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Abstract

Motivation: RNA-sequencing (RNA-seq) enables global identification of RNA-editing sites in biological systems and
disease. A salient step in many studies is to identify editing sites that statistically associate with treatment (e.g. case
versus control) or covary with biological factors, such as age. However, RNA-seq has technical features that incum-
bent tests (e.g. t-test and linear regression) do not consider, which can lead to false positives and false negatives.
Results: In this study, we demonstrate the limitations of currently used tests and introduce the method, RNA-editing
tests (REDITs), a suite of tests that employ beta-binomial models to identify differential RNA editing. The tests in
REDITs have higher sensitivity than other tests, while also maintaining the type | error (false positive) rate at the
nominal level. Applied to the GTEx dataset, we unveil RNA-editing changes associated with age and gender, and dif-
ferential recoding profiles between brain regions.

Availability and implementation: REDITs are implemented as functions in R and freely available for download at
https://github.com/gxiaolab/REDITs. The repository also provides a code example for leveraging parallelization

using multiple cores.
Contact: zhou@stat.ucla.edu or gxxiao@ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA editing alters RNA sequences by base modifications, insertions
and deletions, which in metazoans (Yablonovitch ez al., 2017), pre-
dominantly consists of adenosine to inosine (A-to-I) changes cata-
lyzed by the adenosine deaminase acting on RNA (ADAR) proteins.
A plethora of studies have demonstrated diverse biological roles for
A-to-I editing. The most-studied type of RNA editing consists of
recoding sites. Because inosines are recognized as guanosines by the
cellular machinery, such editing sites can lead to amino acid substi-
tutions in proteins. Functional studies have implicated many of these
protein-recoding sites in modulating neuronal function, synaptic
permeability and emissions (Behm and Ohman, 2016). In contrast,
RNA editing in non-coding regions is less well-understood, despite
the vast number of sites. Nonetheless, the functional relevance of
such editing sites is starting to be elucidated, such as in splicing regu-
lation (Feng et al., 2006; Hsiao et al., 2018; Rueter et al., 1999),
microRNA targeting and polyadenylation of 3’ UTRs (Bahn e al.,
2015; Brummer et al., 2017; Nishikura, 2016) and modulation of
double-stranded RNA-related immunity (Liddicoat et al., 2015).
Importantly, widespread aberrant RNA-editing patterns have been
reported across a large number of diseases, including neurological

diseases (Hideyama er al., 2012; Tran et al., 2019), atherosclerosis
(Stellos et al., 2016), cancer (Fumagalli et al., 2015; Han et al.,
2015; Ishizuka et al., 2019; Paz-Yaacov et al., 2015) and auto-
immune disorders (Roth et al., 2018).

Recent studies of RNA editing were greatly facilitated by the
RNA-sequencing (RNA-seq) technology and related bioinformatic
tools, which allow comprehensive delineation of global editomes in
diverse biological processes. In editome profiling, a critical task is to
identify editing sites that are statistically different in their quantita-
tive levels between two groups of samples (such as disease versus
controls). Alternatively, editing sites whose levels are statistically
associated with certain variables, such as age, are sought after. Most
previous studies utilized the classic ¢-test (Hwang et al., 2016; Kang
et al., 2015; Qin et al., 2014), Wilcoxon rank-sum test (Han et al.,
2015; Kang et al., 2015; Roth et al., 2018; Srivastava et al., 2017,
Tran et al., 2019), Fisher’s exact test (Paz et al., 2007; Quinones-
Valdez et al., 2019; Tan et al., 2017; Tran et al., 2019) or linear
regression-based test (Brummer et al., 2017; Chen et al., 2013;
Hwang et al., 2016; Picardi et al., 2015; Tan et al., 2017; Tran
et al., 2019) for these purposes. However, these tests are limited due
to the lack of consideration of uncertainty in the read counts or vari-
ability in editing quantification between biological replicates.
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Statistical inference of differential RNA editing

Here, we develop and evaluate a suite of tools, RNA-editing tests
(REDITs), that are built upon beta-binomial-based models to carry
out differential editing analyses. Specifically, REDITs consist of two
methods. The first method handles the classic case of identifying
editing sites that possess differential editing levels between two con-
ditions (i.e. case versus control). The second method carries out stat-
istical inference of categorical or quantitative variables that covary
with editing levels (e.g. age-correlated RNA editing). Beta-binomial
models have been applied to analyze DNA methylation (Dolzhenko
and Smith, 2014; Feng et al., 2014; Hebestreit et al., 2013; Park
et al., 2014; Sun et al., 2014). However, these methods are not dir-
ectly applicable to RNA-editing studies due to their methylation-
specific aspects (e.g. methylome-wide priors).

