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EPIGRAPH

The only true wisdom is in knowing you know nothing.

—Socrates
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ABSTRACT OF THE DISSERTATION

Novel network-based integrated analyses of multi-omics data reveal new insights into

CD8+ T cell differentiation and mouse embryogenesis

by

Kai Zhang

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California San Diego, 2018

Professor Wei Wang, Chair

Professor Pavel Arkadjevich Pevzner, Co-Chair

Advancements in next-generation sequencing technologies have fueled the development of

high throughput profiling assays. The sheer volume of data generated by these experiments grants

us an unprecedented opportunity to deepen our understanding of complex biological systems, but

also raise many computational challenges. With multi-omics data becoming very common in

modern biological research, one of the most urgent tasks is to develop novel algorithms to perform

integrated data analyses of these data. In the thesis, we developed network-based frameworks to

integrate a variety of omics data. We combined the strength of different high throughput assays

xii



and analyzed multi-omics data to infer molecular interactions and build regulatory networks.

Using network-based approaches, we addressed two important biological problems: identifying

protein complexes mediating the formation of chromosome loops and identifying driver TFs in

different biological processes. We further conducted computational and biological experiments

to validate our findings. Our study provides new insights into the processes of CD8+ T cell

development and mouse embryogenesis. The identified driver TFs can be used as the blueprint

for future mechanistic study.
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Chapter 1

General introduction

Network science has drawn a lot of attention during the past two decades, leading to

revolutionary changes in a variety of fields, including computer science, physics, chemistry,

biology, and social science. Data in real life often exhibit structure or connection properties.

Therefore, graphs or networks are natural formulations of many problems across different domains,

leading to broad applications in almost every field of scientific research. The studies of network

topology led tomany intriguing discoveries, such as the small-world[1] and scale-free[2] properties.

These findings pave the way to understand the mechanics of complex systems.

1.1 The applications of graph theory in bioinformatics

In the field of biology, networks have become a major mode of analysis. Generally, most

biological events are not the result of a single molecule but depend on the coordinated effects of

multiple molecules interacting with each other. The network is an intuitive representation of the

interactions or relations between biological molecules or organisms. There is an increasing effort

to organize our understanding of the biological system into different network representations, such

as Protein-Protein interaction (PPI) networks, metabolic pathways, and genetic networks. As the

related biotechnologies quickly advanced, the sheer volume of network data grow exponentially

1



and have become an essential part of scientific research. Particularly the emergence of high

throughput screening technologies, such as the Perturb-Seq[3], enabled us to disrupt hundreds of

genes in thousands of cells in parallel. This kind of experiments provides us with an unprecedented

opportunity for constructing large-scale genetic networks. Besides, a lot of new data is also being

generated by traditional techniques, such as mass spectrometry, chromatin immunoprecipitation

and yeast two-hybrid assay. On the other hand, the data-mining algorithms constantly improve,

allowing more data being extracted and curated from the literature.

To handle the huge amount of currently available network data, a number of databases were

developed to organize and store this information and to provide convenient access to researchers.

KEGG, initiated in 1995, is one of the most popular databases of molecular networks[4]. It stores

molecular interaction, reaction and relation networks representing the systemic functions of the cell

and the organism. Experimental knowledge of such systemic functions is captured from literature

and organized into different forms. Founded in 2001, REACTOME database is another popular

resource for studying biological networks. As an open-source, open access, manually curated

and peer-reviewed pathway database, REACTOME aims at providing intuitive bioinformatics

tools for the visualization, interpretation and analysis of pathway knowledge to support basic

and clinical research. While KEGG and REACTOME mostly focus on direct interactions of

molecules and are more conservative in their curation process, the STRING database includes

both direct (physical) interaction and indirect (functional) interactions, as long as both are specific

and biologically meaningful. It uses computational approaches to derive putative associations

from various sources, including systematic co-expression analysis, detection of shared selective

signals across genomes, automated text-mining of the scientific literature and computational

transfer of interaction knowledge between organisms based on gene orthology. These different

types of databases complement with each other to form entire toolchain for modern network study.

Apart from being used to encode relationships between bio-molecules, graphs are also used

to model complex biological processes and to process big data. Under these scenarios, the network

2



is perceived as a “concept” to provide a theoretical basis for devising bioinformatics algorithms

to tackle different problems. Among different models, probabilistic graphical models become

extremely popular. First, as probabilistic graphical models are very flexible, scalable and are

able to combine heterogeneous sources of data, they offer an appealing framework for addressing

various problems in systems biology. For modeling directional relationships, Bayesian networks

provide a compact representation for expressing joint probability distributions (JPDs) and for

inference. They are becoming increasingly important and have many applications, including

inferring cellular networks[5], modeling protein signaling pathways[6], and data integration[7].

For systems that cannot be represented by a directed network, Markov random field models

provide a means to encode undirected relationships and can represent certain dependencies that a

Bayesian network cannot, such as cyclic dependencies. Markov random field models have broad

applications in analyzing genomics data. For example, one of the most popular chromosome

segmentation tools – ChromHMM[8] – was built upon the hidden Markov model.

Graph theory is a rich source of concepts and algorithms applicable to many different

disciplines. Many biological problems can be converted to graph theory problems. As a result, a

handful of existing algorithms is immediately applicable. For instances, the genome assembly

problem is to aligning and merging fragments from a longer DNA sequence to reconstruct the

original sequence. This problem can be formulated as the Eulerian cycle problem, which is known

to have a linear time solution[9]. The application of graph theory to the genome assembly problem

was a huge breakthrough, as at that time the computational resource was still scarce and the

best algorithm took quadratic time. Cluster analysis is a process of dividing a set of objects into

possibly overlapping subsets, where objects in each subset are considered more similar to each

other than those not in the subset. Cluster analysis is one of the most important components in

bioinformatics analysis and is often the first step of the data-mining process. Cluster analysis can

be formulated as the graph cluster problem, which seeks to a method of dividing the nodes of a

graph into clusters.
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1.2 Leveraging graphs to conduct integrated analyses

The biological research is entering the era of “Big Data”. More and more omics data

are generated and it has become very common to have multi-omics data in a single study. For

example, the ENCODE project[10] has conducted ChIP-Seq, RNA-Seq, whole genome bisulfite

sequencing and ATAC-Seq experiments in parallel in mammalian cells. As a result, there is a

great need to develop new methods to perform the integrated analysis.

As discussed in the previous section, graphs or networks have gradually become a major

player in bioinformatics analysis. It has great potentials for solving the emerging problems in

“Big Data” era. In this thesis, I sought to develop new bioinformatics tools to integrate a wide

range of genomics or epigenomics data to address important biological questions, using graph

theory approaches. In particular, I have presented three studies, illustrating the applications of

novel graph algorithms to different problems in systems biology.

1. Chromatin looping plays a pivotal role in gene expression and other biological processes

through bringing distal regulatory elements into spatial proximity. The formation of chro-

matin loops is mainly mediated by DNA-binding proteins (DBPs) that bind to the interacting

sites and form complexes in three-dimensional (3D) space. Previously, identification of

DBP cooperation has been limited to those binding to neighbouring regions in the proximal

linear genome (1D cooperation). In Chapter 2, we developed a new algorithm based on

Gaussian graphical model to integrates protein ChIP-seq and Hi-C data to systematically

identify both the 1D- and 3D-cooperation between DNA-binding proteins. Our method

allows identification of cooperation between multiple DBPs and reveals cell-type-specific

and -independent regulations. Using this framework, we retrieve many known and previ-

ously unknown 3D-cooperations between DBPs in chromosomal loops that may be a key

factor in influencing the 3D organization of chromatin.

2. Dynamic changes in the expression of transcription factors (TFs) can influence the spec-
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ification of distinct CD8+ T cell fates, but the observation of equivalent expression of

TFs among differentially fated precursor cells suggests additional underlying mechanisms.

In Chapter 3 we profiled the genome-wide histone modifications, open chromatin and

gene expression of naive, terminal-effector, memory-precursor and memory CD8+ T cell

populations induced during the in vivo response to bacterial infection. Integration of these

data suggested that the expression and binding of TFs contributed to the establishment

of subset-specific enhancers during differentiation. We developed a new bioinformatics

method to construct TF regulatory network and use the PageRank algorithm to reveal

key TFs that influence the generation of effector and memory populations. The TFs YY1

and Nr3c1, both constitutively expressed during CD8+ T cell differentiation, regulated

the formation of terminal-effector cell fates and memory-precursor cell fates, respectively.

Our data define the epigenetic landscape of differentiation intermediates and facilitate the

identification of TFs with previously unappreciated roles in CD8+ T cell differentiation.

3. Dynamic changes in the transcriptional regulatory circuit can influence the specification

of distinct cell types. Numerous transcription factors (TFs) have been shown essential

for the rewiring of the genetic network during embryonic development but a systematic

identification of these TFs is still lacking. In Chapter 4, we performed an integrated analysis

of epigenomics and transcriptomics data to reveal key regulators from 2 cells to postnatal

day 0 in mouse embryogenesis. We predicted 3D chromatin interactions including enhancer-

promoter interactions in 12 tissues across 8 developmental stages, which facilitates linking

TFs to their target genes for constructing transcriptional regulatory networks. To identify

driver TFs particularly those not necessarily differentially expressed ones, we developed

a new algorithm, dubbed as Taiji, to assess the global importance of TFs in development.

Through comparative analysis across tissues and developmental stages, we systematically

uncovered TFs that are critical for lineage-specific and stage-dependent tissue specification.

Most interestingly, we have identified TF combinations that function in spatiotemporal
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order to form transcriptional waves regulating developmental progress and differentiation,

which suggests a distributed synchronization mechanism between tissues to orchestrate

embryonic development. Not only does our analysis provide the first comprehensive map

of transcriptional regulatory circuits during mouse embryonic development, the identified

novel regulators and the predicted 3D chromatin interactions also provide a valuable

resource to guide further mechanistic studies.
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Chapter 2

Systematic identification of protein

combinations mediating chromatin looping

2.1 Introduction

The human genome is tightly packaged into chromatin and forms complex structures

of which the functional outputs, such as gene expression, depend on local chromatin states and

chromatin three-dimensional (3D) organization[1–11]. Chromatin loops are formed to bring

distal regulatory elements such as enhancers and their target promoters to spatial proximity. The

formation of chromatin loops is mainly regulated by proteins that bind to the 3D interaction

sites and form complexes[1]. Previous studies have shown that perturbation of the binding

of these proteins could disrupt the loops, which suggests an important role for DNA-binding

proteins (DBPs) in genome organization. Mediators of chromatin loops including CTCF, cohesin

and several transcription factors (TFs) such as GATA1 and KLF1 have been identified[12–16].

Particularly, a recent study has uncovered about 10,000 chromatin loops using kilobase-resolution

Hi-C data and discovered that CTCF and cohesin subunits RAD21 and SMC3 are present in the

majority of the loops[17].
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These studies have shown that the cooperation of multiple DBPs is critical to orches-

trate loop formation. However, there still lacks a systematic method to investigate the role of

combinatorial regulation between DBPs in chromatin loop formation. Previous studies have

focused on identifying DBPs binding to proximal genomic regions[18–21], which is hereinafter

referred to as 1D-cooperation. Despite the great insight provided by these studies in revealing the

combinatorial regulation of DBPs, they could not detect the cooperation between DBPs binding

to distal genomic loci that are localized spatially and form long-range interactions (referred to as

3D-cooperation in this study to be distinct from the 1D-cooperation of DBPs in neighbouring

genomic loci). 3D-cooperation of DBPs is key to mediating chromatin looping, either enhancing

the existing 3D contacts or creating new ones to bring functional elements, such as enhancers, to

their target loci, such as promoters. Despite its importance, no study has thoroughly investigated

the DBPs’ 3D-cooperation and its relationship to 1D-cooperation.

The ENCODE project has generated hundreds of ChIP-seq data sets to map binding sites of

DBPs in multiple cell lines[19, 22, 23]. Recently, kilobase-resolution Hi-C data were available in

two of these cell lines, namely GM12878 and K562[17]. These data sets provide an unprecedented

opportunity to systematically map both 1D- and 3D-cooperation between DBPs. However, it is

a great challenge to analyse this large amount of data and extract cooperation among multiple

rather than pairs of DBPs.

To tackle this challenge and comprehensively catalogue DBP cooperation, we present here

a new model to construct networks that represent both 1D- and 3D-association between DBPs.

Analysing these networks in GM12878 and K562 has revealed complex cooperative relationships

among TFs, histone modifications, chromatin-remodelling enzymes and chromatin architectural

proteins. Through the identification of communities and cliques in the DBP cooperation network,

we have uncovered many DBP interactions in the chromatin loop regions. Intriguingly, many

of these 3D-cooperative DBPs directly interact with one another, which suggests their binding

may be important for loop formation or stabilization in 3D space. Furthermore, we performed
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a comparative network analysis between GM12878 and K562, and revealed cell-type-specific

cooperation between DBPs that are critical for regulating cell-type-specific functions.

2.2 Methods

2.2.1 Data sets.

BAM files of ChIP-seq experiments in K562 and GM12878 were downloaded from the

ENCODE project website[24]. Chromatin loops were downloaded from the study by Rao et

al.[17]. Because only these two cell lines had both DBP ChIP-seq and 5-kb resolution Hi-C data,

we focused on these data sets in this study.

2.2.2 Data preprocessing.

We divided each chromosome into consecutive 1-kb regions. For each protein, we com-

puted the Reads Per Kilobase per Million (RPKM) mapped reads on these regions. The fold

enrichment was calculated using MACS’s algorithm[25] with customized parameters. In par-

ticular, we set 𝜆𝑙𝑜𝑐𝑎𝑙 = 𝑚𝑎𝑥(𝜆𝐵𝐺,𝜆14𝑘,𝜆24𝑘) where 𝜆𝐵𝐺 is the average RPKM of the whole

genome; 𝜆14𝑘 and 𝜆24𝑘 are average RPKM of 14 and 24 kb windows. We used a larger window

size than MACS’s default size and a loose P value (0.01) to call peaks to increase the sensitivity

for detecting broad peaks. For each 1 kb region, if it was called as a peak, we used the fold

enrichment as its ChIP-seq enrichment score; otherwise, a zero score is assigned to that region.

After computing the enrichment scores for every protein, we removed regions with low variation

of scores by requiring the s.d. of scores to be at least 1. This excludes some unwanted artifacts

from our analysis. For instance, regions with low mappability or an abnormally high signal[24].

Next, for each DBP pair we calculated the Spearman’s correlation of ChIP-seq enrichment scores

in the remaining bins as the 1D-correlation score. To compute 3D correlation scores, we first
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downloaded the 3D interaction loops identified in a 5-kb resolution Hi-C study[17]. Next, for

each DBP we computed its enrichment scores on loop regions as follows: suppose we have 𝑛

loops, denoted by 𝐿1,𝐿2,…,𝐿𝑛 and each loop 𝐿𝑖 consists of two interacting loci 𝐿𝑖
𝑎 and 𝐿𝑖

𝑏. To

compute the enrichment score of a given DBP on loop 𝐿𝑖, we first binned 𝐿𝑖
𝑎 into 1-kb regions,

and then took the maximum of ChIP-seq enrichment scores of these bins as the enrichment score

for 𝐿𝑖
𝑎. Likewise, we can compute the enrichment score for 𝐿𝑖

𝑏. Then, given a pair of DBPs

denoted by A and B, for every loop, we first compared the enrichment scores of A on the two

interacting loci. We considered the interacting locus with larger enrichment score of protein A as

A’s primary binding locus, and the other interacting locus as the primary binding locus of protein

B. The enrichment scores of primary binding loci for each protein were then used to compute the

correlation coefficient.

2.2.3 Network construction.

We adapted the GGM to construct the DBP cooperation networks. GGM assumes that

the observations have a multivariate Gaussian distribution with mean m and covariance matrix

Σ. Let Σ−1 be the inverse of covariance matrix. If the 𝑖𝑗th component of Σ−1 is zero, then

variables 𝑖 and 𝑗 are conditionally independent given other variables. Therefore, each non-zero

component represents an edge in the network. To efficiently and accurately estimate the inverse of

the covariance matrix using DBP ChIP-seq data, we employed the Graphical lasso algorithm[26]

and the Copula method[27]. We used a lasso penalty equal to 0.3 in this study. We chose this

value because less than 15% of DBP pairs have a correlation score at least 0.3. To estimate the

false discovery rate, we generated a null model by random shuffling of DBP binding sites to

represent uncooperative DBPs. When we applied our algorithm to this data set, the cutoff we

chose identifies zero cooperation, suggesting our method has a very low false discovery rate.

Because we aimed at identifying DBP interactions, edges with negative correlations were removed

in the network analysis.
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2.2.4 Network analysis.

We used Eppstein’s algorithm[28] for maximal clique searching, which gives an exact

solution in near optimal time. For community detection, we used Newman’s algorithm[29].

2.2.5 Comparing the DBP cooperation network with PPI network.

Protein-protein interaction data was obtained from the BioGrid database[30] version

3.2.99. For each edge formed by node 𝐴 and 𝐵 in a DBP cooperation network, if also present

in the PPI network, it was considered as a direct interaction. Otherwise, we checked whether

there exists a third node in the PPI network that connects to both 𝐴 and 𝐵; if so, this edge was

considered as an indirect interaction. To determine the statistical significance of these overlaps,

we first replaced the nodes in the DBP cooperation network with randomly selected genes from

the PPI network. Next, we counted the direct and indirect interactions in the simulated network.

This process was repeated for 109 times to generate the background distribution, which was then

used to calculate the P values.

2.2.6 Simulated networks.

To generate an Erdős-Rényi random graph, we used the 𝐺(𝑛,𝑝) model. This model

specifies an n-node network, in which each edge is included with a probability 𝑃 independent

from every other edge. We used 𝑃 = 0.2 in this paper, which gives rise to a sparse network. We

follow the procedures given in [27] to generate a Gaussian distributed data set that was used for

constructing the simulated network. We used Genetweaver 3.1 to extract random subnetworks

with different sizes (50 and 100 nodes) from the yeast gene regulatory network provided by the

software. For other parameters, we used the software’s default setting. To draw the receiver

operating characteristic (ROC) curve, we counted the number of true positives, false positives, true

negatives and false negatives. If a predicted edge is present in the true network, it is a true positive,

12



otherwise it is a false positive. Edges that are present in the true network but not identified by the

algorithm are defined as false negatives. True negatives are edges that are not present in either

predicted or true networks.

