsoid and Signed Distance Function model of

object pose and shape, and an associated optimization algorithm to infer an object-level map from

3D measurements. These methods enable high-fidelity object-level map with object category

label, pose and shape information included.

In Chapter 4, we focus on building the object-level semantic map using sequencial 2D

RGB images without direct 3D measurement. We introduce an object mesh model and develop

its observation model that generates the semantic instance segmentation and semantic keypoints

leveraging differentiable mesh renderer. The observation model is used to optimize both the

object states and the camera poses. We introduce OrcVIO, Object residual constrained Visual

Inertial Odometry. We model the objects as 3D ellipsoids with coarse ellipsoid shape and fine

semantic-keypoint shape. We define residuals relating object states and IMU-camera states

to object semantic keypoint and bounding-box detections. The observation residuals are used

under the Multi-State Constraint Kalman Filter (MSCKF) framework to implement online tightly

coupled estimation of object and IMU-camera states. We have coupled the object-level map

reconstruction and the camera pose refinement tasks and get a better estimation of both the ego

state and the environment layout.
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Chapter 2

Metric-Semantic Terrain Reconstruction
from Aerial Images

Recent advances in sensing, computation, storage and communication hardware have set

the stage for mobile robot systems to impact environmental monitoring, security and surveillance,

agriculture, and many other applications. Constructing terrain maps onboard an unmanned aerial

vehicle (UAV) using online sensor measurements provides critical situational awareness in such

applications. This chapter considers the problem of building a metric-semantic terrain model,

represented as a triangular mesh, of an outdoor environment using a sequence of overhead RGB

images obtained onboard a UAV. Fig. 2.1 shows an example of inputs and mesh reconstruction.

We assume that the UAV is running a localization algorithm, based on visual-inertial

odometry (VIO) [144] or simultaneous localization and mapping (SLAM) [18], which estimates

its camera pose and the depths of a sparse set of tracked image keypoints. However, range sensors

and, hence, dense depth information are not available during outdoor flight. One approach for

terrain mapping is to recover depth images at each camera view using dense stereo or multi-view

stereo (MVS) matching, fuse them to generate a point cloud, and triangulate a mesh surface.

Multi-view stereo (MVS) [54] aims to estimate the depth at one frame using several different

frames. Classical MVS methods perform patch matching with photometric and geometric

consistency [165]. These methods generalize well although the performance can be affected by

low texture, lighting variation, and occlusion. Recently, learning-based methods [177, 174, 164]
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Figure 2.1. This chapter develops a method using aerial RGB images and sparse depth measure-
ments (top-left) to reconstruct a semantic mesh of an outdoor terrain. The color, elevation, and
semantics of the mesh are visualized in the top-right, bottom-left and bottom-right plots.

that fuse multi-view learned features across frames for depth recovery have achieved excellent

performance. The learning-based MVS can tackle some of the challenges like severe occlusion,

but generally labeled data is needed for training. While specialized sensors and algorithms

exist for real-time stereo matching, they are restricted to a limited depth range, much smaller

than the distances commonly present in aerial images. Apart from MVS, depth completion,

the task of reconstructing a dense depth image from an RGB image with given sparse depth

estimates, have shown promising performance on indoor [175] and outdoor datasets [59]. Ma

et al. [115, 114] develop a deep network for depth completion that passes the sparse depth and

RGB image inputs through convolution layers, ResNet encoder layers, transposed convolution
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decoder layers, and a 1x1 convolution filter. The model is trained either with supervision from

ground-truth depth images or via photometric error self-supervision from calibrated RGB image

pairs. Instead of consuming sparse depth images directly, Chen et al. [26] pre-process sparse

depth images by generating a Euclidean distance transform of the keypoint locations and a

nearest-neighbor depth fill map. The authors propose a multi-scale deep network that treats depth

completion as residual prediction with respect to the nearest-neighbor depth fill maps. CodeVIO

[214] uses a Conditional Variational Autoencoder (CVAE) to encode RGB and sparse depth

inputs into a latent depth code and decode a dense depth image from the latent depth code. The

sparse depth measurements are used to perform incremental depth code updates, allowing the

depth reconstruction to be coupled with visual odometry estimation in the MSCKF filter [121].

However, aerial images are different from ground RGBD images used to train these models. Due

to the limited availability of aerial image datasets for supervision, learning-based methods have

not yet been widely adopted for outdoor terrain mapping.

Online terrain mapping requires efficient storage and updates of a 3D surface model.

Storing dense depth information from aerial images requires significant memory and subsequent

model reconstruction. An explicit surface representation using a polygonal mesh may be

quite memory and computationally efficient but the vertices and faces need to be optimized

to fit the environment geometry. FLaME [65] performs variational optimization over a time-

varying Delaunay graph to obtain an inverse-depth mesh of the environment, using sparse

depth measurements from a VIO algorithm. Voxblox [135] incrementally builds a voxel-based

truncated signed distance field and can reconstruct a mesh as a post-processing step using the

Marching Cubes algorithm [110]. Terrain Fusion [191] performs real-time terrain mapping by

generating digital surface model (DSM) meshes at selected keyframes. The local meshes are

converted into grid-maps and merged using multi-band fusion. Recently, learning methods have

emerged as a promising approach for mesh reconstruction from limited or no 3D information.

Bloesch et al. [11] propose a learning method to regress the image coordinates and depth of

mesh vertices in a decoupled manner. This allows an in-plane 2D mesh to capture the image
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structure. Pixel2Mesh [190] treats a mesh as a graph and applies graph convolution [97] for

vertex feature extraction and graph unpooling to subdivide the mesh for refinement. Using

differentiable mesh rendering [93, 109], the 3D mesh structure of an object can be learned from

2D images [92, 50, 171]. Mesh R-CNN [61] simultaneously detects objects and reconstructs

their 3D mesh shape. A coarse voxel representation is predicted first and then converted into a

mesh for refinement. Recent works [131, 192] can generate mesh reconstructions of complete

scenes, including object and human meshes and their poses, from a single RGB image.

Recently, there has also been increasing interest in supplementing geometric reconstruc-

tion with semantic information because many robotics tasks require semantic understanding.

Semantic segmentation on the 2D images can be back-projected onto 3D space and multi-view

information can be fused to annotate the 3D structure [185, 152]. Besides, semantic segmentation

can be directly performed on the 3D point cloud [79] or the mesh [81]. Instead of treating the

semantic annotation as the post-processing step after geometric reconstruction, researchers also

investigate on how to jointly optimize geometric and semantic accuracy. Häne et al. [85] formu-

late a joint segmentation and dense reconstruction problem on voxels and show that appearance

likelihoods and class-specific geometric priors help each other. Cherabier et al. [27] leverage

variational energy minimization method for regularization to capture complex dependencies

between the semantic labels and the 3D geometry. Guo et al. [67] jointly optimize the geometry

and semantics by predicting the implicit neural representations of the signed distance, color and

semantic field. However, few algorithms exist for joint metric-semantic reconstruction. Most

works treat semantic classification as a post-processing step, decoupling it from 3D geometric

reconstruction.

This chapter is based on the papers [48, 49]. In this chapter, we propose a joint 2D-3D

learning method for metric-semantic mesh reconstruction using a novel coarse-to-fine strategy,

composed of mesh initialization and mesh refinement stages. In the initialization stage, we

use only the sparse depth measurements to fit a coarse mesh surface. In the refinement stage,

we extract deep convolutional 2D image features and associate them with the initial mesh

8



3D vertices through perspective projection. The mesh is subsequently refined using a graph

convolution model to predict both spatial coordinates and semantic features residuals of the

vertices. We conduct extensive evaluation on simulated and real aerial datasets. We demonstrate

empirically that the joint geometric-semantic training can outperform the geometric-only method.

In summary, the contributions of this chapter are summarized as follows.

• We introduce a joint 2D-3D loss function, utilizing differentiable mesh rendering, for

metric-semantic mesh reconstruction.

• We develop a two-stage coarse-to-fine mesh reconstruction approach, using a closed-

form mesh vertex initialization from sparse depth measurements and a graph convolution

network mesh vertex refinement from RGB, sparse depth measurements and semantic

image features.

• We evaluate our metric-semantic mesh reconstruction algorithm on synthetic and photo-

realistic aerial image datasets.

2.1 Problem: Semantic Mesh Reconstruction from RGB
Images and Sparse Depth

Consider a UAV equipped with an RGB camera flying outdoor. Let I denote an RGB

image. Obtaining dense depth images during outdoor flight is challenging due to the large

distances and relative small variation. However, a VIO or SLAM algorithm can track and

estimate the depth of a sparse set of image feature points. Let Ds be a sparse 2D matrix that

contains estimated depths at the image feature locations and zeros everywhere else. Let D

denote the dense ground-truth depth image. Let S denote an associated ground-truth semantic

segmentation image. Assuming there are s semantic classes in total, we model S as a tensor

with the same width and height as the RGB image I and third channel size s. Each element

Si, j ∈ [0,1]s is a one-hot vector with 0s in all elements, except for a single 1 indicating the true

semantic class.
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Our goal is to construct an explicit model of the camera view using a 3D semantic triangle

meshM := (V,C,E ,F), where V ∈ Rn×3 are the vertex spatial coordinates, C ∈ Rn×s are the

vertex semantic features, [n] := {1, . . . ,n} is the set of vertex indices, E ⊆ [n]× [n] are the edges,

and F ⊆ [n]× [n]× [n] are the faces. Each row of the matrix C contains an unnormalized score

vector for the s classes that can be converted into a probability distribution over the s classes

using the softmax function [16].

Problem. Given a finite set of RGB images {Ik}k and corresponding sparse depth measure-

ments
{

Ds
k

}
k, define a semantic mesh reconstruction functionM= f (I,Ds;θ) and optimize its

parameters θ to fit the ground-truth depth {Dk}k and semantic segmentation {Sk}k images:

min
θ

∑
k
ℓ( f (Ik,Ds

k;θ);Dk,Sk) (2.1)

where ℓ(M;D,S) is a loss function measuring the error between a 3D semantic meshM and a

depth image D plus a semantic image S.

The choice of loss function ℓ is discussed in Sec. 2.2. We develop a machine learning

approach consisting of an offline training phase and an online mesh reconstruction phase. During

training, the parameters θ are optimized using a training set D :=
{

Ik,Ds
k,Dk,Sk

}
k with known

ground-truth depth images and semantic segmentation images. During testing, given streaming

RGB images I and sparse depth measurements Ds, the optimized parameters θ
∗ are used in the

model f (I,Ds;θ
∗) to reconstruct the mesh vertex spatial coordinates V and semantic features C.

The mesh edges E and faces F are assumed fixed and known, and hence are not reconstructed by

the model. For notational simplicity, we write the output of model f directly as the semantic

meshM= f (I,Ds;θ
∗). A keyframe-based VIO or SLAM algorithm estimates the positions p

and orientations R of camera keyframes as well as the depth of sparse keypoint measurements

associated with each keyframe. Our approach estimates a local mesh M = (V,C,E ,F) at

each camera keyframe. The keyframe meshes can be converted to a global frame (with vertex

10



coordinates VR⊤+1p⊤, where 1 is a n×1 vector filled with 1) and fused to obtain a complete

consistent metric-semantic model of the environment.

2.2 Loss Functions for Semantic Mesh Reconstruction

We develop several loss functions to measure the consistency between a semantic mesh

M and corresponding depth image D and semantic segmentation image S. Since our problem

focuses on optimizing the mesh, the loss function must be differentiable with respect to the mesh

vertex spatial coordinates V and semantic features C. We keep the mesh edges E and faces F

fixed during the mesh optimization.

A loss function can be defined in the 2D image plane by rendering a depth image from

M and comparing it with D. The differentiable mesh renderer [109, 149] makes the 3D mesh

rendering, e.g., from a 3D mesh to a 2D image, differentiable. Therefore, we can back-propagate

the loss measured on the 2D images to the 3D mesh vertices. We leverage a differentiable mesh

renderer to generate a depth image ρD(M) and define a 2D loss function:

ℓ2(M,D) := mean(|ρD(M)−D|), (2.2)

where mean(·) is a function taking the mean over all the valid pixels where both D and ρD(M)

have a depth value.

While ℓ2 is a natural choice of a loss function in the image plane, it does not emphasize

two important properties for mesh reconstruction. First, since ℓ2 only considers a region in the

image plane where both depth images have valid information, its minimization overM may

encourage the meshM to shrink to cover only a smaller image region. Second, ℓ2 does not

emphasize regions of large depth gradient variation (e.g., the side surface of a building), which

may lead to inaccurate 3D reconstruction. To address these limitations, we define an additional

loss function in the 3D spatial domain using two point clouds PM and QD obtained fromM
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Figure 2.2. Loss function illustration: ℓ2 compares rendered mesh depth ρD(M) to a depth
image D, ℓ3 compares a meshM to an elevated meshMD obtained from a depth image, and ℓS
compares a rendered mesh semantic image ρS(M) to a semantic segmentation image S.

and D, respectively:

ℓ3(M,D) :=
1
2

d(PM,QD)+
1
2

d(QD,PM), (2.3)

where d is the asymmetric Chamfer point cloud distance [8]:

d(P,Q) :=
1
|P| ∑

p∈P
min
q∈Q
∥p−q∥2

2. (2.4)

Note that squared Euclidean distance is used when calculating the Chamfer distance. To

generate PM, we sample on the faces ofM uniformly using PyTorch3D library [149]. The loss
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function is differentiable with respect to the mesh vertices because the samples on the mesh faces

can be represented as linear combinations of the mesh vertices using the barycentric coordinate

introduced in Sec. 2.3.1. To generate QD, we may sample the depth image D uniformly and

project the samples to 3D space but this will not generate sufficient samples in the regions of

large depth gradient variation. Instead, we first generate a pseudo ground-truth meshMD by

densely sampling pixel locations in D as the mesh vertices and triangulating on the image plane

to generate faces. We then sample the surface ofMD uniformly to obtain QD. The sample

number is set as 10000.

We also define two regularization terms to measure the smoothness of the meshM. The

first is based on the Laplacian matrix L := G−A ∈ Rn×n ofM, where G is the vertex degree

matrix and A is the adjacency matrix. We define a vertex regularization term based on the

ℓ2,1-norm [130] of the degree-normalized Laplacian [173] Ln = G−1L = In−G−1A where In is

an identity matrix of size n×n:

ℓV(M) :=
1
n
∥LnV∥2,1 , (2.5)

where n is the number of vertices. We also introduce a mesh edge regularization term to

discourage long edges in the mesh

ℓE(M) :=
1
|E| ∑

(i, j)∈E
∥vi−v j∥2, (2.6)

where vi ∈ R3 are the coordinates of the i-th mesh vertex.

We also define a semantic loss function that relates the 3D mesh semantic information to

the 2D semantic segmentation image by rendering the semantic mesh similar to (2.2). We define

a differentiable semantic rendering function ρS(M) which can generate a same-sized image as

S with s channels, where s is the number of semantic classes. At each pixel, the s-dimensional

vector stores the unnormalized scores representing the likelihoods of the s classes. We use a
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softmax function [16] σi(x) = exp(xi)/∑
s
j=1 exp(x j) to compute the probability distribution

over the s classes σ(ρS(M)). For the semantic segmentation task, we choose the Dice loss [41] :

ℓS(M,S) :=− 2|σ(ρS(M)) ·S|
|σ(ρS(M))|+ |S|

, (2.7)

where | · | sums up all the absolute values of the elements. Note that S contains one-hot vectors

while σ(ρS(M)) stores probability vectors for the s classes. Therefore, |σ(ρS(M)) ·S| is the

probabilistic intersection between two semantic segmentation images. In Sec. 2.4.7, we compare

the Dice loss with three alternative semantic loss functions (cross-entropy loss, focal loss, and

Jaccard loss). Finally, we apply Laplacian smoothing (2.5) to the vertex semantic features:

ℓC(M) :=
1
n
∥LnC∥2,1 . (2.8)

The complete loss function is:

ℓ(M,D,S) :=w2ℓ2(M,D)+w3ℓ3(M,D)+wSℓS(M,S)

+wVℓV(M)+wEℓE(M)+wCℓC(M)

(2.9)

where the first two terms evaluate the error betweenM and D, the following two terms encourage

smoothness of the mesh structure, and the last two terms evaluate the error betweenM and S

and regularize the semantic features, which affects both the geometric and semantic properties of

the mesh. The scalars w2,w3,wV,wE ,wS,wC ∈ R≥0 allow appropriate weighting of the different

terms in (2.9). Fig. 2.2 illustrates the loss functions ℓ2 in (2.2), ℓ3 in (2.3), and ℓS in (2.7).

2.3 2D-3D Learning for Semantic Mesh Reconstruction

Inspired by depth completion techniques, we approach mesh reconstruction in two stages:

initialization and refinement. In the initialization stage, we generate a mesh from the sparse

depth measurements alone (Sec. 2.3.1). In the refinement stage, we optimize the mesh vertex
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Figure 2.3. Overview of our semantic mesh reconstruction architecture. In the initialization
stage (Sec. 2.3.1), we use sparse depth to elevate a flat mesh from the image plane to 3D space
(Fig. 2.4). In the refinement stage (Sec. 2.3.2, 2.3.3), we first combine the RGB image, a
depth image rendered from the initial mesh, and a Euclidean Distance Transform of the sparse
depth measurements to extract features using a 2D feature extractor. We have a 2D semantic
segmentation model to generate 2D semantic features from the RGB image. The 2D features
and the 2D semantic features are associated with the mesh vertices using camera projection at
different stages (Fig. 2.5,2.6). The vertex spatial coordinates and the vertex semantic features,
are regressed using graph convolution network (GCN) over the mesh. The refined output is a
metric-semantic mesh (Fig. 2.7). The 2D feature extractor and GCN parameters are optimized
jointly using the loss function in Sec. 2.2. The 2D semantic segmentation model is trained
separately.

coordinates based on RGB image features (Sec. 2.3.2) and assign semantic categories to each

vertex using image segmentation features (Sec. 2.3.3). An overview of our semantic mesh

reconstruction modelM= f (I,Ds;θ) is shown in Fig. 2.3.

2.3.1 Mesh Initialization

Outdoor terrain structure can be viewed as a 2.5-D surface with height variation. Hence,

we initialize a flat mesh surface and change the surface elevation based on the sparse depth mea-

surements. The flat mesh is initialized with regular-grid vertices (n = 1024 in our experiments)

over the image plane, and the edges and the faces connecting the vertices. See Fig. 2.4 for an

illustration. Subsequently, our mesh reconstruction approach only optimizes the mesh vertices
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Figure 2.4. Mesh initialization stage (Sec. 2.3.1). Left: Sparse depth measurements (color dots)
are used to determine vertex heights from a flat image-plane mesh (bottom wireframe). Right:
The initialized mesh. Colors indicate elevation.

and keeps the edge and face topology fixed. The initialized meshMint = (V∗,0) is used as an

input to the mesh refinement stage, described in Sec. 2.3.2, 2.3.3. Since we do not update E ,F ,

we will omit them for simplicity.

We constrain the mesh vertex deformation to the z-axis to change the vertex heights only.

The coordinates of the i-th vertex of the flat mesh, vi = [vx
i ,v

y
i ,1], are divided by a scalar inverse

depth λi to obtain the i-th vertex coordinates [vx
i /λi,v

y
i /λi,1/λi] of the initialized mesh. We

concatenate λi to obtain a vector λ ∈ Rn of all vertex inverse depths.

Any point p on the mesh surface that lies in a specific triangle can be represented as

a convex combination p = bivi + b jv j + bkvk of the triangle vertices vi,v j,vk with weights

bi,b j,bk ∈ [0,1] such that bi + b j + bk = 1. The vector [bi,b j,bk]
⊤ is called the barycentric

coordinates of p. We use barycentric coordinates to relate the sparse depth measurements Ds to

the vertex inverse depths λ , which is equivalent to a linear interpolation.

Let the valid measurements in the sparse depth image Ds be {(i, j),Ds
i j}, where (i, j) are

the pixel coordinates and Ds
i j are the corresponding depth measurements. Each pixel (i, j) falls

within one triangle of the flat 2D mesh (see Fig. 2.4). Let bi j ∈Rn be the barycentric coordinates
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of pixel (i, j), where at most three elements of bi j, corresponding to the three triangle vertices,

are non-zero. The inverse depth 1/Ds
i j is related to the vertex inverse depths λ through the

barycentric coordinates [84], b⊤i jλ = 1/Ds
i j. Stacking these equations for all valid pixels (i, j) in

Ds, we obtain:

Bλ = ρ, (2.10)

where ρ is a vector of the valid inverse depth measurements in Ds with elements 1/Ds
i j. Using

Laplacian regularization as in (2.5), we formulate a least-squares problem in λ :

λ
∗ = argmin

λ

(
∥Bλ −ρ∥2

2 +w
′
V∥Lnλ∥2

2

)
. (2.11)

The problem in (2.11) has a closed-form solution:

λ
∗ = (B⊤B+w

′
VL⊤n Ln)

−1B⊤ρ. (2.12)

The regularization term, not only makes the initialized mesh smoother, but also guarantees that

the solution exists even when the number of sparse depth measurements is smaller than the

number of mesh vertices. Since the 2D mesh projection and Ln are pre-defined, the problem can

be solved very efficiently, e.g., in less than 0.1 sec for a mesh with 1024 vertices. Given λ
∗, we

obtain an initialized meshMint with each vertex coordinate as [vx
i /λ ∗i ,v

y
i /λ ∗i ,1/λ ∗i ].

2.3.2 Geometric Mesh Refinement

Initialization using the sparse depth measurements only provides a reasonable mesh

reconstruction but many details are missing. In the geometric refinement stage, we use a learning

approach to extract features from both the 2D image and 3D initial mesh and regress mesh vertex

spatial coordinate residuals. The ground-truth depth maps are used for supervision.

The photometric image information is useful for mesh refinement since man-made objects

have sharp vertical surfaces, while natural terrain has noisy but limited depth variation. The
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sparse depth measurements also provide information about areas with large intensity variation.

Inspired by Mesh R-CNN [61], we design a network that extracts features from the 2D image,

associates them with the 3D vertices of the initial mesh, and uses them to refine the vertex spatial

coordinates. Our network has 3 stages: feature extraction, vertex-image feature association, and

vertex graph convolution.

Feature Extraction

We extract features from three sources: the RGB image I, the rendered depth ρD(Mint)

from the initial mesh, and a Euclidean distance transform (EDT) E(Ds) of the sparse depth

measurements in the 2D image space, obtained by computing the Euclidean distance to the closest

valid depth measurement pixel from each pixel coordinate. The three images are concatenated to

form a 5-channel input (3-channels in I, 1-channel in each ρD(Mint) and E(Ds)):

F2D = concat(I,ρD(Mint),E(Ds)). (2.13)

Four layers of features with different resolution and channels are extracted:

[L1,L2,L3,L4] = φres(F2D;θ 2D), (2.14)

where φres is a ResNet model [72] with parameters θ 2D.

Vertex-Image Feature Association

Next, we construct 3D features for the mesh vertices by projecting each vertex to the

image plane and interpolating the 2D image features. This idea is inspired by Pixel2Mesh

[190], which projects mesh vertices onto the image plane and extracts features at the projected

coordinates. To obtain multi-scale features, we associate the projected mesh vertices with the

intermediate layer feature maps [L1,L2,L3,L4] from (2.14). The vertex-image association step

is illustrated in Fig. 2.5. All features corresponding to different channels are concatenated to
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Figure 2.5. Illustration of image feature to mesh vertex association. With known camera
intrinsics, each mesh vertex can be projected in uv coordinates (range [0,1]) onto the image
plane. Bilinear interpolation is used to associate image feature maps at different resolutions with
the mesh vertices. The features across different resolutions are concatenated to form a composite
vertex feature.

form composite vertex features. We define associate(·, ·) as the function that assigns 2D features

to 3D mesh vertices:

Vgin = associate(M,φres(F2D)), (2.15)

where Vgin ∈ Rn×(l1+l2+l3+l4) are the vertex features and li is the number of channels in feature

map Li.