We show via simulated and actual data that REDITs have
improved sensitivity and mitigated false-positive rate compared to
commonly used alternatives. Applied to human tissue editomes
(GTEx), REDITs revealed novel insights on the association of RNA
editing with age, gender and differential recoding profiles between
brain regions.

2 Materials and methods

2.1 Beta-binomial model underlying REDITs

We first consider an A-to-G editing site measured using RNA-seq
across m samples from two conditions (Fig. 1a). For each sample 1,
we denote the total read coverage as 7; and the number of reads har-
boring the edited nucleotide as k;. As in most previous studies, the
observed editing level can be calculated as k/n;. If we assume the
true underlying editing level is 0;, then k; follows a binomial
distribution:

k;|0; ~ Binomial(n;, 0;),

n;
Pllalfr) = (ki) o0y

The value of 6; is expected to vary amongst samples due to bio-
logical variability. Thus, we model 0; using a beta distribution for
samples from the same condition. More specifically, for condition 1:

0; ~ Beta(ay, fy)

02t (1 —0)h!

POy =2 i1

@) B(a1, By) !

For condition 2:
0; ~ Beta(aa, f;)
0 (1—0)P!
P(9;) = d=j+1...m

) B(az, B3) !

where o, f are hyper parameters and B(a, ) is the beta function.
We choose the beta distribution because it adheres to the restriction
that editing levels must fall in a continuum between (0, 1).
Additionally, the beta distribution is conjugate to the binomial dis-
tribution (below), which eases our inference procedure. Given the
inordinate flexibility of both concave and convex shapes possessed
by the beta distribution, we restricted « > 1 and f§ > 1 to en-
force that it partake only uniform or unimodal shapes and eschew
U-shapes. Intuitively, this restriction presumes that the distribution
of true-editing levels per condition has measures of centrality and
dispersion that approximately correspond to the peak and width of
the distribution, respectively. In addition, these parameter restric-
tions were observed for all editing sites analyzed in the GTEx data-
set (Section 3) (Supplementary Fig. Sla). In totality, each sample
follows a generative model whereby its true editing level 0; is an ob-
servation from a uniform or unimodal beta distribution characteris-
tic of its condition, and the random consampling of edited reads or
non-edited reads from RNA-seq follows a binomial distribution
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(Fig. 1b). The entire generative model is a beta-binomial
distribution:
P(kj, 0;|n;, 01, B;) = P(kil0;, 7;) - P(O;lou, By),
n; =174 _ n -1
B L PP et
i B(oy, By)
where! = 1fori < jand!l = 2fori > j + 1.

Integrating over 0; yields the marginal likelihood of k; given the
hyper-parameter (o, ) :

lA n;
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2.2 Statistical inference of differential editing between
two groups

Given two groups of samples (e.g. cases and controls), under
the null hypothesis of no between-group difference on editing (i.e.
wp =0y = og and B; = B, = By), the likelihood of the data is
given by:

. m n;
Lo = Hp(k’|n” o, Po) = H (ki) ’
1

1

B(k; + 00,7 — ki + By)
B(ao, Bo)

The likelihood of the alternative model where significant differ-
ence exists between the two groups is given by:

m

P(k i, o1, B1) [ Plkilmi, o, Bo)

H
E\

i=1 i=j+1

/ B(k; 4+ 1,1 — ki + By)
Ll[ ( ) (“11/))1)

_ B(ki +op,n; — ki + B,)
i:]+1 ki . (O{Lﬁz) '

Wilk’s theorem states that the statistical significance of differen-
tial editing is given by:

L
-2 10g<L—0> ~ %, with two degrees of freedom,
A

where Ly and Ly are evaluated at the maximum likelihood estimates
(MLEs) of o’s and f’s. Thus, we call this method REDIT-LLR
henceforth.