2.3 Results

2.3.1 Gaussian graphical model

To systematically identify DBP cooperation, we analysed DBP ChIP-seq data using

Gaussian graphical model (GGM)[31]. GGM is an undirected probabilistic graphical model

with the assumption that the data follows a multivariate Gaussian distribution with mean 𝜇 and

covariance matrix Σ. Let Σ−1 be the inverse of covariance matrix. If the 𝑖𝑗th component of

Σ−1 is zero, then variables 𝑖 and 𝑗 are conditionally independent given all other variables in the

network[31]. This important property serves as the foundation for GGM to infer direct interactions

from high-dimensional data. Unlike relevance networks or correlation networks, in which edges

are determined based on marginal correlations, GGM provides a stronger criterion of dependency,

and thus further reduces the false positive rate. However, a great limitation of classic learning

methods for GGM is the lack of sparsity in the resulting graph. A dense graph not only complicates

downstream analysis but also raises the issue of overfitting the data. To cope with this, Friedman

et al.[26] proposed an efficient algorithm, named graphical Lasso, to introduce sparsity to the

GGM. Recently, Liu et al.[27] developed a data transformation method called Copula that can

be used with the graphical Lasso algorithm to relax the normality assumption of GGM. Based

on these recent advances, we developed a new framework to systematically identify cooperation

between hundreds of DBPs.

Before applying the GGM to the DBP ChIP-seq data, we assessed its performance using

synthetic data. First, we generated an Erdős-Rényi random graph as our ground truth (see

Methods). To generate samples according to the simulated graph, we constructed a covariance
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matrix by assigning each 𝑖𝑗th component a non-zero covariance if node 𝑖 and 𝑗 were connected in

the simulated graph. All other components were then set to zero. We next drew samples from

a multivariate Gaussian distribution parameterized by a zero mean vector and the constructed

covariancematrix. These samples were used as input for network re-construction. As a comparison,

we selected ARACNE[32], a popular algorithm for constructing gene regulatory networks that

employs an information theory approach to infer interactions from gene expression data. We

generated 10 networks with 50 nodes and another 10 networks with 100 nodes. When applying

both methods to these data sets, we observed a superior performance of GGMwith an averageAUC

of 0.923, which is significantly higher thanARACNE (AUC = 0.822) (Fig. 2.1a). This simulation

showed that, when experimental data follows a Gaussian distribution, the GGM can precisely

reconstruct the underlying graphical model. However, the real data can be quite noisy and may not

be Gaussian distributed. To cope with this, we incorporated the Copula algorithm[27] and carried

out a further benchmark to evaluate its performance on a more noisy data set. To produce synthetic

gene expression data sets, we used GeneNetWeaver 3.1[33], an in silico simulator that employs

a dynamic model to simulate gene regulatory networks. The ground truth were subnetworks

taken from yeast gene regulatory network with size 50 and 100, respectively. For each size, we

performed 10 different simulations. Again, GGM outperformedARACNE (averageAUC of 0.695

versus 0.615; Fig. 2.1b).

It is worth noting that GGM is much faster than ARACNE when the sample size is large.

The time complexity for ARACNE is 𝑂(𝑁3 +𝑁2𝑀2), where 𝑁 is the number of variables or

nodes in the network, 𝑀 is the number of samples; as it scales with 𝑀2, it is not suitable for

our application where we have more than 10,000 samples (the number of ChIP-seq peaks). In

contrast, GGM, with a time complexity 𝑂(𝑁3 + 𝑁2𝑀), can easily handle a large number of

samples. In practice, we observed that the GGM was 50-100 times faster than ARACNE on the

synthetic data sets (Table 2.1).
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Figure 2.1: The performance of the GGM is consistently better thanARACNE. Each plot shows

the average curve from 10 independent simulations. (a) ROC curve for samples generated from

random networks. For each simulation 500 (left) or 1,000 (right) samples were generated from

a network of 50 (left) or 100 (right) nodes. (b) ROC curve for samples generated from yeast

sub-networks. For each simulation 500 (left) or 1,000 (right) samples were generated from a

network of 50 (left) or 100 (right) nodes. (c) Workflow of the DBPnet pipeline.
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Table 2.1: Speed comparison of GGM and ARACNE on data sets with different sizes.

Algorithm Number of

nodes

Number of

samples

Average running time and standard de-

viation (second)

ARACNE

50

100 0.44(0.001)

200 1.6(0.001)

400 6.3(0.003)

100

100 1.7(0.002)

200 6.5(0.005)

400 25(0.03)

200

100 6.8(0.004)

200 26(0.005)

400 102(0.23)

GGM

50

100 0.03(0.002)

200 0.07(0.001)

400 0.14(0.001)

100

100 0.09(0.002)

200 0.17(0.001)

400 0.33(0.002)

200

100 0.34(0.008)

200 0.49(0.002)

400 0.89(0.002)

2.3.2 Constructing the DBP cooperation network.

We applied the GGM framework to DBP ChIP-seq and Hi-C data, aiming to systematically

detect DBP cooperation (Fig. 2.1c). We considered both 1D (DBPs that bind to loci in the nearby

linear genome) and 3D (DBPs that bind to loci that are spatially close but linearly distal in the

genome) cooperation between DBPs. We first computed 1D and 3D correlation scores for each

pair of DBPs separately using the 84 ChIP-seq data sets, including six histone modifications

(H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3) as well as chromatin

loops called by the 5-kb resolution Hi-C data in a lymphoblastoid cell line GM12878[17] (see

details in Methods). We then merged 1D and 3D correlation matrices by keeping the larger

correlation score at each entry. This matrix was used to construct the GGM, which represents the

DBP cooperation network.
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The DBP cooperation network (Fig. 2.2a) contains 484 associations between 84 DBPs.

An edge between two proteins may indicate either a direct physical interaction or a co-occurrence

of binding sites without direct interaction. To examine whether our model can recover protein-

protein interactions (PPI), for each edge we searched for supporting evidence from the public

PPI databases (Methods). Remarkably, 11% of edges (empirical P value is 1×10−9) in the GGM

network are also present in the PPI network (Fig. 2.2b). Another 80% of the associated DBPs are

separated by one protein in the PPI network (the intermediate protein may not be analysed by

the ChIP-seq experiments). This evidence strongly supports that the DBP cooperation recovered

by our method is reliable and likely represents physical contacts. Furthermore, we found that

11.5% and 11.5% of 3D-dominant and 1D-3D cooperative edges, respectively, are coincident with

protein-protein interactions, which is much higher than the 1D-dominant edges (1.8%); 94.6%,

63.5% and 79.4% of 1D-dominant, 3D-dominant and 1D-3D cooperative DBP pairs are separated

by one protein in the protein-protein interaction network, respectively. This observation suggests

that our analysis did identify physical interactions in the 3D space and many 1D-dominant ones

may be formed through indirect interactions.

To characterize the topological properties of the DBP cooperation network, we plotted its

node degree distribution. In agreement with other types of biological networks, we observed that

the node degree distribution of the DBP cooperation network follows a power law, reflecting its

scale-free property. A prominent feature of scale-free networks is the existence of hubs, which

are the highly connected nodes that may be critical for network stability. To identify hubs, we

ranked the nodes in our network by two popular centrality metrics – node degree centrality and

eigenvector centrality. Node degree centrality for a given node is simply the number of nodes

that link to the given node, while eigenvector centrality reflects both the node degree and its

connection with other well-connected nodes. We ranked the nodes by both their node degree and

eigenvector centrality. The results show that EP300, CREB1 and EBF1 are the top three DBPs

that have the best average rank (Fig. 2.2a). EP300 is an important cofactor that cooperates with
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many TFs[34, 35] to perform a variety of biological functions. CREB1 plays a central role in

the immune system through binding to the c-AMP response element, a ubiquitous DNA motif,

to regulate gene transcription[36, 37]. It was not surprising that these two general DBPs would

be found as hubs. Previous studies showed that EBF1 is mainly expressed in B-lymphocytes

(GM12878 is a lympoblastoid cell line) and is pivotal for maintenance of B-cell identity[38].

In the DBP cooperation network, EBF1 is linked to many important transcriptional regulators,

including general activators such as EP300 and SP1, as well as B-lymphocyte-specific TFs such

as PAX5, TCF12 and BCL11A ([39–42]). By analysing the topology of the DBP cooperation

network, we uncovered TFs that are crucial for cell functions.

2.3.3 Identifying 1D and 3D cooperation between DBPs.

DBPs can cooperate through 1D or 3D interactions, which can be determined for each DBP

pair using the constructed network. In this study, we define an edge as 1D or 3D cooperation if the

1D or 3D correlation score is larger than a pre-selected cutoff (0.3, see Methods). In GM12878,

we found roughly the same numbers of 1D and 3D edges, 413 and 417 respectively. We noticed a

great overlap between 1D and 3D edges (Fig. 2.2c). We thus labelled these DBP cooperations as

1D-dominant, 3D-dominant or 1D-3D cooperative.

A 1D-dominant association cooperation between two DBPs represents a frequent co-

occurrence in linear space but not in the long-range interacting loci that form loops in the 3D

space. In this category, we recovered some previously known interactions such as the RNA Pol

II-TAF1 interaction[43] (Fig. 2.2d). Interestingly, we found 71 3D-dominant edges in GM12878.

Most of these edges show weak 1D correlations but have significantly larger 3D correlations. For

instance, the 1D and 3D correlation scores of EP300-MYC are 0.127 and 0.348 (z-score: 0.081

and 1.301), respectively. Indeed, a number of independent studies have shown that EP300 and

MYC can cooperate to regulate gene transcription and the physical interaction between them has

been previously reported[44, 45]. We also identified novel 3D DBP cooperation. For example,
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Figure 2.2: Constructing the DBP cooperation network in GM12878. (a) DBP cooperation

network in GM12878, with network hubs (EP300, EBF1, CREB1) being highlighted. (b)

A significant portion of DBP cooperation is supported by evidence of direct protein-protein

interactions. (c) The majority of DBP cooperation is a mixture of 1D and 3D cooperation. (d)

An example of 1D-cooperation. (e) An example of 3D-cooperation. (f) An example of mixed

cooperation. (g) Disease-associated genotype variations are enriched in 1D-dominant (𝑛 = 67),
3D-dominant (𝑛 = 71) and 1D-3D cooperative (𝑛 = 346) sites.
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EBF1 is an important TF in B lymphocytes, and Egr-1 is one of the key transcriptional regulators

induced on B-cell antigen-receptor activation[46]. Both EBF1 and Egr-1 have crucial roles in

B-cell development and differentiation. However, the interplay between these two proteins has

not been reported. In our network, we found a 3D-dominant edge between EBF1 and Egr-1 (Fig.

2.2e), which suggests that they may form long-range loops to regulate cell-type-specific genes

(4.4% of loop regions contain peaks of both EBF1 and Egr-1). Therefore, our framework provides

a systematic way to uncover 3D cooperation between DBPs that are otherwise impossible to

identify using previous approaches. The 1D-3D cooperation is formed between DBP pairs with

both 1D and 3D associations. Most associations fall into this category. A well-known example

is CTCF-RAD21 (Fig. 2.2f). While 1D-dominant cooperation can be identified by previous

approaches[19], the last two categories of DBP cooperation can only be identified through the

integration of DBP ChIP-seq and Hi-C data, which highlights the advantage of our method.

To further confirm the importance of DBP cooperation, we analyzed the enrichment of

genotype variations in regions bound by cooperative DBPs. The disease-associated genotype

variations were downloaded from the NHGRI-EBI GWAS database[47]. Given two DBPs 𝐴

and 𝐵, if they are 1D-cooperative, we considered sites bound by both 𝐴 and 𝐵 as foreground

regions. If 𝐴 and 𝐵 are 3D-cooperative, we first identified chromatin loops where one of the two

anchors is bound by 𝐴 and the other is bound by 𝐵. Within these loops, we identified binding

sites of 𝐴 or 𝐵 as the foreground. If 𝐴 and 𝐵 are 1D- and 3D-cooperative, we considered only

those loops for which each of the two anchors contain the binding sites of both 𝐴 and 𝐵, and

these sites are used as the foreground. In all cases, background are the binding sites of 𝐴 or 𝐵

that are not in the foreground. We then calculated the percentage of regions containing genotype

variations for foreground and background, and took the ratio as the genotype variation enrichment.

In Fig. 2.2g, we showed that the vast majority of DBP cooperation are more enriched with

disease-associated genotype variations. We performed the Mann-Whitney U-test to compare the

significance level of enrichments of 1D-dominant, 3D-dominant and 1D-3D cooperative DBPs
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with that of uncooperative DBP pairs, the P values are 1.6×10−3, 5.2×10−28 and 2.0×10−45,

respectively. These results suggest that DBP cooperation has important functional implications in

a variety of diseases. Therefore, we anticipate that the binding sites of cooperative DBPs can be

used to prioritize genotype variations to identify causal associations.

2.3.4 Identifying DBP communities.

Modularity is an important property of biological networks. Characterization of the

modularity in DBP cooperation networks can illuminate how multiple DBPs cooperate to carry

out complex regulation. Modularity can be studied at different levels. For instance, cliques

highlight local modules in the network while community structure is a more global view of the

modularity. Communities are groups of nodes in a network that are more densely connected

internally than with the rest of the network[29]. In other words, community structure is a partition

or clustering of the nodes in a network. We applied the community detection algorithm[29] to the

DBP network in GM12878, and the nodes are separated into four communities (Fig. 2.3a). From

the community structure, an immediate observation is the existence of a very small community

(yellow) that is formed by only five proteins, namely CTCF, RAD21, ZNF143, SMC3 and YY1.

Intriguingly, all these five proteins are important in mediating chromatin looping[17, 48, 49],

suggesting that a major function of this community may relate to chromatin structure organization.

This observation suggests that DBPs in the same community are functionally cooperative, and the

communities in the DBP network may have different biological functions.

To reveal the functions of a particular community, for each protein in the community

we analysed its ChIP-seq peaks. We then ranked genomic loci by the number of proteins that

bind to them and selected the top 5,000 loci as input to GREAT analysis to search for enriched

GO terms. We found that the green community is linked to mRNA metabolic processes and

translation-related functions. The same analysis showed that the cyan community is also enriched

with similar GO terms. Interestingly, these two communities share 3,248 out of the 5,000 loci used
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in GREAT analysis despite being segregated in the network. A closer examination of these two

communities revealed distinct protein composition. For instance, all the six histone modifications

as well as RNA polymerase II belong to the green community, suggesting its pivotal role in gene

transcription. In contrast, the cyan community contains numerous proteins, including ESRRA,

BRCA1, NRF1, ETS1 and STAT3, that are involved in the oestrogen-signalling pathway.

Furthermore, GREAT analysis of binding sites of DBPs in the red community revealed that

“immune response”, “leukocyte activation” and “lymphocyte activation” are the most enriched

GO terms. These terms are highly specific to the B cell, suggesting that this community is crucial

in determining cell-type specificity. Indeed, many proteins in this community are known to be

important for immune system development, such as STAT5A[50], BATF[51], BCL3[52] and

RELA[53].

2.3.5 Identifying potential DBP complexes.

On a finer scale, the modularity of a network is revealed by cliques. A clique is a complete

sub-graph in which every pair of nodes is connected. Intuitively, DBPs that form a clique in

the network are more likely to function as a complex. Undoubtedly, the identification of such

complexes is crucial for understanding the mechanisms of transcriptional regulation. Therefore,

we searched for maximal cliques in the network and identified 220 cliques in GM12878. We

ranked DBP cliques by their average correlation scores for each DBP pair. We observed that

edges in most of the top cliques are associated with high 1D and 3D correlation scores, which

suggests that they are likely to form complexes mediating chromatin loop formation. Figure 2.3b

shows the top three highest ranked cliques. Next, we checked the percentage of shared peaks in

the union of all DBP peaks and identified the loops that overlap with these shared peaks. As a

comparison, for each 𝑘-component DBP clique, we randomly selected 𝑘 DBPs and did the same

analysis. We took 50,000 samples and used them as a null model for enrichment and empirical P

value calculation. As a result, all the DBPs in the cliques share a significant amount of peaks that
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occur in loops (Table 2.2), which confirmed the co-occurring bindings of the DBPs in a clique.

Table 2.2: The top 3 most frequently occuring DBP cliques. The central column gives the

number of regions bound by all DBP members in a clique, the percentage of regions bound

by all DBP members, their fold enrichment over background and the empirical P values. The

right column gives the number of loops that are overlapped with the DBP-binding sites, the

percentage, the fold enrichment over background and empirical P values.

DBP clique No. of sites/pct./enrich-

ment (P value)

No. of overlapped

loops/pct./enrichment

(P value)

CTCF, RAD21, SMC3,

ZNF143

13,829/21.9%/8.8 (4.0e-5) 5,668/47.2%/30.5 (<2.0e-5)

PML, FOXM1, MTA3,

STAT5A, CEBPB, RUNX3

2,195/3.1%/16.8 (1.8e-3) 388/3.2%/16.3 (5.2e-4)

MAX,MAZ,MXI1, CHD2,

BHLHE40

2,900/8.8%/24 (8.0e-5) 501/4.2%/12.5 (1.1e-3)

The top-ranked clique is CTCF-RAD21-SMC3-ZNF143. RAD21 and SMC3 are compo-

nents of the cohesin complex. Cohesin is a multi-subunit protein complex and plays an essential

role in sister chromatid cohesion and chromosome segregation during cell division[54]. Cohesin

is also crucial for regulating gene expression and mediating chromatin long-range interactions[55].

Cohesin-dependent chromatin interactions are usually mediated by the cooperation of cohesin

and CTCF[49]. The involvement of ZNF143 in this complex has also been reported[48]. ZNF143

is believed to provide sequence specificity for chromatin interactions[56]. Overall, our analysis

successfully recovered this important and well-characterized loop-forming complex.