Vertex Graph Convolution

After the feature assignment, the mesh can be viewed as a graph with vertex features

Vgin . Using the vertex features, a graph convolution network [97, 61] is a suitable architecture to

predict coordinate deformation ∆V for the vertex spatial coordinates to optimize the agreement

between the refined meshMref = (V+∆V) and the ground truth depth D according to the loss
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in (2.9). To capture a larger region of feature influence, we use 3 layers of graph convolution

gV
1 ,gV

2 ,gV
3 , as follows:

Vin
1 = ReLU(WV

1 Vgin)

Vin
i = Vout

i−1, i = 2,3,

Vout
i = ReLU(gV

i ([V
in
i ;V];θ gVi)), i = 1,2,3,

∆V = WV
2 [V

out
3 ;V],

(2.16)

where ∆V ∈ Rn×3 is the matrix of spatial coordinate residuals, WV
1 ,W

V
2 are weight matrices

of the linear layers, θ gVi are the graph convolution layer weights, and ReLU is the Rectified

Linear Unit activation function ReLU(x) = max(0,x). The trainable parameters for vertex graph

convolution are θ 3DV = [WV
1 ;WV

2 ;θ gV1;θ gV2;θ gV3]. It is possible to concatenate more stages of

vertex-image feature association and graph convolution. At stage i, the previous stage’s refined

meshMref
i−1 is set as the initial meshMint

i and new vertex features are extracted via vertex-image

feature association and fed to new graph convolution layers. All refined meshes at different

stages are evaluated using the ground-truth depth map D using the loss functions defined in

(2.9).

2.3.3 Semantic Mesh Reconstruction

To further enrich the environment representation, we introduce semantic information

in the mesh reconstruction. By assigning per-vertex semantic features C, we can interpolate

the semantic information over the whole mesh using barycentric coordinates (see Fig. 2.6). To

obtain a 2D semantic segmentation image from the mesh, we use the differentiable semantic

renderer ρS introduced in (2.7). Both the vertex spatial coordinates V and the semantic features

C can affect the rendered 2D semantic segmentation image ρS(M). Hence, by optimizing the

semantic loss in (2.7), we can refine both the semantic features and the geometric structure of

the mesh.
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Figure 2.6. A 2D semantic segmentation feature map (top left) is used to generate semantic
features for the 3D elevation mesh vertices (bottom left). Each mesh vertex is projected to
the semantic segmentation feature map to retrieve an associated semantic feature (top right).
Dense semantic features over the whole mesh can be obtained by interpolation on the mesh faces
(bottom right).

We first obtain 2D semantic segmentation features φdeep(I;θ 2Dsem) from the RGB image

I using the DeepLabv3 model [24] with parameters θ 2Dsem. Then, we associate the mesh vertices

to the 2D semantic feature map to get initial mesh vertex semantic features:

C = associate(M,φdeep(I)). (2.17)

Fig. 2.6 illustrates the mesh vertex association with respect to the 2D semantic segmentation

features. In the semantic refinement stage, we regress a semantic residual ∆C for the semantic

features. We use 3 layers of graph convolution gC
1 ,gC

2 ,gC
3 . We also use the Vgin extracted from

ResNet in (2.15) as an input to the first graph convolution layer. Additionally, we concatenate
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Figure 2.7. Mesh refinement stage: the mesh vertex spatial coordinate are refined to V+∆V
using graph convolution based on the RGB image features. Then, the semantic features C of the
mesh vertices are initialized by projecting the vertices to the image plane and associating them
with 2D semantic segmentation features. Finally, the vertex semantic features are refined to be
C+∆C using graph convolution.

the initial mesh vertex semantic features C in (2.17) to the graph convolution input:

Cin
1 = ReLU(WC

1 Vgin)

Cin
i = Cout

i−1, i = 2,3,

Cout
i = ReLU(gC

i ([C
in
i ;V;C];θ gCi)), i = 1,2,3,

∆C = WC
2 [C

out
3 ;V;C],

(2.18)

where ∆C ∈ Rn×s is the matrix of semantic residuals and WC
1 ,W

C
2 are two matrices as linear

layers. The trainable parameters for vertex semantic graph convolution are

θ 3DC = [WC
1 ;WC

2 ;θ gC1;θ gC2;θ gC3].

Now we can perform the joint geometric and semantic refinement. All trainable pa-

rameters for the 3D graph convolution are θ 3D = [θ 3DV;θ 3DC]. An illustration of the joint

geometric and semantic refinement is provided in Fig. 2.7. For the initial meshM(V,0), we first

estimate the geometric residuals ∆V (2.16) from Sec.2.3.2. On the geometrically refined mesh

M(V+∆V,0), we initialize the semantic features as in (2.17) to getM(V+∆V,C). Then we

estimate the semantic residuals ∆C (2.18). The final joint geometric and semantic refined mesh
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isMref = (V+∆V,C+∆C).

2.3.4 Global Mesh Merging

Given semantically annotated meshes obtained by our model from each camera view, a

global mesh of the whole environment can be obtained by transforming each local mesh to the

global frame using the camera pose trajectory and merging it into a combined global mesh. We

design an approach to incrementally merge local meshes into a global mesh. Given a new local

mesh obtained from a camera view with a known pose and the current global mesh, we update

the global mesh by merging information from the local mesh.

First, we refine the global mesh vertices. We transform the global mesh to the local

camera frame and project it onto the 2D image plane. If the resulting 2D global mesh covers an

area over a certain threshold (e.g., 70%), we regard the local frame as duplicate and proceed to

the next frame. Otherwise, we determine the overlapping parts between the 2D projections of

the global and local meshes. We choose the vertices of the overlapped global mesh as a source

point cloud and sample a point cloud from the overlapped local mesh vertices as a target point

cloud. We perform non-rigid point cloud registration between the source and target point cloud

using the Coherent Point Drift (CPD) algorithm [124]. Through this non-rigid transformation,

we deform and refine the global mesh geometry based on the local mesh information.

Second, we introduce new vertices and faces into the global mesh from the non-overlap

region of the local mesh. We remove the faces of the local mesh that overlap with the global

mesh projection on the image plane. Through this step, we decouple the global mesh and the

local mesh because their 2D projections do not intersect with each other any longer. We perform

2D constrained Delaunay triangulation [2] over the global and local mesh projections, keeping

the edges of existing triangles in tact. Through this step, we connect the global mesh and the

local mesh to obtain a new global mesh, which is lifted back to 3D using the vertex depth values

and the known camera pose.

Fig. 2.8 and Fig. 2.9 demonstrate the mesh merging process, which results in a single
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Figure 2.8. Red: global mesh. Blue: local mesh. Yellow: New edges after merging. Left: the
refined global mesh overlaps with the local mesh. Right: the global and the local meshes are
separated by removing overlapping faces and a new global mesh is generated via 2D constrained
Delaunay triangulation.

Figure 2.9. Left: Stacking two local meshes directly. Right: Merging two meshes with our
proposed method in Sec. 2.3.4.

consistent global mesh and removes artifacts such as double layers in naı̈ve mesh merging.

2.4 Experiments

In this section, we evaluate our metric-semantic mesh reconstruction approach using

aerial image sequences generated from three open-source 3D datasets: WHU MVS/Stereo [108],

SensatUrban [79], and STPLS3D [25]. We evaluate the model generalization ability by training

and testing on different datasets. Ablation studies are included to show the effectiveness of our

choices in the model design.
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Figure 2.10. Left: Camera trajectory used to render RGBD images from a point cloud model
generated from the SensatUrban dataset [79] Right: Sparse depth points and camera poses
estimated by ORB-SLAM3. The color indicate elevation.

2.4.1 Datasets

Our mesh reconstruction approach requires ground-truth depth and semantic segmenta-

tion data for supervised training, which are generally not available and challenging to obtain

from RGB aerial images. We used photo-realistic point cloud models covering several km2

reconstructed from real aerial images in WHU MVS/Stereo and SensatUrban dataset to render

RGB, depth, and semantic segmentation images. This provides accurate depth and semantic

supervision data, while keeping the RGB images realistic, which is important for real-world

applications of our model. We also use data from the synthetic STPLS3D dataset, which has

more variation in the scene layout and the texture. We divide the large point cloud models in

each dataset into different regions and generate different image sequences over them. Each

camera trajectory follows a sweeping grid-pattern, which is common in drone flight planning

(see Fig. 2.10). The camera trajectories are chosen to ensure enough image overlap for tracking

and sparse depth reconstruction. RGBD images with resolution 512×512 are rendered along the

trajectory from the ground-truth point cloud using PyTorch3D [149]. We keep the RGB aerial

image resolution at around 0.2 meter/pixel. When semantic labels are available in the point cloud

model, we also render semantic segmentation images with the same size as the RGBD images.
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WHU Dataset

The WHU MVS/Stereo dataset [108] provides geo-calibrated RGBD images rendered

from a highly accurate 3D digital surface model of a 6.7×2.2 km2 area over Meitan County,

Guizhou Province, China. The 3D DSM model is not publicly available, so we recover a dense

point cloud from the RGBD images as a ground-truth 3D model. Semantic labels are also not

available in this dataset so we only perform geometric reconstruction using the WHU dataset.

We obtain sparse depth measurements Ds for each image by applying OpenSfM [118] to its

four neighbor images with known camera intrinsic and extrinsic parameters. Since monocular

structure from motion (SfM) suffers from scale ambiguity, we rescale the reconstructed point

cloud obtained from OpenSfM to align it with the real 3D model. In reality the scale can be

recovered from other sensor measurements like GPS or IMU. The point features reconstructed by

OpenSfM are treated as sparse noisy depth measurements. The noise is due to feature detection

and matching as well as the bundle adjustment step. We also obtain noiseless depth measurements

with the same 2D sparsity pattern from the ground-truth depth images D. We vary the number

of available sparse depth measurements as 500, 1000, 2000. We generate 20 camera trajectory

sequences with 200 images in each sequence, split into 14 for training, 2 for validation, and 4 for

testing.

SensatUrban Dataset

The SensatUrban dataset [79] is a point cloud dataset obtained using photogrammetry in

two urban areas in Birmingham and Cambridge, UK. Each 3D point in the dataset is labeled as

one of 13 semantic classes. The Birmingham region covers an area of 1.2 km2. The Cambridge

region covers an area of 3.2 km2. We only use the training set part of the data in which point

cloud semantic labels are available. We keep 4 semantic categories (ground, vegetation, building,

and traffic road) and merge or discard the remaining less-frequent categories. We used monocular

ORB-SLAM3 [19] to estimate the camera poses and sparse feature depths on the SensatUrban

dataset. Compared with OpenSfM, ORB-SLAM3 performs sequential optimization of the image
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sequences, instead of looping over all the images to find matching pairs. As a result, it runs

faster (1-10 Hz) and may be deployed on an aerial robot directly. We use OrbSLAM3 in order

to ensure that our method can operate incrementally in time and handle pose and sparse depth

estimation errors typical for online SLAM algorithms. We also re-scale the reconstructed point

cloud and camera poses to align with the real 3D model. Finally, we project the point cloud to

each camera frame to derive a sparse depth image. We vary the number of available sparse depth

measurements as 500, 1000, 2000, 4000. We generate 13 camera trajectory sequences with 660

images in each sequence, split into 8 for training, 2 for validation, and 3 for testing.

STPLS3D Dataset

The STPLS3D dataset [25] is a richly-annotated synthetic 3D aerial photogrammetry

point cloud dataset with more than 16 km2 of landscapes and up to 18 fine-grained semantic

category annotations. To ensure the object placements in the virtual environments resemble

real city blocks, the environments are built based on Geographic Information System (GIS)

data that are publicly available. We use the same 4 semantic categories as for the SensatUrban

dataset. We generated 38 camera trajectory sequences with 660 images in each sequence, split

into 26 for training, 4 for validation, and 8 for testing. Camera keyframe poses and sparse depth

measurements were estimated using ORB-SLAM3.

2.4.2 Implementation Details

During training, we use 1000 sparse depth measurements per image and generate a mesh

model with 576/1024/2025 vertices. For the WHU dataset, the weights of the loss function

in (2.9) are set to [w2,w3,wV,wE ,wS,wC] = [3,1,0.5,0.01,0,0]. For the SensatUrban and the

STPLS3D dataset, the weights are set to [w2,w3,wV,wE ,wS,wC] = [5,1,0.5,0.01,5,0.5] for the

joint geometric-semantic training (Sec. 2.3.3). For the geometric training (Sec. 2.3.2), the last

two weights are set to be 0. The loss weights are decided through evaluation on the validation

set. We use the 2D loss ℓ2 in (2.2) as the metric to choose the best model on the validation set.
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The Chamfer distance d in the ℓ3 loss (2.3) is computed using 10000 samples.

For the WHU experiments in Sec. 2.4.3, we use ResNet-18 for the 2D feature extraction.

For the remaining ones including the generalization experiments, we use ResNet-34. The ResNet

is initialized with the pretrained weights on ImageNet-1K. The ResNet and GCN parameters of

our model are optimized jointly during the mesh refinement training using the Adam optimizer

[95] with initial learning rate of 0.0005 for 100 epochs. For the semantic reconstruction task, we

first train a DeepLabv3 model with ResNet-50 backbone [24] alone for 2D semantic segmentation

on the SensatUrban training set. The ResNet-50 is initialized with the pretrained weights on

ImageNet-1K. We use the Cross Entropy loss for training and set the class weight as [ground,

vegetation, building, traffic road] = [1,2,3,3]. During the mesh semantic refinement step, we use

the Dice loss in (2.7) and keep the same per-class weights. We use three graph convolution stages

for the WHU dataset and two graph convolution stages for the SensatUrban and the STPLS3D

dataset. For the joint geometric-semantic training, we concatenate two graph convolution stages,

where the first stage predicts the geometric residual only and the second stage predicts both

the geometric and the semantic residuals. All trainable parameters of the model in (2.1) are

θ = [θ 2D;θ 2Dsem;θ 3D], including the parameters of the 2D features extraction, 2D semantic

segmentation, and 3D graph convolution models.

2.4.3 Geometric Reconstruction

Our experiments report the ℓ2 error in (2.2) and the ℓ3 error in (2.3) for the reconstructed

meshes. The ℓ2 error emphasizes the accuracy of the projected depth, while ℓ3 emphasizes the

regions of large depth variation.

For comparison, we define a baseline method that triangulates the sparse depth measure-

ments directly to build a mesh. The baseline method performs Delaunay triangulation on the 2D

image plane over the depth measurements and projects the flat mesh to 3D using the measured

vertex depths. We refer to the baseline method as sparse-depth-triangulation (SD-tri). SD-tri

defines vertices at all sparse depth measurements (500, 1000, or 2000) and, hence, may produce
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meshes with different number of vertices compared to other models.

First, we perform geometric reconstruction on the WHU dataset. The quantitative results

from the comparison are reported in Table 2.1. All models are trained with 1000 sparse depth

measurements and directly generalize to different numbers of sparse depth measurements. We

compared three options for the 2D inputs provided to the mesh refinement stage: an RGB image

only (RGB, 3-channels), an RGB image plus rendered depth from the initial mesh (RGB+RD,

4-channels), and an RGB image plus rendered depth from the initial mesh plus Euclidean distance

transform (EDT) obtained from of the sparse depth measurements (RGB+RD+EDT, 5-channels).

The model using RGB-only does not perform as well as the other two. The RGB+RD+EDT

model has the best performance according to the ℓ2 error metric. The RGB+RD method has

similar performance in the ℓ2 metric and smaller ℓ3 error compared to RGB+RD+EDT. The

RGB+RD model is used to generate our qualitative results in Fig. 2.11, 2.12, 2.13 with 1024-

vertex meshes because it offers good performance according to both error metrics.

At the bottom of Table 2.1, we evaluate the mesh reconstruction accuracy with noisy

sparse depth measurements obtained from OpenSfM. The measurements are noisy due to

feature matching errors, local minima during bundle adjustment, and the simple projective

camera model used for optimization. The average per image errors of the 500/1000/2000 sparse

depth measurements were 1.011/1.017/1.023 meters, respectively. The baseline SD-tri method

performs well in a noiseless setting but degenerates drastically when noise from the SfM feature

reconstruction is introduced. In contrast, our model is more robust to noise due to two factors.

First, our mesh initialization and refinement stages both include explicit mesh regularization

terms (in (2.5) and (2.6)). Second, the image features extracted during the mesh refinement

process help distinguish among different terrains and structures. The latter is clear from the

improved accuracy of the refined, compared to the initialized, meshes. We also report the

performance using a mesh with only 576 vertices. When the depth measurements are noisy, the

576-vertex mesh has lower ℓ2 loss compared with the baseline method with similar number of

vertices. It even has lower ℓ3 loss compared with meshes with more vertices generated from the
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Figure 2.11. Mesh reconstructions on the WHU dataset [108] visualized as rendered depth
images. The colors indicate the relative depth values. Column 1: RGB images. Column 2:
sparse depth measurements (around 1000). Column 3: meshes reconstructed from sparse-depth
triangulation. Column 4: meshes after initialization (Sec.2.3.1). Column 5: meshes after neural
network refinement (Sec.2.3.2). Column 6: ground-truth depth images.

baseline method.

Qualitative results are presented in Fig. 2.11 and 2.12. Compared with SD-tri and

initialized meshes, the refined meshes have smoother boundaries on the side surfaces of the

buildings. The guidance from the image features allows the refined meshes to fit the 3D structure

better. Fig. 2.13 shows a global mesh reconstruction obtained by transforming and merging 12

camera-view mesh reconstructions. The local meshes are transformed to global frame using the

camera keyframe poses and no post-processing is used to merge them into a single global mesh.

2.4.4 Joint Geometric & Semantic Reconstruction

On the SemsatUrban dataset, we first perform geometric reconstruction with the same

settings as in the WHU dataset. We train three models with different numbers of mesh vertices:

576 = 242, 1024 = 322 and 2025 = 452. The quantitative results are reported in Table 2.2. As
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Figure 2.12. Reconstructed meshes painted with RGB texture and colors indicating elevations.
These are associated with the first two rows in Fig. 2.11. The sharp vertical transitions of the
buildings are reconstructed accurately.

Figure 2.13. Complete environment model obtained by transforming to the global frame and
merging local meshes from 12 camera views.

the number of sparse depth measurements increases, the baseline SD-tri method has better

accuracy because the number of mesh vertices also increases. Our initialized meshes with fewer

vertices are comparable with the SD-tri mesh, and the refined meshes are much better, especially

according to the 3D metric ℓ3. This shows that the joint 2D-3D loss in (2.9) enables our model

to capture 3D structure details. Comparing the number of input depth measurements, we find

that around 2000 measurements on the 512×512 image provide the best performance, while

more do not noticeably improve the results. Regarding the number of mesh vertices, all three

mesh sizes perform well. While we can see that the 1024-vertex mesh is generally better than
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Table 2.2. Quantitative evaluation on the SensatUrban dataset [79]. The second column shows
the number of available sparse depth measurements per image (Sec. 2.4.1). The baseline SD-tri
method triangulates a mesh using all sparse depth measurements as vertices. The Regular-n
model generates a regular mesh with n vertices and performs initialization and refinement steps
(Sec. 2.3).

Error
Meshing SD-tri Regular-576 Regular-1024 Regular-2025

Inputs (vert = SD) Initialized Refined Initialized Refined Initialized Refined

ℓ2

500 2.018 2.050 1.175 2.204 1.088 1.992 1.171
1000 1.843 1.841 1.096 1.865 1.000 2.033 1.153
2000 1.715 1.796 1.120 1.700 0.988 1.752 1.209
4000 1.647 1.834 1.181 1.662 1.026 1.630 1.283

ℓ3

500 8.926 7.898 2.371 9.871 2.128 7.645 2.371
1000 7.796 6.353 2.075 6.725 1.815 8.875 2.284
2000 7.164 5.989 2.133 5.527 1.745 6.200 2.500
4000 6.908 6.176 2.339 5.217 1.844 5.364 2.806

Table 2.3. Semantic segmentation per-class IoU for different geometric-semantic models. The
definitions of the different models can be found in Sec. 2.4.4 and Sec. 2.4.7.

Class Ground Vegetation Building Traffic Road
Geo Init 0.642 0.810 0.846 0.643

Geo Refine 0.644 0.809 0.840 0.644
Cross Entropy 0.661 0.805 0.843 0.660

Focal 0.663 0.807 0.844 0.657
Jaccard 0.664 0.826 0.863 0.653

Our Model (Dice) 0.674 0.824 0.860 0.663
2D Seg 0.649 0.834 0.854 0.648

576-vertex mesh, the 2025-vertex mesh does not show an advantage over the 1024-vertex mesh.

This indicates that good accuracy can be achieved with a light-weight storage-efficient mesh

model.

We choose the 1024-vertex mesh to perform joint geometric-semantic reconstruction

using 1000 sparse depth measurements. To evaluate the semantic reconstruction, we render a

2D semantic image from the mesh reconstruction and calculate the per-class Intersection over

Union (IoU). For comparison, we report the IoU of the DeepLabv3 2D semantic segmentation

model (named 2D Seg), the direct projection of the 2D semantic segmentation image onto the

initial mesh as in (2.17) (named Geo Init) and the semantic segmentation projection onto the

geometrically-refined mesh (named Geo Refine). Only 2D Seg is using a dense semantic image
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Table 2.4. Geometric error for different metric-semantic models. The definitions of the different
models and loss functions can be found in Sec. 2.4.4 and Sec. 2.4.7.

Class Depth (ℓ2) Chamfer (ℓ3)
Geo Init 1.866 6.725

Geo Refine 1.000 1.815
Cross Entropy 0.994 1.793

Focal 1.035 1.912
Jaccard 0.976 1.776

Our Model (Dice) 0.976 1.763

while the other methods store semantic features on the mesh vertices and interpolate through

the semantic mesh renderer. As we can see in Table 2.3, our semantic residual refinement

model improves the semantic segmentation performance compared to the direct projection of

the 2D semantic segmentation image. Our approach also outperforms 2D Seg on most of the

categories (ground, building, traffic Road) even though it is using only 0.4% of the points to store

the semantic information (1024 mesh vertices vs 512×512 segmentation image). Further, we

investigate whether the semantic mesh refinement affects the geometric reconstruction quality.

In Table 2.4, we can see that our joint geometric-semantic mesh reconstruction achieves better

geometric accuracy compared with purely geometric training. This can be explained by the

fact that the semantic category information serves as regularization for the geometric properties.

The results show that the geometric and semantic information help each other. More qualitative

results for single-image reconstruction are provided in Fig. 2.14 and 2.15. Compared with SD-tri

and initialized mesh, the refined mesh achieves higher reconstruction accuracy. The semantic

refinement can improve the 2D semantic segmentation results. We can see that some noisy

classification labels are removed after the refinement. In Fig. 2.16, we reconstruct several local

metric-semantic meshes using the sparse depths from the tracked points from ORB-SLAM3.

Then we transform them using estimated camera keyframe poses from ORB-SLAM3 to the

global frame and combine them to form a global metric-semantic mesh without any further

post-processing.

We also evaluated our model on the synthetic STPLS3D dataset. We use a 1024-vertex
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Figure 2.14. Mesh reconstructions on the SensatUrban dataset [79] visualized as rendered depth
(colors indicate the relative depth values) and semantic images. The original 3D model is not
fully complete so the RGB, GT Depth and GT Semantic may have little missing region. Column
1: RGB images. Column 2: sparse depth measurements (1000). Column 3: meshes reconstructed
from sparse-depth triangulation. Column 4: meshes after initialization (Sec.2.3.1). Column
5: meshes after neural network refinement (Sec.2.3.2). Column 6: ground-truth depth images.
Column 7: 2D semantic segmentation results. Column 8: meshes after neural network refinement
(Sec.2.3.3). Column 9: ground-truth semantic segmentation maps.