2.3 Statistical inference of editing sites that covary with
quantitative variables

The beta-binomial model can be expanded to handle statistical infer-
ence under the regression scenarios (REDIT-Regression). For
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Fig. 1. Overview of REDITs. (a) Context for usage of REDITs within RNA-editing studies. RNA-seq is generated on multiple samples (i = 1...m), and editing sites are quanti-
fied by counting number of matches/non-edited reads (A-containing) and mismatches/edited reads (G-containing). k; =# of G-containing reads and total coverage n; =# of A
reads+# of G reads. Depending on the type of inference sought, samples are partitioned into tables, which are input into REDITs for statistical inference. (b) Overview of
REDIT-LLR for case—control inference. Under the null model, a single beta distribution characterizes the underlying editing levels 0., of all samples, whereas the alternative
model posits distinct beta distributions characterizing condition 1 (6, ;) against condition 2 (0.1.. ,,,). A binomial distribution characterizes edited reads per sample (ky. ).
The coverage acquired via RNA-seq directly determines #;__,. (c) Overview of REDIT-Regression for inference of covariance with RNA editing. For simplicity, the model is
depicted showing covariance of editing with age in four samples. The underlying editing level of each sample is characterized by a distinct beta distribution where mean (u;) is
linearly dependent on age through #,=0.2 A; +0.1, and dispersion (g) is constant. Points along regression line show locations of the means (u;) of beta distributions. The num-
ber of edited reads (k;) then follow a binomial (k,|n;, 0;) distribution where #; is determined by sequencing coverage per sample at this editing site, and 0; is an observation from

the respective beta distribution per sample

convenience, we describe this method using the example of identifi-
cation of editing sites that covary with age (A;). For a specific editing
site, we assume the underlying true-editing levels per sample,
(% ~0;) (i = 1...m), follow a beta distribution with constant dis-
persion (¢) but with mean (u) linearly dependent on age (Fig. 1c).
The assumption of a constant ¢ and the dependency of i on age are
analogous to that of linear regression. We re-parameterize the beta-

binomial model as follows,

o
'u_terﬁ
1

o= 5

Then, the marginal likelihood of k; in Equation (1) becomes:

¢
ki B(%,“;#’))

The dependency of p on age is linear:

n; B(/e,'-i-&,n,ﬂ—k,’-i-%)

P(k,'|7l,’7 U, 6):

Wi = ﬁage “Ai+ :BO,

Under the above re-parameterization, g must fall between (0, 1)
and ¢ must be > 0, which we enforce during MLE. The likelihood
of the data is given by:

m () B(RE 4 )

m
Liata = gp(kilniv His {7) = H ki B(L M)

i=1

g’ a

The null hypothesis Hy is that age does not impact editing, i.e.
Bage = 0 or equivalently ; = f§;. Based on Wilk’s theorem, the statis-
tical significance of the alternative model (Ha: 4 7 0) is given by:

L .
-2 -log (L—()) ~ 2, with one degree of freedom,
A
where Ly and Lj are maximum likelihood under Hy and Hjy, re-
spectively. General inference of multiple covariates (8, 8, . ..) with
respective observations (X1;, X2, ...) can be carried out by compar-
ing maximum likelihood wunder the alternative model,

Wi =Py - X1+ py - Xoi+ -+ Py, to maximum likelihood under
null models with §; = 0 to determine statistical association of cova-
riate j with editing for each j = 1,2,.... Categorical variables (e.g.
gender and ethnicity) can also be included by encoding them as 0
and 1. Regression for one or more quantitative and/or categorical
covariates is handled by our provided code (see code availability).
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For regressions of proportions (values restricted between 0 and
1), the u term is conventionally transformed using a logistic link
function:

1
b e Ouh)

However, the logistic transformation can over-fit the data and
lead to inflated maximum likelihood ratios. Thus, we chose not to
use the logistic link function and instead opted to constrict regres-
sion coefficients within the MLE so that editing levels would never
fall below 0 or above 1.