The other two cliques, PML-FOXM1-MTA3-STAT5A-CEBPBRUNX3 and MAX-MAZ-

MXI1-CHD2-BHLHE40 (Fig. 2.3c) have not been reported. STAT5A and RUNX3 are two of

the major transcription factors that play essential roles in lymphocyte development. The physical

interaction between STAT5 and RUNX3 has been reported[57]. Moreover, CEBPB binds to

RUNX2 that has been shown to be associated with RUNX3[58, 59]. To investigate the function

of this module, we extracted all loci bound by these six DBPs and performed GREAT analysis.
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The most significant GO terms are “immune response”, “leukocyte activation” and “lymphocyte

activation”. These results suggest that this module may play important roles in the development

of lymphocytes.

The functions of the MAX-MAZ-MXI1-CHD2-BHLHE40 clique are more general. The

enriched GO terms for their binding sites are “ribonucleoprotein complex biogenesis”, “nuclear-

transcribed mRNA catabolic process ribosome biogenesis” and “translation”. The interaction

between MAX andMXI1 is well studied[60] but interactions between other proteins have not been

reported. However, the functions of these proteins are highly related. For example, BHLHE40

is a repressor that can interact with and recruit HDACs, which suggests a role for BHLHE40 in

chromatin remodelling. CHD2 is also a chromatin remodeler. These observations suggest that

DBPs in this clique may act together to alter chromatin states and regulate gene translation.

2.3.6 Comparative analysis of DBP cooperation networks.

DBPs have different cooperative modes in different cells. To perform a comparative

analysis of the networks in different cell types, we focused on 68 proteins for which ChIP-seq

data sets are available in both K562 and GM12878, and constructed TF cooperation networks in

these two cell types.

To find cell-type-specific DBP cliques, we first identified cell-type-specific edges in the

68-node networks. We then searched for cliques in both GM12878- and K562-specific networks

that consist of edges present in one but not the other cell line. We found 74 and 7 cell-type-specific

cliques for GM12878 and K562, respectively. Cell-type-specific cliques shed light on how cells

achieve transcriptional specificity through the combinatorial regulation of DBPs. For example,

STAT5A is a member of STAT protein family. It is activated by a number of cytokines and plays a

central role in the development of many different organs. However, how STAT5A cooperates with

other DBPs to carry out cell-typespecific regulation is largely unknown. Our analysis showed that

STAT5A, together with MYC and RCOR1, forms a clique in K562, which is absent in GM12878.
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MYC is an oncogene and has been shown to play a critical role in leukaemia formation[61, 62].

STAT5A-MYC cooperation may be important to maintain the state of leukaemic cells. To further

characterize the functions of the STAT5A-MYC-RCOR1 clique, we performed GREAT analysis

on loci bound by all the three proteins in K562 and identified functions specific to leukocyte, such

as “leukocyte degranulation”, “regulation of interleukin-2 secretion” and “mast cell activation”

(Fig. 2.3d). These functions are drastically different from those enriched in GM12878 where

STAT5A is associated with BCLAF1, SRF, CREB1 and SP1; GREAT analysis on the shared

peaks suggests this clique is involved in lymphocyte specific functions (Fig. 2.3e).

Next, we sought to identify common DBP cliques in GM12878 and K562. First, we

extracted a common network using edges shared by the two networks. We then searched for

cliques in this network. We identified CTCF-RAD21-SMC3, MAX-MYC-MAZ-CHD2, EP300-

H3K4me1-H3K4me2 and STAT5A-CEBPB-PML as top-ranked cliques (Fig. 2.3f). CTCF-

RAD21-SMC3 interaction is known to be conserved across different cell types and it is not

surprising that this clique is shared between the two cells. In the MAX-MYC-MAZ-CHD2 clique,

MAX-MYC-MAZ is also a well-known complex that is found in multiple cell lines but their

interaction with CHD2 has not been reported. The involvement of the chromatin-remodelling

gene CHD2 in the MAX-MYC-MAZ complex suggests MAX-MYC-MAZ may utilize CHD2 to

modify chromatin structure and alter gene expression. EP300-H3K4m1-H3K4me2 represents an

enhancer’s signature, and has been found in many cell types. In the clique of STAT5A-CEBPB-

PML, there is evidence for the STAT5A-CEBPB interaction: STAT5A was demonstrated to

cooperate with CEBPB to regulate gene transcription[63]; STAT5A can induce deacetylation of

CEBPB[64]. Their interaction with PML is less well-studied but STAT5 is shown to be activated

by the PML/RARa fusion protein in acute myeloid leukaemia[65]. These common cliques in both

GM12878 and K562 indicate their cell-type-independent cooperation.

We next investigated whether these common cliques bind to the same loci in the two cells.

For each clique, we identified the sites bound by all the member DBPs and counted how many of
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them are shared between the two cell types. We observed that the CTCF-RAD21-SMC3 clique

shared 13,960 (51.3%) common binding sites in K562 and GM12878 (Fig. 2.3f), which is in

agreement with the general roles of CTCF and the cohesin complex in stabilizing loops[17]. The

MAX-MYC-MAZ-CHD2 clique shows moderate conservation with 729 (15%) common binding

sites across the two cell types. In contrast, the binding sites of P300-H3K4me1-H3K4me2 and

STAT5A-CEBPB-PML are highly cell-type-specific. Since P300-H3K4me1-H3K4me2 mark

active enhancers and enhancers are highly cell-typespecific, it is understandable that there are

only 62 (1.2%) P300-H3K4me1-H3K4me2 peaks shared across cell types. The fact that only a

small percentage (2.4%, 117 sites) of STAT5A-CEBPB-PML sites are shared between GM12878

and K562 is surprising. To investigate the reason why STAT5A-CEBPB-PML has distinct binding

profiles in the two cell types, we first analysed the enriched GO terms for the sites bound by all

three DBPs in K562 and GM12878, respectively. Enriched GO terms in each cell type are highly

specific: the top terms in GM12878 are “immune response” and “lymphocyte activation”; sites in

K562 are enriched with GO terms such as “platelet activation” and “erythrocyte differentiation”,

which are highly specific to K562.

The above analyses show that the same DBPs can bind to different loci to regulate cell-type-

specific functions. There are several possible reasons for such cell-type-specific binding, such as

differential accessibility of chromatin, DBPs recognizing celltype- specific motifs[66], and DBPs

partnering with different cofactors. To understand the differential binding of the STAT5A-CEBPB-

PML clique, we identified their cell-specific partners by examining the binding peaks of all the

available ChIP-seq data in the regions bound by STAT5A-CEBPB-PML in GM12878 and K562

(Fig. 2.4a, b). It is obvious that the co-occurring DBPs are very different in the two cell types:

RUNX3, BCL11A, BATF in GM12878 compared with TEAD4, TAL1, GATA2 in K562. To assess

the contribution of cofactors to such cell-type-specific binding, for each potential cofactor we

used its ChIP-seq peaks to discriminate binding regions of STAT5A-CEBPB-PML in GM12878

and K562. The top 12 TFs that have best discriminative accuracy are RUNX3, TEAD4, TAL1,
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BCL11A, BATF, IRF4, PAX5, POU2F2, BCL3, GATA2, MYC and EBF1. Strikingly, either

RUNX3 or TEAD4 alone can achieve an over 99% accuracy, which is consistent with their distinct

binding patterns in Fig. 2.4. When the binding sites of these 12 TFs were used together to train

a logistic regression model, we achieved a 100% accuracy rate for discriminating the STAT5A-

CEBPB-PML binding regions in the two cell lines. Therefore, the cell-type-specific binding of

this DBP clique can be explained by its partnership with different cofactors. Furthermore, we

observed that all 12 TFs except MYC are differentially expressed in the two cell types, suggesting

that the cell-type-specific binding of this DBP clique is largely due to cell-type-specific expression

of cofactors. Because of the limited number of ChIP-seq experiments, possible partners might

not be profiled. Therefore, we performed de novo motif analysis using MEME-ChIP[67] in

STAT5A-CEBPB-PML sites and then matched the found motifs to the known ones. Clearly, the

de novo motifs found in K562 and GM12878 were very different. Encouragingly, the motifs of

several co-factors identified from ChIP-seq experiments were also retrieved from the de novo

motif analysis. These results suggest that the STAT5A-CEBPB-PML complex indeed has different

regulatory mechanisms in different cell types. To further interrogate the regulatory mechanisms

of their cooperation, we used Spamo[68] to find spacing constraints between de novo motifs. As a

result, in GM12878 we found two de novo motifs, corresponding to STAT5A and MEF2, showing

a statistically significant spacing constraint with the MEF2 motif occurring 13 bp downstream

of the STAT5 motif (Fig. 2.4c). This finding is new as there is no previous report about the

partnership of STAT5A and MEF2. We also found, in K562 the TAL1::GATA1 motif frequently

appears upstream of RUNX1 sites at a distance of 38 bp. GATA and RUNX usually cooperate

with each other and form a cis-regulatory module[69, 70]. Therefore, our analysis has identified

both new and known spacing constraints between TFs.
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Figure 2.4: CEBPB-PML-STAT5A cooperates with different DBPs in GM12878 and K562. (a)

DBP-binding profile (left) and enriched de novo motifs (right) in 2468 CEBPB-PML-STAT5A-

binding sites in GM12878. (b) DBP-binding profile (left) and enriched de novo motifs (right)

in 2620 CEBPB-PML-STAT5A-binding sites in K562. (c) Enriched spacing between de novo

motifs found in CEBPB-PML-STAT5A sites in K562 and GM12878.
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2.4 Discussion

We present here a first systematic search of DBP complexes mediating chromatin loop

formation using a novel framework. Our method can identify both 1D and 3D cooperation between

DBPs. Many of the identified cooperations are likely a result of physical interactions as most of

the edges in the DBP cooperation network are supported by the PPI data. Our results showed that

3D-cooperation between TFs is ubiquitous, indicated by 86% of identified associations having

strong 3D correlation scores, which can only be discovered by integrating DBP binding and

chromatin structure data. The 3D-cooperation most often accompanies 1D-cooperation as the

majority (71%) of DBP cooperation is a mixture of 3D and 1D events. Furthermore, we observed

enrichment of disease-associated genotype variations in DBP cooperative binding sites, which

suggests the functional importance of DBP cooperation.

Identification of cooperation between multiple DBPs has been a challenging problem.

Combinatorial approaches are limited to consider cooperation between a small number of DBPs

because of the exponential increase of the possible combinations. In contrast, our model can easily

search combinatorial cooperation in thousands of DBPs. By identifying modules and cliques in

the network, we have uncovered closely collaborated DBPs, particularly those associated through

3D interactions in chromatin loops that may be crucial for loop formation or stabilization.

Our comparative analyses between GM12878 and K562 reveals different mechanisms of

achieving cell-type specificity: using different combinations of DBPs or using the same protein

complex but collaborating with different partners. Interestingly, we also found spacing constraints

between the binding sites of certain partners, which implies higher-order regulatory rules for

not only 1D but also 3D DBP cooperation. One major limitation of this work is that it relies on

high resolution Hi-C data that is only available in a limited number of cell types. Furthermore,

the chromatin loops used in this project are taken directly from the study of Rao et al.[17] that

were defined using very conservative criteria. Additional loops might be identified using less
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conservative criteria or other technologies. However, as the sequencing technology rapidly

evolves, these limitations will be overcome by the availability of more and more ChIP-seq and Hi-

C data at even higher resolution. In conclusion, our model provides a powerful tool for integrative

analysis of DBP binding and chromatin structure data in different cell types, which will facilitate

the uncovering of the molecular mechanisms for transcriptional regulation and 3D chromosome

organization.

Chapter 2, in full, is a reprint of the material as it appears in Systematic Identification of

Protein Combinations Mediating Chromatin Looping. Zhang, Kai; Nan Li, Richard I. Ainsworth,

Wei Wang. Nature Communications 2016. The dissertation author was the primary investigator

and author of this paper.
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Chapter 3

Epigenetic landscapes reveal transcription

factors that regulate CD8+ T cell

differentiation

3.1 Introduction

In response to infection, naive CD8+ T cells differentiate into a heterogeneous population

of pathogen-specific effector CD8+ T cells. While the majority of these T cells undergo apoptosis

after resolution of the infection, a small fraction persists as memory cells and provide lasting

protection against re-infection[1]. Published studies have demonstrated that commitment to the

effector or memory CD8+ T cell fate occurs early after infection, and differential expression

of the activation marker KLRG1 (“killer-cell lectin-like receptor G1”) and cytokine receptor

IL7R can be used to distinguish two effector subsets with distinct memory potential: terminally

differentiated effector (TE) (KLRG1hiIL7Rlo) CD8+ T cells and memory-precursor effector (MP)

(KLRG1loIL7Rhi) CD8+ T cells[2, 3]. Numerous TFs have been identified as critical regulators of

CD8+ T cell fate, including T-bet, BLIMP1, ID2, IRF4 and ZEB2 for TE and effector populations;
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and TCF1, EOMES, ID3, E proteins, BCL6 and FOXO1 for MP and memory populations[2–5].

Notably, not all these factors exhibit differential expression in the TE subset relative to their

expression in the MP subset, which suggests that additional mechanisms contribute to their activity

in promoting cell fates. Furthermore, how these TFs function within a coherent regulatory network

is unknown, and additional TFs relevant to CD8+ T cell differentiation remain unidentified.

We reasoned that integrated analysis of the expression and binding of TFs and expression

of their target genes would provide additional insights for the identification of TFs with previously

unappreciated involvement in CD8+ T cell differentiation. The ATAC-seq approach (assay for

transposase-accessible chromatin with high-throughput sequencing) has been used to globally

probe open chromatin to map TF-binding regions with high genomic resolution with a require-

ment for minimal material[6, 7]. By scanning TF-binding motifs within accessible chromatin

regions, it is possible to infer the binding of hundreds of TFs and identify potential gene targets

of these TFs simultaneously, which has previously been technically impossible to achieve[8].

ATAC-seq has proven powerful for pinpointing TF-binding sites within regulatory elements

characterized by active epigenetic marks such as promoters marked by trimethylation of histone

H3 at Lys4 (H3K4me3) and enhancers associated with monomethylation of histone H3 at Lys4

(H3K4me1) and acetylation of histone H3 at Lys27 (H3K27ac)[9–11]. Additionally, trimethy-

lation of histone H3 at Lys27 (H3K27me3) is associated with gene repression[10]. Published

studies combining ATAC-seq and analysis of histone modifications have facilitated the prediction

of TFs and enhancers that define tissue-specific macrophages and of lineage-determining TFs in

hematopoiesis[12, 13]. In naive CD8+ T cells, co-deposition of H3K4me3 and H3K27me3 at

promoter regions is a signature of genes encoding products important for cellular differentiation,

suggestive of an epigenetic mechanism underlying CD8+ T cell differentiation[14, 15]. However,

those studies focused exclusively on promoters. Accumulating evidence suggests that enhancers

also have a key role in “fine-tuning” gene expression, providing better specificity than promot-

ers[12, 16]. However, the enhancer landscapes important for the differentiation of effector and
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memory CD8+ T cells remain largely unknown.

Here we characterized the epigenetic landscapes of naive, TE, MP and memory CD8+

T cells generated during bacterial infection to identify both enhancers and promoters important

for CD8+ T cell differentiation. Using ATAC-seq to identify accessible regulatory regions, we

predicted TF candidates and further constructed a transcriptional-regulatory network for each

subset. To facilitate the identification of key TFs, we developed a new bioinformatics method

using the PageRank algorithm to rank the importance of TF in each regulatory network. We

identified TFs known to be central to CD8+ T cell differentiation and TFs not previously associated

with specification to the CD8+ T cell fate. Among those, we experimentally confirmed that the

TFs YY1 (“yin and yang-1”) and NR3C1 (“nuclear receptor subfamily 3 group C member 1”; a

glucocorticoid receptor) promoted the TE cell phenotype and MP cell phenotype, respectively.

Together our results yielded a comprehensive catalog of the regulatory elements of CD8+ T

cells and revealed unexpected regulators that control the fate of CD8+ T cells. Furthermore, our

computational framework can be applied generally to any cell or tissue type to delineate regulatory

networks and identify biologically important TFs.

3.2 Methods

3.2.1 Mice, cell transfer, infection and drug treatment.

All mice were maintained in specific-pathogen-free conditions according to the instruc-

tions of Institutional Animal Care and Use Committee (IACUC) of the University of California,

San Diego (UCSD). OT-I mice (specific for OVA amino acids 257–264)–MHC H2-Kb), Tbx21-/-,

CD45.1+ congenic and C57BL/6J mice were either bred at UCSD or received from The Jackson

Laboratory. We transferred 5×103 OT-I CD8+ T cells into congenically distinct mice by intra-

venous (i.v.) injection and then infected mice intravenously with 5×103 colony-forming units

of L. monocytogenes expressing OVA (Lm-OVA) 1 d later. For T-bet-deficient experiments, we
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co-transferred 1×104 Tbx21+/+ OT-I CD8+ T cells and Tbx21-/- OT-I CD8+ T cells into host mice

and then infected the mice intravenously with 5 × 103 colony-forming units of Lm-OVA. For

drug treatment, dexamethasone (Sigma-Aldrich) was dissolved in DMSO and diluted in PBS and

then administrated to mice by intraperitoneal (i.p.) injection at 10 mg/kg daily after i.v. infection

with 5×103 colony-forming units of Lm-OVA.