Table 2.5. Geometric error on the STPLS3D dataset [25].

Class Depth (ℓ2) Chamfer (ℓ3)
SD-tri 2.039 11.832

Geo Init 1.996 10.417
Geo Refine 0.977 2.807
Sem Refine 0.972 2.725

mesh to perform geometric-only and joint geometric-semantic reconstruction using 1000 sparse

depth measurements per image. The quantitative results are shown in Table 2.5. Our joint

geometric-semantic mesh reconstruction method out-performs geometric-only mesh reconstruc-

tion, which verifies the effectiveness of fusing both geometric and semantic information.

2.4.5 Generalization Across Datasets

In this section, we evaluate the generalization ability of our model, trained on one dataset

and applied to another. To align the datasets, we regenerated the RGB images and the sparse

depth measurements on the WHU dataset to follow the same camera intrinsic parameters and
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Figure 2.15. Reconstructed meshes painted with colors indicating elevations and semantic labels.
These are associated with the three rows in Fig. 2.14. Column 1: initialized meshes. Column 2:
refined meshes colored by elevation. Column 3: refined meshes colored by semantic categories.

trajectory patterns in the SensatUrban and the STPLS3D dataset so that there are 660 frames for

each trajectory and ORB-SLAM3 is used to estimate sparse depth measurements and camera

keyframe poses. It is challenging to achieve zero-shot generalization, so we also include a

finetuning step. During finetuning, we only use 10% of the target domain training set and train

for 30 epochs. A validation set (10% of the target domain validation set) is used to choose

the best model with the 2D loss ℓ2 as the metric. Usually, models trained on larger datasets

show better generalization ability. We choose to use a model trained on WHU to generalize to

SensatUrban and a model trained on STPLS3D to generalize to both WHU and SensatUrban.

The average per image sparse depth errors in meters for 1000 depth samples were 1.771 on

STPLS3D, 2.460 on WHU, and 1.597 on SensatUrban. The sparse depth measurements are

generated through ORB-SLAM3.
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Figure 2.16. Global metric-semantic meshes reconstructed from three areas in the SensatUrban
dataset [79] by fusing the local mesh reconstructions at the keyframe camera poses (shown in
blue). The three global meshes are obtained from 32/55/54 local keyframe meshes, respectively.

Table 2.6. Generalization experiment: Geometric error on WHU dataset [108]. Brackets indicate
the dataset used for training.

Class Depth (ℓ2) Chamfer (ℓ3)
SD-tri 3.628 40.431

Init 3.582 38.570
Refine (WHU) 2.253 11.332

Refine (STPLS3D) 20.043 1478.478
Refine (STPLS3D finetune) 2.047 10.796

First, we evaluate how the model trained on STPLS3D generalizes to WHU. The geo-

metric error is reported in Table 2.6. The WHU dataset is more challenging due to the presence

of denser and taller (> 30m) buildings. The camera intrinsics and the flight pattern and height

are different compared to the data generated in Sec. 2.4.3 so the numbers in Table 2.6 are not

directly comparable with Table 2.1. Zero-shot generalization does not work for WHU, which is

understandable given the large domain gap. The STPLS3D synthetic dataset uses scene layouts

extracted from a U.S. Geological Survey (USGS) which covers cities in the United States, while

the WHU dataset is collected in a Chinese city. After finetuning with only 10% of the original

WHU training set, our model generalizes well to WHU, and even outperforms the model trained

purely on WHU.

Next, we evaluate how models trained on WHU and STPLS3D generalize to SensatUrban.

The results are presented in Table 2.7 and Table 2.8. We report only geometric error for the
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Table 2.7. Generalization experiment: Geometric error on SensatUrban dataset [79]. Brackets
indicate the dataset used for training.

Class Depth (ℓ2) Chamfer (ℓ3)
SD-tri 1.843 7.796

Init 1.865 6.725
Refine (SensatUrban) 1.000 1.815

Sem Refine (SensatUrban) 0.976 1.763
Refine (WHU) 1.439 3.827

Refine (WHU finetune) 1.112 2.223
Refine (STPLS3D) 1.442 3.973

Sem Refine (STPLS3D) 1.501 4.309
Refine (STPLS3D finetune) 1.021 1.992

Sem Refine (STPLS3D finetune) 1.043 2.111

Table 2.8. Generalization experiment: Semantic segmentation per-class IoU on SensatUrban
dataset [79]. Brackets indicate the dataset used for training.

Class Ground Vegetation Building Traffic Road
2D Seg (SensatUrban) 0.649 0.834 0.854 0.648

Sem Refine (SensatUrban) 0.674 0.824 0.860 0.663
2D Seg (STPLS3D) 0.444 0.676 0.565 0.061

Sem Refine (STPLS3D) 0.528 0.667 0.608 0.038
2D Seg (STPLS3D finetune) 0.652 0.827 0.838 0.638

Sem Refine (STPLS3D finetune) 0.657 0.814 0.850 0.623

model trained on WHU. We can see that zero-shot generalization from WHU to SensatUrban

improves the initialized meshes, while a finetuned model performs even better. We train a

geometric-only model and a metric-semantic model on STPLS3D. In terms of geometric loss,

both STPLS3D models generalize well to SensatUrban and their performance after finetuning

is close to that of a model trained on SensatUrban. However, the metric-semantic model is

slightly worse than the pure geometric model. In terms of semantic segmentation performance,

zero-shot generalization does not perform well and especially fails on the traffic road category.

After finetuning, the metric-semantic model can largely close the gap between itself and the

SensatUrban model. Given that the RGB images from the synthetic scenes in STPLS3D have

very different appearance, it is understandable that the semantic model that heavily relies on the

RGB image might be harder to generalize compared to the geometric-only model.
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Figure 2.17. Depth reconstruction comparison on the SensatUrban dataset [79] among Sparse-
to-Dense [115], COLMAP [165], Nerfacto [179], Nerfacto restricted to 1000 mesh vertices, and
our method.

These experiments demonstrate promising generalization ability of our mesh reconstruc-

tion method, using limited data to finetune or even without finetuning in some cases. The model

generalizes better in terms of geometric reconstruction than in terms of semantic classification.

Nevertheless, it is exciting to see that a model trained on a synthetic dataset (STPLS3D) can

generalize well to real data. This makes it possible to achieve good performance by training a

model with inexpensive synthetic data that comes with free ground-truth labels and finetuning

on a small set from the target domain.

2.4.6 Comparison with Other Methods

In this section, we compare our approach with depth completion, multi-view stereo, and

NeRF techniques on the SensatUrban dataset [79] with 1000 sparse depth measurements. The

qualitative results are shown in Fig. 2.17. The quantitative results are shown in Table 2.9. To

evaluate the reconstruction quality of the different methods comprehensively, we report multiple

2D and 3D reconstruction accuracy metrics [177]. The threshold distance for 3D precision and

recall is set to 0.5m due to the large scale of the reconstructed mesh.
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Depth completion methods take a sparse depth image and other inputs, such as an RGB

image, and recover a dense depth image. While there are many depth completion algorithms,

few focus on the aerial image domain. We compare against the Sparse-to-Dense method [115],

an end-to-end deep learning regression model, because it considers a similar problem setting

and uses similar feature extraction as our approach. The Sparse-to-Dense model consists of a

ResNet feature extraction encoder and per-pixel depth regression decoder. We trained both our

model and Sparse-to-Dense with a ResNet-34 feature extractor, thus focusing the comparison

on the performance of the pure 2D learning and per-pixel depth regression of Sparse-to-Dense

versus the joint 2D-3D learning for mesh refinement of our method. The results in Fig. 2.17

and Table 2.9 show that the Sparse-to-Dense model is not as accurate as our method on the

SensatUrban dataset, and it is beneficial to utilize our joint 2D-3D learning technique. At least

on this dataset, it is challenging for Sparse-to-Dense to regress an accurate dense depth map,

while, using the same 2D feature extraction network, our mesh initialization and refinement

method performs better at reconstructing the 3D scene.

We also compare our method with COLMAP [165], a multi-view stereo technique that

recovers 3D structure from a series of calibrated images using pixelwise view selection for depth

and normal estimation. In this comparison, we used ground-truth camera poses and skip the

SfM step. For each frame, we manually select neighboring frames within a radius of 50 m for

multi-view stereo matching. We use the reconstructed dense depth images to obtain a global point

cloud, generate a global mesh, and crop the mesh at each camera pose to obtain local meshes

associated with each frame. For the meshing step, we compared Poisson reconstruction [94]

and Delaunay mesh reconstruction [101] and found that due to point cloud noise the Delaunay

reconstruction performs better. The COLMAP is the dense depth estimation result, while the

COLMAP Mesh is the subsequent meshing result. For COLMAP, we convert the dense depth

images to a point cloud and sample 10000 points to compute the ℓ3 error. For COLMAP

Mesh, we render the local mesh to get a rendered depth image to compute the ℓ2 error. The

results are shown in Fig. 2.17 and Table 2.9. The COLMAP method generally has better depth
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reconstruction measured by ℓ2 error, while our method has lower ℓ3 error because of the implicit

regularization in our mesh reconstruction. The 3D error ℓ3 can be large when outliers appear in

the reconstruction. COLMAP achieves better reconstruction at the cost of heavy computation for

the MVS step. It takes around 4 seconds per frame to recover a dense depth image using GPU,

while meshing requires additional time. Our method is much faster, with 0.07 s per frame on a

desktop with GeForce RTX 2080 Ti GPU and 0.45 s per frame on a Jetson AGX Xavier edge

computing platform. When it comes to online mesh reconstruction on a resource-constrained

platform, our method offers an advantage over MVS.

Finally, we compare with Nerfacto [179], a NeRF model that combines components

from recent NeRF papers to achieve a balance between speed and quality. As a NeRF model,

Nerfactor takes posed RGB images and constructs an implicit 3D scene represented by a deep

neural network. We used ground-truth camera poses for each image and trained separate Nerfacto

models for each test image sequences. One in ten frames was chosen as an evaluation image

during training. Notice here no depth images are used for the NeRF training. We observed that

depth images rendered directly from the trained Nerfacto model have inconsistent depth across

frames. Therefore, we exported a mesh model using the Poisson surface reconstruction [94]

implemented in Nerfstudio [179]. Nerfacto exports meshes with different vertex density. A dense

mesh has about 20000 vertices for each camera view, while a sparse mesh has about 1000, which

is similar to our method’s mesh vertex density. To compute the 2D metrics in Table 2.9, we

rendered depth images from the mesh. The evalution results for Nerfacto are shown in Fig. 2.17

and Table 2.9. Qualitatively, Nerfacto has similar reconstruction accuracy with our method but

the quantitative metrics indicate that it is not as good as our method. Furthermore, Nerfacto needs

to be trained for each novel environment and the training can hardly meet real-time requirement,

while our method can make the inference faster.
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2.4.7 Ablation Studies

Sec. 2.4.3 compared the effect of using RGB, rendered depth, and Euclidean distance

transform as inputs for the mesh reconstruction model. This section reports additional ablation

studies on the SensatUrban dataset. We use a 1024-vertex mesh model and 1000 sparse depth

measurements for training and testing. We evaluate the effects of mesh initialization, types of

2D input data, and number of graph convolution stages on the geometric mesh reconstruction

accuracy. We also evaluate the performance effect of joint metric-semantic training and the

choice of a semantic loss function.

Mesh Initialization

An important aspect of our model in Sec. 2.3 is the separation of the mesh initialization

stage from the mesh refinement stage. The mesh initialization stage allows the data-driven

refinement stage to focus on learning the mesh vertex deformation residuals instead of absolute

vertex coordinates. To demonstrate the effectiveness of this design, we compare our model to a

baseline model which applies the refinement stage directly to a flat initial mesh. The baseline

model, Flat Init, deforms a flat initial mesh with vertex depth specified by the mean of the

sparse depth measurements. Table 2.10 shows that the Flat Init model makes the 2D-3D learning

problem challenging, and the model performs even worse than purely geometric initialization as

in Sec. 2.3.1.

2D Input Channels

In (2.13), we concatenate an RGB image I (RGB), rendered depth ρD(Mint) (RD) and

a Euclidean distance transform E(Ds) (EDT) to form a 5-channel input image used for 2D

feature extraction. Table 2.10 evaluates the role of the different 2D inputs on the overall mesh

reconstruction performance. The results indicate that the RGB information plays the most

important role in refining the initialized mesh. The model RD+EDT that does not use RGB

features performs the worst. Adding RD and EDT inputs to the RGB gives an additional boost to
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Table 2.10. Ablation study on geometric reconstruction error for geometric models. The
definitions of the different models can be found in Sec. 2.4.7.

Class Depth (ℓ2) Chamfer (ℓ3)
Geo Init 1.865 6.725
Flat Init 4.646 20.655

RD+EDT 1.761 5.791
RGB 1.521 3.750

RGB+RD 1.070 2.138
1 Stage 1.015 1.828

Our Model 1.000 1.815

the accuracy.

Number of graph convolution stages

Table 2.10 also evaluates the effect of one (1 Stage) vs two (Our Model) graph convolution

stages in the geometric mesh refinement (Sec. 2.3.2). The first GCN stage contributes the most

to the geometric refinement, while the second GCN stage further refines the results.

Semantic Loss Function

Finally, we discuss the choice of a semantic loss function ℓS. Instead of the Dice loss in

(2.7), three other semantic loss functions may be considered.

• The cross entropy loss is widely used for semantic segmentation. Given two stochastic

vectors α,β ∈ [0,1]s, the cross entropy loss is defined as:

CE(α,β ) =−
s

∑
i=1

β i log(α i),

ℓS1(M,S) := mean(CE(σ(ρS(M)),S)),

(2.19)

where CE is applied to the elements σ(ρS,i j(M)) ∈ [0,1]s and Si j ∈ [0,1]s of the tensors

of predicted and ground-truth semantic class probabilities.
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• The focal loss [106] is a variation of cross entropy, focusing on hard misclassified examples:

FL(α,β ) =−∑
i

β i(1−α i) log(α i),

ℓS2(M,S) := mean(FL(σ(ρS(M)),S)).
(2.20)

• The Jaccard loss [87] measures the negative Intersection over Union (IoU) between the

ground-truth and predicted semantic segmentation:

ℓS3(M,S) :=− |σ(ρS(M)) ·S|
|σ(ρS(M))|+ |S|− |σ(ρS(M)) ·S|

, (2.21)

where, as in (2.7), | · | sums up all the absolute values of the elements.

In Table 2.3, we see that the Jaccard loss in (2.21) leads to good segmentation performance,

outperforming the Dice loss in (2.7) for some categories. The Cross Entropy and the Focal losses

are not as good. In Table 2.4, we see that the Cross Entropy and the Jaccard loss both outperform

the Focal loss when considering their effect on the geometric reconstruction accuracy. The Dice

loss leads to the best geometric reconstruction accuracy. Considering the joint geometric and

semantic performance, we elected to use the Dice loss for our final model.

2.4.8 Memory and Computation Complexity

The reconstructed mesh model is a more efficient representation than a dense depth image.

A dense depth image requires 512×512≈ 0.26M parameters, and a semantic image also requires

the same number of parameters. Our mesh model with fixed face topology only needs storage

of the 3D vertex coordinates and the semantic labels. With 1024 vertices, our semantic mesh

model requires only 2% of the depth and semantic image parameters to obtain a high-fidelity

reconstruction of a camera view. Our model has about 21M parameters (ResNet and GCN) and

takes about 3GB GPU memory during inference. We report the inference time of our model on

different computation platforms in Table 2.11. The results show that our mesh reconstruction
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Table 2.11. Prediction time (in second) on different NVIDIA devices.

Platform Initialization Refinement Total
Jetson AGX Xavier w/o GPU 0.45 0.75 1.20

Jetson AGX Xavier GPU 0.30 0.15 0.45
GeForce RTX 2080 Ti GPU 0.05 0.02 0.07

algorithm can achieve 2 Hz on an embedded NVIDIA Jetson AGX Xavier computer, making

it applicable for real-time deployment onboard a robot system. Regarding timing the baseline

algorithm for sparse-depth triangulation, we evaluated its run-time frequency to be at around 20

Hz on the same platform.

2.4.9 Limitations

Our 3D metric-semantic mesh reconstruction algorithm can run efficiently on an embed-

ded computer but as a result the number mesh vertices used for reconstruction is limited, which

in turn affects the geometric reconstruction accuracy. Furthermore, local meshes are generated

using only a single camera frame without multi-view constraints, making it challenging to

achieve consistent mesh merging into a global model. Potential avenues for future work that may

improve the reconstruction quality include adaptively increasing the mesh vertices depending

on the image feature distribution, considering techniques like deformable convolution [36] for

associating the 3D mesh vertices with the 2D image features, utilizing sparse depth measurement

uncertainty (e.g., keypoint covariances provided by SLAM) for weighted interpolation during

the image features to vertex association, and improving the global mesh merging approach with

multi-view constraints.

2.5 Summary

This chapter introduces an approach for 3D metric-semantic mesh reconstruction from

RGB image and sparse depth measurements. Compared to methods that utilize only sparse depth

for mesh initialization or triangulation, our approach provides more accurate geometric recon-
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struction by utilizing RGB image features. Compared to 2D semantic segmentation methods,

our semantic reconstruction eliminates classification inaccuracies by inferring an underlying 3D

mesh structure. The joint metric-semantic reconstruction approach improve geometric accuracy

further by utilizing semantic information and provides memory savings compared to dense image

depth and segmentation techniques. Employing our method in combination with feature- and

keyframe-based odometry techniques allows reconstruction of global dense metric-semantic

mesh models with utility in environmental monitoring and semantic navigation applications.
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Chapter 3

Object Mapping from 3D Measurements

In Chapter 2, we discussed metric-semantic reconstruction of outdoor terrain. Our

approach is suitable for reconstruction at a large scale but potentially low resolution. Due to

the limited number of vertices we keep in the mesh representation, it is challenging to capture

small objects, such as vehicles on the ground. A fine-grained, expressive yet compressed map

representation is an important requirement as robots have limited storage and computation

capabilities. An object-level map, which models objects including their semantic labels, poses,

shapes, etc., is a promising environment representation. It is efficient as it ignores the irrelevant

background and only focuses on the objects. It is still expressive as the objects offer key

information for many robotics tasks including manipulation, navigation, and others. In this

chapter, we focus on the object pose and shape estimation for object-level mapping using the 3D

observations. We assume the semantic category label of a detected object is known and perform

category-level object pose and shape estimation.

In recent years more and more affordable 3D sensors like depth cameras and LiDARs are

equipped on the mobile robots to enhance their perception capability. The mapping procedure

largely benefits from the 3D measurements, i.e., the 3D point clouds and the depth images. We

consider two categories of methods for object reconstruction—model-based and model-free—

depending on whether the reference object model is readily available.

When a reference model is available, we can match the model with the real 3D mea-
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surements. The task is converted to a 3D registration problem. One popular method is to

extract point features, generate correspondences, and recover the pose. Besides, there are also

correspondence-free methods that directly predict the 6 DoF pose from the RGB-D image

[188, 21, 39]. Traditional methods using hand-crafted 3D features include Spin Image [88],

FPFH [158], SHOT [162]. They mainly rely on simple local geometric information like normals

and histogram. Recently learning-based methods have gained more attention. 3DMatch [204]

applies 3D ConvNet on fixed-size 3D patch represented in truncated distance function. 3DFeat-

Net [200] collects local points in a radius-fixed ball, uses a detector module to estimate the local

orientation and generates the descriptor after alignment. 3DSmoothNet [62] proposes the idea of

smoothed density value voxelization as the preprocessed input to reduce the sparsity of the input

patch. FCGF [31] leverages the sparse convolution [30] to build fully-convolutional network in

3D space and use metric learning to learn the feature. The point cloud coordinates and associated

features are used for registration to estimate the rigid transformation. These features can be

generalized to various scenes. While the object or the category model is available [75, 15, 76],

more information such as the object template can be leveraged to learn the 3D feature. Given

the correspondence, RANSAC [51] or voting-based technique [29] can be used for finding the

most promising pose hypothesis. The necessity of identical object model can be alleviated,

by using the categorical model. Objects in the same category usually share similar structure

with relatively consistent distribution of semantic keypoints [196], such as the wheels of the

car and the chair legs. Category-level semantic keypoints [139] are predicted on RGB images

and a deformable shape model is fitted to recover the pose. StarMap [211] extends to predict

category-agnostic keypoints by predicting the keypoint’s normalized canonical coordinate from

RGB image observation. The Scan2CAD dataset [6] annotates 6D pose and scale of objects

in the indoor scenes of ScanNet dataset [34] by aligning CAD models from ShapeNet dataset

[20]. RGBD scans are converted to voxelized signed distance fields and a 3D CNN network is

used to predict sparse keypoint correspondence, given a matching CAD model. NOCS [189]

uses the idea of normalized canonical coordinates for a specific category and generates dense
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annotations covering the whole object surface. This model can predict the normalized canonical

coordinates densely on a query RGB-D image and use them to recover the object pose. The shape

variation between the object instances can make the registration challenging. The availability of

massive object CAD datasets [20] makes it possible to select a similar-looking instance from

the database to increase the accuracy of estimating the pose of the unknown instance. Hence,

object retrieval is an important sub-problem for robust pose registration. Compared to category

classification of 3D objects [43, 73], retrieval of specific CAD instances is more challenging due

to the emphasis on shape similarity. Grabner et al. [64] render CAD model depth and embed

the depth and RGB image observations jointly for CAD model retrieval. Dahnert et al. [33]

use a 3D hourglass encoder-decoders structure to learn an embedding feature with triplet loss

for shapes, implicitly represented using a signed distance field. Uy et al. [184] introduce a

deformation-aware asymmetric distance across CAD models and learn an egocentric anisotropic

distance field for latent embeddings. Combining the retrieval and the registration task, a more

similar CAD model can be selected to recover the object pose at a higher accuracy.

When the reference model is not available, we need to reconstruct the 3D representation

of the object. Although the 3D point cloud reconstruction can be at a very high-quality with

accurate pose tracking [19, 205, 168], we specifically focus on a more complete and continuous

shape representation including the surface. One option is to use 3D mesh. There are meshing

approaches that generate the mesh from the point cloud [94, 9]. Besides the mesh explicit

representation, implicit representation like signed-distance function (SDF) is also widely used for

shape reconstruction. Discrete form of SDF stored in voxels [135] can be built from the RGB-D

sequences. Recently the neural network is used to learn a continuous SDF function for shape

reconstruction. DeepSDF [138] learns a continuous metric function of distance instead of binary

classification function dividing inside or outside, which makes it suitable for gradient-based

optimization. Subsequent works along the direction of DeepSDF include FroDO [159], MOLTR

[104], and DualSDF [69]. FroDO leverages both point cloud and SDF representations, which

defines sparse and dense losses to optimize the object shape. An extension of FroDO is MOLTR,
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which reconstructs an object shape by fusing multiple single-view shape codes to handle both

static and dynamic objects. Similar to the coarse-to-fine shape estimation in FroDO and MOLTR,

DualSDF uses two levels of granularity to represent 3D shapes. A shared latent space is employed

to tightly couple the two levels, and a Gaussian prior is imposed on the latent space to enable

sampling, interpolation, and optimization-based manipulation. DeepSDF and the derivatives

offer models for accurate shape modeling but few of them consider object pose estimation.