2.4 Simulations to evaluate REDIT-LLR
To simulate RNA-editing data, we extracted RNA-editing sites from
the REDIportal database (Picardi et al., 2017) derived from 2660
GTEx samples and other sources. Using these data, we simulated
realistic read coverages and hyper-parameter distributions reflecting
biological variance of editing levels. First, we used MLE to fit beta
distributions to the editing levels of each editing site in brain samples
of GTEx. Brain was chosen since it has the largest sample size
among all histological types (Supplementary Table Sla).
Furthermore, to acquire highly accurate parameters, we required the
editing sites to have >20 reads in >250 brain samples. A total of
1206 editing sites were retained. The o and f§ parameters were then
clustered (k-means) into 10 clusters, yielding 10 representative par-
ameter values (Supplementary Fig. S1a and b and Table S1b). As an
alternative, we repeated the simulations using a truncated Gaussian
distribution instead of beta distribution. The mean and variance
parameters were converted directly from the mean and variance of
the beta distributions (Supplementary Fig. S1d and Table S1b).
Editing levels were sampled from the beta or truncated Gaussian
distributions, and the numbers of edited reads for each sample were
simulated using the corresponding binomial distribution. To simu-
late read coverages, we used MLE to fit negative binomial distribu-
tions to the coverage data of the above editing sites from 10 random
GTEx brain samples (Supplementary Table S1c and Fig. Slc). A
total of 100 independent simulations of 1000 editing sites were cre-
ated for each group, with 2, 3 or 5 samples per group.

2.5 Evaluating sensitivity and false-positive rates of
REDIT-LLR

The false-positive rate and sensitivity of REDIT-LLR were evaluated
by simulating case—control scenarios where the case and control
groups were each characterized by 1 of the 10 beta (or truncated
Gaussian) distributions (Supplementary Fig. S1). Sensitivity was eval-
uated where the cases and controls were simulated using different
underlying distributions, and false-positive rate was evaluated using
identical distributions to generate cases and controls. A P < 0.05 was
imposed to call significant comparisons. We piloted evaluation of sen-
sitivity and false-positive rate on a single set of parameters for a case—
control comparison of three replicates, where the parameters for sensi-
tivity were beta(x = 13.52, B = 11.95) versus beta(x = 43.64,
p = 0.23), and parameters for false positives were beta(z = 13.52,
B = 11.95) for both groups; simulations were then expanded to in-
clude all combinations of parameters and sample sizes.

Pooled Fisher’s exact test, t-tests and Wilcoxon rank-sum tests
were also applied on the above simulated editing sites. Pooled Fisher’s
exact test was carried out by pooling reads from replicates and testing
the resulting 2x2 contingency table. The t-test and Wilcoxon rank-
sum tests were performed in two ways, respectively, (i) using editing
levels estimated without minimal read coverage requirement, and (ii)
filtering out, for each editing site, any sample with read coverage <10
(i.e. thresholded #-test or Wilcoxon rank-sum test).

2.6 Evaluating false-positive rates of REDIT-Regression

using simulated data
To evaluate REDIT-Regression, we simulated editing sites that
covary with age. We based the simulations on a previous dataset of

33 postmortem human brains spanning fetal stages to old age
(Hwang et al., 2016). A total of 267 766 editing sites were reported
by this study.

To test the false-positive rates, we simulated editing sites where
age had no effect on editing level. For each editing site, we extracted
its read coverage in each sample of the original dataset. The editing
level and number of edited reads were simulated similarly as
described for REDIT-LLR, using the beta or truncated Gaussian dis-
tributions (Supplementary Fig. S1). For each editing site, 1 of the 10
beta or truncated Gaussian distributions, respectively, was randomly
selected to simulate edited reads. Each simulation included 3, 5, 7
and 33 samples and 267 766 editing sites, with the age values of the
samples unaltered. For sample, sizes of 3, 5 and 7 we chose to use
samples (R5805, R3523, R3990), (R5805, R3591, R3497, R4371,
R3990) and (R5805, R5815, R3552, R3497, R4054, R3539,
R3990), respectively, as these samples represented the age range of
the dataset. Each simulation included editing sites where median
coverage was at least 5 (93437 sites for n = 386290 for
n = 568235 for n =7 and 90919 for n = 33), and 100 independent
simulations were carried out per sample size. For each simulation,
the false-positive rate was calculated as the fraction of sites with sig-
nificant age associations (REDIT-Regression P < 0.05) among all
sites tested. We piloted the simulations on the sample size of three
and then expanded to the other sample sizes.

Binomial regression, LIMMA, linear regression and thresholded
linear regression (using samples with read coverage >10) were also
performed for the above simulated data.