3.2.2 Antibodies and flow cytometry.

Antibodies to KLRG1 (2F1), CD127 (A7R34), CD8 (53-6.7), CD45.1 (A20-1.7), CD45.2

(104), CXCR3 (CXCR3-173), CD27 (LG-7F9), T-bet (4B10) and BCL6 (K112-91) were pur-

chased from eBioscience. Antibodies to FOXO1 (C29H4), TCF1 (C63D9), IFN-𝛾 (XMG1.2) and

TNF (MP6-XT22) were from Cell Signaling Technology. All antibodies for flow cytometry were

used at a dilution of 1:200, except BCL6, used at a dilution of 1:50. Antibodies for ChIP-seq,

to H3K4me3 (Ab8580), H3K4me1 (Ab8895) and H3K27ac (Ab4729), were fromAbcam. An-

tibody to H3K27me3 (07-449) was from Millipore. All antibodies for ChIP-seq were used at a

concentration of 5 𝜇g per 2×106 cells. For intracellular staining of cytokines, splenocytes were

in vitro restimulated with 1 𝜇g/ml OVA peptide (SIINFEKL) with Protein Transport Inhibitor

(eBioscience) for 4 h and then fixed and permeabilized using BD cytofix/cytoperm kit (BD Bio-

sciences). FOXP3-transcription factor staining buffer kit (eBioscience) were used for intracellular

staining of transcription factors. For intracellular staining of shRNA-transduced cells containing

Ametrine-reporter, cells were fixed using freshly made 2% formaldehyde for 45 min on ice and

then permeabilized. All flow cytometry data were acquired by BD LSRFortessa X-20 and all cell

sorting was performed on a BD FACSAria.
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3.2.3 shRNA-mediated knockdown by retroviral transduction.

The detailed protocol was described previously[17]. PLAT-E cells were transfected

with shRNAmir using TransIT-LT1 Reagent (Mirus). Retrovirus-containing supernatant was

harvested after 48 h and mixed with 2-mercaptoethanol and polybrene (Millipore) for subsequent

transductions. Purified naive OT-I CD8+ T cells were in vitro activated by anti-CD3 (145-2C11)

and anti-CD28 (37.51) (1 𝜇g/ml for each; both from eBioscience) for at least 18 h and then

“spinfected” at 805 g with retrovirus for 1 h at 37 °C. After 4 h of incubation, the retrovirus-

containing medium was replaced by T cell medium. Transduction efficiency was measured by

flow cytometry analyzing the ametrine reporter after 24 h, and 1×104 shRNA-transduced cells

were transferred into host mice, followed by Lm-OVA infection. For Ncor1 shRNA knockdown,

purified P14 CD8+ T cells were in vitro activated and transduced by shRNA retrovirus similarly

to OT-I CD8+ T cells. Transduced P14 CD8+ T cells (5×105) were transferred into host mice,

followed by i.p. infection with 1.5×105 plaque-forming units of LCMV-C13, which results in

acute infection[17]. The full hairpin sequence for shRNA was as follows: shYy1, 5'-TGCTGTTG

ACAGTGAGCGCCCTCCTGATTATTCTGAATAATAGTGAAGCCACAGATGTATTATTCAGAATAATCAGGAGGTT

GCCTACTGCCTCGGA-3'; and shNr3c1, 5'-TGCTGTTGACAGTGAGCGAATGCATGATGTGGTTGAAAAAT

AGTGAAGCCACAGATGTATTTTTCAACCACATCATGCATGTGCCTACTGCCTCGGA-3'.

3.2.4 RT-PCR and qPCR.

For RT-PCR, RNA was extracted using Trizol (Life Technologies), followed by precipi-

tation of isopropanol. The cDNA was synthesized using Superscript II kit (Life Technologies)

following the manufacturer’s instruction. For qPCR, the cDNA was quantitatively amplified

using Stratagene Brilliant II Syber Green master mix (Agilent Technologies). The abundance of

transcripts was normalized to that of the housekeeping gene Hprt. The following primers were

used: Zeb2 forward, 5'-CATGAACCCATTTAGTGCCA-3', and Zeb2 reverse, 5'-AGCAAGTCTCCCT
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GAAATCC-3'; Bcl2 forward, 5'-ACTTCGCAGAGATGTCCAGTCA-3', and Bcl2 reverse: 5'-TGGCA

AAGCGTCCCCTC-3'; Gzma forward, 5'-TGCTGCCCACTGTAACGTG-3', and Gzma reverse: 5'-G

GTAGGTGAAGGATAGCCACAT-3'; Klrb1c forward, 5'-GACACAGCAAGTATCTACCT-3', and Klrb1c

reverse: 5'-TACTAAGACTCGCACTAAGAC-3'; Pou6f1 forward, 5'-GTCAGATCCTCACGAATGCTC-3

', and Pou6f1 reverse: 5'-GAGTCACGGCTTGGACCTG-3'; Crtam forward, 5'-CCTTTTCATCATCG

TTCAGCTCT-3', and Crtam reverse: 5'-GGAGCCTGGCTGCTATTCTC-3'; Yy1 forward, 5'-CATGT

GGTCCTCGGATGAAA-3', and Yy1 reverse: 5'-GGGAGTTTCTTGCCTGTCATA-3'; Nr3c1 forward, 5

'-CCGGGTCCCCAGGTAAAGA-3', and Nr3c1 reverse: 5'-TGTCCGGTAAAATAAGAGGCTTG-3'; Hprt

forward, 5'-GGCCAGACTTTGTTGGATTT-3', and Hprt reverse: 5'-CAACTTGCGCTCATCTTAGG-3'.

3.2.5 Microarray analysis.

The protocol was described previously[18]. KLRG1hiIL7Rlo TE CD8+ T cells and

KLRG1loIL7Rhi MP CD8+ T cells (2 × 104) were sorted into TRIzol on day 8 of Lm-OVA

infection. RNA was amplified and labeled with biotin, followed by hybridized to Affymetrix

Mouse Gene ST 1.0 microarrays (Affymetrix). Microarray analysis was performed using GenePat-

tern Multiplot Studio module. All data was generated in collaboration with the Immgen project

(http://www.immgen.org) and passed ImmGen quality control pipeline. The gene expression data

of naive and memory CD8+ T cells were used from a published study[18] and were normalized

with the gene expression data of TE and MP subsets by RMA normalization. Given that the TE

and MP subsets are highly similar “effector” populations on day 8 of infection and the finding that

no genes showed a significant difference under the 1% false-discovery rate using the Student’s

t-test, we used a cutoff of a 1.5-fold change in expression to identify genes expressed differentially

in TE and MP subsets.

43



3.2.6 Chromatin immunoprecipitation (ChIP), ChIP-seq library construc-

tion and sequence alignment.

Cells were fixed in 1% formaldehyde for 10 min and then quenched with 125 mM glycine

for 5 min. Cells were lysed for 5 min on ice and sonicated to generate 200- to 500-bp fragments

using Bioruptor sonicator (Diagenode). Sonicated DNA was used as input control. Magnetic-

dynabeads (30 𝜇l) were washed with blocking buffer twice and then mixed with 5 𝜇g antibody in

500 𝜇l blocking buffer and rotated at 4 °C. The sonicated lysates were first diluted to a final 0.1%

SDS concentration. The diluted lysates were added to antibody-conjugated Dynabeads incubated

at 4 °C. Beads were washed by Wash Buffer I, II and III for 5 min and then washed twice by TE

buffer for 5 min. The beads were resuspended in 200 𝜇l Elution Buffer and reverse-crosslinked

at 65 °C overnight and then treated with RNAse for 30 min at 37 °C and Proteinase K at 55 °C

for 1 h. DNA was purified by Zymo DNA Clean & Concentrator kit (Zymo Research). The

purified DNA was end-repaired using End-it End-repair kit (Epicentre) and then added an “A”

base to the 3’ end of DNA fragments using Klenow (NEB). Then DNA was ligated with adaptors

using quick DNA ligase (NEB) at 25 °C for 15 min followed by size selection of 200-400 bp

using AMPure SPRI beads (Beckman Coulter). The adaptor ligated DNA was amplified using

NEBNext High-Fidelity 2X PCR master mix (NEB). To prevent PCR overamplification, 1 𝜇l

DNA was first quantitatively amplified using Syber Green I master mix to determine the best

amplification cycle. Then the amplified library was size-selected as 200–400 bp using SPRI beads

and quantified by Qubit dsDNA HS assay kit (ThermoFisher). Finally, the library was sequenced

using Hiseq 2500 for single-end 50-bp sequencing to obtain around 20 million reads for each

sample. We used BWA to map raw reads to the Mus musculus genome (mm10) with following

parameters: ‘‘-q 5 -l 32 -k 2”. Reads with low quality (MAPQ < 30) were filtered out. If multiple

reads were mapped to the same location, only one read was kept.
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3.2.7 ATAC-seq and peak calling.

Cells were sorted (2.5×104) into 1 ml FACS buffer and spun down 500g for 20 min at 4

°C. The cell pellet was resuspended in 25 𝜇l lysis buffer and then spun down 600g for 30 min at 4

°C. The nuclear pellet was resuspended into 25 𝜇l transposition reaction mixture containing Tn5

transposase from Nextera DNA Sample Prep Kit (Illumina) and incubated at 37 °C for 30 min.

Then the transposase-associated DNA was purified using Zymo DNA clean-up kit. To amplify

the library, the DNA was first amplified for five cycles using indexing primer from Nextera kit

and NEBNext High-Fidelity 2X PCR master mix. To reduce the PCR amplification bias, 5 𝜇l

of amplified DNA after the first five cycles was used for qPCR of 20 cycles to determine the

number of cycles for the second round of PCR. Usually the maximum cycle of the second round

of PCR is five cycles. Then, the total amplified DNA was size selected to fragments of less than

800 bp using SPRI beads. Quantification of the ATAC-seq library was based on KAPA library

quantification kit (KAPAbiosystems). The size of the pooled library was examined by TapeStation.

Finally, the library was sequenced using Hiseq 2500 for single-end 50-bp sequencing to obtain

at least 10 million reads. To obtain confident peaks, we performed each ATAC-seq experiment

at least twice and used the Irreproducibility Discovery Rate (IDR) framework to identify the

reproducible peaks. In particular, we called peaks for each individual replicate as well as the

pooled data from the two replicates using MACS2 with a relaxed threshold (P value, 0.01)[19].

These three sets of peaks were input for IDR analysis using a threshold of 0.05 to identify the

confident set of peaks.

3.2.8 Predicting enhancers and putative TF-binding sites.

Enhancers were predicted by the RFECS algorithm using three histone marks (H3K4me1,

H3K4me3 and H3K27ac). The RFECS model was trained on the active and distal P300 ChIP-

seq peaks (at least 2 kb away from any transcription start site (TSS)), which were taken as
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representative of enhancers (the positive set). For the non-enhancer class (the negative set), we

chose promoters that overlapped DNase I hypersensitivity (DHS) peaks and random 100-bp

bins that were distal (2 kb away) to any P300 site and TSS. The data sets for model training

were downloaded from ENCODE with following accession codes: ENCSR000CCD (P300),

ENCSR000CBF (H3K4me1), ENCSR000CBG (H3K4me3), ENCSR000CDE (H3K27ac) and

ENCSR000CMW (DNase-seq). The trained model was used to scan the whole genome except

the 2000 bp upstream of TSS and 500 bp downstream of TSS and classify each 100-bp bin as

an enhancer or non-enhancer based on the histone modification pattern. To further reduce the

false positives, we filtered the predicted enhancers using a false-discovery rate of 1%. To identify

putative binding sites of TFs, we first collected 761 unique motifs from two TF-motif databases

(JASPAR and UniPROBE) and one resource paper[20–22]. We then searched for TF-binding sites

in 150-bp regions centered around the ATAC-seq peak summits, using the algorithm described

previously[23] with a P-value cutoff of 1×10−5.

3.2.9 Motif enrichment analysis at open chromatin regions.

To compute the enrichment of a TF motif over cell-type-specific open chromatin regions,

we first identified the number of regions that contain at least one motif, denoted by 𝑚. If 𝑁 is

the number of all regions, then 𝑚
𝑛 is considered as the enrichment score of the query motif. To

construct the null model for P-value calculation, we randomly selected 10,000 regions from all

open chromatin sites and computed the fraction of those regions, denoted by 𝑝, containing at least

one occurrence of the motif. The P value for enrichment or depletion is then computed using the

binomial test with p as the population proportion of null hypothesis.
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3.2.10 Constructing TF regulatory networks.

We selected active promoters as the 5-kb regions around TSS (4 kb upstream and 1 kb

downstream) that were marked by H3K4me3 peaks. Enhancers were predicted using the RFECS

method based on enhancer-associated histone-modification signatures. Enhancers were linked to

the nearest genes. We connected a TF to a gene if the TF had any predicted binding site in the

gene’s promoter or linked enhancers. We assembled all the regulatory interactions between TFs

and genes into a genetic network.

3.2.11 Personalized PageRank.

The Personalized PageRank algorithmmeasures global influence of each node in a network,

used by Google and many other companies to order search-engine results[24]. In an internet

network, nodes are “web pages” and edges are “links between websites”. The PageRank algorithm

was designed to find out how likely a specific web page is visited if web surfers who start on a

random page sampled from a given distribution have probability 𝛼 of choosing a random link

from the page they are currently visiting and 1 − 𝛼 probability of jumping to a random page

chosen from all web pages. PageRank is the stationary distribution of a random walk which, at

each step, with a certain probability 𝛼 jumps to a random node, and with probability 1−𝛼 follows

a randomly chosen outgoing edge from the current node. Personalized PageRank is an extension

of PageRank in which all the jumps are made by a pre-defined probability distribution[25]. To

give a formal definition, let 𝐺 = (𝑉 ,𝐸) denote a directed graph, where 𝑉 is a set of nodes and 𝐸

contains a directed edge (𝑢,𝑣) if and only if node 𝑢 links to node 𝑣. We let 𝐴 be the transition

matrix. We defined

𝐴𝑖𝑗 = 1
𝑂(𝑗)

if node 𝑗 links to node 𝑖, and 𝐴𝑖𝑗 = 0 otherwise, where 𝑂(𝑗) is the out-degree of node 𝑗.
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Given a seed vector 𝑠, the Personalized PageRank vector 𝑣 is calculated by

𝑣 = (1−𝛼)𝐴𝑣 +𝛼𝑠

In a TF regulatory network, we set the weight of each gene to 𝑒𝑧𝑖 , where 𝑧𝑖 is the z-score

of the expression of gene 𝑖 under different conditions or in different cell states. The weights of

genes are then normalized and used as the seed vector for computing personalized PageRank. For

comparison between PageRank and the TF activity (TFA) metric, the TFA is a measurement of the

activities of TFs[26], computed from the gene-regulatory network (GRN) and genes’ expression

levels. Mathematically, TFA is defined by the following equation:

𝑋𝑖 = ∑
𝑘∈all TFs

𝑃𝑖,𝑘𝐴𝑘

where 𝑃 is a matrix representing GRN, 𝑋 is a vector containing the gene expression levels,

and 𝐴 is the TFA vector. The above equation can be written in matrix notation: 𝑋 = 𝑃𝐴, and TFA

vector 𝐴 can be solved by computing the pseudoinverse of matrix 𝑃: 𝐴 = 𝑃 −1𝑋. To compare the

performance of PageRank and TFA on predicting driver TFs, we used the gene-expression profile

and GRN as the input data to run both algorithm in each cell types. The “gold standard” is a set

of 16 TFs that have known roles in TN, TE, MP and memory cells. 14 of those were identified

from literature, and 2 were confirmed by experiments in this study. We found that PageRank

successfully retrieved 12 of 16 (75%) TFs whose pattern were consistent with published reports,

demonstrative of a clear advantage over the TFA metric.
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3.3 Results

3.3.1 Differential gene expression by TE and MP CD8+ T cells

The effector CD8+ T cell population is characterized by extensive phenotypic and func-

tional heterogeneity, including the TE and MP subsets[2]. Microarray analysis of the TE and

MP subsets revealed genes expressed differentially by TE cells versus MP cells on day 8 of

bacterial infection of mice, and comparison with gene-expression data for total effector and

memory CD8+ T cell populations indicated that many genes upregulated in the TE subset relative

to their expression in the MP subset also had higher expression by total effector cells than by

memory CD8+ T cells[18]. This result indicated the unique transcriptional identities of effector

and memory CD8+ T cells could be captured by analysis of the TE and MP subsets. Notably,

the differences in abundance of mRNA and protein for the majority of TFs known to control the

differentiation of the TE subset versus that of the MP subset were subtle, which suggested that

expression differences alone did not account for the differential dependence of distinct subsets on

TFs. High-throughput RNA-based sequencing (RNA-seq) of TE and MP subsets was consistent

with our microarray analyses: for genes upregulated in the TE subset relative to their expression

in the MP subset, total effector CD8+ T cells showed higher expression of these genes than did

memory CD8+ T cells, and many of the key TFs had similar expression by the TE subset and MP

subset. Thus, beyond TF expression, additional regulatory mechanisms, such as the control of TF

binding, might contribute to the differentiation of these two subsets and the subsequent formation

of long-lived memory cells.

3.3.2 Distinct enhancer repertoires of CD8+ T cell subsets

Spatial and temporal regulation of gene expression requires the specific binding of TFs

at regulatory elements, which is affected by chromatin state and accessibility. We analyzed

histone modifications (H3K4me1, H3K4me3, H3K27ac and H3K27me3) by chromatin immuno-
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precipitation followed by deep sequencing (ChIP-seq) for characterization of potential enhancer

and promoter elements, and combined that with ATAC-seq to integrate the chromatin state and

accessibility of each CD8+ T cell subset; this allowed us to predict the binding of TFs at specific

regulatory elements. We transferred OT-I CD8+ T cells (which have transgenic expression of a T

cell antigen receptor that specifically recognizes a peptide fragment of ovalbumin (OVA) presented

by major histocompatibility complex class I H-2Kb) into host mice, followed by infection of the

host mice with Listeria monocytogenes engineered to express recombinant OVA (Lm-OVA)[18].

Naive, TE, MP and memory CD8+ T cell populations were sorted for ChIP-seq and ATAC-seq.

Notably, OT-I and polyclonal CD8+ T cells responding to infection showed highly correlated gene

expression throughout the immune response[18], and OT-I and polyclonal effector and memory

CD8+ T cells displayed similar ATAC-seq profiles.

Published studies have shown that bivalent chromatin domains, comprising H3K4me3

and H3K27me3 modifications, exist in the promoters of genes encoding effector molecules

in naive cells, and occupancy by H3K27me3 at these promoters is diminished when the cells

differentiate into effector CD8+ T cells[14, 15]. We also observed this pattern in the change of

bivalent modification of genes encoding effector molecules, including Tbx21 (which encodes the

TF T-bet) (Fig. 3.1a). Conversely, we found that genes with higher expression in naive T cells

than in effector T cells, such as Tcf7 (which encodes the TF TCF1), became repressed in effector

CD8+ T cells, concomitant with increased occupancy by H3K27me3 at promoters (Fig. 3.1a).