This chapter is based on the papers [47, 208, 167]. We focus on object mapping from

3D point cloud observations. To be more specific, we estimate the object pose and shape at a

categorical level, i.e., with the prior of the object category. Two approaches are presented in

this chapter. One idea is to leverage a database of CAD models. We propose CORSAIR, a

fully Convolutional Object Retrieval and Symmetry-AIded Registration method. The algorithm

takes in an object point cloud with known category label and extracts a global object-shape

embedding feature in addition to local point-wise features. The global feature is used to retrieve

a similar object from a category CAD database, and the local features are used for robust pose

registration between the observed and the retrieved object, leveraging symmetries present in the

object shapes. The other idea is to use an implicit representation to model the shape. We propose

ELLIPSDF, a bi-level object shape decoder model with a shared latent representation. On the

coarse-level, an ellipsoid is used as a primitive shape to constrain the overall shape scale. On the

fine-level, an expressive SDF model is used to preserve the object shape details. In summary, the

contributions of this chapter are summarized as follows.

• We design a sparse fully convolutional network to jointly regress global and local point-

cloud features, which are hierarchically correlated. The global feature enables similar

model retrieval, while the local features allow object pose registration.

• We construct symmetry classes within an object instance based on the local features and

aid the generation of promising feature pairs for robust registration.

• We propose a bi-level object model with coarse and fine levels, enabling joint optimization
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of object pose and shape. The coarse-level uses a primitive shape for robust pose and

scale initialization, and the fine-level uses SDF residual directly to allow accurate shape

modeling. The two levels are coupled via a shared latent space.

• We design a cost function to measure the mismatch between the bi-level object model and

the point cloud observations in the world frame.

3.1 Problem: Categorical Object Retrieval & Registration

Consider a robot, equipped with an RGBD camera, aiming to construct an object-level

map of an unknown environment. Assume that the camera pose is estimated using an odometry

algorithm, such as ORB-SLAM3 [19], and a convolutional neural network, such as Mask R-CNN

[71], is used to detect and segment objects in each RGB image, and an object tracking algorithm,

such as FairMOT [206], tracks the object detections over time. A partial point cloud observation

X ∈ R3×N of a tracked object instance can be obtained by accumulating the segmented RGBD

pixels associated with the instance over time and projecting them to the world frame using the

estimated camera pose trajectory.

Let Y :=
{

Yi ∈ R3×Mi
}

i be a database of point cloud object models from the same

category as X. We assume the database was used offline for training the object detection and

tracking models and is available to the robot. We consider the following joint object retrieval

and registration problem.

Problem. Given a query point cloud X∈R3×N and a point cloud database Y :=
{

Yi ∈ R3×Mi
}

i,

retrieve a point cloud Y∗ ∈ Y that is similar to X and estimate its rotation R∗ ∈ SO(3) and

translation p∗ ∈ R3 with respect to X such that the two point cloud align well:

Y∗,R∗,p∗ = argmin
Y∈Y,R∈SO(3),p∈R3

d(X,RY+p1⊤), (3.1)

where 1 is a vector with all elements equal to 1 and d is a distance metric between two point

clouds.
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Figure 3.1. Given an observed object point-cloud, we focus on retrieving a similar object
(green) from a category database (blue) and estimating its pose with respect to the input object.
Performing retrieval and registration for object point-clouds observed online allow us to construct
an object-level map of an unknown environment.

The objective of Problem 3.1 is to determine the world-frame pose of an object instance,

observed online, which may or may not have been seen before. Retrieving a similar instance

from the training database and registering it with the point cloud observation allows accurate

pose estimation of the newly observed object. Fig. 3.1 illustrates the problem setting.

3.2 CORSAIR: Point Cloud Feature Extraction for Re-
trieval & Registration

Estimating the pose of novel objects based on a finite set of models from the same

category can be challenging due to shape variation. In this chapter, we develop an approach

for fully Convolutional Object Retrieval and Symmetry-AIded Registration (CORSAIR). We

extend the point-wise FCGF feature extractor proposed in [31] with a global embedding network.

We learn local point-wise features (Sec. 3.2.2) to enable robust matching and registration of

point cloud with potentially different shapes. We learn global object-level features (Sec. 3.2.3)

to enable retrieval of a point cloud from the database that is similar to the query point cloud.

During inference (Sec. 3.2.4), we align a partially observed point cloud with a retrieved one, and

exploit object symmetry to generate matching feature pairs for registration. Fig. 3.2 presents an
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Figure 3.2. During training, given a point cloud and its corresponding positive and negative pairs
(Y,P,N), a Registration block is trained to generate local point-wise features (Sec. 3.2.2) and a
Retrieval block is trained to generate a global shape embedding (Sec. 3.2.3). During testing (Sec.
3.2.4), given a query point cloud X, we generate its global embedding gX and retrieve a similar
instance using nearest neighbors in the embedding space. Local features are then generated for
both point clouds, and matching pairs are used to recover the pose of the query using RANSAC.

overview of our approach.

3.2.1 Normalized Canonical Coordinate

The task of matching different objects is challenging. When scans are obtained from

different object instance, the definition of good alignment becomes vague since a rigid transfor-

mation cannot eliminate the intrinsic shape difference. If the problem is restricted to aligning

objects within the same category, we can leverage the conventions of object canonical pose. For

example, a chair always has a seat and often a back and a canonical chair pose can be defined

accordingly. The Normalized Object Coordinate Space (NOCS) is proposed in [189] and here we

call this concept as Normalized Canonical Coordinate (NCC). The normalized object bounding

box has a unit-length diagonal and is centered at the zero. Fig. 3.3 visualizes some examples of

the chairs in the category NCC. The NCC of a object can be recovered given its pose and scale.

NCC can bridge different objects with different poses and shapes as a intermediate pose-invariant

shape representation.
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Figure 3.3. Visualization of different chairs in Normalized Canonical Coordinates (NCCs).
Colors indicate the coordinates. The red dots annotate the same coordinate on different objects.
Note that the red dot on the second chair is occluded by the back. Although not all points can be
associated well in the NCCs, many positive matching pairs can be discovered.

3.2.2 Local Features for Pose Registration

We aim to predict matching pairs of point-wise local feature for pose registration between

point clouds. During training, we first define matching pairs of points, rather than features. If

two point clouds X ∈ R3×N and Y ∈ R3×M were already aligned in the same coordinate frame,

matching point pairs can be extracted via:

p(X,Y) = {(i, j) ∈ N2 | ∥xi−y j∥< τ, i≤ N, j ≤M}, (3.2)

where τ > 0 is a matching tolerance. Negative pairs can be obtained from the complement set of

the positive pairs, ensuring that two negatively associated points are at least a margin τ away.

Instead of finding matching pairs within the same instance, we are trying to generate pairs

between two different instances. Since the training set Y contains point clouds from different

instances, which inherently carry geometric shape differences, we generate matching pairs in

category-level normalized canonical coordinates (NCC) [189, 47]. We are not introducing new

data but generate new matching pairs in the original database. This can be viewed as a data

augmentation strategy for this specific feature learning task. Instead of dense correspondence

annotation, we only need object pose annotations to convert the point clouds to NCC. Given the
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scale sX ∈ R, rotation RX ∈ SO(3), and translation pX ∈ R3 of a point cloud X during training,

X can be converted to NCC via:

XNCC = s−1
X ·R

⊤
X

(
X−pX1⊤

)
. (3.3)

Thus, to generate matching pairs for different instances X and Y of the same category, we convert

both into NCC, and obtain the positive pair set as PL = p(XNCC,YNCC). A negative pair set NL

is obtained as a subset of the complement of PL.

Given a point cloud X ∈ R3×N , our model uses a sparse fully convolutional encoder-

decoder architecture, illustrated in Fig. 3.4, to predict local point-wise features:

FX = [fx
1, . . . , f

x
N ] ∈ RC×N , (3.4)

where fx
i is the feature corresponding to the point xi. Sparse convolution [30] generalizes image

convolution to arbitrary dimensions and coordinates and allows processing of spatially sparse

inputs. Our model is an extension of the FCGF model [31] that adds an embedding module to

the encoder output (bottleneck layer) to also retrieve a global feature. The training and role of

the global feature for retrieval is described in Sec. 3.2.3.

We use metric learning to train the local feature extractor. Relying on the positive pairs

PL and the negative pairs NL of matching points, we define a contrastive loss function for the

features FX and FY associated with two point clouds from the training set:

Lcon(FX,FY) = ∑
(i, j)∈PL

max(0,∥fx
i − fy

j∥2− p+)2 + ∑
(i, j)∈NL

max(0, p−−∥fx
i − fy

j∥2)
2, (3.5)

where p+ and p− are the positive and negative thresholds. These thresholds are selected to

ensure that points from the positive pairs move closer together and points from the negative pairs

move farther apart in the feature space. We normalize the feature vectors to unit length and set
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Figure 3.4. Our model extends the sparse convolutional encoder-decoder ResUNet structure
proposed in FCGF [31] by adding an embedding module to the bottleneck latent code (encoder
output). The output of our embedding module provides a global object shape feature, suitable
for retrieval, while the decoder generates point-wise local features. The numbers in the 3D
convolution and deconvolution blocks represent kernel sizes, strides, and output dimensions.
The numbers in the fully connected blocks represent the output dimensions. Each ResBlock is
composed of two 3D convolution layers and the number indicates the output dimensions.

p+ = 0.1 and p− = 1.5.

For each point cloud Y in the training set Y , we choose similar point clouds P and

dissimilar point clouds N, which are defined precisely in Sec. 3.2.3. We, then, generate the

positive pairs between Y and P using (3.2) as PL = p(YNCC,PNCC). We sample the negative

pair set NL by taking random pairs between Y and N as well as from the complement of PL.

The local feature extractor model is trained with the contrastive loss in (3.5) but using the pairs

from PL and NL.

3.2.3 Global Feature for Object Retrieval

Extracting a similar point cloud from Y for a given query point cloud X is crucial

for pose registration because only similar shapes provide consistent local geometric features
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for matching. Since the sparse convolutional model in Fig. 3.4 performs in providing local

geometric features, we design a global shape descriptor by combining the local features. An

input point cloud X is quantized into a sparse tensor and gets downsampled by the encoder

into a point cloud Z(X) ∈ R256×N′ with fewer points N′ < N but each in a higher (256 in our

case) dimension. After the multiple convolution layers of the encoder, the bottleneck code

Z(X) encodes a high-level structure feature which should be beneficial for shape retrieval. We

introduce an embedding module to extract a single global feature gX ∈ R256 from Z(X) as

gX = g(Z(X)). As shown in Fig. 3.4, the embedding module g(·), includes a fully convolutional

layer, followed by maxpooling to combine the features from all points in Z(X) and pass them

through several fully connected layers to obtain gX.

We use metric learning for global feature training. To measure the similarity of point

cloud X ∈ R3×N with respect to Y ∈ R3×M, we define a single-direction Chamfer Distance

(SCD):

dSCD (X,Y) =
1
N

N

∑
i=1

M
min
j=1
∥xi−y j∥2

2. (3.6)

The bi-directional similarity between the two point clouds is measured by the usual Chamfer

distance:

dCD (X,Y) = dSCD (X,Y)+dSCD (Y,X) . (3.7)

Let D ∈ R|Y|×|Y| encode the pair-wise Chamfer distance similarity of all point clouds in Y with

elements:

Di, j = dCD(Yi,Y j), for Yi,Y j ∈ Y. (3.8)

A similarity ranking for Yi ∈ Y can be obtained by sorting the i-th column of D in ascending

order. We define a positive set PG(Yi) and negative set NG(Yi) of point clouds associated with

Yi as follows:

PG(Yi) = {Y j | Ranki(Y j)≤ τ+|Y|,dCD(Yi,Y j)≤ δ+},

NG(Yi) = {Y j | Ranki(Y j)≥ τ−|Y|,dCD(Yi,Y j)≥ δ−},
(3.9)
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where Ranki(Y) returns an integer indicating the Chamfer distance ranking of Y to Yi, τ+ and

τ− are the percentage of positive and negative point clouds we want to consider, and δ+ and δ−

are the Chamfer distance thresholds. In our experiments, we set τ+ = 0.1, τ− = 0.5, δ+ = 0.15

and δ− = 0.20.

For a given point cloud Y, we randomly select one positive object P ∈ PG(Y) and one

negative object N ∈NG(Y) and train the global embedding module with a triplet loss:

Ltri(gY,gP,gN) = max(1+∥gY−gP∥2−∥gY−gN∥2,0). (3.10)

Similar to the contrastive loss for the local features, the triplet loss pushes similar point clouds

closer and drags dissimilar point clouds apart in the global embedding space. The positive object

P and the negative object N are also used to generate point pairs for local feature training in Sec.

3.2.2.

3.2.4 Retrieval and Registration Inference

Finally, we consider object retrieval and pose registration for a query point cloud X given

the trained CORSAIR model in Fig. 3.4. The first step is to retrieve a similar object from Y .

The local and global features of all point clouds in Y are pre-computed offline. The query X is

passed through the CORSAIR model to obtain its local features FX and global feature gX. The

instance from Y closest to X is retrieved via:

Y = argmin
Yi∈Y

∥gX−gYi∥2, (3.11)

Next, we generate matching pairs between X and Y by searching for K nearest neighbors in the

local feature space:

nnK(FX,FY) = {(i, ji) | ji ∈ K-argmin
j
∥fx

i − fy
j∥2, i≤ N, ji ≤M, i, ji ∈ N}, (3.12)
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Figure 3.5. Heatmap of local feature similarity for different points on a chair (left) and a table
(right) instances. Lighter points indicate points with similar features to the query point (blue
dot), while darker ones have dissimilar features. The feature similarity heatmap visualizes the
symmetric nature of the local features.

Algorithm 1. Symmetry-aided Segmentation
1: input: point cloud X, point-wise local features FX, number of matching feature pairs M, number of

symmetry classes G
2: Randomly sample S ← {xi|xi ∈ X, i≤ n}
3: for xi ∈ S do
4: K← {x j|(i, j) ∈ nnK(fx

i ,FX)}
5: Split X in clusters Ci = {X̃1, . . . , X̃G} via GMEANS(K)
6: σi← Standard Deviation of {|X̃1|, . . . , |X̃G|}
7: output: Ci with the smallest σi

where we define K-argmin j as the set of K different values that make the function smaller than

any other set of K indices. The correspondence candidates in nnK(FX,FY) are used to recover

the rotation and translation of Y with respect to X via a robust pose estimation method such as

RANSAC [51].

Artificial objects usually have one or more planes of symmetry. Since our model is able

to generate rotation-invariant local features, the features from symmetrical areas can be similar,

which significantly increases the risk of mismatch in (3.12). A feature-distance heatmap shown

in Fig. 3.5 illustrates the symmetrical patterns. We propose a symmetry-aware method to add

constraints in the nearest neighbor matching phase.

We split the point cloud with a symmetric segmentation method (see Alg. 1) and then

constrain the nearest-neighbor matching to the corresponding parts. Given an object category,

we assume that the number of symmetric classes G, computed as the number of symmetry planes
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Figure 3.6. Different objects split according to their symmetry planes.

times 2, is known. For example, G = 2 for chairs and G = 4 for tables. We first extract the

point-wise local features FX for the input point cloud X. Second, we randomly sample n points

from the point cloud. For each sampled point, we take its K nearest neighbors, nnK(fX
i ,FX), and

perform G-means clustering using their 3D spatial coordinates. The object can then be split

into G parts, {X̃1, . . . , X̃G}, by the decision boundaries of G-means clustering as shown in Fig.

3.6. Each of the splits is considered as a candidate and we choose the most even split as our

symmetric segmentation output. The evenness of a split is measured by the standard deviation σ

of the sizes of the G parts.

We assume that the query and retrieved point clouds X and Y share the same symmetry

property and split them with our symmetry segmentation method. Since there are multiple

possible mappings between the subsets {X̃1, . . . , X̃G} and {Ỹ1, . . . , ỸG}, we generate matching

pairs using (3.12) for all the possible mappings. We also generate matching pairs without the

symmetry constraints as a back-up for asymmetric objects. We supply these sets of matching pairs

to RANSAC to estimate the rotation R and translation p that align Y with X for every possible

matching pair set. The quality of alignment is evaluated by the single direction Chamfer distance

dSCD(X,RY+p1⊤) defined in (3.6). The rotation and translation with the best alignment quality

are selected as the output of our symmetry-aware pose estimation method. Our symmetry-aware

method performs well when the input point clouds have symmetrical structure.
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3.3 Problem: Categorical Object Pose & Shape Optimiza-
tion

Instead of the explicit point cloud representation proposed in Sec. 3.1, we can also

consider using the implicit shape representation. We follow the same assumptions that an RGB-

D camera is tracked. The camera moves in an unknown environment that contains N objects

O ≜ {on}N
n=1. Each object on = (cn, in) is an instance in of class cn, defined below. The object

segmentations on the RGB-D images across frames are associated, which can be accumulated as

an object point cloud.

There are two levels of implicit shape representation we consider here. The coarse level

shape is represented using a quadric shape [70],
{

x ∈ R3 | x⊤Qx = 0
}

, where x ≜ [x⊤,1]⊤

denotes the homogeneous coordinates of x and Q ∈R4×4 is a symmetric matrix. An axis-aligned

ellipsoid centered at the origin is:

Eu ≜
{

x ∈ R3 | x⊤U−⊤U−1x = 1
}
, (3.13)

where U ≜ diag(u) and the elements of the vector u ∈ R3 specify the lengths of the semi-axes of

Eu. An ellipsoid Eu is a special case of a quadric shape with Q = diag(U−2,−1). A quadric shape

can also be defined in dual form, as the set of planes π = Qx that are tangent to the shape surface

at each x. This dual quadric surface definition is
{

π ∈ R3 | π⊤Q∗π = 0
}

, where Q∗ = adj(Q)

is the adjugate of Q. A dual quadric defined by Q∗ can be scaled, rotated, or translated by a

similarity transform T ∈ SIM(3) as TQ∗T⊤. The fine shape of a rigid body is represented as{
x ∈ R3 | f (x) = 0

}
using the signed distance function (SDF) of a set S ⊂ R3:

f (x) =


−d(x,∂S), x ∈ S,

d(x,∂S), x /∈ S,
(3.14)

where d(x,∂S) denotes the Euclidean distance from a point x ∈ R3 to the boundary ∂S of S.
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Definition 1. An object class is a tuple c ≜
(
ν ,z, fθ ,gφ

)
, where ν ∈ N is the class identity, e.g.,

chair, table, sofa, and z ∈Rd is a latent code vector, encoding the average class shape. The class

shape is represented in a canonical coordinate frame at two levels of granularity: coarse and

fine. The coarse shape is specified by an ellipsoid Eu in (3.13) with semi-axis lengths u = gφ (z)

decoded from the latent code z via a function gφ : Rd 7→R3 with parameters φ . The fine shape is

specified by the signed distance fθ (x,z) in (3.14) from any x ∈ R3 to the average shape surface,

decoded from the latent code z ∈ Rd via a function fθ : R3×Rd 7→ R with parameters θ .

Definition 2. An object instance of class c is a tuple i ≜ (T,δz), where T ∈ SIM(3) specifies the

transformation from the global frame to the object instance frame, and δz ∈ Rd is a deformation

of the class average shape latent code z.

Our goal is to estimate the transformation and shape in := (Tn,δzn) of each observed

object n. We consider object instances independently and drop the subscript n when it is clear

from the context. Given an object with multi-view segmentation, we use the depth D(p) of each

pixel p to obtain a set of points X (p) along the ray starting from the camera optical center and

passing through p. The sets X (p) is used to optimize the pose and shape of the object instance.

For each ray, we choose three points, one lying on the observed surface, one a small distance

ε > 0 in front of the surface, and one a small distance ε behind. Given d ∈ {0,±ε}, we obtain

points y ∈ R3 in the optical frame corresponding to the pixels p:

Y(p)≜

{
(y,d)

∣∣∣∣y =

(
D(p)+

d
∥p∥

)
p, d ∈ {0,±ε}

}
, (3.15)

and project them to the global frame using the known camera pose C:

X (p)≜
{
(x,d)

∣∣∣∣x = PCy, (y,d) ∈ Y(p)
}
. (3.16)

where P = [I 0]. We use {X (p)} to represent the combined distance-labeled point set of all the

valid pixels of all the observed frames. We define an error function eφ to measure the discrepancy
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between a distance-labeled point (x,d) ∈ X (p) observed close to the instance surface and the

coarse shape Eu provided by u = gφ (z). Another error function eθ is used for the difference

between (x,d) and the SDF value fθ (x,z) predicted by the fine shape model. The overall error

function is defined as:

eθ ,φ (T,z,δz;{X (p)})≜ er(δz)+ ∑
(x,d)∈{X (p)}

eθ (T,z,δz;x,d)+ eφ (T,z,δz;x,d), (3.17)

where er(δz) is a shape deformation regularization term. The coarse-shape error, eθ , fine-shape

error, eφ , and the regularization, er are defined precisely in Sec. 3.4.2.

We distinguish between a training phase, where we optimize the parameters z, θ , φ of

an object class using offline data from instances with known mesh shapes, and a testing phase,

where we optimize the pose T and shape deformation δz of a previously unseen instance from

the same category using online distance data from an RGB-D camera. In training, we generate

points {X (p)} close to the surface of each available mesh model in a canonical coordinate frame

(with identity pose I4) and optimize the class shape parameters as defined in Definition 1 via:

min
z,θ ,φ

eθ ,φ (I4,z,0;{X (p)}). (3.18)

In testing, we receive points {X (p)} in the global frame, generated by the RGB-D camera from

the surface of a previously unseen instance. Assuming known object class, we fix the trained

shape parameters z∗, θ
∗, φ

∗ and optimize the unknown instance transform T ∈ SIM(3) and

shape deformation δz ∈ Rd as defined in Definition 2:

min
T,δz

eθ
∗,φ∗(T,z∗,δz;{X (p)}). (3.19)
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Figure 3.7. Overview of ELLIPSDF: a) Ground-truth scene reconstruction from colored point
clouds in ScanNet scene 0087, where the RGB axes show the camera trajectory, b) Reconstructed
object meshes in the world frame using the SDF model decoded from a latent code, and the
optimized SIM(3) transformation representing object pose.

3.4 ELLIPSDF: Object Pose and Shape Optimization with
Bi-level Shape Representation

In this chapter, we proposes ELLIPSDF, an expressive yet compact model of object pose

and shape and an associated optimization algorithm to infer an object-level map from multi-view

RGB-D camera observations, as shown in Fig. 3.7. ELLIPSDF is expressive because it captures

the identity, scale, position, orientation, and shape of objects in the environment. It is compact

because it relies on a low-dimensional latent encoding of the signed distance function (SDF)

to an object’s surface, allowing onboard storage of large multi-category object maps. We first

present the model and define the error functions for its parameter optimization. Then we describe

how a trained ELLIPSDF model is used at test time for multi-view joint optimization of object

pose and shape. An overview is shown in Fig. 3.8.

3.4.1 Bi-level Shape Representation

We choose to use the autodecoder [13, 138] to model the object shape. The autodecoder

takes in a latent code and outputs the desired shape, depending on the shape representation.