2.7 Evaluating sensitivity of REDIT-Regression using

simulated data

To test sensitivity, we simulated various correlations between age
and editing levels. First, we estimated representative correlations of
these two variables using the original data of the 33 postmortem
samples. We used editing sites where >20 samples had >20 read
coverage. The observed editing levels (calculated as the number of
edited reads divided by read coverage) were then regressed against
age using linear regression. To tractably limit the number of simu-
lated age-associations, we used a stricter P-value threshold of
P < 0.005 to deem editing sites significant. These sites were used to
derive five representative slope and intercept values to simulate lin-
ear relationships between age and editing levels (Supplementary
Table S1d).

Using the above relationships, we simulated true-editing levels of
each editing site by randomly sampling from a beta or truncated
Gaussian distribution whose mean was set as y; = f,. - A; + By,
where A; was the unaltered age of the sample. The SD for each edit-
ing site was randomly selected from the standard deviations of the
10 distributions from the GTEx data described above. Other aspects
of the simulations are similar as described for false-positive evalu-
ation. Sensitivity was calculated as the fraction of editing sites with
significant (P < 0.05) age association among all sites tested. We
piloted sensitivity evaluation on sample size of three and where true-
editing level was a beta distribution with mean set as y; =
0.005 - A; + 0.33 and then expanded to the other four slopes and
intercept values and sample sizes.

2.8 Evaluating false-positive rates and sensitivity of
REDITs on actual data

To test the false-positive rate of REDIT-LLR on real data, we
obtained 6814 editing sites in 18 control samples from a previous
study of system lupus erythematosus (Hung ez al., 2015; Quinones-
Valdez et al., 2019). We randomly permuted the samples and
formed two groups (n = 2, 3, 5, 10, 15 or 18 per group). Thus, any
editing site called with P < 0.05 is deemed a false positive.

To test the sensitivity of REDIT-LLR on actual data, we
obtained 12 258 editing sites from a previous study comparing two
replicates of ADAR1 knock-down (KD) and controls in U87 cells
(Bahn er al., 2012). We reasoned that most editing sites should have
reduced editing levels following ADAR1 KD. Thus, the total number
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of differential editing sites (P < 0.05) called by each method was
used as a proxy for sensitivity.

For REDIT-Regression, we used 267 766 editing sites from the
33 postmortem brains (Hwang ef al., 2016) as described above and
randomly grouped samples with replacement to achieve various
sample sizes (n = 5, 10, 15, 20, 25, 30, 33). Each sample was then
randomly assigned a covariate value (1-7). Each random sampling
and covariate assignment was repeated 100 times.

2.9 Application of REDIT-Regression to identify age- and

gender-associated RNA editing

We applied REDIT-Regression to the GTEx dataset to investigate
how RNA editing varies with human age and gender (4668 508
editing sites obtained from the REDIportal database). To expedite
run-time, we removed GTEXx tissues that had fewer than 10 samples,
and required editing sites to have >1 read coverage in >10 samples.
We also adjusted for latent confounding factors by performing im-
putation and surrogate variable analysis (SVA) with the missMDA
(Josse and Husson, 2016) and SVA (Leek et al., 2012) R packages,
respectively. For the vast majority of body sites (33/48), SVA identi-
fied zero significant surrogate variables. Nevertheless, as an extra
precaution against confounders, we ran all regression analyses
including one surrogate variable.

Partitioning samples per body site and histological type, we iden-
tified sites that significantly associated with age (|beta,g| > 0.01
and FDR < 0.1) through REDIT-Regression using the surrogate var-
iables and age as covariates. Tissues with an increasing trajectory in
editing over age were defined as those where the number of editing
sites demonstrating an increasing trend is at least twice of that with
a decreasing trend (and Fisher’s exact test FDR < 0.1). Tissues with
a decreasing trajectory were defined similarly. The same criteria
were used when finding editing sites associated with age in a dataset
of 33 postmortem frontal cortex samples (Hwang et al., 2016). The
subset of samples used to match the age range of GTEx frontal cor-
tex samples were R4054 age: 40.6, R2897 age: 41.0, R4049 age:
41.2, R4371 age: 41.8, R3791 age: 42.1, R2826 age: 42.8, R3539
age: 57.5, R3479 age: 58.6, R3766 age: 59.3, R344S5 age: 61.2,
R4038 age: 67.9 and R3990 age: 71.1.