Furthermore, the proportion of genes with occupancy by H3K27me3 at promoters was greater

during differentiation into effector CD8+ T cells than during differentiation into memory CD8+ T

cells (Fig. 3.1b), which suggested that epigenetic repression of genes for which naive CD8+ T

cells had higher expression might be essential for the terminal differentiation of effector CD8+ T

cells.

Focusing on distal regulatory regions of well-characterized genes in effector and memory

CD8+ T cells, we found both gains and losses of enhancer and repressive H3K27me3 marks.

50



c

Tbx21 Tcf7

N

TE

MP

M

H3K4me3 H3K27me3

6.0

3.0

1.5

4.5

7.5

0.0

G
ai
n
of
H
3K

27
m
e3

(%
ge
ne
s)

N
TE

N
MP

N
M

Gzma

N

TE

MP

M

N

TE

MP

M

H3K4me1 H3K27ac H3K27me3 H3K4me1 H3K27ac H3K27me3

N

TE

MP

M

N

TE

MP

M

Id2

Il7r Id3

a
b

Expression

0 1500 3000

0 1250 2500

Expression

0 1750 3500

0 50 100

Figure 3.1: Epigenetic landscapes of CD8+ T cells in response to bacterial infection. (a) ChIP-

seq analysis of H3K4me3 and H3K27me3 (key) at Tbx21 (left) and Tcf7 (right) in naive CD8+ T

cells (N), TE CD8+ T cells (TE), MP CD8+ T cells (MP) and memory CD8+ T cells (M) (left

margin). (b) Frequency of genes with increased H3K27me3 at the promoter regions, among

genes with a decrease in expression at various stages of differentiation (horizontal axis). (c)

ChIP-seq analysis (left three plots) of H3K4me1, H3K27ac and H3K27me3 (above plots) at

Gzma (top left), Il7r (bottom left), Id2 (top right) and Id3 (bottom right) in cells as in a (left

margin), and microarray analysis of the expression of those genes (far right bar plot). Each

symbol (far right) represents a biological replicate of spleens pooled from three mice. Data

are pooled from two independent experiments (a,b,c (left three plots); 𝑛 = 10 mice) or three
independent experiments (c (far right plots); 𝑛 = 3 mice; mean + s.e.m.).
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For example, Gzma, a characteristic effector-molecule-encoding gene (that encodes granzyme

A) with high expression in TE cells, was associated with increased deposition of H3K4me1

and H3K27ac after the differentiation of naive CD8+ T cells into the TE subset (Fig. 3.1c).

Conversely, Il7r (which encodes IL7R) exhibited greater deposition of H3K4me1 and H3K27ac

in MP and memory CD8+ T cells than in the TE subset (Fig. 3.1c), consistent with its role

promoting the long-term survival of memory CD8+ T cells[3, 27]. Alternatively, Id2 and Id3

(which encode established transcriptional regulators of CD8+ T cell differentiation) exhibited

substantial occupancy by H3K4me1 in all CD8+ T cells but were associated with dynamic changes

in the intensity of H3K27ac and H3K27me3 during differentiation[28, 29] (Fig. 3.1c). Thus, as

expected, combinatorial epigenetic marks set the stage for gene expression.

To systematically identify putative enhancers, we applied the machine-learning algorithm

RFECS (random forest-based enhancer identification from chromatin states)[30]. RFECS identi-

fied 27,236 enhancers, 26,561 enhancers, 23,302 enhancers and 21,883 enhancers in naive CD8+ T

cells, TE CD8+ T cells, MP CD8+ T cells and memory CD8+ T cells, respectively; this constituted

a non-redundant set of 52,331 putative enhancers. Upon the differentiation of naive CD8+ T cells

during infection with Lm-OVA, TE cells gained a greater number of newly formed enhancers

than did MP cells or memory cells, while all populations lost a similar number of enhancers

(Fig. 3.2a). To understand the dynamics of the usage of enhancers during differentiation, we

performed k-means clustering analysis of 52,331 enhancers according to their H3K4me1 intensity.

Enhancers were separated into five distinct clusters (I-V) (Fig. 3.2b). In cluster V, the intensity

of H3K4me1 was maintained equivalently across the CD8+ T cell subsets, and genes associated

with this cluster (Cd8a and Lck) had high expression in all subsets (Fig. 3.2b). The intensity

of H3K4me1 increased in clusters I and II during differentiation, and the TE subset showed for

enrichment for H3K4me1 relative to its intensity in MP and memory CD8+ T cells (Fig. 3.2b).

Genes associated with clusters I and II (Klrg1 and Tbx21) were associated with differentiation

into the TE subset[2] (Fig. 3.2b). In cluster III, the intensity of H3K4me1 was higher in all
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differentiated subsets than in naive CD8+ T cells, and genes associated this enhancer cluster

(such as Prf1 (which encodes perforin 1)) encoded products involved in the activation of CD8+

T cells (Fig. 3.2b). Conversely, for cluster IV, the intensity of H3K4me1 decreased during the

differentiation of naive CD8+ T cells into the TE subset and was higher in MP and memory CD8+

T cells than in the TE subset (Fig. 3.2b). Enhancers of genes encoding canonical regulators

of memory potential and homeostasis (Il7r and Cxcr4 (which encodes the chemokine receptor

CXCR4)) were in cluster IV[3, 31] (Fig. 3.2b).

To determine if differential establishment of enhancers regulates subset-specific gene

expression, we assigned enhancers to the nearest genes and compared gene expression during CD8+

T cell differentiation. Enhancers in clusters I, II and III were associated with genes upregulated

in activated CD8+ T cells, and enhancers in cluster IV were associated with genes with high

expression in naive CD8+ T cells. Notably, around 66% of genes with enhancers in clusters I

and II were upregulated in the TE subset relative to their expression in the MP subset, while

65% of genes with enhancers in cluster IV were upregulated in the MP subset relative to their

expression in the TE subset. We performed gene-ontology analysis using GREAT (genomic

regions enrichment of annotations tool)[32] with the whole genome as the background set and

found that clusters I and II showed enrichment for enhancers of genes encoding components of the

IL12 signaling pathway (Fig. 3.2c), consistent with the role of IL12 in promoting differentiation

into the TE subset[2]. In addition, cluster IV showed enrichment for enhancers of genes encoding

components of the cytokine TGF-𝛽 and EGF signaling pathway (Fig. 3.2c), which suggested that

these signaling pathways might favor the naive and/or memory T cell state, consistent with data

showing TGF-𝛽 signaling is required for the differentiation of memory T cells[33]. We further

observed that the association of genes with multiple enhancers correlated with higher expression

than that of genes associated with a single enhancer (Fig. 3.2d).
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Figure 3.2: Dynamic use of enhancers is associated with differentially expressed genes during

CD8+ T cell differentiation. (a) Quantification of enhancers gained or lost (key) during the

differentiation of naive CD8+ T cells into TE, MP or memory CD8+ T cells (left margin). (b)

Clustering (k-means analysis; 𝑘 = 5) of H3K4me1 signal intensity (key) in total enhancers
(52,331) across CD8+ T cell subsets (above plot) into clusters I–V (right margin); left margin,

select genes associated with specific enhancers. RKPM, reads per kilobase per million mapped

reads. (c) Gene-ontology (GO) analysis of the clusters in b (above plot), assessed with a binomial

test, with the top two pathways for which the cluster showed enrichment presented (cut off

binomial P value, <0.001). (d) Expression of mRNA from genes with one, two or three or

more enhancers (horizontal axis) in clusters I–III (top) and cluster IV (bottom), presented as

expression in effector CD8+ T cells relative to that in naive CD8+ T cells (EFF/N; top) and vice

versa (N/EFF; bottom). ∗𝑃 < 0.0001 (unpaired two-tailed Student’s t-test). Data are pooled
from two independent experiments (a–c; 𝑛 = 10 mice) or three independent experiments (d;
𝑛 = 3 mice; mean ± s.e.m. (symbols indicate outliers)).
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3.3.3 TF-motif enrichment at subset-specific regulatory regions

We reasoned that accessible regulatory regions would show enrichment for TF-binding

motifs relative to the abundance of such motifs in the whole genome (as background) and that we

could useATAC-seq to identify TFs important for CD8+ T cell differentiation. Thus, we identified

subset-specific open enhancers and promoters and then scanned 761 unique known TF-binding

motifs at the center of theATAC peaks of these regulatory regions. For example, the T-bet-binding

motif appeared at a TE-specific accessible enhancer near Zeb2 (encoding the TF ZEB2), which

was expressed exclusively in the TE subset (Fig. 3.3a), in support of published findings showing

that T-bet directly regulates Zeb2 to promote differentiation into the TE subset[34, 35]. Our

motif-enrichment analysis predicted the enrichment or depletion of putative binding motifs for

known TFs at promoters and enhancers relative to their abundance at randomly selected open

chromatin[4, 36–40]. Naive CD8+ T cell subsets showed depletion of binding motifs for T-bet,

BATF, SREBP2 and AP1, and differentiated CD8+ T cell subsets showed enrichment for these

motifs (Fig. 3.3b), consistent with the crucial role of these TFs in the activation and effector

function of CD8+ T cells[36–38, 41]. TE CD8+ T cells showed depletion of binding motifs

for TCF1, LEF1 and E2A, and naive, MP and memory CD8+ T cells showed enrichment for

these motifs (Fig. 3.3b), which corresponded with the well-characterized roles of these TFs in

regulating the differentiation of memory populations[4, 39, 40]. Enrichment for binding motifs

for some TFs (TCF1 and T-bet) was highly correlated with gene expression and function[2, 4]; in

contrast, enrichment for binding motifs for other TFs (enrichment for the SREBP2-binding motif

in effector T cells and for the E2A-binding motif in MP and memory cells) was consistent with

their demonstrated roles (SREBP2 maintains the activation of effector T cells, and E2A promoting

MP and memory cell differentiation), yet their expression remained unchanged during CD8+

T cell differentiation[37, 40] (Fig. 3.3c). These data indicated that subset-specific enhancers

and promoters might be established by key TFs and that putative binding of TFs, in addition to

differential expression, must be considered in the identification of TF involvement.
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Figure 3.3: Accessible regulatory regions allow prediction of TF regulators. (a) ChIP-seq

analysis of H3K4me1 and H3K27ac in the upstream region near Zeb2 in naive, TE, MP and

memory CD8+ T cells (left margin) (top two plots), and ATAC-seq analysis of that region

(bottom plot); shaded boxed area (right) indicates location of the T-bet motif (bottom right) in a

TE-cell-specific enhancer. (b) Enrichment (red) or depletion (blue) of binding motifs for TFs

(right margin; brownish red indicates TFs known to be key to the differentiation of effector

or/and memory CD8+ T cells) at subset-specific promoters (left) or enhancers (right) in naive,

TE, MP and memory CD8+ T cells (above plot), calculated by a binomial test (with randomly

selected open chromatin regions as background) and presented as P values (key). (c) Microarray

analysis of the expression of mRNA encoding the TFs TCF1 (Tcf7), T-bet (Tbx21), E2A (Tcf3)

and SREBP2 (Srebf2) in cells as in b (horizontal axis). Each symbol represents a biological

replicate of spleens pooled from three mice. Data are pooled from two independent experiments

(a,b; 𝑛 = 10 mice (ChIP-seq) or 𝑛 = 5 mice (ATAC-seq)) or three independent experiments (c;
𝑛 = 3 mice; mean + s.e.m.).
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3.3.4 Construction of TF regulatory networks in CD8+ T cell subsets

To elucidate TF-mediated regulatory mechanisms underlying CD8+ T cell differentiation,

we sought to construct a TF regulatory network in various CD8+ T cell subsets. Published studies

have applied correlation of gene co-expression to construct regulatory networks[42, 43]; however,

this approach does not consider direct TF-binding. We combined information on TF-binding

motifs, chromatin states and chromatin accessibility to predict and link TF-binding sites to their

potential gene targets. We reconstructed TF regulatory networks and identified critical regulatory

circuits responsible for CD8+ T cell differentiation. For example, we identified a substantial

number of putative targets regulated by T-bet in both the TE subset and MP subset (Fig. 3.4a).

We compared the TE and MP subsets for genes predicted to be regulated by T-bet and found

that 61.4% of the candidate genes were shared by these subsets; these included Ifng and Cxcr3,

which are well-established targets regulated by T-bet that encode products important for effector

function (interferon-𝛾 (IFN-𝛾) and the chemokine receptor CXCR3, respectively)[44, 45] (Fig.

3.4b). Notably, on the basis of the subset-specific T-bet regulatory circuits, we predicted that

T-bet uniquely controls the expression of Zeb2, Gzma and Klrb1c (which encodes the receptor

NK1.1) in TE cells and Bcl2 (which encodes the antiapoptotic protein BCL2), Crtam (which

encodes the cytotoxic molecule CRTAM) and Pou6f1 (which encodes the TF EMB) in MP cells.

To confirm our analyses, we transferred Tbx21+/+ and Tbx21-/- OT-I CD8+ T cells together into

host mice, followed by infection of the hosts with Lm-OVA. Given the loss of the TE subset

in T-bet deficiency, we sort-purified total donor CD8+ T cells or the MP subset from Tbx21+/+

and Tbx21-/- mice and compared the expression of mRNA from candidate genes. There was a

200-fold decrease in Zeb2 expression in total donor CD8+ T cells in the absence of T-bet, while

there was only a five-fold decrease in Zeb2 expression in the MP subset in the absence of T-bet, all

relative to its expression in their wild-type counterparts (Fig. 3.4c,d); this indicated regulation of

Zeb2 expression by T-bet in the TE subset rather than in the MP subset[35, 36]. To avoid the bias

of a complete loss of TE cells among T-bet-deficient T cells, we compared mRNA abundance in
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TE subsets derived from Tbx21+/+ and Tbx21+/- populations and confirmed decreased expression

of Zeb2, Gzma and Klrb1c in the TE subset with loss of T-bet relative to their expression in the

wild-type TE subset (Fig. 3.4e,f). Notably, loss of T-bet affected the expression of Bcl2, Crtam

and Pou6f1 in the MP subset (Fig. 3.4d,f), which suggested that T-bet regulated these genes in an

MP-cell-specific manner. The absence of T-bet resulted in a defect in the accumulation of MP

cells over the course of infection (Fig. 3.4g), consistent with the finding that T-bet also regulates

memory differentiation[36]. Thus, we demonstrated that T-bet positively regulated different genes

in distinct CD8+ T cell subsets, which highlighted the proposal that this approach allows the

prediction of potential gene targets unique to different CD8+ T cell subsets.

3.3.5 Identification of key TFs from PageRank-based TF ranking

Constitutively expressed TFs can exert cell-type-specific functions via regulation of the

expression of distinct genes, but incorporating that knowledge for the identification of key TFs

remains challenging because the TF targets are largely unknown. To overcome that limitation,

we leveraged the TF regulatory network and developed a new bioinformatics method using the

Personalized PageRank algorithm[24] to assess the importance of each TF in the regulatory

network (Fig. 3.5a). The TF ranks determined by our method were influenced by the number of

genes and the importance (determined from their expression) of genes regulated by the TF. Thus,

TFs that regulate more important genes would receive higher ranks.

Using PageRank analysis, we predicted TFs important for CD8+ T cell differentiation and

compared our PageRank analysis with motif-enrichment analysis used by published studies[12,

13] to determine how many TFs reported previously as essential regulators of CD8+ T cell dif-

ferentiation could be recovered from predicted TF pools. We found that approximately half of

the predicted TFs were shared by both analyses, and 25% of these shared TFs were identified

in published studies. PageRank analysis revealed more known TFs than did motif-enrichment

analysis: 22% of TFs among the entire pool of predicted TFs were previously reported to reg-
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Figure 3.4: Network analysis reveals subset-specific T-bet regulatory circuits. (a) Global

regulatory network in the TE and MP subsets: red indicates genes regulated by T-bet (blue), and

size indicates their expression. (b) Comparison of genes regulated by T-bet in the TE and MP

subsets; numbers in plot indicate total genes in set. (c,d) Flow cytometry of sorted Tbx21+/+

(T-bet WT) and Tbx21-/- (T-bet KO) CD8+ T cell populations from recipient mice given co-

transfer of Tbx21+/+ and Tbx21-/- OT-I cells, followed by infection with Lm-OVA and analysis

9 d later, to identify KLRG1loIL7Rhi (MP) cells (outlined areas) (c), and RT-qPCR of mRNA

encoding genes regulated by T-bet in total CD8+ T cells and the MP subset (key) from those

mice (d); mRNA results are presented as expression in Tbx21+/+ cells relative to that in Tbx21-/-

cells (dashed lines, one-fold). (e,f) Flow cytometry of sorted Tbx21+/+ (T-bet WT) and Tbx21+/-

(T-bet HET) CD8+ T cell populations from recipient mice as in c, analyzed 8 d after infection, to

identify KLRG1hiIL7Rlo (TE) cells (top left gate) and KLRG1loIL7Rhi (MP) cells (bottom right

gate) (e), and RT-qPCR of mRNA encoding genes regulated by T-bet in the TE and MP subsets

(key) from those mice (f); mRNA results are presented as in d. (g) Frequency of MP cells among

Tbx21+/+ and Tbx21-/- peripheral blood lymphocytes (key) during Lm-OVA infection as in c.

NS, not significant (𝑃 > 0.05); ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01 (paired two-tailed Student’s t-test).
Data are pooled from (a,b) or representative of (c–g) two independent experiments (𝑛 = 3 mice
(c–f) or 𝑛 = 4 mice (g); mean ± s.e.m.).
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ulate CD8+ T cell differentiation, and they were identified by PageRank analysis but not motif

enrichment analysis, compared with 5% identified only by motif-enrichment analysis (Fig. 3.5b).