During training, we simultaneously optimize the latent code assigned to each object and the
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Figure 3.8. ELLIPSDF Overview: A point cloud and initial pose (green) are obtained from
RGB-D detections of a chair instance from known camera poses (blue). A bi-level category
shape description, consisting of a latent shape code, a coarse shape decoder, and a fine shape
decoder (orange), is trained offline using a dataset of mesh models. Given the observed point
cloud, the pose and shape deformation of the newly seen instance are optimized jointly online,
achieving shape reconstruction in the global frame (red).

decoder weights. During inference, an optimal latent code is searched by optimization to

minimize the error w.r.t. the observation with fixed decoder parameters. The ELLIPSDF shape

model consists of two autodecoders gφ (z) and fθ (x,z), using a shared latent code z ∈ Rd . The

first autodecoder gφ (z) provides a coarse shape representation as an axis-aligned ellipsoid Eu in

a canonical coordinate frame with semi-axis lengths u = gφ (z) ∈ R3. The second autoencoder

fθ (x,z) provides a fine shape representation with parameters θ , as an implicit SDF surface{
x ∈ R3 | fθ (x,z) = 0

}
in the same canonical coordinate frame. The reparametrization trick

[96] is used to maintain a Gaussian distribution z = µ + diag(σ)ε over the latent code with

ε ∼N (0,I) a random variable. Thus, at training time, the ELLIPSDF model parameters include

the mean µ ∈ Rd and standard deviation σ ∈ Rd of the latent shape code, the coarse shape

autodecoder parameters φ , and the fine shape autodecoder parameters θ . The model is visualized

in Fig. 3.9.
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Figure 3.9. ELLIPSDF bi-level object shape decoder model. A latent shape code, z, with
distributionN (µ,diag(σ)2) is shared by a coarse shape decoder gφ , providing an ellipsoid shape
description, and a fine shape decoder fθ , providing an SDF shape description. During training,
the decoder parameters φ and θ are optimized by minimizing the errors between the SDF values
of the training points x, obtained close to the object surface, and the coarse and fine shape
models.

3.4.2 Error Functions

We introduce the error functions that play a key role for optimizing the category-level

latent code z and decoder parameters θ , φ during the training time. They are also used for

optimizing the transformation T from the global frame to the canonical object frame and the

latent code deformation δz of a particular instance during the test time. The training data for an

ELLIPSDF model consists of distance-labeled point clouds {X (p)}n associated with instances n

from the same class, as introduced in Sec. 3.3. A different latent code zn is optimized for each

instance n, while the decoder parameters θ and φ are common for all instances of the same class.

The fine-level shape error function eθ of a point x in global coordinates with signed

distance label d is defined as:

eθ (T,z,δz;x,d)≜ ρ(s fθ (PTx;z+δz)−d). (3.20)

In the definition above, the point x is first transformed to the object coordinate frame via PTx

(P =

[
I 0

]
∈R3×4) and the fine-shape model fθ is queried with the instance shape code z+δz

to predict the SDF to the object surface. Since SDF values vary proportionally with scaling [1],

the returned value is scaled back by s before measuring its discrepancy with the label d. Instead
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of measuring the difference between s fθ and d in absolute value, we employ a Huber term [83]

to make the error function robust against outliers:

ρ(r)≜


1
2r2 |r| ≤ δ ,

δ (|r|− 1
2δ ) else.

(3.21)

Note that the error eθ relates both the object pose and shape to the SDF residual, which enables

their joint optimization.

The coarse-level shape error function eφ is defined similarly, using a signed distance

function for the coarse shape. Since the coarse shape decoder, u = gφ (z), provides an explicit

ellipsoid description, we first need a conversion to SDF before we can define the error term. An

approximation of the SDF of an ellipsoid Eu with semi-axis lengths u [146] can be obtained as:

h(x,u) =

∥∥U−1x
∥∥

2

(∥∥U−1x
∥∥

2−1
)∥∥U−2x

∥∥
2

. (3.22)

Then, the coarse-level shape error of a point x in global coordinates with signed distance label d

is defined as:

eφ (T,z,δz;x,d)≜ ρ(sh(PTx,gφ (z+δz))−d). (3.23)

During training, the object transformation is fixed to be the canonical coordinate frame

T = I4 because the training point-cloud data is collected directly in the object frame. The

regularization term er(δz) in (3.17) is defined as the KL divergence between the distribution of

δz and a standard normal distribution [69].

3.4.3 Ellipsoid Pose and Shape Initialization

We follow [155, 58] to initialize the SIM(3) scale and pose of an observed object, relying

on its coarse ellipsoid shape representation. We fit ellipses to the pixel-wise segmentation Ω2 of
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an object: {
q ∈Ω

2 | (q− c)⊤E−1(q− c) = 1
}
, (3.24)

where the center and symmetric matrix are obtained as c = 1
|Ω2|∑p∈Ω2 p and E = 1

|Ω2|∑p∈Ω2(p−

c)(p− c)⊤. The axes lengths are the eigenvalues λ0, λ1 of Ek. The 2D quadric surface cor-

responding to the ellipse in (3.24) and its dual are defined by the matrix H and its inverse

H∗:

H =

 E−1 −E−1c

−c⊤E−1 c⊤E−1c−1

 , H∗ =

E− cc⊤ −c

−c⊤ −1

 . (3.25)

An ellipsoid in dual quadric form Q∗ in global coordinates and its conic projection H∗ are related

by βH∗ = PC−1Q∗C−⊤P⊤ defined up to a scale factor β . This equation can be rearranged to

βh = Gv, where h = vech(H∗), h∈R6, v = vech(Q∗) and v∈R10. The operator vech serializes

the lower triangular part of a symmetric matrix, and G is a matrix that depends on PC−1. The

explicit form of G is derived in Eq. (5) in [155]. Next, a least squares system is constructed

from the multi-view observations. By stacking all observations, we obtain Mw = 0, where

w = (v,β1, . . . ,βk)
⊤, and M is defined in Eq. (8) in [155]. This leads to a least squares system:

ŵ = argmin
w
∥Mw∥2

2 s.t. ∥w∥2
2 = 1, (3.26)

which can be solved by applying SVD to M, and taking the right singular vector associated to the

minimum singular value. The constraint ∥w∥2
2 = 1 avoids a trivial solution. The first 10 entries

of ŵ are v̂, which is a vectorized version of the dual ellipsoid Q̂∗ in the global frame. To avoid

degenerate quadrics, a variant of the least squares system in (3.26) is proposed in [58], which

constrains the center of the ellipse and the reprojection of the center of the 3D ellipsoid to be

close, which is used here.

The object pose T̂−1 can be recovered by relating the estimated ellipsoid Q̂∗ in global

coordinates to the ellipsoid Q∗u in the canonical coordinate frame predicted by the coarse shape
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decoder u = gφ (z) using the average class shape z:

Q̂∗= T̂−1Q∗uT̂−⊤=

ŝ2R̂UU⊤R̂⊤− t̂t̂⊤ −t̂

−t̂⊤ −1

 . (3.27)

The translation t̂ can be recovered from the last column of Q̂∗. To recover the rotation, note that

A ≜ PQ̂∗P⊤+ t̂t̂⊤ = ŝ2R̂UU⊤R̂⊤ is a positive semidefinite matrix. Let its eigen-decomposition

be A = VYV⊤, where Y is a diagonal matrix containing the eigenvalues of A. Since UU⊤ is

diagonal, it follows that R̂ = V, while the scale ŝ is obtained as ŝ = 1
3

√
tr(U−1YU−⊤). Note

that although the SIM(3) pose could also be recovered from the object point cloud, other outlier

rejection methods are required [194] when the point cloud is noisy.

3.4.4 Joint Pose and Shape Optimization with an ELLIPSDF Model

Given the initialized instance transformation T̂ and initial shape deformation δ ẑ = 0, we

solve the joint pose and shape optimization in (3.19) via gradient descent. Note that the decoder

parameters θ , φ and the mean category shape code z are fixed during online inference. Since T

is an element of the SIM(3) manifold, the gradients and gradient steps need to be computed by

projecting to the tangent sim(3) vector space and retracting back to SIM(3). We introduce local

perturbations T = exp
(
ξ×
)

T̂, δz = δ z̃+δ ẑ and derive the Jacobians of the error function in

(3.17) with respect to ξ and δ z̃.

Proposition 1. The Jacobian of eθ in (3.20) with respect to the transformation perturbation

ξ ∈ sim(3) is:

∂eθ

∂ξ
=

∂ρ(r)
∂ r

(
ŝ[06,1] fθ (x,δ ẑ)+ ŝ∇x fθ (x,δ ẑ)⊤P

[
T̂x
]⊙)

∂eθ

∂δ z̃
=

∂ρ(r)
∂ r

ŝ∇z fθ (x,δ ẑ),
(3.28)

where fθ (x,δ ẑ) = fθ (PT̂x;z+δ ẑ) is defined in (3.20) and ∂ρ(r)
∂ r is the derivative of the Huber
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term in (3.21) evaluated at r = ŝ fθ (x,δ ẑ)−d:

∂ρ(r)
∂ r

=

 r |r| ≤ δ ,

sign(r)δ else.
(3.29)

The operator x⊙ is defined as:

x⊙ ≜

 I3 −x× x

0⊤ 0⊤ 0

 ∈ R4×7. (3.30)

Proof. Using the chain rule and the product rule:

∂eθ

∂ξ
=

∂eθ

∂ r
∂ r
∂ξ

=
∂eθ

∂ r

(
∂ s
∂ξ

fθ (x,δz)+ s
∂ fθ

∂ Ox
∂ Ox
∂ξ

)
, (3.31)

where Ox = PTx is a point in the object frame. We have ∂ s
∂ξ

= eσ [06,1] = s[06,1]. The term s ∂ fθ
∂ Ox

is the gradient of the fine-level SDF decoder with respect to the input s∇x fθ (x,δz), which could

be obtained from auto-differentiation. Finally, we have:

Ox = PTx≈ P(I+ξ×)T̂x

= PT̂x+Pξ×T̂x

= PT̂x+P[T̂x]⊙︸ ︷︷ ︸
∂Ox
∂ξ

ξ .

(3.32)

In the second equality in Prop. 1, the term ∂ρ(r)
∂ r ŝ∇z fθ (x,δ ẑ) is the gradient of the fine-

level SDF loss with respect to the input z and can be obtained via auto-differentiation. The

Jacobians of the coarse-level SDF error ∂eφ

∂ξ
, ∂eφ

∂δ z̃ can be obtained in a similar way. After obtaining
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the Jacobians, the pose and latent shape code can be optimized via:

Ti+1 ≜ exp
(
−η1

∂e(T,δz,θ ∗,φ∗;{Xk(p)})
∂ξ

)
Ti,

δzi+1 ≜ δzi−η2

(
∂e(T,δz,θ ∗,φ∗;{Xk(p)})

∂δz

)
,

(3.33)

where η1,η2 are step sizes, δz0 = 0, and T0 = T̂ is obtained from the initialization. Dur-

ing optimization, we add regularization er(δz) = ∥δz∥2
2 to restrict the amount of latent code

deformation.

3.5 Experiments

We evaluate the performance of CORSAIR and ELLIPSDF on the synthetic ShapeNet

[20] dataset and the real-world ScanNet [34] + Scan2CAD [6] dataset. ShapeNet is a large

scale repository for 3D CAD models and we focus on the furniture categories. ScanNet is an

RGB-D video dataset containing 2.5M views in 1513 indoor scenes annotated with 3D camera

poses, surface reconstructions, and semantic segmentations. Scan2CAD dataset aligns ScanNet

indoor scans with CAD models from ShapeNet. With this two datasets, we can evaluate how

our proposed algorithms work on both the synthetic, delicate CAD model objects and the real,

noisy object observations from depth images or reconstructed mesh. Since we focus on category-

specific objects, we assume that the category of any given point cloud is known so that we can

train models for different categories separately.

3.5.1 CORSAIR Evaluation Metrics

Given a query point cloud X and its retrieved point cloud Y, we define the ground truth

pose of X with respect to Y as (R∗,p∗) and the estimated pose as (R̂, p̂). We compute relative

rotation error (RRE) and relative translation error (RTE) as pose estimation metrics:

RTE(p̂,p∗) = ||p̂−p∗||2, (3.34)
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RRE(R̂,R∗) = arccos((tr(R̂⊤R∗)−1)/2). (3.35)

Two different metrics are used to evaluate the retrieval performance on ShapeNet: Precision@M

and Top-1 Chamfer distance. Precision@M is defined as:

Precision@M =
1
M ∑

Y∈R
1Y∈PG(X), (3.36)

whereR⊂Y is the retrieved set of M CAD models and PG(X) is the ground truth positive set for

query object X as defined in 3.2.3. The Top-1 Chamfer distance metric is calculated by measuring

the Chamfer distance (3.7) between the top-1 retrieved CAD model and the ground-truth top-1

similar CAD model.

3.5.2 CORSAIR Retrieval & Registration on ShapeNet

We use point clouds sampled from the ShapeNet CAD models provided by [197]. In the

category of chair, we use 4612, 592, 1242 point clouds for training, validation and testing. In

the category of table, we use 5744, 778, 1557 point clouds for training, validation and testing.

The shape retrieval and pose estimation tasks are performed within each category. We first train

the local feature extractor with positive and negative matching pairs as mentioned in Eq. (3.2)

for 100 epochs. Then we freeze the parameters and train the embedding network with triplets

(Y,P,N) for another 100 epochs. Random rotation is applied to each of Y, P and N before

training and evaluating. The random seed is fixed in all the experiments for fair comparisons.

In ShapeNet, pose registration and the retrieval are considered as two separate tasks.

To evaluate the pose registration performance, we estimate the transformation between a CAD

model Yi and a similar object in Y j ∈ PG(Yi) and measure the RRE and RTE. We assume that

the symmetry of the Y j is known and Yi shares the same symmetry. In the evaluation of retrieval,

we use the metric defined in 3.5.1. We report Precision@M= 0.1n, where n is the size of the test

set. In the pose registration task, we compare our learned local feature (based on FCGF) with

the hand-crafted FPFH feature [158]. FCGF is the same local feature extractor as ours but it
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Figure 3.10. Examples of point feature embedded by t-SNE. Column 1: incomplete model
pointcloud from single depth scan. Column 2: identical CAD model. Column 3&4: neighbor
models.

generates matching pairs without our symmetry-aware method. RANSAC is applied to estimate

the pose with given matching pairs in (3.12) with K = 5.

First, we want to verify the help of having cross-instance matching with the help of

NCC. In Fig. 3.10 we visualize the point cloud features between the partial point cloud and

the CAD models by embedding the high dimensional feature vector using t-SNE [186] and

coloring the point cloud. The learned features have the ability to generate match across different

instances. We compare our model with cross-instance matching with the model trained with

only same-instance matching pairs. We visualize some comparing cases on pose estimation

in Fig. 3.11. We can see that with cross-instance matching data included for the training, the

model can generate more consistent feature vectors across different instance, estimate more inlier

matching pairs and also perform better on the pose estimation task.

Then, we want to evaluate the symmetry-aided registration. Fig. 3.12 is a qualitative

result showing that our method generates more accurate matching pairs with the aid of symmetry

information than the naive nearest-neighbor method. Mismatches caused by symmetry areas

are filtered out. The quantitative results are shown in Table 3.1. Our symmetry-aware method

outperforms FCGF baseline by 21.3% and 29.1% for chairs and tables, in terms of the ratio of

test cases with RRE ≤ 5º. The results show that our symmetry-aware method improves the pose

estimation performance by refining matching pairs.

We compare our retrieval module with other prevalent global shape descriptors including

3D ResNet18 [72] and PointNet [143] as well as FCGF without our global embedding network.
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Figure 3.11. Comparing the models trained with (bottom row) and without (top row) cross-
instance matching data on ShapeNet [20] synthetic data. Column 1 and 3 show the point feature
embedded by t-SNE. The depth scan is on the left and the CAD model is on the right. The
blue lines indicate the accurate match among the total 1000 sampled matches. Column 2 and 4
show the final registration results based on 1000 matching pairs. The CAD model is in blue and
the depth scan is in yellow. The negative matching pairs are not shown, which cause the pose
estimation failure.

Table 3.2. Retrieval quantitative results on ShapeNet [20].

Method
Chair Table

Precision@M Top-1 CD Precision@M Top-1 CD
3D ResNet18 [72] 21.81 0.182 17.49 0.231

PointNet [143] 25.65 0.188 17.76 0.234
FCGF [31] 31.83 0.132 36.19 0.135

CORSAIR (Ours) 51.47 0.115 57.77 0.112

We use the 3D ResNet18 implementation in [30]. Both 3D ResNet18, PointNet and our method

generate a 256-D global descriptor for retrieval. The FCGF method directly uses latent vector

Z(X) as the global feature, and the distance is measured by the Chamfer distance (3.7) in 256-

D. All the methods are trained with the same loss function as defined in (3.10). Quantitative

results are shown in Table 3.2. Our method outperforms the baseline by a large margin in both

Precision@M and Top-1 Chamfer distance metrics.
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Figure 3.12. Local feature matching between a query point cloud (red) and a retrieved point
cloud (green). The blue lines show the pairs between the two point clouds based on nearest
neighbor matching of the local features. The left pair of point clouds shows matching without
symmetry aid, while the right pair shows matching after detecting the plane of symmetry.

3.5.3 CORSAIR Retrieval & Registration on ScanNet&Scan2CAD

The Scan2CAD dataset [6] provides object-level human-generated annotations on the

ScanNet [34] scans.. The annotations includes category label, segmentation, a similar CAD

model in ShapeNet, and the corresponding pose. In this dataset, we assume that the segmentation

and category are known but the annotated similar CAD model and the pose are unknown. We use

the object segmentation labels to segment the object meshes from the scene and sample points

on the surfaces to convert them to point clouds. In the chair category, we use 2896, 343, 993

scanned point clouds for training, validation and testing. In the table category, we use 1164, 150,

291 scanned point clouds for training, validation and testing. Since the object distribution in

the scenes is not uniform, we split the dataset by scenes instead of objects. Given pretrained

parameters from ShapeNet, we train the local feature extractor and the embedding network on

the Scan2CAD dataset separately for 100 epochs each. In the training phase, random rotations

are applied to both scanned objects and CAD models. In the evaluation phase, we set the CAD

models in the canonical pose.

For the pose registration task, we assume the number of symmetry classes for the CAD

models are known in advance, and the scanned objects share the same symmetry with retrieved
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Figure 3.13. Examples on matching the point cloud segmented from a single RGB-D image
from ScanNet dataset [34]. Column 1: RGB images and object segmentatin masks in purple.
Column 2 & 3: color-coded point cloud features of the observed objects and the CAD models.
Column 4: Alignment results with the CAD models painted in grey.

CAD models. For the retrieval task, the database Y contains CAD models from the Scan2CAD

dataset and belong to the same category as the scanned object. The size of the CAD model

database is 652 and 830 for the chair and table categories, respectively. Unlike in the ShapeNet

experiments, for a scanned object X, we only consider the ground-truth annotated CAD model

as positive object P. The negative object N is randomly sampled from the negative set NG(P)

with respect to the annotated positive object P, since the similarity between partially scanned

objects and a CAD model is not well-defined. The retrieval task is evaluated jointly with the pose

estimation task. We report the RRE and RTE as well as the single direction Chamfer distance to

78



Figure 3.14. Cumulative distribution function of RRE on the Scan2CAD dataset [6]. The solid
lines represent RRE when aligning with top-1 retrieved CAD models. The dotted lines represents
RRE aligning with annotated CAD models. Blue lines use naive nearest neighbor features +
RANSAC for registration, while the red lines use our symmetry-aided nearest neighbor matching
+ RANSAC.

assess the overall alignment quality.

We first evaluate the pose registration method by aligning scanned objects with the

annotated CAD models. We visualize some qualitative result in Fig. 3.13. Here we extract the

observed object point cloud from a segmented RGB-D image. The first row shows an example

with relatively complete observations. The second example is incomplete due to image truncation.

The thrid and the fourth observed objects are sharing the same CAD model for pose estimation.

Our model is showing reasonable performance. Table 3.3 and Fig. 3.14 provide more quantitative

results. In a real world setting, our pose registration method is still able to estimate accurate

poses (RRE ≤ 5◦) for 25.2% of the chairs and 19.2% of the tables. The error for the majority of

the test cases is within a reasonable range (RRE ≤ 15◦). With our symmetry-aware method, we

can further improve the ratio of accurate estimation by 9.2% and 13.1% for chairs and tables.

The symmetry-aware method still generates better pose results in both categories when point

clouds are partially observed. Our method works well on approximately complete point clouds,

and for severely occluded scans we use the naive nearest neighbors with RANSAC as a back-up
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Figure 3.15. Scene-level reconstruction of scenes 0314 00, 0355 00, 0653 00 and 0690 00 from
the Scan2CAD dataset [6]. The segmented chairs (yellow) and tables (pink) in the first row are
inputs to our model. The second row shows the predicted object map, obtained from aligning
retrieved instances to the query point clouds using CORSAIR. The retrieved chairs (green) and
tables (blue) are overlaid back into the scene to visualize the reconstruction qualitatively.

to handle asymmetric cases. Then we evaluate both the retrieval and the pose estimation using

single direction Chamfer distance in the last column of Table 3.3. Our retrieved CAD models can

reach comparable alignment results compared with human-labeled ground-truth CAD models.

This indicate that our method is able to retrieve reasonable models for better alignment.

In Fig. 3.15, we visualize the scene-level reconstruction to show qualitative results in

real-world scenarios. Our method is able to retrieve CAD models that share the same structure

with the scanned objects and align them accurately. Some failed cases are also presented, e.g., the

chair on the right of the second scene. Most of the failed cases are caused by severe occlusions.

The absence of key structures, like the legs of a table or chair, may lead to multiple solutions.

The limitations of raw point cloud measurements make it hard for our method to solve this kind

of problems.
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Figure 3.16. Visualization of the object models trained on ShapeNet [20] for chair, sofa and
table. Upper row: coarse ellipsoid shapes regressed from gφ and z. Lower row: SDF object
model from fθ and z.

3.5.4 ELLIPSDF Details

The ELLIPSDF decoder model is trained on synthetic CAD models from ShapeNet [20].

Each model’s scale is normalized to be inside a unit sphere. We sample points and calculate their

SDF values using a uniform distribution in the unit sphere for training the coarse-level shape

decoder gφ . Another set of points that are close to the model surface are sampled for training the

fine-level shape decoder fθ . The following setting were used to train the decoder networks and

the latent shape code z. We use the Adam optimizer with initial learning rate 5×10−4, 0.5 ratio

decay every 300/700 epochs for the coarse and fine level networks separately. The total epoch

number is 1500. The latent code dimension is 64, and the network structure follows the model in

DualSDF [69].

3.5.5 ELLIPSDF Qualitative Results

We first sample from the trained embedded vector distribution and visualize the decoder

reconstruction. Different cagetories of models are trained with the synthetic CAD models from

ShapeNet. Fig. 3.16 visualizes the rendering results for some chairs, sofas and tables in the

training set. It shows that the scale of the primitive-based representation varies proportionally

with the high-resolution representation.

We evaluate ELLIPSDF on the ScanNet dataset [34], which provides 3D scans captured

by a RGB-D sensor of indoor scenes with chairs, tables, displays, etc. We segment out objects

from scene-level mesh using provided instance labels, and sample points from object meshs

to generate point observations. Visualizations of shape optimization for a chair are shown in
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Figure 3.17. Intermediate ELLIPSDF stages. First column: RGB image, depth image, instance
segmentation (yellow), fitted ellipse (red) for a chair in ScanNet [34] scene 0461. Second
column: mean shape and ellipsoid with initialized pose. Third column: optimized fine-level and
coarse-level shapes with optimized pose.

Fig. 3.17. Optimization step improves the scale and shape estimates notably, e.g. by transforming

the four-leg mean shape into an armchair. Larger scale qualitative results are shown in Fig. 3.18,

demonstrating the effectiveness of joint shape and pose optimization. Optimized poses are closer

to the ground-truth, and optimized shapes resemble the objects better than simple primitive shapes

such as cuboids or quadrics that lacks fine details. For example, the successful reconstruction of

an angle sofa is illustrated in the upper row in Fig. 3.18, which deforms from an initial mean

sofa shape that does not have an angle. ELLIPSDF is also able to deal with partial observations

as seen in the lower row in Fig. 3.18. Although the observed point clouds of the displays and

the chairs are sparse, our approach still reconstructs those objects successfully. Nevertheless,

the reconstruction is a square instead of rounded for the table due to a severe occlusion of the

observation that only less than half of the table is observed.