To identify editing sites that significantly associate with gender,
we ran REDIT-Regression using gender, the surrogate variables and
age as covariates, since age is already a known variable correlated
with editing (Dillman et al., 2013; Hwang et al., 2016; Li ez al.,
2013; Wahlstedt et al., 2009). |Betagey| > 0.05 and FDR < 0.1 were
used to call significant associations.

2.10 Application of REDIT-LLR to identify distinct recod-

ing profiles across brain regions

To find differential recoding sites between pairs of brain regions, we
used REDIT-LLR to test editing sites annotated as non-synonymous
in REDIPortal (4388 non-synonymous editing sites). Recoding sites
with differences in average editing levels >0.05 and FDR <0.1 were
considered differential.

2.11 Implementing statistical tests

The t-test, Wilcoxon rank-sum test, Fisher’s exact test and linear re-
gression were performed using corresponding base functions in R.
Binomial regression was run in R using the gamlss package (version
5.1-2) using default arguments. LIMMA was run using the LIMMA
package (version 3.42.0) with parameters to incorporate a mean-
variance trend and variance robustified against outlier sample
variance.

2.12 Running-time performance evaluation

The running-time performances of the REDIT-LLR and REDIT-
Regression were evaluated by running various numbers of editing
sites from real datasets. REDIT-LLR was run on 29 Autism and 33
controls from frontal cortex (Tran et al., 2019), and REDIT-
Regression was run on the 33 frontal cortex samples spanning
human development (Hwang et al., 2016). We calculated the

average running-time (average time required to run one editing site)
by fitting a least-squares linear regression on running-time (min) ver-
sus number of editing sites tested. No computational parallelization
was used for these evaluations.

3 Results

3.1 Overview of REDITs

REDITs model read counts in RNA editing using a beta-binomial
distribution, where read coverage is modeled using the binomial
component, and biological variance between replicates is concur-
rently modeled with the beta component. For differential editing
tests between groups (e.g. cases versus controls), REDITs evaluate a
null model assuming no between-group difference, compared to an
alternative model that includes two distinct groups. It then deter-
mines differential editing based on the significance of the likelihood
ratio of the two models (thus, called REDIT-LLR, Fig. 1a and b). To
test the correlation of an editing site with one or multiple biological
factors (e.g. covariance of editing with age), REDITs model the
covariates as a linear combination of regressors that together consti-
tute the mean of the beta component. It then tests whether inclusion
of each covariate significantly improves the maximum likelihood
ratio (thus, called REDIT-Regression, Fig. 1a and ¢).

3.2 Evaluation of the REDIT-LLR method via simulated

data
To evaluate the REDIT-LLR method, we simulated read counts of
editing sites using beta distributions estimated from GTEx brain
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Fig. 2. Evaluation of REDITs using simulated data. (a) Sensitivity of REDIT-LLR
was evaluated using simulations where group 1 editing level was characterized by
beta(x=13.52, f=11.95) and group 2 as beta(x=43.64, f=0.23) with three samples
per group. (b) False-positive rate was evaluated where both groupl and group2
were simulated as beta(z=13.52, f=11.95). (c) Sensitivity of REDIT-Regression
was evaluated where editing level was characterized as a beta distribution with
mean simulated as §,=0.005*A; +0.33 over three samples. (d) False-positive rate
was evaluated where age had no simulated effect on editing levels. Individual points
show 100 replicate simulation results. Red dotted lines show the 5% false-positive
rate threshold. Thresholded #-test and thresholded Wilcoxon test =t-test and
Wilcoxon rank-sum test run on samples with minimal 10 read coverage.
Thresholded linear regression = linear regression on only samples with minimal 10
read coverage. REDITs have highest sensitivities out of all tests that remain within a
5% false-positive rate
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tissues (Supplementary Fig. Sla—c and Table S1b and c). We simu-
lated 2, 3 or § biological replicates per group, which are typical sam-
ple sizes in case—control studies. The significance level was chosen to
be 0.05. REDIT-LLR had much greater sensitivity (true-positive
rate) than the #-test or Wilcoxon rank-sum test, particularly for
smaller sample sizes (Fig. 2a and Supplementary Fig. S2), which is
consistent with the lack of depreciation of sites with inadequate cov-
erages by the latter two methods. Also, this problem of the two
methods is not alleviated using thresholds to impose a minimal
coverage requirement (Fig. 2a and Supplementary Fig. S2), due to
loss of sample size.