For example, PageRank analysis assigned STAT3 a higher score in memory subsets than in the

TE subset (Fig. 3.5c). That was consistent with the role of STAT3 in promoting the maturation

and self-renewal of memory CD8+ T cells[46]. Additionally, more TFs with known roles in

CD8+ T cell differentiation were identified by PageRank analysis than by another method, TF

activity (TFA) analysis, which predicts the activity of TFs using the regulatory network con-

structed from gene-expression data[26]. These data highlighted the robustness of PageRank

analysis and suggested that TFs predicted by PageRank analysis might be critical for CD8+ T cell

differentiation.

3.3.6 Validation of PageRank-predicted TFs

To highlight the power of PageRank analysis, we focused on YY1 and NR3C1, two

regulators identified by PageRank analysis but not by the motif-enrichment analysis. Although

the expression of YY1 and NR3C1 did not change during CD8+ T cell differentiation, YY1 was

ranked highly in the TE subset while NR3C1 was ranked highly in the MP subset (Fig. 3.5c).

YY1 is a TF involved in transcriptional activation and repression and is important in immune-

cell development, including the differentiation of B cells, the TH2 subset of helper T cells and

regulatory T cells[47–49]. NR3C1 is a glucocorticoid receptor, which translocates into the nucleus

to regulate gene expression after binding to glucocorticoids in the cytosol. NR3C1 has a critical

role in development, metabolism and the immune response[50–52]. The role of YY1 and NR3C1

in the differentiation of effector or memory CD8+ T cells in response to infection is unknown.

On the basis of the PageRank predictions, we hypothesized that abolishing the expression of

YY1 or NR3C1would affect formation of the TE subset orMP subset, respectively. To determine if

YY1 is essential for differentiation of the TE subset, we transduced cogenically distinct OT-I CD8+

T cells with retrovirus encoding short hairpin RNA (shRNA) targeting Yy1 (shYy1) or shRNA
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targeting the control gene Cd19 (shCon) and co-transferred the cells into recipient mice, followed

by infection of the recipients with Lm-OVA, then monitored the differentiation of effector T cells.

Knockdown of Yy1 resulted in a 54% reduction in its expression relative to that in cells transduced

with shCon (Fig. 3.6a). Flow cytometry of CD8+ T cell subsets on day 7 of infection showed a

significantly lower frequency and number of the TE subset among shYy1-transduced cells than

among shCon-transduced cells (Fig. 3.6b,c). In addition, the expression of MP-cell-associated

molecules, including CD27, CXCR3 and TCF1, was significantly higher in shYy1-transduced

cells than in shCon-transduced cells (Fig. 3.6d). Furthermore, analysis of cytokine production

showed that the mean expression of IFN-𝛾 and the number of IFN-𝛾-producing cells were lower

for shYy1-transduced cells than for shCon-transduced cells (Fig. 3.6e). Together, these data

confirmed that YY1 was important for differentiation of the TE subset.

We used a similar method (transfer of OT-I cells and infection with Lm-OVA) to determine

how lowering Nr3c1 expression, via shRNA targeting Nr3c1 (shNr3c1), affected the MP subset

differentiation. Knockdown of Nr3c1 resulted in 86% reduction in its expression relative to

that in shCon-transduced cells (Fig. 3.7a). Notably, both frequency and number of MP cells

were significantly lower among shNr3c1-transduced cells than among shCon-transduced cells

(Fig. 3.7b,c). Consistent with a loss of IL7R-expressing cells, expression of MP-cell-associated

molecules, including CD27, CXCR3, and TCF1, was significantly lower in shNr3c1-transduced

cells than in shCon-transduced cells (Fig. 3.7d), in support of the proposal of a role for NR3C1 in

differentiation of the MP subset. We monitored the frequency of MP cells from day 8 to day 30

of infection and observed a decrease of the frequency of MP subset on day 30 after the loss of

NR3C1 (Fig. 3.7e,f). NR3C1 has been shown to interact with co-factors such as NCOR1 (“nuclear

receptor co-repressor 1”) to modulate the expression of genes encoding products involved in

the response to hormones[53]. Notably, knockdown of Ncor1 via shRNA similarly affected

differentiation of the MP subset; the frequency of MP cells was lower among cells in which

Ncor1 was knocked down than among cells transduced with shCon. To further confirm the role
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Figure 3.6: YY1 is a transcriptional regulator of the differentiation of TE CD8+ T cells. (a)

RT-qPCR analysis of Yy1 mRNA in CD8+ T cells activated in vitro for 72 h (with antibody to

the invariant signaling protein CD3 and antibody to the co-receptor CD28) and transduced with

shCon or shYy1 (key); results are presented relative to those of shCon-transduced cells. (b)

Flow cytometry of shRNA-transduced cells from host mice given co-transfer of OT-I CD8+ T

cells (that had been activated in vitro (as in a) and transduced for 24 h with shCon or shYy1

(above plots)), followed by intravenous infection of the hosts with Lm-OVA and analysis, 7

d later, of the expression of KLRG1 and IL7R. Numbers in quadrants indicate percent cells

in each throughout (far right, gating of the TE and MP subsets). (c) Frequency (left half) and

quantification (right half) of TE and MP CD8+ T cells as in b. (d) Expression of CD27, CXCR3

and TCF1 (left) in cells as in b; right, summary of results at left. Numbers above and below

bracketed lines (left) indicate mean fluorescent intensity (MFI) of the factor assessed (colors

match key). (e) Frequency (far left) and quantification (middle right) of IFN-𝛾 producing cells,
mean fluorescent intensity of IFN-𝛾 (middle left), and quantification of TNF producing cells (far
right) among cells as in b stimulated in vitro for 4 h with OVA peptide, assessed by intracellular

cytokine staining followed by flow cytometry. Each symbol (c–e) represents an individual mouse;

small horizontal lines (c,e (far left)) indicate the mean (± s.e.m.). ∗𝑃 < 0.05, ∗∗𝑃 < 0.01 and
∗∗∗𝑃 < 0.001 (two-tailed paired Student’s t-test). Data are representative of two (a,d,e) or three
(b,c) independent experiments (𝑛 = 3 mice; mean + s.e.m. in d,e (middle and right)).
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of NR3C1 in differentiation of the MP subset, we treated mice with synthetic glucocorticoid

dexamethasone for 7 d and observed that the frequency of the MP subset increased significantly

after treatment with dexamethasone. Collectively, these data demonstrated that NR3C1 promoted

differentiation of the MP subset.

3.4 Discussion

The function and differentiation state of immune cells are controlled by TFs that relay

environmental cues through regulation of gene expression. Efficient transcriptional regulation

requires interaction between TFs and chromatin remodelers to control the binding of TFs with high

fidelity. Key information is encoded in regulatory elements that contain TF-binding sequences

and are associated with specific histone modifications that influence the accessibility, structure

and location of those elements[16]. To identify the TF-mediated regulatory circuits critical for

CD8+ T cell differentiation, we systematically characterized the epigenome of CD8+ T cell subsets

during pathogen infection. Our global map of regulatory elements revealed a dynamic pattern

of enhancer establishment that foreshadowed specific gene-expression programs. Our network

analysis of T-bet regulatory circuits in distinct effector-cell subsets revealed T-bet-targets that

overlapped in and were distinct in the TE subset and the MP subset. This analysis suggested a

previously unknown function for T-bet in maintaining the accumulation of MP cells, potentially

through regulation of the anti-apoptotic protein BCL2 and additional targets. Studies of distinct

targets will further elucidate nuanced functions of T-bet in driving effector and memory fates.

Numerous crucial TFs that modulate CD8+ T cell differentiation have been identified on the

basis of differential gene expression and TF-gene co-expression correlation[18, 42, 43]. However,

alterations in the binding of TFs without changes in expression also result in the differential

expression of downstream gene targets, which makes it clear that the identification of relevant

TFs exclusively on the basis of gene-expression analysis provides only partial understanding
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of Nr3c1 mRNA in CD8+ T cells activated in vitro for 72 h (as in Fig. 3.6a) and transduced

with shCon or shNr3c1 (key); results are presented relative to those of shCon-transduced cells.

(b) Flow cytometry of shRNA-transduced cells from host mice given co-transfer of OT-I CD8+

T cells (that had been activated in vitro (as in Fig. 3.6a) and transduced for 24 h with shCon

or shNr3c1 (above plots)), followed by intravenous infection of the hosts with Lm-OVA and

analysis, 7 d later, of the expression of KLRG1 and IL7R. (c) Frequency (left) and quantification

(right) of TE and MP CD8+ T cells as in b. (d) Expression of CD27, CXCR3 and TCF-1 (left)

in cells as in b; right, summary of results at left. Numbers above and below bracketed lines
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infection. (f) Flow cytometry of cells as in b, analyzed 30 d after infection (assessing expression

of KLRG1 and IL7R). ∗𝑃 < 0.05, ∗∗𝑃 < 0.01 and ∗∗∗𝑃 < 0.001 (two-tailed paired Student’s
t-test). Data are representative of two independent experiments (𝑛 = 3 mice (a–d) or 𝑛 = 5 mice
(e); mean + s.e.m.).
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of the TF networks involved. Indeed, our data demonstrated that gene expression alone could

not fully explain the mechanisms behind cell-fate determination and supported the idea that the

binding of TFs and gene expression should be considered together to facilitate the identification

of important TFs. Differential TF binding can be achieved via numerous mechanisms, including

variable chromatin state and accessibility, TF localization, the availability of co-factors, and

post-translational modification of TFs. Our approach represents an advance in the efforts to

achieve a comprehensive view of the regulatory networks that establish the effector and memory

CD8+ T cell fates by integrating data describing mRNA expression as well as chromatin states

and accessibility.

For prioritization of those data, it is essential to develop newmethods that rank the potential

importance of TFs on the basis of the quantity and quality of the TF-regulated genes. Here, we

applied the Personalized PageRank algorithm to rank the absolute importance of TFs in each

subset and their relative importance across cell types by considering both binding of TFs and

gene expression. Notably, our method ranked TFs by integrating two features: distinct weights

for TF-regulated genes, as assessed by differential gene expression; and a hierarchy of TF-to-TF

circuitry. This strategy allowed the identification of TFs that regulate relatively few but important

genes, which are often overlooked by other analyses. Future modifications of gene weights by

gene ontology could facilitate identification of TFs important in specific functions or pathways.

We also confirmed the functions of two TFs identified by PageRank (YY1 and NR3C1) and

demonstrated their essential roles in differentiation of the TE subset and MP subset, respectively.

YY1 has been shown to modulate long-range chromatin interactions of cytokine-encoding loci in

TH2 cells[49]. HowYY1 regulates differentiation of the TE subset and if YY1 controls chromatin

interactions in the TE subset remain to be determined. The glucocorticoid receptor NR3C1 has

been shown to regulate thymocyte apoptosis and inflammation responses[50–52]. Here we found

that NR3C1 promoted differentiation of the MP subset, consistent with the role of glucocorticoids

in inducing IL7R expression[51]. Treatment with dexamethasone increased the proportion of MP
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subset during differentiation, which demonstrated a previously unknown role for glucocorticoid

hormones in modulating CD8+ T cell differentiation and a potential strategy for manipulating

memory-cell differentiation. Thus, using our framework, we were able to both identify critical

TFs and predict microenvironmental signals involved in regulating the differentiation of CD8+ T

cells.

Despite the successful confirmation of TFs predicted by our computational framework,

additional factors could be integrated to refine our results. Global investigation of TF-binding

motifs using new approaches, such as protein-binding microarrays, might be beneficial in broad-

ening the database of known TF-binding motifs[54]. Moreover, TFs function with co-factors to

regulate specific gene expression; co-binding analyses could be incorporated into these analyses

to improve our network construction[55]. Furthermore, the assignment of enhancers to the nearest

genes is a limited heuristic, and being able to better associate long-range enhancers with gene

targets would enhance the power of our approach considerably. Published studies have shown that

the interaction of enhancers and promoters is confined in topologically associated domains[56];

thus, exploration of the chromatin organization of enhancer marks as well as the use of new

computational methods should facilitate the assignment of enhancers to their targets[57]. Here

we have provided evidence for the involvement of many TFs in CD8+ T cell immunity that

were previously overlooked in this context; future studies should aim to refine and resolve the

transcriptional networks by incorporating these additional approaches.

Chapter 3, in full, is a reprint of the material as it appears in Epigenetic Landscapes Reveal

Transcription Factors That Regulate CD8+ T Cell Differentiation. Yu B, Zhang K, Milner J, Toma

C, Chen R, Scott-Browne J, Pereira R, Crotty S, Chang J, Pipkin M, Wang W, Goldrath A. Nat

Immunol 2017. The dissertation author was the primary investigator and author of this paper.
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Chapter 4

Systems-level identification of

transcription factors critical for mouse

embryonic development

4.1 Introduction

Transcription factors (TFs) are essential regulators of cell fate and play pivotal roles in

development[1]. Identification of critical TFs that drive tissue differentiation can provide key

mechanistic insights into the developmental process. Much effort has been made to identify driver

TFs at different stages of development. Yet, a complete catalog of TFs underlying each devel-

opmental branch still lacks. Understanding the complex transcriptional regulatory logic during

development requires dissecting the components of transcriptional networks and characterizing

the genome-wide influence of key TFs.

The activity of a TF is usually defined according to its regulatory effect on target genes,

which is affected by multiple factors, including synthesis of mRNA, cooperative regulation and

post-translational modifications, i.e., methylation, ubiquitination or phosphorylation[2]. As a
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result, the expression level of a TF is not always correlated with its activity[3, 4]. In light of this,

many methods have been proposed to infer the activity of TFs using statistical or machine learning

approaches. For instance, Schacht et al. developed a statistical model to estimate the regulatory

activity of TFs using their cumulative effects on their target genes[4]. Arrieta-Ortiz et al. used

the linear model to infer the TF activity (TFA) by predicting target genes’ expression levels[5].

Although these methods were able to predict the local activity of a TF, i.e., the expression level of

their direct target genes, measuring the system-wide influence of a given TF is not their focus.

As genes rarely function alone but usually crosstalk with each other to form complex regulatory

logic, the global activity or influence of a TF can in principle better predict the outcome of cells

upon perturbation than its local activity[6, 7].

Previously, we have used the personalized PageRank to infer the global impact of TFs

and achieved great success. Compared to traditional motif enrichment analysis and the TFA

approach developed by Arrieta-Ortiz et al., our method delivered the best performance[8]. In

addition, several predicted TFs were later validated experimentally and demonstrated previously

unappreciated roles[8, 9]. Building upon our previous studies, we havemade further improvements

by incorporating chromosome long-range interaction information into network construction,

which helps assign distal regulatory elements to target genes. Furthermore, we have developed a

software package, dubbed as Taiji, to help biologist to perform integrated analysis and identify

driver TFs using different genomic information, including chromatin state (from chromatin

immunoprecipitation followed by high-throughput sequencing (ChIP-seq) or assay for transposase-

accessible chromatin with high throughput sequencing (ATAC-seq)), gene expression profile

(from RNA sequencing (RNA-seq) or microarray), and chromatin long-range interactions (from

Hi-C or computational prediction).

For the first time, the ENCODE project has systematically mapped the epigenomic dy-

namics during mouse embryonic development in twelve tissues and eight developmental stages.

While this dataset provides an unprecedented opportunity to dissect the complex transcriptional
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regulatory logic during development, it also poses significant challenges for integrated com-

putational analyses. Using our framework, we have identified TFs that are crucial in defining

tissue differentiation. Furthermore, we applied Taiji to the existing data in earlier development,

from 2-cell stage to embryonic stem cell, which complements the data generated by the mouse

ENCODE project. Our analyses thus provide the first comprehensive catalog of key regulators

for a variety of tissues during mouse embryogenesis. While many of the identified regulators are

well supported by the literature, the newly discovered key TFs in development provide a valuable

resource for follow-up biological study. Most interestingly, we uncovered TF combinations

that activate in a spatiotemporal manner, which behave like transcriptional waves to direct the

developmental progress and tissue specification.

4.2 Methods

4.2.1 Constructing TF regulatory networks

We used TF motifs, represented by position weight matrix (PWM), to predict TF binding

sites at open chromatin regions within genes’ promoters or enhancers, and then connected these

TFs to downstream genes. We chose this strategy because it is one of the most scalable approaches

for studying TF-gene regulations in a reasonably accurate way. Although TF binding sites

obtained directly from experiments, such as ChIP-seq, are generally considered more accurate

than computational predictions, such approaches have some significant limitations as discussed

in [10]:

1. the availability of suitable affinity reagents.

2. the difficulty of interrogating the activities of multiple TFs within the same cellular envi-

ronment.

3. the sizable number of TFs and cellular states that need to be studied.
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Other popular methods for de novo network construction are based on gene expression

correlations. These methods partially overcome the limitation of studying one TF at a time but

lack directness and typically require several hundred independent gene expression perturbation

studies to build a network for one cell type[11, 12].

Our network construction method contains 3 major steps:

Identifying active promoters and enhancers

Hereinafter, without further notifications, we refer to a gene’s promoter as the 6 kb interval

that covers the upstream 5 kb and the downstream 1 kb of the gene’s transcription start site (TSS).

As active promoters are usually indicated by open chromatin or active histone marks, we used

ATAC-seq or H3K27ac ChIP-seq peaks to determine the activity of a given promoter. In particular,

we called a promoter active if it is overlapped with at least one peak. Any gene of which the

promoter is inactive was excluded from the network. To increase the sensitivity, i.e., preserving

more active genes in the analysis, in this step we used a relaxed cutoff (q value equals to 0.1) in

MACS’s[13] peak calling procedure. Distal peaks that are not overlapped with promoters were

considered as enhancers.

Identifying genes’ regulatory domains

The definition of gene regulatory domain was borrowed from the GREAT software[14].

Specifically, each gene was assigned a basal regulatory domain which is the gene’s promoter. The

gene regulatory domain was then extended in both directions to the nearest gene’s basal domain

but no more than 1000 kb in one direction.

Scanning TF binding sites and linking TFs to target genes

We first called ATAC-seq or H3K27ac peaks using MACS[13] with a q-value cutoff of

0.01. Next, for each peak, we identified its summit and scanned TF binding sites using FIMO’s
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algorithm[15] with the p-value cutoff 1×10−5 in the 100 bp interval centered around the summit.