Another ScanNet scene with bookshelves and tables are shown in Fig. 3.19, to demon-

strate the usefulness of the coarse and fine level residuals. The figure illustrates that the initialized
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Figure 3.18. Qualitive results. Column a): Ground-truth scene in ScanNet [34] sequence 0518
(upper row) and 0314 (lower row). Column b): The RGB axes are the camera trajectory, point
clouds are the ones obtained from RGB-D sensor with added pesudo points, and the ellipsoids
(black for chair, red for sofa, blue for monitor, brown for table) are the initialized objects. Column
c): Reconstructed meshes using ELLIPSDF, rendered from the optimized latent code and pose.

object pose and shape are different from the actual scene, since the two bookshelves in the center

are not parallel and are too small compared to the observation. In contrast, the bookshelves

become larger after applying the fine level residual, which is more consistent with the observa-

tions. The reconstructions are further improved with both the coarse and fine level residuals,

where the bookshelves become parallel. Moreover, the bottom bookshelf and the top right table

also become thinner, which agrees more with the observation. This example clearly shows the

effectiveness of the proposed bi-level model for joint object pose and shape optimization.

3.5.6 ELLIPSDF Quantitative Results

This section presents quantitative evaluation against other methods regarding both pose

and shape estimation accuracy. We also present ablation studies to showcase the improvement of

the optimization over initialization-only results, and the bi-level model over a one level model.
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Figure 3.19. Visualization of the original scene and reconstructed objects for ScanNet [34] scene
0208. First row from left to right: original scene, reconstruction using initialized pose and mean
categorical object shape, reconstruction using optimized pose and shape with fine level residual
only, reconstruction using optimized pose and shape with both coarse and fine level residuals.
Second row from left to right: original scene with bookshelves and tables highlighted in light
blue and beige, the rest are reconstructions overlaid with object point clouds and added pseudo
points.

Table 3.4. Quantitative results for pose estimation on ScanNet [34].

Scan2CAD [6] Vid2CAD [117] ELLIPSDF (init) ELLIPSDF (opt)
31.7 38.3 31.5 39.6

Evaluation on Object Pose

We obtain the ground-truth object pose annotations from Scan2CAD [6] and follow

the pose evaluation metrics it defines, which decomposes a pose T ∈ SIM(3) into rotation q,

translation p and scale s. For an accurate pose estimation, the error thresholds for translation,

rotation, and scales are set as 0.2, 20◦ and 20% respectively with respect to the ground-truth

pose. The pose evaluation is presented in Tab. 3.4, in which ELLIPSDF (init) refers to the

initialization-only step in Sec. 3.4.4, whereas ELLIPSDF (opt) refers using both the initialization

and optimization steps in Sec. 3.4.4. The last two columns in Tab. 3.4 show that adding opti-

mization step using SDF residuals improves the estimation by the initialization-only variant, due

to the additional SDF residuals to help estimate pose. Moreover, ELLIPSDF (opt) outperforms
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Table 3.5. Quantitative results for shape evlaution on ScanNet [34].

Method cabinet chair display table avg.
# intances 132 820 209 146 327
ELLIPSDF (fine) 88.4 88.3 90.6 76.2 85.9
ELLIPSDF (coarse+fine) 91.0 90.6 96.9 77.3 89.0

both Scan2CAD and Vid2CAD, which demonstrates the superiority of ELLIPSDF that employs

a primitive ellipsoid shape tailored for pose and scale estimation.

Evaluation on Object Shape

We evaluate ELLIPSDF for shape prediction on ScanNet [34] dataset in Tab. 3.5. Instead

of single object evaluation in FroDO [159], we evaluate on multiple objects, which is harder than

the single-object-scene due to clustering and partial observations. The large scale evaluation

verifies that our method can generalize across different sequences and objects. The object point

cloud sampled from the object mesh from [6] is used as the ground truth Sgt , and the estimated

point cloud Sest is generated from the optimized latent code z+δz. Given the ground-truth point

cloud Sgt and ELLIPSDF point cloud Sest for an object, the fitting rate with inlier ratio is

f it(Sest ,Sgt) =
|Sclose|
|Sest |

,

Sclose = {v ∈ Sest : d f (v,Sgt)< λ},
(3.37)

where λ = 0.2(m). A distance function d f (·, ·) is utilized to measure the distance between a

point v and a point cloud S , which is the distance from the closest point u ∈ S to the point v. In

CAD-Deform [86], the distance function is set to be L1 distance, while we use L2 distance.

We run ELLIPSDF (fine) and ELLIPSDF (coarse+fine) on 150 validation sequences on

ScanNet [34], where ELLIPSDF (fine) means only the fine level SDF residual is used by setting

γ = 0 in (3.17), and ELLIPSDF (coarse+fine) means the bi-level SDF residuals are used. For each

optimized object, we calculate the fitting rate and then average across all instances. In Tab. 3.5,

we show the number of instances and average fitting rates for 4 object classes. ELLIPSDF
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Table 3.6. Comparison of 3D detection results on ScanNet [34].

mAP @ IoU=0.5 Chair Table Display
FroDO [159] 0.32 0.06 0.04
MOLTR [104] 0.39 0.06 0.10
ELLIPSDF (fine) 0.42 0.26 0.25
ELLIPSDF (coarse+fine) 0.43 0.27 0.31

(coarse+fine) achieves better results than ELLIPSDF (fine) across all classes, demonstrating

an average 3% boost of fitting rate with the assistance of coarse model, reaching nearly 90%

accuracy. The results indicate the effectiveness of the coarse level error function for improving

the scale estimation.

Evaluation on 3D IoU

For a quantitative evaluation on pose estimation, our approach is compared with FroDO

[159] and MOLTR [104] on ScanNet. The ground-truth object poses and shapes are from

Scan2CAD, whereas the estimated 3D bounding box is generated from the estimated point

cloud. The evaluation metric is same as [104], i.e. mean Average Precision (mAP), and the IoU

threshold is 0.5. The results are shown in Tab. 3.6. First, we compare the bi-level model against

the one-level model. From the last two rows in Tab. 3.6, ELLIPSDF (coarse+fine) is superior

than ELLIPSDF (fine) in terms of 3D IoU, and thus demonstrates that the bi-level model is

beneficial by providing additional cues to constrain the pose and shape. The improvement is

more significant for smaller objects, e.g. the displays. This may be explained by the fact that

the initialization error is relatively larger for smaller objects, and thus requires a coarse shape

residual to confine its pose. Moreover, ELLIPSDF outperforms both FroDO and MOLTR by a

large margin for two probably reasons. Firstly, 3D point clouds are used in the observation for

ELLIPSDF, while the other two only rely on 2D observations. Secondly, ELLIPSDF computes

coarse level SDF residuals using a primitive shape to aid the estimation of pose and shape scale,

whereas the other methods use SDF residuals computed from fine shape details.
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3.6 Summary

This chapter introduces CORSAIR, an approach for category-level retrieval and reg-

istration. CORSAIR is a fully convolutional model for point-cloud processing which jointly

generates local point-wise geometric features and a global rotation-invariant shape feature. The

global feature allows retrieval of similar object instances from the same category, while the local

features, aided by symmetry class labeling, provide matching pairs for pose registration between

the retrieved and query objects. The symmetry-aware method proposed in CORSAIR refines the

matching pair based on the naive nearest neighbor method and leads to considerable improvement

on pose registration. This chapter also introduces ELLIPSDF, a shared latent representation

for a category-level bi-level object model to achieve joint pose and shape optimization. Two

shape decoders are used to decode the compact latent shape vector to the coarse level ellipsoid

representation as well as the fine level SDF representation. Both the pose and the shape of the

object get optimized to align with the 3D observations. Enhanced with such technique, the robot

can build a meaningful object-level map with detailed object semantic labels and pose and shape

information, for all kinds of challenging tasks like semantic navigation or object manipulation.
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Chapter 4

Object Mapping from 2D Images

In Chapter 3, we discussed the object-level mapping from the 3D measurements. Al-

though 3D sensors are getting more and more popular, a sensor suite of monocular or stereo

cameras with inertial measurement unit (IMU) is still the more affordable option for many robots

and mobile devices. A visual-inertial sensor suite can provide an accurate odometry at a high

frequency as the sensors compensate each other. However, less attention has been dedicated to

object-level mapping and 3D reconstruction with semantic information. In this chapter, we work

on the object pose and shape estimation for object-level mapping using the 2D sequential images,

and combining this with the localization task. Again we assume the semantic category label of

the object is known.

The foundations of robotics perception lie in the twin technologies of inferring geometry

(e.g., occupancy mapping) and semantic content (e.g., object and scene recognition). Visual-

inertial odometry (VIO) [121, 103, 52, 144, 60] and Simultaneous Localization And Mapping

(SLAM) [37, 122, 18, 123, 19] are approaches capable of tracking the pose of a robotic system

while simultaneously reconstructing a sparse [42, 19] or dense [127, 126, 193, 35] geometric

representation of the environment. Current VIO and SLAM techniques achieve impressive

performance, yet most rely on low-level geometric features such as points [111, 156] and

planes [90, 77] and are unable to extract semantic content. Computer vision techniques based

on deep learning recently emerge as a potentially revolutionary way for context comprehension.
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A major research challenge today is to exploit information provided by deep learning, such

as category-specific object keypoints [128, 139], semantic edges [22, 202], and segmentation

masks [71], in VIO and SLAM algorithms to build rich models of the shape, structure, and

function of objects and other semantic information. Researchers utilize both spatial and semantic

information include [56, 102, 32, 187, 141] but the spatial and semantic states are estimated

independently and merged later. Works that consider joint metric-semantic mapping utilize sparse

object-level [161, 68, 14, 4, 199, 129] or dense scene-level [100, 66, 152, 213, 3] representations.

In an early approach [32], objects are inserted in the map based on matching of feature

descriptors to the models in a database, constructed offline using structure from motion. The

camera trajectory provides multi-view information for object pose estimation but the object

detections are not used as constraints to optimize the camera trajectory. Recent works often

consider the optimization of object and camera poses simultaneously. SLAM++ [161] optimizes

the camera and object poses jointly using a factor graph and moreover reconstructs dense surface

mesh models of pre-defined object categories. A limitation of this work is that the estimated

object shapes are pre-defined and rigid instead of being optimized to match the specific instances

detected online. The popularity of joint optimization of camera and object poses keeps increasing

with the advent of robust 2-D object detectors based on structured models [46] and deep neural

networks [72, 71]. The stacked hourglass model [128] is used by several works [139, 4] to extract

mid-level object parts and, in turn, perform factor graph inference to recover the global positions

and orientations of objects detected from a monocular camera. In [45], a deep network object

detector is used to generate object hypotheses, which are subsequently validated using geometric

and semantic cues and optimized via nonlinear filtering. Some of these approaches [14, 4]

use inertial measurements and probabilistic data association among detections and objects as

additional constraints in the optimization. While most approaches focus on static objects, [105]

uses a stereo camera to track ego-motion and dynamic 3-D objects in urban driving scenarios.

The authors use bundle adjustment to fuse 3-D object measurements obtained from detection

and viewpoint classification. However, the object shape remain fixed.
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Methods that optimize object shape online have employed cuboids [7, 199], spheres

[53, 134], or ellipsoids [40, 77, 155, 129, 133, 194] as shape models. SSFM [7] uses the tightest

bounding cube enclosing an object to parameterize the object location and pose. The object

state is optimized via maximum likelihood estimation using bounding box and object pose

measurements obtained from a 3D object detector [163]. CubeSLAM [199] generates and

refines 3D cuboid proposals using multi-view bundle adjustment without relying on prior models.

QuadricSLAM [129] uses ellipsoids and defines a bounding-box detection model based on the

camera-frame conic projection of an ellipsoid. Structural constraints based on supporting and

tangent planes, commonly observed under in a Manhattan world, have also been introduced [78].

Using generic symmetric shapes, however, makes the orientation of object instances potentially

irrecoverable. For instance, the front and back of an object modeled as an ellipsoid become

indistinguishable. Recent work has considered deformable mesh models [86] and neural network

latent space representations [176] to optimize object shape.

This chapter is based on the papers [50, 166]. In this chapter, we focus on the object

mapping from 2D images as well as the coupling between the object mapping and the camera

localization. There are two forms of object representations we consider here. One is the 3D

triangle mesh. We generate a category-level object mesh and optimize the object pose and

shape based on the 2D semantic segmentation and keypoints. The camera pose can also be

optimized. The other is the 3D ellipsoid. We triangulate the object pose and scale from the

multiple-frame semantic bounding boxes and keypoints detections, and update the camera poses

under the Multi-State Constraint Kalman Filter (MSCKF) framework [121]. In summary, the

contributions of this chapter are summarized as follows.

• We develop an instance-specific object shape model based on a triangular mesh and differ-

entiable functions that measure the discrepancy in the image plane between projections of

the model and detected semantic information.

• We define residuals relating ellipsoid object states and IMU-camera states to object seman-
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tic bounding box and keypoint detections, and explicitly derive their Jacobians.

• We develop an extension of the multi-state constraint Kalman filter (MSCKF) [121] to

enable online tightly coupled estimation of object and IMU-camera states using seman-

tic residuals. Our algorithm is suitable for real-time incremental odometry and object

mapping.

4.1 Problem: Localization and Mapping with Mesh Objects

We consider the problem of detecting, localizing, and estimating the shape of object

instances present in the scene, and estimating the pose of a camera over time. The states we

are interested in estimating are the camera poses C ≜ {ct}T
t=1 with ct ∈ SE(3) and the object

shapes and poses O ≜ {on}N
n=1. More precisely, a camera pose c := (Rc,pc) is determined by

its orientation Rc ∈ SO(3) and position pc ∈ R3, while an object state o = (µ,Ro,po) consists

of a pose Ro ∈ SO(3), po ∈ R3 and shape µ , specified as a 3-D triangular mesh µ = (V,F) in

the object canonical frame with vertices V ∈ R3×|V| and faces F ∈ R3×|F|. Here we define | · |

as the number of columns of a matrix. Each column of F contains the indices of 3 vertices that

form a triangular face. A subset of the mesh vertices are designated as keypoints – distinguishing

locations on an object’s surface (e.g., car door, windshield, or tires) that may be detected using a

camera sensor. We define a keypoint association matrix A∈R|V|×|K| that generates |K| keypoints

K = VA from all mesh vertices.

Suppose that a sequence I ≜ {It}T
t=1 of T images It ∈ RW×H , collected from the cor-

responding camera poses {ct}T
t=1, are available for the estimation task. From each image It ,

we extract a set of object observations Zt ≜ {zlt = (ξlt ,Slt ,Ylt)}Lt
l=1, consisting of a detected

object’s category ξlt ∈ Ξ, a segmentation masks Slt ∈ {0,1}W×H and the pixel coordiantes of

detected keypoints Ylt ∈ R2×|Klt |. We suppose that Ξ is a finite set of pre-defined detectable

object categories and that the data association n = πt(l) of observations to object instances is

known (we describe an object tracking approach in Sec. 4.2.1 but global data association can

also be performed [125, 91, 14]). See Fig. 4.1 for example object observations.
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Figure 4.1. Our objective is to build detailed environment maps incorporating object poses
and shapes. The figure from KITTI [59] in the top row shows the kind of information that
our method relies on: bounding boxes (green), segmentation masks (magenta) and semantic
keypoints (multiple colors). The middle row includes the reconstructed mesh models and 3D
configuration. The last row shows the projection result.

For a given estimate of the camera pose ĉt and the object state ôn, we can predict expected

semantic mask Ŝlt and semantic keypoint observations Ŷlt using a perspective projection model:

Ŝlt =Rmask(ĉt , ôn)

Ŷlt =Rkps(ĉt , ôn,An)

(4.1)

where the mask and keypoint projection functions Rmask, Rkps will be defined precisely in

Sec. 4.2.2. The camera and object estimates can be optimized by reducing the error between the

predicted Ẑ1:T and the actual Z1:T observations. We define loss functions Lmask, measuring dis-

crepancy between semantic masks, and Lkps, measuring discrepancy among semantic keypoints.

The loss functions details are in Sec. 4.2.3.

Problem. Given object observations Z1:T , determine the camera poses C and object states O
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that minimize the mask and keypoint losses:

min
C,O

T

∑
t=1

Lt

∑
l=1

(
wmaskLmask(Slt ,Rmask(ct ,oπt(l)))

+ wkpsLkps
(
Ylt ,Rkps(ct ,oπt(l),Aπt(l))

)) (4.2)

where wmask, wkps are scalar weight parameters specifying the relative importance of the mask

and keypoint loss functions.

4.2 Estimating Mesh Object and Camera Pose from 2D
Semantic Segmentation and Keypoint

We begin by describing how the object observations Zt are obtained. Next, we provide a

rigorous definition of the perspective projection models in (4.1), which, in turn, define the loss

functions in (4.8) precisely. Finally, in order to perform the optimization in (4.2), we derive the

gradients of Lmask and Lkps with respect to c and o.

4.2.1 Semantic Perception

We extract both category-level (object category ξlt and keypoints Ylt) and instance-level

(segmentation masks Slt) semantic information from the camera images. For each frame, we first

use pre-trained Mask R-CNN model [71] implemented in [195] to get object detection results

represented with bounding boxes and instance segmentations inside the boxes. Each object is

assigned to one of the class labels in Ξ. Then we extract semantic keypoints Ylt within the

bounding box of each detected object using the pre-trained stacked hourglass model of [211],

which is widely used for human-joint and object-keypoint detector. The l-th detection result

at time t contains the object category ξlt ∈ Ξ, keypoints Ylt ∈ R2×|Klt |, mask Slt ∈ {0,1}W×H ,

bounding box βlt ∈ R4 (2-D center location, width, and height), object detection confidence

ult ∈ R and keypoint detection confidences qlt ∈ R|Klt | as shown in Fig. 4.1.

We develop an object tracking approach in order to associate the semantic observations
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obtained over time with the object instance that generated them. We extend the KLT-based

ORB-feature-tracking method of [178] to track semantic features Ylt by accounting for their

individual labels (e.g., car wheel, car door) and share object category ξlt . In detail, let zlt be a

semantic observation from a newly detected object at time t. The objective is to determine if

zlt matches any of the semantic observations zm,t+1 ∈ Zt+1 at time t + 1 given that both have

the same category label, i.e., ξlt = ξm,t+1. We apply the KLT optical flow algorithm [112] to

estimate the locations Yl,t+1 of the semantic features Ylt in the image plane at time t +1. We use

the segmentation mask Sm,t+1 of the m-th semantic observation to determine if Yl,t+1 are inliers

(i.e., if the segmentation mask Sm,t+1 is 1 at image location Yl,t+1) with respect to observation m.

Let in(Yl,t+1,Sm,t+1) ∈ {0,1}|Klt | return a binary vector indicating whether each keypoint is an

inlier or not. We repeat the process in reverse to determine if the backpropagated keypoints Ym,t

of observation m are inliers with respect to observation l. Eventually, we compute a matching

score based on the inliers and their detection confidences:

Mlm =
Klt

∑
k=1

in(Y(k)
l,t+1,S

(k)
m,t+1) · in(Y

(k)
m,t ,S

(k)
l,t ) ·q

(k)
lt (4.3)

where q(k)lt is the k-th element of keypoint detection confidences qlt . Finally, we match observation

l to the observation at time t +1 that maximizes the score, i.e., m∗ = argmaxk Mlm. If the object

bounding boxes βlt and βm∗,t+1 have compatible width and height, we declare that object l has

been successfully tracked to time t +1. Otherwise, we declare that object track l has been lost.

4.2.2 Mesh Renderer as an Observation Model

Next, we develop the observation modelsRmask andRkps in Eq. (4.1) that specify how

a semantic observations z = (ξ ,S,Y) is generated by a camera with pose (Rc,pc) ∈ SE(3)

observing an object of class ξ ∈ Ξ with pose (Ro,po) ∈ SE(3) and mesh shape µ = (V,F) with

keypoint association matrix A. Let K be the intrinsic matrix of the camera. Let x := VAei ∈ R3

be the coordinates of the i-th object keypoint in the object frame, where ei is a standard basis
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vector. The projection of x onto the image frame can be determined by first projecting it from the

object frame to the camera frame using (Ro,po) and (Rc,pc) and then the perspective projection

π : R3→ R3, and the linear transformation K. In detail, this sequence of transformations leads

to the pixel coordinates of x projection as follows:

y(i) = Kπ(RT
c (Rox+po−pc)) ∈ R2 (4.4)

where the standard perspective projection function is:

π(x) =
[

x1/x3 x2/x3 x3/x3

]T

(4.5)

Applying the same transformation to all object keypoints VA simultaneously leads to the keypoint

projection model:

Rcam(c,o,A) := RT
c (RoVA+(po−pc)1T )

Rkps(c,o,A) := KπRcam(c,o,A)

(4.6)

where 1 is a vector whose elements are all equal to 1.

To defineRmask, we need an extra rasterization step, which projects the object faces F to

the image frame. A rasterization function, Raster(·), can be defined using the standard method

in [84], which assumes that if multiple faces are present, only the frontmost one is drawn at each

pixel. Kato et al. [93] also show how to obtain an approximate gradient for the rasterization

function. Relying on [84] and [93] for Raster(·), we can define the mask projection model:

Rmask(c,o) := Raster (Rcam(c,o,I),F) (4.7)

where I is the identity matrix.
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4.2.3 Loss Function and Gradient

The loss functions Lmask and Lkps are defined as follows:

Lmask(S, Ŝ) =−
∥S⊙ Ŝ∥1

∥S+ Ŝ−S⊙ Ŝ∥1

Lkps(Y, Ŷ) =∥Y− Ŷ · vis(Ŷ)∥2
F

(4.8)

where ⊙ is an element-wise product and vis(Ŷlt) ∈ {0,1}|Kn|×|Klt | is a binary selection matrix

that discards unobservable object keypoints. Now that the projection models (4.1) and hence the

loss functions (4.8) have been well defined, the final step needed to perform the optimization

in (4.2) is to derive their gradients. We assume that the connectivity F of the object mesh is fixed

and the mesh is deformed only by changing the locations of the vertices V. We use the results

of [93] for the gradient ∇V Raster(V,F). SinceRmask is a function ofRcam according to (4.7),

we only need to derive the following:

∇ŜLmask(S, Ŝ), ∇ŶLkps(Y, Ŷ),

∇cRkps(c,o,A), ∇oRkps(c,o,A).

(4.9)

Our results are summarized in the following propositions.

Proposition 2. The gradients of the loss functions Lmask(S, Ŝ) and Lkps(Y, Ŷ) in (4.8) with

respect to the estimated mask Ŝ ∈ {0,1}W×H and keypoint pixel coordinates Ŷ ∈ R2×K are:

∇ŶLkps(Y, Ŷ) = 2(Ŷ · vis(Ŷ)−Y)vis(Ŷ)T (4.10)

∇ŜLmask(S, Ŝ) =−
1

u(S, Ŝ)
·S+

i(S, Ŝ)
u2(S, Ŝ)

· (11T −S)

where i(S, Ŝ) := ∥S⊙ Ŝ∥1 and u(S, Ŝ) := ∥S+ Ŝ−S⊙ Ŝ∥1.