Although the Fisher’s exact test has comparable sensitivity as
REDIT-LLR, its false-positive rate is much higher than the nominal
level of 0.05 and that of REDIT-LLR (Fig. 2b and Supplementary
Fig. S2). This limitation of Fisher’s exact test is consistent with its
theoretical flaw of neglecting biological variability. Notably, this
problem of Fisher’s exact test exacerbates as sequencing coverage
increases (Supplementary Fig. S3).

As an alternative method, we simulated editing sites using a dif-
ferent hyper-parameter distribution (truncated normal instead of
beta distribution) (Supplementary Fig. S1d). The REDIT-LLR
method still outperformed the other methods (Supplementary Fig.
S4), indicating that this method is robust to the underlying distribu-
tion of editing levels.

3.3 Evaluation of the REDIT-LLR method using actual
RNA-seq data

We evaluated the false-positive rates of different methods by ran-
domly grouping control samples of a previous study (Hung et al.,
2015) into two groups (Section 2). Editing sites identified with
P < 0.05 were considered as false-positive predictions. REDIT-LLR
yielded the lowest false-positive rates in the majority of comparisons
and across all sample sizes (Supplementary Fig. S5a). All methods
except Fisher’s exact test had false-positive rates <5%. In particular,
Fisher’s exact test performed poorly at editing sites with highly vari-
able editing levels between samples, which are enriched in Alu and
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intronic regions (Supplementary Fig. S5b and ¢). In contrast, for sites
with lower variability, which were enriched in exonic and non-Alu
regions, Fisher’s exact test performed adequately (false-positive rate-
$<5%). The assumption of low variance between biological repli-
cates likely holds for these editing sites where precise regulation of
editing level may be critical for homeostasis (Pinto et al., 2014).

To evaluate the sensitivity of each method, we leveraged a previ-
ous dataset containing two replicates of ADAR1 KD and controls in
U87 cells (Bahn ez al., 2012). As reduced ADAR1 expression is
expected to result in editing reduction, we used the number of differ-
ential editing sites called by each method as a proxy for sensitivity.
REDIT-LLR had higher sensitivity than all the other methods except
Fisher’s exact test (which suffers from high false-positive rates)
(Supplementary Fig. S6a). In particular, REDIT-LLR was able to
identify differential editing sites with relatively low baseline levels or
small effect sizes (Supplementary Fig. S6b).

3.4 Evaluation of the REDIT-Regression method

To evaluate the REDIT-Regression method, we simulated editing
sites based on RNA-seq data of 33 postmortem frontal cortex sam-
ples used in a study of RNA editing in human development (Hwang
et al., 2016). The simulations incorporated unaltered read coverages
per editing site from the actual data. To evaluate sensitivity, we
simulated editing sites that covary with age (f,,.and f§; parameters)
(Supplementary Table S1d and Fig. S7a and b). For all simulations
and across various tested sample sizes, the REDIT-Regression
method had higher sensitivity (proportion of sites with P < 0.05)
than the linear regressions, though lower sensitivity than binomial
regression (Fig. 2¢ and Supplementary Fig. S8a). Similar trends were
observed using simulated data generated from a truncated normal
instead of beta distribution (Supplementary Fig. S9a).

We also used the same 33 samples as described above, but did
not impose any correlation between RNA editing and age. Thus, the
prediction of a significant association between editing and age is a
false positive. Based on these simulations across multiple sample
sizes, the false-positive rate of REDIT-Regression remains at or
below 5%, whereas binomial regression and LIMMA yielded much
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Fig. 3. REDIT-Regression uncovers overall trends of RNA editing over human aging. REDIT-Regression was performed to find RNA-editing levels that statistically associate
with age. Plots show linear regression lines fit to z-scores of all RNA-editing sites that were found significantly associated with age in samples partitioned by tissue type. Only
tissue types exhibiting homogenous trajectories of editing over age are plotted (Supplementary Table S2a). (a) Tissues partitioned by histological type. (b) Tissues partitioned
by body site. Gray shading shows the 99% confidence interval from regression. Points show the median z-score per sample
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higher false-positive rates (Fig. 2d and Supplementary Figs S8b, S9b
and S10a and b). Strikingly, LIMMA had inordinately inflated false-
positive rates, prompting us to exclude it from any further compari-
son (Supplementary Fig. S10a and b).