In this analysis, we used the mouse TF motif database curated by the CIS-BP database[16] that

contains the motifs of 639 TFs. To link enhancers to their target genes, we first used long-range

chromosome interactions to identify the interacting promoters for each enhancer. TF binding

sites in these enhancers were then linked to corresponding promoters/genes. For the rest of the

predicted TF binding sites of which the assignments cannot be made using the 3D chromosome

information, we assigned them to genes according to the regulatory domains defined in the last

step. Lastly, we formed a directed edge from a TF to a gene in the network if the TF has at least

one binding site that is linked to the given gene.

4.2.2 Personalized PageRank

To perform personalized PageRank, we first assigned weights to the edges and nodes in

the TF regulatory network.

Determine node weights

The weight of a node was calculated from the relative expression level of its representing

gene. A gene’s relative expression levels among different cell types were computed by applying

the z-score transformation to its absolute expression levels. Suppose a gene’s relative expression

level in cell type 𝑖 is 𝑧𝑖, the node weight for this gene in cell type 𝑖 was then given by 𝑒𝑧𝑖 .

Determine edge weights

As gene expression levels are heavily skewed in linear scale, we applied the log transfor-

mation to make the distribution more symmetric. The weight of a edge was given by the logarithm

of the gene expression level of the source (TF).
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Applying personalized PageRank

Let 𝑠 be the vector containing node weights, and 𝐴 be the edge weight matrix. The

personalized PageRank score vector 𝑣 was calculated by 𝑣 = (1 − 𝛼)𝐴𝑣 + 𝛼𝑠, where 𝛼 is the

damping factor (default to 0.85). The code implementing this calculation was adapted from the

igraph library[17].

Statistical significance of PageRank scores

To determine the statistical significance of PageRank scores, we randomly rewired edges

in the network and compute the PageRank scores. We did this multiple times and used these

scores to calculate the null distribution. The p-values of PageRank scores were then inferred as to

the null distribution.

4.2.3 Software implementation

Taiji has a user-friendly command line interface which is implemented in Haskell. Taiji

can be easily set up and run in desktop computers. Furthermore, Taiji is designed to handle

the big data through tightly integrated with workload managers that support the distributed

resource management application API (DRMAA), such as the open grid scheduler and the slurm

workload manager. This feature allows Taiji to analyze numerous datasets in parallel on high-

performance computing clusters. Besides, Taiji has a built-in workflow manager, featuring

automatic checkpointing and data recovery, allowing continuation of the analysis after interruption

by error crash or power outage.
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4.2.4 Computational validation of the Taiji framework

Validation of the network construction method

Considering the computational feasibility, we only selected 24 out of 72 samples to perform

validation. They are: embryonic facial prominence at E10.5 and E15.5, forebrain at E10.5 and P0,

midbrain at E10.5 and P0, hindbrain at E10.5 and P0, heart at E10.5 and P0, limb at E10.5 and

E15.5, stomach at E14.5 and P0, liver at E11.5 and P0, neural tube at E11.5 and E15.5, kidney at

E14.5 and P0, intestine at E14.5 and P0, lung at E14.5 and P0.

For every sample pair, we selected the top 500 most expressed genes from each sample.

The log-fold-changes of these genes are the response variables of our prediction model. According

to the constructed network, we identified the upstream regulators of those genes and computed

their log-fold-changes. These were the predictors for the model. These procedures were repeated

for all 276 sample pairs, and the results were combined. In total, we got 158,600 records for

training a random forest model with 10-fold cross-validation. The control networks were generated

by randomly assigning regulators to genes while keeping the number of regulators for each gene

unchanged.

Benchmarking different ranking algorithms

The gene expression profiles of wild-type and knock-out experiments are simulated using

the GeneNetWeaver[18]. The yeast and E. coli networks were provided by GeneNetWeaver.

And additional 20 sub-networks are sampled from the yeast network. Each contains at least 50

regulators out of 1000 genes.

4.2.5 Prediction of chromatin interactions using EpiTensor

TADs were taken from the previous study[19]. The input histone modification data were

downloaded from the ENCODE data portal, including a common set of 8 histone marks at 7
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time points in 5 tissues: H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3,

H3K9ac and H3K9me3, at developmental stages of E11.5, E12.5, E13.5, E14.5, E15.5, E16.5

and P0, in heart, liver, forebrain, midbrain and hindbrain. EpiTensor performed tensor analysis

in the 4 dimensional space composed of tissue, time point, histone mark, and locus dimensions.

The peaks in the eigenlocus vectors represent co-variation of histone modification signals that

indicate 3D interactions of the corresponding loci. We considered the first 40 eigenlocus vectors,

capturing on average 96.98% of total variance. The peaks in each eigenlocus vector were called

by comparing to randomly shuffled background. FDR and p-value were calculated for each peak.

In this study we used a stringent FDR=0.005 as cutoff.

4.2.6 Lineage tree construction

Lineage trees were constructed by running the FastME algorithm[20] on normalized

ranking matrix, which was obtained from row-wise z-score transformation of the original matrix.

4.2.7 Identification of driver TFs for tissues

The output of Taiji pipeline is a matrix, consisting of TFs’ ranking scores from different

experiments. The rows and columns of the matrix represent TFs and experiments respectively.

To identify driver TFs, we first removed the rows (TFs) with CV s less than 1. We then grouped

the columns (experiments) from various stages together if they are from the same tissue, and

averaged the ranking scores in each group. Assuming the average ranking scores are normally

distributed, we calculated the deviation from the center for each score and computed the p-value.

A 0.01 p-value cutoff was used for calling driver TFs.
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4.3 Results

4.3.1 An overview of the Taiji framework

To identify key regulators, Taiji integrates various genomic information to build transcrip-

tional regulatory networks by predicting regulations between TFs and genes. The TFs in the

network are then ranked by the personalized PageRank algorithm[21] (Fig. 4.1a). Briefly, Taiji

starts by identifying active regulatory elements, including active promoters and active enhancers,

defined byATAC-seq or H3K27ac ChIP-seq peaks. Enhancers were then assigned to their interact-

ing promoters using chromosome loops predicted by EpiTensor[22]. To construct transcriptional

regulatory networks, Taiji scans each regulatory element to identify putative TF binding sites

using motifs from the CIS-BP database[23]. TFs with putative binding sites in promoters or

enhancers are then linked to their target genes in the networks. Finally, the PageRank algorithm

was used to assess the genome-wide influences of TFs. Furthermore, we used the node weights

and edge weights to personalize the ranking algorithm. The node weights were determined by the

z-scores of gene expression levels, which allows the ranking algorithm to give higher ranks to

TFs that regulate more differentially expressed genes (DEGs). The edge weights were set to be

proportional to TFs’ expression levels, which helps filter out TFs that are not expressed or with

low expression levels.

4.3.2 Predicting long-range chromosome interactions in mouse embryonic

development

Due to the technical difficulties, the HiC experiments were not performed in the mouse

ENCODE project. Therefore, we resorted to EpiTensor[22], an unsupervised learning method, to

predict the enhancer-promoter interactions from histone modification data. As we have demon-

strated in our previous study, EpiTensor not only shows high concordance with the experimen-
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Figure 4.1: The design of Taiji and EpiTensor algorithms. (a) The workflow of Taiji pipeline.

(b) The workflow of EpiTensor algorithm. (c) An example of chromosome interactions predicted

by EpiTensor. Predicted interacting loci are linked by lines. Locus i, ii and v are three active

promoters marked by H3K4me3 and H3K27ac in the tissue-stages shown in the figure. Locus

iv is a validated enhancer documented in the Vista database. Locus iii is the promoter of

Tubb2b, preferentially active in the brain. Eigenlocus 1 contains a strong peak representing the

interaction between locus iii and iv; the co-variation of histone modifications at the two loci can

be exemplified by the coherent decrease of H3K4me1/H3K4me3 and H3K27ac signal levels

across tissues/stages. Only H3K4me1, H3K4me3, and H3K27ac in E11.5, E13.5 and P0 are

shown due to the limited space.
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tal data including Hi-C, ChIA-PET and eQTL results, it also significantly outperforms other

correlation-based methods and nearest-gene assignment[22]. Besides, a unique advantage of

EpiTensor is that it can predict chromosome interactions at a high resolution of 200 bp within

topologically associating domains (TADs) (Fig. 4.1b); this is much higher than the highest reso-

lution (1k bp) of the Hi-C data available in the public domain. Using Epitensor, we predicted

the chromosome interactions in twelve tissues at eight stages. All predictions are available at

http://wanglab.ucsd.edu/star/MouseENCODE/driverTF/index.html. The predicted interactions

cover 25,358 transcription start sites (TSSs), >38% of all annotated transcripts (from Gencode

vM14[24]), and 334 experimentally validated enhancers in the Vista database[25], account for

55% of confirmed active enhancers during mouse embryonic development. In Figure 4.1c, we

show one example of the predicted interactions. Specifically, locus iii is the promoter of Tubb2b, a

critical gene for the cortical formation and brain morphogenesis[26]. Locus iv is an experimentally

validated active enhancer in embryonic mouse midbrain, hindbrain and facial mesenchyme from

the Vista database (peak ID: mm1605). These two loci show correlated histone modification pro-

file across tissues/stages and were identified as interacting loci by Epitensor. No loops were found

between locus iv and v despite their closer distance. This result, together with the large distance

(160 kbp) between locus i and v, indicates the power of EpiTensor for identifying long-range

chromosome interactions.

4.3.3 Computational validation of the Taiji framework

Network construction and PageRank procedure are the two critical components deciding

the overall accuracy of Taiji’s results. To validate the network construction method, we trained

a random forest model to predict the expression changes of target genes from the expression

changes of their upstream regulators in the network (Fig. 4.2a). Specifically, we selected 24

samples from twelve tissues at their early and late developmental stages (see Methods for details).

For each pair of the samples, we selected 500 most expressed genes from each sample. The
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log-fold-changes of these genes were used as the prediction targets (response variable in the

model). We next identified the upstream regulators of those genes in the constructed network,

whose log-fold-changes were used as the predictors in the model. This procedure was repeated for

all 276 sample pairs and in total we obtained 158,600 data points, which were used for training the

random forest model with 10-fold cross-validation. The average Spearman’s correlation between

the experimental and predicted values is 0.756. As a comparison, we generated randomized

networks, in which regulators were randomly assigned to genes while the number of regulators

for each gene was kept unchanged. We repeated such randomization ten times and the average

Spearman’s correlation from the ten randomizations is 0.192±0.001. This observation confirmed

that the constructed network is biologically relevant and reliable.

To investigate whether the PageRank scores accurately reflect TFs’ importance, we used

the GeneNetWeaver[27] to generate benchmark networks and associate them with dynamic mod-

els. According to the dynamic models, we run simulations to generate the expression profiles and

performed in silico knock-out experiments for each regulator. The Euclidean distance between

wide-type and knock-out expression profiles was used to represent the magnitude of the perturba-

tion. Regulators were ranked by their perturbation magnitudes, representing their importance to

the cells. We used this rank list as the ground truth to assess the performance of different algo-

rithms. Among the five methods we have benchmarked, PageRank performed the best, showing a

strong Spearman’s correlation (𝜌 = 0.914) with the ground truth in the benchmark dataset of yeast

(Fig. 4.2b). Gene expression of a TF is not a strong predictor of its importance, as indicated by the

weak correlation (𝜌 = 0.393) with the perturbation magnitude (Fig. 4.2e). The regression-based

TFA model[5] does not correlate with the ground truth (𝜌 = −0.134) (Fig. 4.2f). Another method,

developed by Schacht and his colleagues, defines the TF activity as the weighted average of its

target genes’ expression levels (WATG)[4]. Although it was reported as a good predictor for gene

expression levels, it shows only a weak correlation with TFs’ overall importance (𝜌 = 0.225, Fig.

4.2d). We hypothesized that the averaging effect in WATG might contribute negatively to its
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Figure 4.2: Computational validation of the Taiji framework. (a) An illustration of the network

validation process. The log-fold expression changes of genes and their regulators between

two tissues were computed and used to train a random forest model. The performance was

assessed by the Spearman’s correlation between predictions and “ground truth” with 10-fold

cross-validation. The average correlation is 0.756. (b-f) The performance of various metrics,

PageRank (b), weighted sum of target genes’ expression (WSTG) (c), weighted average of

target genes’ expression (WATG) (d), gene expression (e), and TFA (f), on predicting TFs’

importances, assessed by the Spearman’s correlation with TFs’ perturbation magnitudes resulted

from simulated knockouts in yeast (𝑛 = 157). (g) The performances of various metrics on
predictingTFs’ importances in 20 sub-networks extracted from the yeast gene regulatory network.
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performance on predicting the global influence. Therefore, we developed a similar metric based

on WATG which calculates the weighted sum of the target genes’ expression levels (WSTG),

instead of averaging them. Note that the formulation of WSTG is conceptually equivalent to

the network degree centrality. As expected, it performs much better than WATG (𝜌 = 0.823,

Fig. 4.2c), because it takes into account the accumulated effects of all regulatees. In summary,

algorithms that focus on measuring the “local” TF activities, i.e., TFA and the method developed

by Schacht et al. performed much worse than the network centrality-based methods (PageRank

and WSTG), and PageRank showed the best performance.

A major advantage of PageRank algorithm, compared to the other simpler centrality

metrics like WSTG, is that it is defined recursively and hence depends not only on the number of

nodes linked to it but also on those nodes’ PageRank values. Therefore, PageRank performed

better thanWSTG for the yeast network. To further confirm PageRank’s superior performance, we

conducted additional benchmarks using the E. coli network, and another 20 random subnetworks

extracted from the yeast network (Fig. 4.2g,4.3). In all the tested cases, PageRank consistently

outperformed WSTG and other methods.
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Figure 4.3: Comparing different ranking methods in E. coli network.
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4.3.4 Taiji reveals driver TFs during embryogenesis

We constructed transcriptional regulatory networks in twelve tissues at eight developmental

stages. The average number of nodes and edges in these networks are 16,187 and 320,227

respectively. 3.95% (639) of the nodes are TFs. On average, each TF regulates 501 genes, and

each gene is regulated by 19 TFs (Fig. 4.4). To characterize the dynamics of TFs’ global influences

across different tissues and stages, we removed TFs that do not present significant variations

(coefficients of variance less than 1) in their PageRank scores, which gave us a list of 245 most

variable TFs. We plotted the PageRank score matrix in Figure 4.5a, ordering the samples (columns)

by tissue types. Remarkably, we found that different tissues have quite distinct TF regulatory

patterns (Fig. 4.5a left). In contrast, when ordering the same data by developmental stages, no

discernible patterns can be observed (Fig. 4.5a right), suggesting that transcriptional regulation

largely takes place in a tissue-dependent fashion. To investigate the relationship between PageRank

scores and expression levels, we calculated the Spearman’s correlation between PageRank scores

and expression levels for the 245 TFs (Fig. 4.5b). While 60% of TFs’ expression levels strongly

correlate with their PageRank scores (𝜌 > 0.75), a significant portion (9.3%) of them show weak

or no correlations (𝜌 > 0.25). The rest of the TFs’ expression levels have moderate correlations

with PageRank scores (0.25 < 𝜌 < 0.75). The fact that over a half of the TFs’ expression levels

are highly correlated with their PageRank scores may explain why gene expression achieves the

third-best in our in silico validation (Fig. 4.2g).

Using the FastME algorithm[20], we constructed a lineage tree based on the PageRank

scores of 245 TFs (Fig. 4.5c). The result shows that the samples are mostly grouped by their

tissue types. A mixture is only observed for four closely related samples (forebrain at E10.5,

midbrain at E11.5, midbrain at E10.5, and craniofacial prominence at E10.5), which may be due

to the difficulty of dissecting these tissues at their early stages. As a comparison, we found many

unexpected clusters in the lineage tree constructed using the gene expression profile of the same

245 TFs (Fig. 4.5d). For instances, intestine at P0 is grouped with liver samples; Craniofacial
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Figure 4.5: TF activity determined from Taiji accurately predicts tissue specification. (a) Two

different views, arranged by tissue types (Left) and arranged by stages (Right), of the 245

most variable TFs’ ranking scores during embryogenesis. (b) Histogram of the Spearman’s

correlations between PageRank scores and expression levels of 245 TFs across tissues and stages.

60% of the TFs show strong correlations (> 0.75). 9.3% of the TFs show weak or no correlation

(< 0.25). (c) A lineage tree constructed from the ranking scores of the 245 TFs. (d) A lineage

tree constructed from the gene expression levels, determined by RNA-seq, of the same 245 TFs

in c. cf, craniofacial prominence; fb, forebrain; hb, hindbrain; ht, heart; in, intestine; kd, kidney;

lm, limb; lv, liver; lu, lung; mb, midbrain; nt, neural tube; st, stomach.
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prominence at E14.5 and E15.5 are clustered with limb samples. These results further demonstrate

that PageRank is superior to gene expression as an indicator of TFs’ activities.

We then asked whether there exist constitutively active TFs that exhibit high ranking

scores across all tissues and stages. For this purpose, we first selected TFs with average ranking

scores larger than 3 × 10−3, corresponding to the top 10% of all TFs. Next, we retained TFs

of which the coefficients of variance (CV s) are less than 0.5, giving us 35 constitutively active

TFs in total (Fig. 4.6a). Similar to their transcriptional activities, the expression levels of these

TFs remains relatively high across tissues and stages. Functional classification analysis revealed

that these TFs are enriched in metabolic process, cellular process and developmental process,

suggesting their general roles in basic cellular functions and embryonic development.