Proposition 3. Let y(i) =Rkps(c,o,I)∈R2 be the pixel coordinates of the i-th vertex vi := Vei of

an object with pose (Ro,po) ∈ SE(3) obtained by projecting vi onto the image plane of a camera
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with pose (Rc,pc) ∈ SE(3), calibration matrix K ∈ R2×3. Let θc,θo ∈ R3 be the axis-angle

representations of Rc and Ro, respectively, so that Rc = exp(⌊θc×⌋) and Ro = exp(⌊θo×⌋) and

⌊·×⌋ is the hat map. Then, the derivative of y(i) with respect to α ∈ {θc, pc,θo, po,vi} is:

∂y(i)

∂α
= K

∂π

∂x
(γ)

∂γ

∂α
(4.11)

where:

∂π

∂x
(x) =

1
x3


1 0 −x1/x3

0 1 −x2/x3

0 0 0


γ = RT

c (Rovi +po−pc) (4.12)

∂γ

∂pc
=−RT

c
∂γ

∂po
= RT

c
∂γ

∂vi
= RT

c Ro

∂γ

∂θc
= RT

c ⌊(Rovi +po−pc)×⌋JrSO(3)(−θc)

∂γ

∂θo
=−RT

c Ro⌊vi×⌋JrSO(3)(θo)

and JrSO(3)(θ) is the right Jacobian of SO(3), which is necessary because the gradient needs to

be projected from the tangent space to the SO(3) manifold [28, Ch. 10.6], and can be computed

in closed form:

JrSO(3)(θ) = I3−
1− cos∥θ∥
∥θ∥2 ⌊θ×⌋+ ∥θ∥− sin∥θ∥

∥θ∥3 ⌊θ×⌋2. (4.13)

Proof. By definition (4.6), y(i) = Kπ(γ) so most steps follow by the chain rule. We only discuss

the relationship between the axis-angle vectors θc, θo and the orientations Rc, Ro. Any rotation

matrix R ∈ SO(3) can be associated with a vector θ ∈R3 specifying it as a rotation about a fixed

axis θ

∥θ∥2
through an angle ∥θ∥2. The axis-angle representation θ is related to R through the
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exponential and logarithm maps:

R = exp(⌊θ×⌋) = I +
(

sin∥θ∥
∥θ∥

)
⌊θ×⌋+

(
1− cos∥θ∥
∥θ∥2

)
⌊θ×⌋2

⌊θ×⌋= log(R) =
∥θ∥

2sin∥θ∥
(R−RT )

See [116] and [28] for details. Consider the derivative of γ with respect to θo. The right Jacobian

of SO(3) satisfies the following for small δθ :

exp(⌊(θ +δθ)×⌋)≈ exp(⌊θ×⌋)exp(⌊(JrSO(3)(θ)δθ)×⌋)

Using this and Ro = exp(⌊θo×⌋), we can compute:

∂γ

∂θo
= RT

c
∂ exp(⌊θo×⌋)vi

∂θo

= RT
c Ro

∂

∂δθo
⌊(JrSO(3)(θo)δoθ)×⌋vi

=−RT
c Ro⌊vi×⌋JrSO(3)(θo)

∂δθo

∂δθo

(4.14)

The derivative of γ with respect to θc can be obtained using the same approach.

In conclusion, we derived explicit definitions for the observation models Rkps, Rmask,

the loss functions Lmask, Lkps, and their gradients directly taking the SO(3) constraints into

account via the axis-angle parameterization. As a result, we can treat (4.2) as an unconstrained

optimization problem and solve it using gradient descent. The explicit gradient equations in

Prop. 3 allow solving an object mapping-only problem by optimizing with respect toO, a camera

localization-only problem by optimizing with respect to C, or a simultaneous localization and

mapping problem.
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4.2.4 Optimization Initialization

We implemented the localization and mapping tasks separately. In the localization

task, we initialize the camera pose using inertial odometry obtained from integration of IMU

measurements [121]. The camera pose is optimized sequentially between every two images

via (4.2), leading to an object-level visual-inertial odometry algorithm.

To initialize the object model in the mapping task, we collect high-quality keypoints

(according to qlt defined in Sec. 4.2.1) from multiple frames until an object track is lost. The

3-D positions of these keypoints are estimated by optimizing Lkps only using the Levenberg-

Marquardt algorithm. Using a predefined category-level mesh model(mean model) with known

keypoints, we apply the Kabsch algorithm [89] to initialize the object pose (i.e., the transforma-

tion from the detected 3-D keypoints to the category-level model keypoints). After initialization,

we take two steps to optimize the object states. First, we fix the mesh vertices and optimize the

pose based on the combined loss function in (4.2). Next, we fix the object pose, and optimize the

mesh vertices using only the mask loss because the keypoint loss affects only few vertices. To

improve the deformation optimization and obtain a smooth mesh model, we add regularization

using the mean mesh curvature. The curvature is computed using a discretization of the con-

tinuous Laplace-Beltrami operator [172]. Constraints from symmetric object categories can be

enforced by directly defining the mesh shape model to be symmetric.

4.3 Problem: Localization and Mapping with Ellipsoid
Objects

We denote the IMU, camera, object, and global reference frames as {I}, {C}, {O}, {G},

respectively. The transformation from frame {A} to {B} is specified by a 4×4 matrix:

B
AT ≜

B
AR B

Ap

0⊤ 1

 ∈ SE(3) (4.15)
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where B
AR ∈ SO(3) is a rotation matrix and B

Ap ∈ R3 is a translation vector. To simplify the

notation, we will not explicitly indicate the global frame when specifying transformations. For

example, the pose of the IMU frame {I} in {G} at time tk is specified by ITk. B
Aq̄ is the unit

quaternion parameterizing the rotation R(B
Aq̄) = B

AR. Let x =

[
x⊤ 1

]⊤
be the homogeneous

coordinates of a vector x. Notice the last element can also be 0. A quadric shape [70] is a

set
{

x | x⊤Qx = 0
}

, where Q is a 4×4 symmetric matrix. Consider an axis-aligned ellipsoid

centered at 0, Eu ≜
{

x | x⊤U−⊤U−1x = 1
}
, where U ≜ diag(u) and the elements of the vector

u are the lengths of the semi-axes of Eu. In homogeneous coordinates, Eu is a special case of a

quadric shape
{

x | x⊤Qux = 0
}

with Qu ≜ diag(U−2,−1). A quadric shape can also be defined

in dual form, as the set of planes π = Qx that are tangent to the shape surface at each x. A dual

quadric surface is defined as
{

π | π⊤Q∗π = 0
}

, where Q∗ = adj(Q). A dual quadric surface Q∗

can be transformed by T ∈ SE(3) to another reference frame as TQ∗T⊤. Similarly, it can be

projected to a lower-dimensional space by a projection matrix P ≜

[
I 0

]
as PQ∗P⊤.

Consider a system equipped with an IMU-camera sensor. Let the IMU state at time tk

be Ixk ≜
(I

Gqk, Ivk, Ipk, bg,k, ba,k
)
, consisting of unit quaternion representing the rotation from

global to IMU frame I
Gqk, velocity Ivk ∈ R3, position Ipk ∈ R3, gyroscope bias bg,k ∈ R3, and

accelerometer bias ba,k ∈ R3. The quaternion follows JPL convention as it is used in MSCKF

[121]. Assume that the camera is rigidly attached to the IMU with relative transformation

I
CT ∈ SE(3), known from extrinsic calibration. To facilitate the use of multi-frame camera

information, define an augmented state xk ≜
(

Ixk,
I
Gqk−1,I pk−1 . . . , I

Gqk−W ,I pk−W
)
, containing

a sliding window of W past IMU poses in addition to the current IMU state Ixk. The system state

over time is X ≜ {xk}k.

Suppose that the system evolves in an unknown environment, containing geometric

landmarks L≜ {ℓm}m and objects O ≜ {oi}i, represented in a global frame {G}. A geometric

landmark is a static point ℓm ∈R3, detectable via image keypoint algorithms, such as FAST [153].

An object oi = (ci, ii) is an instance ii of a semantic class ci, detectable via object recognition

algorithms, such as YOLO [150]. The precise definitions of object class and instance follow.
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Figure 4.2. (a) An object class is defined by a semantic class σ and average shape specified
by semantic landmarks s (blue) and an ellipsoid with semi-axes lengths u (red). (b) A specific
instance has landmark and ellipsoid deformations parameterized by δ s (blue arrows) and δu
(red arrows). (c) The landmarks and ellipsoid are transformed from the object frame {O} to the
global frame {G} via the instance pose OT.

Definition 3. An object class is a tuple c ≜ (σ ,u,s), where σ ∈ N specifies a semantic type (e.g.,

chair, table, monitor), u ∈ R3 and s ∈ R3×Ns specify the average class shape. The class shape is

modeled by an axis-aligned ellipsoid Eu and a set of semantic landmarks sl ∈ R3 corresponding

to the columns of s. The semantic landmarks sl define the 3D positions of object parts (such as

the front wheel of a car) in the object canonical frame {O}.

Definition 4. An object instance of class c is a tuple i ≜ (OT,δ s,δu), where OT ∈ SE(3) is the

instance pose and δ s ∈ R3×Ns , δu ∈ R3 are deformations of the average class-level semantic

landmarks s and ellipsoid semi-axes lengths u.

The shape of an object oi in the global frame {G} is obtained by deforming and trans-

forming the semantic landmark positions, OT(sl +δ sl), and the dual ellipsoid, OTQ∗(u+δu)OT⊤,

using the instance pose OT and deformations δ s, δu. Fig. 4.2 shows an illustration of a car

model with 12 semantic landmarks.

The IMU-camera sensor provides inertial measurements izk, geometric keypoint mea-
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Figure 4.3. OrcVIO utilizes visual-inertial information to optimize the sensor trajectory and the
shapes and poses of objects. The observations include geometric keypoints (FAST keypoints
indicated by green dots in (c)), semantic keypoints (car parts indicated by red dots with blue
ellipse covariances in (c)), bounding-box lines (green lines in (c)), and inertial data (orange
dotted lines in (a)). The semantic keypoints and their covariances are obtained from a stacked
hourglass CNN in (b) composed of residual modules (blue dotted rectangle in (b)), including
convolution, ReLU, batch normalization, and dropout layers. The dropout layers are used to
sample different weight realizations and estimate the semantic keypoint covariances.

surements gzk,n, and semantic measurements, containing object class czk, j, bounding-box bzk,l, j,

and semantic keypoint szk,l, j detections, illustrated in Fig. 4.3. The inertial measurements

izk ≜
(iωk,

iak
)
∈ R6 are the IMU’s body-frame angular velocity iωk and linear acceleration iak

at time tk. The geometric keypoint measurements are noisy detections gzk,n ∈ R2 in normalized

pixel coordinates of the image projections of the subset of geometric landmarks L visible to the

camera at time tk. To obtain semantic observations, an object detection algorithm is applied to the

image at time tk, followed by semantic keypoint extraction within each detected bounding-box

(see Sec. 4.4.1 for details). The j-th detected object provides the object class czk, j ∈N, bounding

box β k, j = (u0,v0,u1,v1) ∈ R4 with top left corner (u0,v0) and bottom right corner (u1,v1) are

normalized pixel coordinates, and semantic keypoints szk,l, j ∈R2 in normalized pixel coordinates

associated with the l = 1, . . . ,Ns semantic landmarks. Given a bounding box β k, j, we consider

the four bounding-box line segments bzk,l, j ∈ R2 in normalized pixel coordinates, defined as:

bzk,1, j = [0,−1/v0]
⊤, bzk,2, j = [−1/u1,0]⊤,

bzk,3, j = [0,−1/v1]
⊤, bzk,4, j = [−1/u0,0]⊤,

(4.16)
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as separate measurements. Let 1k,m,n ∈ {0,1} indicate whether the n-th geometric keypoint

observed at time tk is associated with the m-th geometric landmark. Similarly, let 1k,i, j ∈ {0,1}

indicate whether the j-th object detection at time tk is associated with the i-th object instance.

This data association information can be obtained by keypoint and object tracking as described

in Sec. 4.4.1. Given the associations, we introduce error functions:

iek,k+1 ≜
ie
(
xk,xk+1,

izk
) gek,m,n ≜

ge
(
xk, ℓm,

gzk,n
)

sek,i,l, j ≜
se
(
xk,oi,

szk,l, j
) bek,i,l, j ≜

be
(

xk,oi,
bzk,l, j

)
for the inertial, geometric, semantic keypoint and bounding-box measurements, respectively,

defined precisely in Sec. 4.4.2. We also introduce an object shape regularization error term

rei ≜ re(oi) to ensure that the instance deformations (δ si,δui) remain small, and consider the

following problem.

Problem. Determine the sensor trajectory X ∗, geometric landmarks L∗, and object states O∗

that minimize the sum of squared errors:

min
X ,L,O ∑

k
∥iek,k+1∥2

iV + ∑
k,m,n

1k,m,n∥gek,m,n∥2
gV

+ ∑
k,i,l, j

1k,i, j∥sek,i,l, j∥2
sV + ∑

k,i,l, j
1k,i, j∥bek,i,l, j∥2

bV +∑
i
∥rei∥2

rV

(4.17)

where ∗V are positive-definite matrices specifying the covariances of the inertial, geometric,

semantic, bounding-box, and shape regularization errors. An error covariance V defines a

quadratic (Mahalanobis) norm ∥e∥2
V ≜ e⊤V−1e.

4.4 Estimating Ellipsoid Object and Camera Pose from 2D
Semantic Detection and Keypoint

Inspired by the MSCKF algorithm [121], we decouple the optimization in Eq. (4.17) over

L andO from that over X to design an efficient real-time algorithm. When a geometric-keypoint
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or object track is lost, we perform multi-view iterative optimization over the corresponding

geometric landmark ℓm or object oi based on the estimate of the latest IMU-camera state xk.

The IMU-camera state is propagated using the inertial observations and updated using the

optimized geometric landmark and object states and the geometric and semantic observations.

This decoupling leads to potentially lower accuracy but higher efficiency compared to window

or batch keyframe optimization techniques [14]. Our approach offers tight coupling between

semantic information and geometric structure in visual-inertial odometry. In Sec. 4.4.1, we

describe the detection and tracking of the geometric and semantic observation in the front end.

The error functions of the geometric and semantic observations and Jacobians w.r.t. the poses

and the objects are introduced in Sec. 4.4.2. In Sec. 4.4.3 we describe the initialization of the

object and how it is used to update the tracked IMU pose. Our method is named Object residual

constrained Visual Inertial Odometry (OrcVIO) to emphasize the role of the semantic residuals

in the localization and mapping optimization process. OrcVIO is capable of producing object

maps and estimating sensor trajectories, as shown in Fig. 4.4

4.4.1 Keypoint and Object Tracking

This subsection discusses the detection and the tracking of geometric keypoint gzk,n,

object class czk, j, bounding-box bzk,l, j, and semantic keypoint szk,l, j measurements in the camera

images in the algorithm front-end.

Geometric keypoints gzt,n are detected using the FAST detector [153] and are tracked

temporally using the Lucas-Kanade (LK) algorithm [112]. Keypoint tracking has lower accuracy

but higher efficiency than descriptor-matching methods, allowing our method to use a high

frame-rate camera. Outliers are eliminated by estimating the essential matrix between two

consecutive views and removing those keypoints that do not fit the estimated model. Assuming

that the time between two consecutive images is short, the relative orientation is obtained by

integrating the gyroscope measurements iωk and only the unit translation vector is estimated

using two-point RANSAC [99].
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Figure 4.4. This work develops a tightly coupled visual-inertial odometry and object state
estimation algorithm. The figure shows: (a) a quadrotor robot navigating in a simulated Unity
environment, containing cars and doors, (b) color-coded semantic keypoints detected and tracked
on the cars and doors, and (c) ground-truth (red) and estimated (green) robot trajectory as well as
ground-truth cars and doors (blue meshes) and estimated cars (green ellipsoids) and doors (red
ellipsoids) along with their semantic keypoints (yellow points).

The YOLOv4 detector [12] is used to detect object classes czk, j and bounding-box lines

bzk,l, j. Semantic keypoints szk,l, j are extracted within each bounding box using the StarMap

stacked hourglass convolutional neural network [211]. We augment the original StarMap network

with dropout layers as shown in Fig. 4.3(b). We perform several stochastic forward passes using

Monte Carlo dropout [55] offline on a validation image dataset to obtain semantic keypoint

covariances sV, illustrated in Fig. 4.3(c). The matrices sV are fixed for the actual test-time

algorithm deployment to ensure real-time operation.

The bounding boxes are tracked temporally using the SORT algorithm [10]. At each

frame, the new object detections from YOLO are filtered to prune those with low confidence.

A similarity score between each valid new detection and each existing track is computed using
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Intersection-over-Union (IoU), and then the Hungarian algorithm is used to match the detections

with the tracks whose scores are above a threshold. After a successful match, the bounding-box

is updated using a Kalman filter update step and a constant velocity model is used to predict its

motion to the next frame. Each unmatched new detection is initialized as a new track, and the

tracks with no match for a few frames are removed. There are several cases where tracking may

fail. When the relative motion between the object and the camera is large, e.g., the camera is

moving fast, tracking may fail because the constant velocity model does not predict the bounding-

box trajectory reliably. Another possible failure case happens when the object is occluded and

the IoU score is smaller than the threshold. Those fail cases decrease the number of objects in

the map produced by OrcVIO. To mitigate tracking failures, we fine tune the parameters such

that few valid matches are needed to establish a track. We also prune objects that are too close to

each other in 3D to prevent duplicate object mapping due to spurious tracks. Another solution

is to only consider objects within a certain distance from the camera since objects far away

have smaller bounding boxes and a higher chance to introduce spurious tracks. The semantic

keypoints szk,l, j within each bounding box are tracked via a Kalman filter, which uses the LK

algorithm for prediction and the StarMap keypoint detections for update.

4.4.2 Landmark and Object Error Functions and Jacobians

Next, we define the geometric-keypoint gek,m,n, semantic-keypoint sek,i,l, j, bounding-box

bek,i,l, j, and regularization rei error terms in Eq. (4.17) and derive their Jacobians. The error

functions are linearized around estimates of the IMU-camera state x̂k, geometric landmarks ℓ̂m,

and objects ôi.

We define the geometric-keypoint error as the difference between the image projection of

a geometric landmark ℓ in camera frame and its associated keypoint observation gz:

ge(x, ℓ,gz)≜ π

(
C
Gh(ℓ)

)
− gz, (4.18)
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where

C
Gh(ℓ) =C

G R(ℓ−C p) =C
I RI

GR(ℓ−I p)+C
I p, (4.19)

is the Euclidean transformation from global frame to camera frame and

π(s)≜
[

s1/s3 s2/s3

]⊤
∈ R2, (4.20)

is the perspective projection function. The Jacobian of ge with respect to the landmark ℓ is

∂ ge
∂ℓ

=
∂π

∂ s
∂C

Gh
∂ℓ

, (4.21)

∂π

∂ s
=

1/s3 0 −s1/s2
3

0 1/s2 −s2/s2
3

 , (4.22)

∂C
Gh
∂ℓ

=C
I RI

GR. (4.23)

The Jacobian of ge with respect to the IMU pose is

∂ ge
∂ I

GR
=

∂π

∂ s
∂C

Gh
∂ I

GR
,

∂C
Gh

∂ I
GR

=C
I R⌊IGR(ℓ−I p)×⌋,

∂ ge
∂ Ip

=
∂π

∂ s
∂C

Gh
∂ Ip

,

∂C
Gh

∂ Ip
=−C

I RI
GR.

(4.24)

The semantic keypoint error is defined as the difference between the projection of a

semantic landmark sl +δ sl from the object frame to the image plane, using instance pose OT
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and camera pose CT, and its corresponding semantic-keypoint observation szl:

sel(x,o, sz)≜ π

(
C
Oh(sl +δ sl)

)
− szl, (4.25)

C
Oh(s) =C

I RI
GR((ORs+O p)−I p)+C

I p (4.26)

The Jacobians w.r.t. the semantic keypoint and the IMU pose are similar to Eq. (4.21) and Eq.

(4.24). The Jacobian w.r.t. the object pose is similar to Eq. (4.24) but with different Jacobian on

the Euclidean transformation equation C
Oh(s),

∂C
Oh

∂ OR
=C

I RI
GR⌊OR(sl +δ sl)×⌋,

∂C
Oh

∂ Op
=C

I RI
GR.

(4.27)

We define the bounding-box error as the distance between the hyperplane induced by

projecting a bounding-box line bz in Eq. (4.16) to the object frame and the closest hyperplane

that is tangent to the quadric surface Q∗(u+δu) of object o. To derive the hyperplanes defined by

the camera center and the bounding box lines, we perform cross product over the four corner

vector.
bzk,1, j = [(u0,v0,1)× (u1,v0,1),0]⊤ = [0,−1/v0,1,0]⊤,

bzk,2, j = [(u1,v0,1)× (u1,v1,1),0]⊤ = [−1/u1,0,1,0]⊤,

bzk,3, j = [(u1,v1,1)× (u0,v1,1),0]⊤ = [0,−1/v1,1,0]⊤,

bzk,4, j = [(u0,v1,1)× (u0,v0,1),0]⊤ = [−1/u0,0,1,0]⊤,

(4.28)

Without loss of generality, we can normalize the bounding planes and write them as bz =[
bz⊤ 0

]⊤
where ∥bz∥= 1 is a normalized 3D vector. We are going to compute the distance

from this ellipsoid tangent plane to the bounding box hyperplane in the object frame. Given

an initial plane in the camera frame bz ∈ R4, we can convert it into a plane in the object frame
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b =

[
b⊤ λ

]⊤
∈ R4.

b = (OT−1
CT)−⊤bz = OT⊤CT−⊤bz (4.29)

where CT is the camera pose and OT is the object pose.

b

λ

=

OR⊤ 0

Op⊤ 1


 CR 0

−Cp⊤CR 1


bz

0

=

 OR⊤CRbz

Op⊤CRbz−Cp⊤CRz

 (4.30)

b = OR⊤CRbz (4.31)

λ = (Op−Cp)⊤CRbz (4.32)

where ∥b∥= 1 as it is derived from rotating normalized vector bz. The camera pose is derived

from the IMU pose and the IMU-camera extrinsic.

CR = I
GR⊤C

I R⊤

Cp = I
GR⊤I

Cp+ Ip =−I
GR⊤C

I R⊤C
I p+ Ip

(4.33)

Given a hyperplane b =

[
b⊤ λ

]⊤
and an origin-centered axis-aligned ellipsoid as a

dual quadric Q∗ = diag(U2,−1). There should be another plane b∗ =
[

b⊤ λ ∗
]⊤

that shares

the same normal as b and is tangent to Q∗. To derive this plane, we have

b∗⊤Q∗b∗ = 0

=

[
b⊤ λ ∗

] U2 03×1

01×3 −1


 b

λ ∗


=b⊤U2b−λ

∗2 = 0

λ
∗ =±

√
b⊤U2b

(4.34)
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There are two tangent planes of the ellipsoid that share the same normal direction.

Assuming the observed bounding plane is close to the tangent plane, we can choose the tangent

plane that shares the same sign at the last element as the bounding plane. Then the distance

between the two parallel planes, as the observation residual, is

be(x,o,bz) = sgn(λ )
√

b⊤U2b−λ (4.35)

where sgn(x) = ∂ |x|
∂x is the signum function and b,λ are as defined in Eq. (4.30).