The earliest developmental stage that mouse ENCODE project has surveyed starts from

E10.5. To obtain a complete view of mouse embryogenesis, we incorporated another published

dataset which profiled the transcriptome and genome-wide chromatin accessibility in earlier

mouse embryos[28], spanning stages from E1 (2-cell) to E5 (blastocyst stage). Together, we

have identified potential driver TFs in twelve tissues from eight stages, as well as those in 2-cell,

4-cell, 8-cell embryos, inner cell masses (ICMs) and mouse embryonic stem cells (mESCs). For

the first time, the complex transcriptional regulation during mouse embryonic development is

systematically mapped (Fig. C.1 and C.2). The identified driver TFs include many well-known

key regulators. For example, we successfully identified Sox2, Nanog and Pou5f1 (also known

as Oct4) as crucial TFs in mESCs. To systematically validate our predictions, we performed

literature search in 5 tissues that have been extensively studied, including heart, lung, liver, kidney

and limb. Remarkably, 41 out of 56 (73.2%) TFs identified by our method are shown to be

associated with either development or disease of these tissues (see Appendix A). For instances,

9 out of 13 identified driver TFs in lung have been previously reported to play a pivotal role

during the bronchiole tree and terminal alveolar region formation of mouse lung (Fig. 4.6b).

And another two TFs relate with lung cancer[29, 30]. Apart from the spatial specificity (across
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tissues), the temporal pattern of TFs’ activity (across stages) can also be accurately captured by

our approach. For instances, Nkx2-1 is initiated at the early stage of lung development and Nkx2-1

mutant embryos are arrested at early pseudoglandular (E11-E15) stage[31], which is consistent

with our analysis. Similarly, another key regulator Foxa2 is present in the epithelial cells from

the beginning of lung bud formation, and transgenic mice with Foxa2 ectopically expressed in

the lung epithelial cells exhibited defects in branching morphogenesis[32].

We have also found many novel TFs. Hlx, identified as a key regulator for lung devel-

opment, has not yet been studied in the lung. We showed that Hlx is regulating a number of

high-rank TFs at P0, including several aforementioned constitutively active TFs, i.e., Sp1, Meis2

and Zfx (Fig. 4.6c). The functional enrichment analysis of all Hlx’s regulatees shows that they

likely participate in epithelial tubes development in the lung. Besides, some of the predicted novel

TFs have been studied in closely related tissues. For instances, Vsx1, predicted as an important

regulator in the hindbrain, was related to retina development[33]. Taken together, these insights

revealed by our analysis can guide future functional studies of the developmental mechanisms.

In development, ESCs differentiate into three germ layers (ectoderm, endoderm and

mesoderm) and we have identified TFs that are specific to each layer (Fig. 4.7). For this purpose,

tissues originated from the same layer were grouped and compared against tissues from other

layers. The student t-tests with a p-value cutoff of 0.001 were used to identify TFs whose ranks

change significantly in one germ layer compared with other layers. The functional relevance of

the found layer-specific TFs is supported by the literature. For example, we have identified Zic1,

Zic4 and Zic5 as specific regulators for ectoderm, which is in agreement with the role of Zic family

in neural development[34]. In addition, many previously known layer-specific markers were also

found from our analysis, e.g., Pax6 and Otx2 for ectoderm[35, 36], Foxa2 for endoderm[37].

To analyze the tissue specificity of the driver TFs in Fig. C.1, we compared each tissue with

other tissues originated from the same layer and used the student t-tests with a p-value cutoff of

0.001 to identify tissue-specific driver TFs, as shown in Fig. 4.7. Together these results provide a
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comprehensive map for the future mechanistic study of embryonic development.
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Figure 4.7: Germ-layer-specific and tissue-specific driver TFs inmouse embryonic development.

4.3.5 Transcriptional waves during embryogenesis

In addition to the tissue specificity, we have analyzed the temporal activity of TFs during

the mouse embryogenesis. To identify clusters of TFs that show similar spatial-temporal patterns,

we first performed the principal component analysis (PCA) to reduce the dimension of the TF
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ranking score matrix. We reserved the first 20 components for clustering analysis as adding more

components did not gain much explained variance (Fig. 4.8a). We used the silhouette analysis[38]

to select the clustering method and the number of clusters. Among the five algorithms we

tested, the k-means algorithm performed best, identifying 25 distinct dynamic patterns during

embryogenesis (Fig. 4.8b).

The 25 clusters represent transcriptional waves that orchestrate the tissues differentiation

(Fig. D.1). The first wave starts from as early as the 2-cell stage, represented by the cluster C7

(Fig. 4.9a). In C7, TFs show the highest activity at 2-cell stage (or possibly earlier as we do not

have data in zygote). Example TFs from C7 include germ cell specific factors like Obox1 and

Nr6a1, both of which are essential for embryogenesis[39, 40], highlighting the roles of parental

control in early development. As C7 wanes, C21 is turned on during 4-cell and 8-cell stages. And

C13 and C16 emerge in ICM and ESC respectively. In C13 and C16, we found many well-known

pluripotency regulators, such as Pou5f1, Nanog and Sox2. These results provide valuable insights

into the transcriptional program during early embryogenesis.

We also found clusters that are responsible for the differentiation of tissues from specific

layers. For example, C5 is highly active in all four brain tissues from E10.5 to P0, suggesting its

critical role in neural differentiation. Indeed, many TFs that are crucial for neural development

were recovered in C5, such as Zic5[34], Pax6[36] and Gbx2[41]. In contrast to C5, C1 is more

active in mesoderm and endoderm-derived tissues. TFs in this cluster are associated with functions

specific to the development of these two layers. For example, Hnf4a was reported to play pivotal

roles in liver, colon and kidney development[42–44].

Besides germ-layer-specific transcriptional waves, there are also tissue-specific transcrip-

tional programs that drive the differentiation of individual tissue. In Fig. 4.9c, we highlighted

4 clusters, C10, C12, C6 and C18, which are responsible for stomach/intestine, heart, forebrain

and liver development, respectively. Note that we have found such a program for nearly every

tissue, including craniofacial/limb (C9), lung (C3), kidney (C4), midbrain (C24) and neural
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tube/hindbrain (C19). See Fig. D.1 for details.

Most of the tissue-specific TFs are long-lived, playing roles in almost every stage of

development. However, a few TFs exhibit transient transcriptional spikes, probably related to

their stage-specific functions. In Fig. 4.9d we show two such examples which activate at different

stages in craniofacial development (C8 for E11.5, C9 for E13.5 and E14.5). As the mechanism

of craniofacial development remains largely unknown, our discovery, therefore, provides an

invaluable resource to guide mechanistic studies.

4.4 Discussion

Here we present a novel and general framework for identifying driver TFs in any biological

process. Our method Taiji is capable of flexibly integrating diverse genomic and epigenomic

data, including ChIP-seq, RNA-seq, ATAC-seq and Hi-C. Considering the current limitation of

Hi-C experiments, we provide a computational alternative when Hi-C experiment is infeasible

or unavailable. In this work, we predicted 3D chromatin interactions in twelve tissues and eight

developmental stages of the mouse embryo, which provides the first 3D chromatin organization

information. By leveraging the strength of various experiments, we have successfully mapped

lineage-, tissue- and stage-specific driver TFs throughout the mouse embryonic development,

from as early as the 2-cell stage to postnatal day 0. In addition to retrieving known key regulators,

we have also identified new TFs responsible for tissue differentiation and development progress,

which can guide the future experimental investigations to understand the regulatory mechanisms

of development.

Particularly interesting is the observation of transcriptional waves represented by TF

combinations that activate in a spatiotemporal fashion. We did not find stage-specific tissue-

independent TFs, i.e., TFs that are active in all tissues at a specific stage (Fig. 4.5b). Therefore,

we speculate that synchronization between tissues during development is not achieved by global
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regulators, i.e., there lacks a “central coordination”, but by sequential activations of regulators in

individual tissues through “distributed coordination” and use tissue-to-tissue communication to

ensure synchronization between tissues, i.e., tissues crosstalk and inform each other what is the

current developmental stage. The distributed coordination alleviates the burden of developing a

central authority during evolution and also provides a more robust timing strategy.

Chapter 4, in full, is a reprint of the material as it appears in Systems-level identification

of transcription factors critical for mouse embryonic development. Zhang K, Wang M, Zhao Y,

Wang W. Biorxiv 2017. The dissertation author was the primary investigator and author of this

paper.
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Chapter 5

Concluding remarks

How to perform the integrated analysis of data generated from diverse assays has been

a great challenge in the field of genomics study. In this thesis, we have demonstrated that the

network model is an excellent approach for integrating different data sets, extracting information,

and generating hypothesis. Particularly in Chapter 3 and 4, we developed a method – Taiji – to

perform integrated analysis of multiple data, including ATAC-Seq, ChIP-Seq, RNA-Seq and HiC.

Using this method, we constructed the TF regulatory network and identified driver TFs in different

biological processes, including CD8+ T cells development and mouse embryonic development.

Many of these TFs cannot be found by traditional methods. We further validated several identified

driver TFs by knock-down experiments. Together these demonstrate the advantages of our

integrated analysis framework.

Taiji was originally developed to identify driver TFs, as the constructed network contains

only TF-gene relationships. One of the future plans is to expand the network to include other

types of connections, e.g., protein-protein interactions. The ultimate goal of Taiji framework is to

construct a “knowledge graph” representing our current understanding of biological systems, and

to develop a “search engine” to summarize, extract, or search for information in the graph. In the

following sections, I will discuss ideas for accomplishing this ambitious goal.
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5.1 Constructing “knowledge graph”

To construct a “knowledge graph” containing much richer information, more data, includ-

ing knowledge in the literature, need to be considered and incorporated.

5.1.1 Identifying gene-gene associations based on gene co-expression

The mRNA co-expression can be used to infer gene-gene associations. Many network

construction methods are based on the analysis of gene co-expression[1, 2]. The gene-gene

associations inferred from co-expression data can be used to fill in missing edges in the TF

regulatory network. This will greatly expand our networks.

5.1.2 Augmenting the network using existing knowledge

A lot of knowledge of themolecular interactions is present in the literature. The renaissance

of neural networks in machine learning research has fueled the development of new algorithms in

natural language processing (NLP), which paves the way to better retrieve information from the

literature. Using the NLP algorithms, we can identify molecular interactions from the literature

and use them to expand the networks. Another possibility is to obtain such information directly

from public databases, such as REACTOME. Most of the data in these databases is manually

curated. So it can be treated as a more reliable source of information.

5.2 Developing novel gene ranking algorithms

As discussed before, the “knowledge graph” will contain multiple lines of evidence.

Therefore, a sensible method for combining these pieces of information together is needed.
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Appendix A

Literature evidence supports identified

driver TFs

Here we list the supporting evidence for the identified driver TFs in five tissues, including

heart, limb, liver, lung and kidney. The rest of the tissues (neural tube, forebrain, hindbrain,

midbrain, craniofacial, stomach and intestine) are either less studied or closely related to each

other (functionally and spatially), which makes it very difficult to assess their tissue specificity.

A.1 Heart

Among the 11 predicted driver TFs in heart, 8 of them (72.7%) are supported by literature

(Table A.1).

A.2 Limb

Among the 10 predicted driver TFs in limb, 8 of them (80%) are supported by literature

(Table A.2).
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Table A.1: Driver TFs in heart.

Predicted driver TF Evidence

Etv2 Affect heart development[1]

Esx1 Unknown

Nkx2-6 Relate to congenital heart disease[2]

Bhlhe41 Unknown

Gata2 Relate to coronary artery disease[3]

Gata4 Essential for heart development[4]

Nkx2-5 Relate to heart development[5]

Tbx20 Essential for heart development[6]

Esrrg Affect heart development[7]

Spz1 Unknown

Irx4 Affect heart development[8]

Table A.2: Driver TFs in limb.

Predicted driver TF Evidence

Hoxa11 Relate to limb development[9]

Hoxa13 Relate to limb development [9]

Evx2 Important for limb development[10]

Msx1 Important for limb development[11]

Myod1 Important for limb development[12]

Myog Important for limb development[13]

Sim2 Affect limb development[14]

Fos Relate to limb mesenchymal chondrogenesis[15]

Rfx2 Unknown

Cebpg Unknown

A.3 Liver

Among the 11 predicted driver TFs in liver, 7 of them (63.6%) are supported by literature

(Table A.3).

A.4 Lung

Among the 13 predicted driver TFs in Lung, 11 of them (84.6%) are supported by literature

(Table A.4).
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Table A.3: Driver TFs in liver.

Predicted driver TF Evidence

Gfi1b Relate to liver development[16]

Nr3c2 Unknown

Ikzf1 Relate to liver cancer[17]

Nfe2 Important for liver function[18]

Gata1 Important for liver development[19]

Klf1 Relate to liver development[20]

Spic Relate to liver development[21]

E2f2 Important for liver function[22]

Hesx1 Unknown

Zfp652 Unknown

Foxh1 Unknown

Table A.4: Driver TFs in lung.

Predicted driver TF Evidence

Tcf21 Important for heart development[23]

Usf2 Relate to heart development[24]

Gata5 Important for heart development[25]

Foxa2 Important for heart development[26]

Nkx2-1 Essential for heart development[27, 28]

Mitf Relate to heart cancer[29]

Elf5 Relate to heart development[30]

Tbx4 Important for heart development[31]

Hic1 Relate to heart cancer[32]

Atf1 Important for heart development[33]

Tbx5 Important for heart development[31]

Noto Unknown

Hlx Unknown

A.5 Kidney

Among the 10 predicted driver TFs in kidney, 7 of them (70%) are supported by literature

(Table A.5).
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Table A.5: Driver TFs in kidney.

Predicted driver TF Evidence

Hoxd8 Relate to kidney development[34]

Osr2 Relate to early pectoral fin specification and pronephric development[35]

Ovol1 Relate to kidney development[36]

Hnf1b Relate to kidney disease[37]

Bbx Relate to kidney development[38]

Hoxa10 Important for kidney development[39]

Hoxc10 Important for kidney development [39]

Cic Unknown

Hoxa9 Unknown

Ehf Unknown
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Appendix B

The roles of node weights and edge weights

in Taiji’s ranking algorithm

B.1 Node weights

The node weights are computed from genes’ expression levels (see “Determine node

weights” for details). The addition of node weights to the network allows genes with higher

expression levels passing more “information” to their upstream regulators (Fig. B.1).

B.2 Edges weights

The edgeweights are calculated fromTFs’ expression levels (see “Determine edgeweights”

for details). A gene is usually regulated by multiple TFs. We set the “information” passed from

a gene to its regulators proportional to regulators’ expression levels (Fig. B.2). This feature is

particularly useful when there exists TFs that have similar motifs, e.g., TFs from the same family.

In this case, they will be differentiated by their expression levels. Furthermore, the edge weights

can help remove spurious driver TFs with low or no expression from our candidate list.

114



Gene 3

Gene 2

Gene 1

TF

Figure B.1: Genes with higher expression, represented by circles with larger sizes, pass more

“information”, denoted by thicker edges, to their upstream regulators.

Gene

TF 3

TF 2

TF 1

Figure B.2: TFs with higher expression receive more “information” from their target genes.

B.3 Advantages of Taiji’s ranking algorithm over simple mo-

tif enrichment analyses.

The motif enrichment analysis only counts the number of binding sites for a given TF,

regardless of the properties of its regulatees. In Fig. B.3, we showed that this simple assumption
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is problematic in biological networks. Assuming that in a real network, TF1 regulates TF2 and

TF3; TF2 regulates Gene1 and Gene2; TF3 regulates Gene3, Gene4 and Gene5. Fig. B.3a shows

that Taiji takes into account the hierarchical structure of the network, giving TF1 the highest

rank. For the same network, the motif enrichment analysis will decide that TF3 is most enriched

because it has the most regulatees (Fig. B.3b). From the biological perspective, we think that

Taiji’s ranking algorithm is more sensible, because:

1. The regulatees of TF1, i.e., TF2 and TF3, are more important to the network than those of

TF3, i.e., Gene3, Gene4 and Gene5.

2. Disrupting TF1 would affect all genes in the network, including TF3, while disrupting TF3

only affects three genes.

Another advantage of Taiji’s ranking algorithm is that it considers the expression levels of

TFs and their regulatees, which is used to filter spurious TF-gene links. On the contrary, the motif

enrichment analysis normally does not consider the functional relevance of predicted binding

sites.
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Figure B.3: Difference between Taiji and motif enrichment analysis for ranking TFs. a, Taiji’s

view of transcriptional regulatory network. The ranking: TF1 > TF3 > TF2; b, A flat view of

transcriptional regulatory network in the motif enrichment analysis. The ranking: TF3 > TF1 =

TF2.
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Appendix C

A list of driver TFs during mouse

embryogenesis
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Figure C.1: Identification of driver TFs in twelve tissues. (cont.) (a) forebrain. (b) neural tube.

(c) intestine. (d) hindbrain. (e) midbrain. (f) stomach. (g) lung. (h) limb. (i) kidney. (j) heart.

(k) liver. (l) craniofacial prominence.
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Figure C.1: Identification of driver TFs in twelve tissues. (cont.) (a) forebrain. (b) neural tube.

(c) intestine. (d) hindbrain. (e) midbrain. (f) stomach. (g) lung. (h) limb. (i) kidney. (j) heart.

(k) liver. (l) craniofacial prominence.
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Figure C.1: Identification of driver TFs in twelve tissues. (a) forebrain. (b) neural tube. (c)

intestine. (d) hindbrain. (e) midbrain. (f) stomach. (g) lung. (h) limb. (i) kidney. (j) heart. (k)

liver. (l) craniofacial prominence.
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Figure C.2: Identification of driver TFs in early mouse embryonic development, including

2-cell, 4-cell, 8-cell stages, ICM and ESC.

122



Appendix D

A total of 25 transcriptional waves during

mouse embryogenesis
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Figure D.1: Transcriptional waves direct tissue differentiation during mouse embryogenesis.

(cont.) A total of 25 dynamic patterns of ranking scores were identified using the k-means

clustering algorithm. Circles in each panel represent developmental stages. From left to right,

they are 2-cell, 4-cell, 8-cell, ICM, ESC, E10.5, E11.5, E12.5, E13.5, E14.5, E15.5, E16.5 and

P0 respectively. TF members are shown below the names of clusters.
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Figure D.1: Transcriptional waves direct tissue differentiation during mouse embryogenesis.

A total of 25 dynamic patterns of ranking scores were identified using the k-means clustering

algorithm. Circles in each panel represent developmental stages. From left to right, they are

2-cell, 4-cell, 8-cell, ICM, ESC, E10.5, E11.5, E12.5, E13.5, E14.5, E15.5, E16.5 and P0

respectively. TF members are shown below the names of clusters.
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