The Jacobian of be with respect to the object pose is

∂ be
∂ OR

=
∂ be
∂b

∂b
∂ OR

, (4.36)

∂ be
∂ Op

=
∂ be
∂b

∂b
∂ Op

, (4.37)

∂ be
∂b

= sgn(λ )

[
b⊤U2 0

]
√

b⊤U2b
− [0,0,0,1], (4.38)

∂b
∂ OR

=

−OR⊤⌊CRbz×⌋

01×3

 , (4.39)

∂b
∂ Op

=

 03×3.

bz⊤CR⊤

 (4.40)

We treat sgn(λ ) as a constant and ignore its Jacobian w.r.t. λ . Notice that CR = (CI RI
GR)⊤ is the

rotation from camera frame to global frame. The Jacobian of be with respect to the object scale

u is
∂ be
∂u

= sgn(λ )
b◦b◦u√

b⊤U2b
(4.41)

where ◦ is the Hadamard product or element-wise product. The Jacobian of be with respect to
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the IMU pose is similar to those above with the difference

∂b
∂ I

GR
=

 −OR⊤I
GR⊤⌊CI R⊤bz×⌋

−(I
GR⊤⌊CI R⊤C

I p×⌋)⊤I
GR⊤C

I R⊤− (Op+ I
GR⊤C

I R⊤C
I p− Ip)⊤I

GR⊤⌊CI R⊤bz×⌋

 ,
(4.42)

∂b
∂ Ip

=

 03×3.

bz⊤CR⊤

 (4.43)

4.4.3 OrcVIO Algorithm

We return to the problem of joint IMU-camera, geometric-landmark, and object op-

timization and describe the Object residual constrained Visual Inertial Odometry (OrcVIO)

algorithm. OrcVIO is an extension of MSCKF [121, 60], with an extension of adding the object

and using the semantic observation residuals to update the tracked pose. The IMU-camera state

xk is tracked using an extended Kalman filter. Prediction step is performed using the inertial

measurements izk.

When a geometric-keypoint or object track is lost, initialization and iterative optimization

is performed over ℓ̂m and ôi. For this step we keep the estimated IMU poses fixed. The geometric

landmarks ℓ̂m are initialized by solving gêk,m,n = 0 via the linear system of equations:

PCT̂−1
k ℓ̂m−λk,n

gzk,n = 0 (4.44)

for all k,m,n such that 1k,m,n = 1, where the unknowns are ℓ̂m and the keypoint depths λk,n. The

deformations of an object instance ô are initialized as δ ŝ = 0 and δ û = 0. The instance pose is

determined from the system of equations consisting of semantic keypoint and bounding-box line

residuals:
PCT̂−1

k OT̂sl−λk,l, j
szk,l, j = 0

bz⊤k,l, jPCT̂−1
k OT̂Q∗uOT̂⊤CT̂−⊤k P⊤bzk,l, j = 0

(4.45)
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for all l and all k, j such that 1k,i, j = 1, where the unknowns are object pose OT̂ and the semantic

keypoint depths λk,l, j. The least squares problem for semantic keypoints is a generalization of the

pose from n point correspondences (PnP) problem [74]. While this system may be solved using

polynomial equations [198], we perform a more efficient initialization by defining ζl ≜ OR̂sl +Op̂

and solving the first set of (now linear) equations in (4.45) for ζl and λk,l, j. We recover OT̂ via

the Kabsch algorithm [89] between {ζl} and {sl}. This approach works well as long as there is

a sufficient number of semantic keypoints szk,l, j (at least two per landmark across time for at

least three semantic landmarks sl) associated with the object. If fewer semantic keypoints are

available, OT̂ and δ û can be initialized using the LfD approach [155]. LfD fits ellipses, described

by dual quadrics C∗k ∈R3×3, to the bounding-box detections bzk,l, j with 1k,i, j = 1 and vectorizes

the equations Ck ∝ PCT̂−1
k Q̂∗CT̂−⊤k P⊤ to solve for Q̂∗ ≜ OT̂Q∗u+δ ûOT̂⊤. The object pose OT̂

and ellipsoid deformation δ û can be recovered from Q̂∗ by relating the estimated ellipsoid Q̂∗ in

global coordinates to the ellipsoid Q∗u+δ û in the object frame:

Q̂∗= OT̂Q∗u+δ ûOT̂⊤=

OR̂ÛÛ⊤OR̂⊤−Op̂Op̂⊤ −Op̂

−Op̂⊤ −1

 ,
where Û = diag(u+ δ û). The translation Op̂ can be recovered from the last column of Q̂∗.

To recover the rotation and deformation, note that A ≜ PQ̂∗P⊤+Op̂Op̂⊤ = OR̂ÛÛ⊤OR̂⊤ is a

positive semidefinite matrix. Let its eigen-decomposition be A = VYV⊤ so that OR̂ = V and

ÛÛ⊤ = Y.

The optimized geometric landmark and object estimates are used to update the IMU-

camera pose. Consider the nonlinear measurement function

zk = h(xk, ℓ,o)+nk (4.46)

where we have the measurement noise nm,k ∼ N (0,Rk) and the measurement functions are
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introduced in 4.4.2. We linearize Eq. (4.46) with respect to the current zero-mean error state

x̃ = x− x̂ and get

z̃k = Hx
kx̃k|k−1 +H f

k

[
ℓ o

]
+nk (4.47)

where Hx
k is the stacked measurement Jacobian w.r.t. the IMU poses and H f

k is the stacked

measurement Jacobian w.r.t. the geometric landmarks and semantic objects, also introduced in

4.4.2. By performing left nullspace projection, we can remove the term related to the landmarks

and objects to have

z̃x
k = Hkx̃k|k−1 +nk (4.48)

Using the linearized measurement model, we can now perform the standard EKF update on the

state

x̂k|k = x̂k|k−1 ⊞Kk(zk−h(x̂k|k−1, ℓ,o)), (4.49)

Pk|k = Pk|k−1−KkHkPk|k−1, (4.50)

Kk = Pk|k−1H⊤k (HkPk|k−1H⊤k +Rk)
−1. (4.51)

We implement the OrcVIO based on the OpenVINS version of MSCKF [60].

4.5 Experiments

We evaluate the ability of the proposed localization and mapping technique to optimize

the camera trajectory and reconstruct object poses and shapes using both simulated and real

data. Our experiments use images from monocular or stereo cameras and inertial odometry

information. The real data including the open-source dataset KITTI [59] and our own collected

data.

We use two standard metrics for quantitative VIO evaluation: position Root Mean Square

Error (RMSE) [175] (also referred to as position Absolute Trajectory Error (ATE) [207]) and

KITTI’s translation error (TE) metric [59]. Let Trans(T) return the position component of a pose
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T ∈ SE(3). Let ITk be the ground-truth pose trajectory and IT̂′k be the estimated pose trajectory.

To measure error, the estimated trajectory is first aligned to the initial frame of the ground-truth

trajectory via IT̂k = IT0IT̂−1
0 IT̂′k. After alignment, RMSE (m) and TE (%) are measured as:

RMSE ≜

(
1
K

K−1

∑
k=0

∥∥Trans
(

IT−1
k IT̂k

)∥∥2
2

)1/2

, (4.52)

TE ≜
1
|F| ∑

(i, j)∈F

∥∥∥∥Trans
((

IT̂−1
j IT̂i

)−1(
IT−1

j ITi

))∥∥∥∥
2

length(i, j)
,

where F is a set of frames with fixed distances length(i, j) over specific values based on the total

trajectory length.

The object estimates are evaluated using 3D Intersection over Union (IoU). A 3D bound-

ing box β̂ i is obtained from each estimated object ôi, and IoU is defined as the ratio of the

intersection volume over the union volume with respect to the bounding box β i of the closest

ground truth object:

IoU(β̂ i,β i)≜ ∑
i

Volume of Intersection(β̂ i,β i)

Volume of Union(β̂ i,β i)
. (4.53)

To understand the distribution of the object orientation and translation errors, we define an

estimate as true positive if the closest ground-truth object pose is within a specific rotation or

translation error threshold. Specifically, a rotation error of α◦ means ∥ log(OR̂⊤OR)∨∥2 ≤ α◦,

and translation error of β m means ∥Op− Op̂∥2 ≤ β m. We define precision as the fraction

of true positives over all estimated objects and recall is the fraction of true positives over all

ground-truth objects.

A few video demos of the ellipsoid object experiments can be found in the http://erl.ucsd.

edu/pages/orcvio.html.
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Figure 4.5. Left: Localization results from a simulated dataset, showing car poses (blue), the
ground truth camera trajectory (blue), the inertial odometry used for initialization (red), and the
optimized camera trajectory (green). Right: Change of Absolute Trajectory Error versus number
of optimization iterations.

4.5.1 Mesh Object on Simulation Dataset

For the mesh representation, we focus on the car objects. We represent cars using a

symmetric mesh model with 642 vertices and 1280 faces.

To model the real mechanism of IMU, we chose a sub-sequence IMU measurement

and associated groundtruth pose from synchronized KITTI odometry dataset. We collected

camera images following the groundtruth pose in a simulated Gazebo environment populated

with car mesh models, so that we simulated a real camera-IMU sensor (see Fig. 4.5). The car

models were annotated with keypoints and both the car surface and the keypoints were colored

in contrasting colors to simplify the semantic segmentation and keypoint detection tasks. The

simulated experiments used ground-truth data association among the observations. We evaluated

both the localization and the mapping tasks.

For the localization task, we used a sequence with 70 frames and synchronized IMU

measurements and 6 known cars were placed around. We initialized the estimation by predicting

the transformation between two camera poses based on the IMU odometry. Then, we optimized

the predicted camera pose by solving problem (4.2) and used the IMU to predict the next pose.

An example camera trajectory and the associated localization results are shown in Fig. 4.5. We
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Figure 4.6. Mask and 3-D voxel intersection over union (IoU) results obtained with different
numbers of object views for four different object instances (see Fig. 4.7). Notice that IoU of
masks only take available masks (in x-axis) into account.

can see that our optimization successfully reduced the error accumulated from IMU integration.

The mapping performance was evaluated on a sequence of images obtained from different

views of a single object (see Fig. 4.8). The optimization was initialized using a generic category-

level car mesh and its vertices were optimized based on the detected keypoints and segmentation

masks. The mapping quality is evaluated qualitatively using the Intersection over Union (IoU)

ratio between the predicted and groundtruth car masks volumes. In detail, the mask IoU compares

the area differences between predicted binary car masks, while the voxel IoU compares the

voxelized volume of the predicted and groundtruth car models. Fig. 4.6 shows the dependence

of the mapping accuracy on the number of different views used. The optimized car meshes are

shown in Fig. 4.7. The differences among car models are clearly visible in the reconstructed

meshes and their shapes are very close to the corresponding groundtruth shapes. Using only a few

views, the optimization process is able to deform the mesh vertices to fit the segmentation masks

but not necessarily align the estimated model with the real 3-D shape. As more observations
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Figure 4.7. Qualitative comparison between estimated car shapes (bottom row) obtained from a
simulation sequence and ground truth object meshes (top row). The numbers indicate 3D IoU.

Figure 4.8. Views used to evaluate the object-level mapping approach in simulation.

become available, the 3D IoU increases, which makes sense since different views can provide

information about additional instance-level characteristics. Based only on 3 views, the IoU

reaches over 0.8, while the generic category-level mesh has an average IoU of 0.63 with respect

to the different object instances.

4.5.2 Mesh Object on KITTI Dataset

Experiments with real observations were carried out using the KITTI dataset [59]. We

choose three sequences with different lengths. The experiments used the ground-truth camera

poses and evaluated only the mapping task. The object detector, semantic segmentation [195]

and the keypoint detector [211] algorithms used pre-trained weights. Semantic observations were

collected as described in Sec. 4.2.1. The poses and shapes of the detected cars were initialized

and optimized as described in Sec. 4.2.4. Fig. 4.9 shows a bird-eye view of the estimated car

poses and compares the results with the ground truth car positions provided in [5]. The poses

and shapes of 56 out of 62 marked cars were reconstructed, with an average position error across

all cars of 1.9 meters. Fig. 4.10 shows some estimated 3-D car mesh models projected back
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Figure 4.9. Qualitative results showing the accuracy of the estimated car positions (green) on
sequence 06 of the KITTI odometry dataset in comparison with hand-labeled ground truth (red)
obtained from [5]. The camera trajectory (blue) is shown as well.

Figure 4.10. Left: the semantic observations. Right: the projection of reconstructed mesh
models.

onto the camera images. Fig. 4.11 compares the differences between the category-level and

instance-specific models. Fig. 4.12 shows the estimated model shapes and poses in 3D.

Since groundtruth object shapes are not available, we evaluate the quality of shape

reconstruction based on the 2D IoU compared with the observed instance segmentation masks.

We trained a single-image mesh predictor [92] on car data from the PASCAL3D+ dataset [196]

and calculated its mean IoU for individual objects over multiple frames. Table 4.1 shows that

our multi-view optimization method improves the IoU by leveraging semantic information from

multiple images. The reconstruction quality on the real dataset is limited by the accuracy of

the semantic information because the optimization objective is to align the predicted car shapes

with the observed semantic masks and keypoints. The viewpoint changes on the real dataset are

smaller, making the reconstruction task harder than in simulation. The pose estimation relies

heavily on the keypoint detections, which in some cases are not robust enough. Nevertheless,
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Figure 4.11. Top: category-level model before shape optimization. Bottom: instance-level
model after shape optimization.

Table 4.1. 2D projection mIoU with respect to object segmentation on three KITTI sequence.

Dataset
09 26 09 26 09 30
0048 0035 0020

Frames 22 131 1101
Detected objects 6 28 77

Single image mesh prediction [92] 0.692 0.642 0.641
With pose estimation 0.735 0.656 0.689

With pose and shape estimation 0.778 0.675 0.725

our approach is able to generate accurate instance-specific mesh models in an environment

containing occlusion and different lighting conditions.

4.5.3 Ellipsoid Object on Simulation Dataset

We first evaluate OrcVIO on a customized simulation. Given a trajectory, we use SE(3)

B-spline interpolation to generate simulated IMU measurements [60]. The objects are modeled

as ellipsoids and put along the trajectory. We project the ellipsoids onto the groundtruth camera

poses. Then the projected 2D ellipses on the image can be computed and we use their minimum

and maximum value along the UV axis on the image to draw the axis-aligned bounding boxes.

The Gaussian noise can be added to the top-left and bottom-right cornmer of the bounding
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Figure 4.12. Left: 2D projections of mesh models. Right: corresponding 3D configuration.
Trajectory in blue.

Table 4.2. Comparing localization accuracy with or without object update on the simulation
dataset.

Methods RMSE TE(100m)
w/o Object Update 0.294 0.472%
w/ Object Update 0.220 0.361%

box. The bounding boxes are tagged with the object IDs so the groundtruth data association is

provided. We constrain the object visible range between 2m and 30m. The qualitative result is

shown in Fig. 4.13 and the quantitative result is reported in Table 4.2. Our method can get a

relative good object estimation when having enough observations that span a large baseline. And

introducing the object observations in the update step can improve the localization accuracy.

OrcVIO is evaluated in a Unity simulation [183] containing 50 car, road barrier, and door

object instances. A ROS bridge between Unity and Gazebo is used to simulate a quadrotor robot,

navigating in the environment and providing IMU and camera measurements. The object map

reconstructed by OrcVIO is shown in Fig. 4.14. The estimated objects are generally quite close

to the ground-truth ones. The object poses near the starting position are less accurate due to

insufficient motion parallax, since the quadrotor performs a pure rotation in the beginning. The

trajectory RMSE and TE are 0.97m and 0.40%, respectively. The odometry drift is mainly due
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Figure 4.13. OrcVIO on simulation dataset. The red ellipsoids are the groundtruth objects. The
yellow ellipsoids are the estimated objects. The cyan ellipsoids are the estimated outlier objects.
The cyan line is the groundtruth trajectory. The green line is the estimated trajectory.

to pure rotation maneuvers at planned path corners executed by the quadrotor controller.

The 3D IoU of the object estimates is 0.49. The Precision and Recall of the object

reconstruction is shown in Table 4.3. Despite that doors and barriers have a thin structure,

causing even small pose estimation drift to reduce the overlap with the ground-truth object

instances, OrcVIO is able to produce an accurate object map with good 3D IoU.

4.5.4 Ellipsoid Object on Real Dataset

We also evaluated OrcVIO using real data collected with two commercial VIO sensors

on UCSD’s campus. The results are qualitative due to the lack of ground truth information.

First, we used Intel RealSense D435i with image frequency of 30 Hz, image resolution of

640×480, IMU frequency of 200 Hz in an indoor lab scene with chairs and monitors as shown
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Figure 4.14. Left: Urban simulation in the Unity engine with car, door, and barrier object
instances. Right: Object map reconstructed by OrcVIO on the Unity dataset. The figure shows
the ground-truth trajectory (green curve), estimated trajectory (yellow curve), the covariance
of the last pose (purple ellipsoid), the ground-truth objects (blue cuboids), estimated object
ellipsoids (cars are black, doors are red, barriers are orange), as well as the reconstructed
semantic landmarks (green dots).

Table 4.3. Precision-Recall Evaluation on the Unity Dataset

Translation error→ ≤ 0.5 m ≤ 1.0 m ≤ 1.5 m
Rotation error Precision Recall Precision Recall Precision Recall
≤ 30◦ 0.05 0.05 0.18 0.20 0.22 0.25
≤ 45◦ 0.09 0.10 0.27 0.30 0.45 0.50
− 0.14 0.15 0.41 0.45 0.64 0.70

in Fig. 4.15. The estimated sensor trajectory and reconstructed object map by OrcVIO are shown

in the figure. The results demonstrate that OrcVIO can map object instances from different

categories and operates at real-time speed in a cluttered indoor scene. Since OrcVIO does not

currently have a loop-closing mechanism for object re-identification, objects reappearing after

getting lost will be mapped twice. Thus, there are more reconstructed chairs in Fig. 4.15 than in

the reality.

Semantic keypoint detection is challenging due to occlusion, viewpoint change, and the

lack of distinctive features on the monitors as shown in Fig. 4.15 (b). To handle the monitor class

succesfully, we decreased the weight of the semantic keypoint residual in the object Levenberg-
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Figure 4.15. OrcVIO localization and object mapping in an indoor scene with chairs and
monitors. Bounding-box and semantic-keypoint detections are shown in (a) and (b). The
estimated sensor trajectory (red curve), geometric landmarks (black dots), semantic landmarks
(green dots), and object ellipsoids (blue for chairs, orange for monitors) obtained by OrcVIO are
shown in (c).

Marquardt optimization. Although removing the reliance on semantic keypoints leads to worse

object orientation estimation, it allows OrcVIO to work with bounding-box detections only. This

simplifies the front-end to an object detector and tracker and makes the algorithm more efficient

and easier to deploy on resource-constrained robots.

Finally, we used an INDEMIND Binocular Visual-Inertial Camera to run OrcVIO out-

doors with images at 25 Hz with resolution of 640×400 and IMU measurements at 200 Hz. The

sensor initially observes bikes and chairs, and then makes a transition into a parking structure, as

shown in Fig. 4.16 (b), (c). The resulting object map is shown in Fig. 4.16 (a), demonstrating

that OrcVIO is able to estimate object states from different categories in both indoor and out-

door scenes. This experiment also shows that OrcVIO can handle large illumination changes,
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Figure 4.16. OrcVIO localization and object mapping in an outdoor scene with chairs, bikes and
cars. The estimated sensor trajectory (red curve), semantic landmarks (green dots), and object
ellipsoids (blue for chairs, red for bikes, and black for cars) are shown in (a). Bounding-box and
semantic-keypoint detections are shown for bicycle and car instances in (b) and (c).

transitioning from direct outdoor sunlight to dim lighting inside the parking structure.

In this experiment, we have demonstrated several experiments where multiple object

categories are involved during the mapping process. The extension to full object categories in

YOLO and StarMap is quite easy as well, since only the categorical mean shapes are required.

For any new object class, we only need to obtain the average positions of the 3D semantic

keypoints from the dataset annotations.

4.6 Summary

This chapter introduces the technique of estimating the object pose and shape from the

semantic observations extracted from the 2D RGB image and the coupling with the camera

pose estimation. We first develop the object mesh model and use the differentiable semantic

keypoint and segmentation mask projection models to optimize the object pose and shape as well

as the camera pose. We then present an Object residual constrained Visual Inertial Odometry

(OrcVIO) algorithm that model the objects as ellipsoids. It tightly couple 3D object pose and

shape estimation with online sensor localization. OrcVIO initializes and optimizes the pose and

shape of detected and tracked objects by differentiating through two new optimization terms
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capturing object-feature and bounding-box measurements. The estimated object poses and

shapes aid in real-time incremental multi-state constraint Kalman filtering (MSCKF) over the

visual-inertial sensor states.
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Chapter 5

Conclusions and Future Work

Semantic reconstruction and understanding is undoubtedly an important task, which

can expand the robot’s potential to execute numerous applications. The semantic map should

be accurate, meaningful as well as efficient, scalable to fit the need of mobile robots. This

dissertation discusses the methods of dense semantic map and object-level semantic maps that

boost the robot’s understanding of the environment.

In Chapter 2, we develop TerrainMesh, a metric-semantic mesh that reconstruct the

terrain from the aerial RGB images and sparse depth measurements. The 2-step, initialization

and refinement strategy is proposed for mesh reconstruction and we develop joint 2D-3D feature

extractor and 2D-3D geometric-semantic loss function for the learning-based reconstruction

algorithm. TerrainMesh is an effcient and compact dense semantic mapping algorithm that has

the potential to enhance the aerial UAV ability of the environment monitoring.

In Chapter 3, we develop the object-level semantic map using 3D measurements. We

introduce CORSAIR, a fully Convolutional Object Retrieval and Symmetry-AIded Registration

algorithm. We investigate a 3D sparse fully convolutional neural network to extract both global

and local features for the object point cloud. The global features are used for retrieving the

similar shape from the object database, and the local features are used to generate correspondence

for pose registration with the help of object symmetry. We also introduce ELLIPSDF, a bi-level

object model including a coarse level of ellipsoid and a detailed level of continuous signed
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distance function. We develop the initialization and optimization method for object pose and

shape recovery. The detailed 3D object shape can improve the fidelity of the 3D environment

modeling comparing to the raw 3D measurements and more information like object semantic

category and pose are included.

In Chapter 4, we develop the object-level semantic map from 2D images. We introduce

the object mesh model and its observations model that generates semantic instance mask and

semantic keypoints. We optimize both the object states and the camera poses from the observation

model. We also introduce OrcVIO, Object residual constrained Visual Inertial Odometry. The

object is modeled as an ellipsoid with keypoints and the observation model of the semantic object

bounding box and semantic keypoint is developed. We use the Multi-State Constraint Kalman

Filter (MSCKF) framework to implement the online tightly-coupled object states and camera

poses estimation. This

There are several directions to further improve the semantic mapping works in the

dissertation, which are summarized below.

• Multi-agent collaborative semantic mapping: In this dissertation we develop the seman-

tic mapping method running on a single agent. When the space is large, it is common to

have a team of heterogeneous robot to collaborate for exploration and mapping [213, 181].

The multi-agent semantic mapping tackles the challenges of efficient communication of

semantic information exchange and global consistency between different agents’ observa-

tions.

• Hierarchical semantic mapping: We discuss the dense mesh semantic map and object-

level semantic map. These two forms of semantic map can be combined with meaningful

hierarchical structure. The hierarchical semantic map [152, 203] embeds more relational

information between different objects at different abstract levels which can be useful for

robotics task specification and decomposition.

• Different form of 3D representations for semantic reconstruction: We discuss the
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implicit surface representation of SDF in the dissertation. Another popular implicit 3D

representation is Neural Radiance Field (NeRF) [120] that encode the color and density

field of the 3D scene through the neural network. Extensions of NeRF can include the

semantic labels as well [209, 210, 107]. The NeRF representation have the potential to

model the environment in great details.

• Semantic map with large language model (LLM): Since the release of ChatGPT [136]

by OpenAI, the large language model (LLM) such as GPT series [147, 137] has been

applied to every new domain of task because its astonishing ability to provide useful

semantic information and to generalize to all different areas. Robotics researchers apply

the LLM for tasks like manipulation and planning and search [82, 148, 17]. LLM is

capable of inferring semantic relationships between categories and objects, and some of

the LLM models can ground the semantic concept in the visual images to connect the

language instruction with the visual observations. This provides valuable support for the

semantic mapping and understanding for the robots.

With the better semantic scene understanding and reconstruction technique, the robots

will get closer to be the more powerful assistants in all aspects of the life.
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