We next evaluated the false-positive rate of REDIT-Regression
using actual RNA-seq data by bootstrapping samples and shuffling
the associated random covariate values (Section 2). Similar to the
simulation results, all methods except the binomial regression main-
tained false-positive rates below 5% across all sample sizes
(Supplementary Fig. S11).

Overall, out of the methods that mitigate false positives to 5%,
REDIT-Regression had the highest sensitivity, demonstrating the op-
timal balance between false- and true-positive rate.

3.5 REDIT-Regression on GTEx data uncovers associ-

ation of RNA editing with human aging

Multiple studies indicate that RNA-editing levels in the brain in-
crease over age (Dillman et al., 2013; Hwang et al., 2016; Li et al.,
2013; Wabhlstedt et al., 2009). However, this trend has not been
evaluated across many samples for the panoply of human tissues.
We applied REDIT-Regression to the GTEx dataset, to comprehen-
sively investigate the trajectory of editing variations over human
aging. Overall, most tissues had few age-associated editing sites
(Supplementary Table S2a and b). However, there were a few excep-
tions, such as brain, testis and cervix, which had hundreds of age-
associated sites. Interestingly, many of these tissues also exhibited
homogenously increasing or decreasing trajectories of editing
(Supplementary Table S2a and b and Fig. 3a and b).

One striking observation in our results is that editing decreased
with age in the brain (Fig. 3a and b). A previous study reported an
increasing trend of brain editing with age (frontal cortex) (Hwang
et al., 2016). However, this increasing trend was predominantly
driven by the fetal to infant transition, which was replicated in an-
other study (Tran et al., 2019). The ages of GTEx subjects ranged
from 20 to 70years (Supplementary Fig. S12a and b), which only en-
capsulate the period of human adulthood to older age. Thus, we
hypothesized that the disparity in the age-editing association between
ours and previous studies (Dillman et al., 2013; Hwang et al., 2016;
Li et al., 2013; Wabhlstedt et al., 2009) was attributable to differences
in the ages of the respective cohorts. To level the comparison, we per-
formed REDIT-Regression in two ways using the previous dataset
(Hwang et al., 2016), with the entire cohort and with a subset of
frontal cortex samples aged > 20years, respectively. REDIT-
Regression on the entire cohort recapitulated that editing levels pre-
dominantly increased during development (762 sites increasing versus
148 sites decreasing, y* P-value=3.1e™>*, odds ratio=5.14).
However, in the subset of samples aged > 20years, REDIT-
Regression identified no editing sites associated with age, which is
similar to that observed in the GTEx samples where only seven sites
were associated with age (brain-frontal cortex, Supplementary Table
S2b). Overall, our findings underscore that the trends of RNA-editing
changes differ between early development versus aging.

3.6 REDIT-Regression on GTEx data reveals gender-

biased RNA editing

Although humans display sexual dimorphism in morphology and
physiology, RNA-editing differences between genders is largely un-
known. Recent studies implicated RNA editing in gender-specific
stratification of glioblastoma survival (Silvestris et al., 2019).
However, comprehensive investigation of gender-biased editing
across human tissues has not been reported. We carried out REDIT-
Regression analysis on the GTEx dataset using both age, a surrogate
variable (Section 2), and gender as covariates. Strikingly, we
observed hundreds of gender-biased editing sites across diverse tis-
sue types (Fig. 4 and Supplementary Fig. S13) (FDR < 0.1 in Section
2). Tissues with the greatest number of gender-associated sites,
included the tibial nerve, thyroid, pancreas, skin and adipose, some
of which also exhibit physiological differences between genders
(Fuente-Martin et al., 2013; Gannon et al., 2018; Giacomoni et al.,
2009).
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Fig. 4. Gender-biased RNA editing in various tissues. REDIT-Regression was per-
formed across GTEx tissues partitioned by histological type to find editing sites
associated with gender. Bargraphs show number of editing sites found significantly
more highly edited in males (dark grey) or females (light grey). Significant sites
defined with FDR <0.1 and mean difference between genders >0.05

Our observation suggests that gender-specific RNA editing may
be involved in sexual dimorphism of different aspects of physiology.

3.7 REDIT-LLR unveils distinct protein-recoding profiles

between brain regions

Next, we applied REDIT-LLR to test whether the various brain
regions in human have distinct protein-recoding profiles. Many
brain regions displayed dozens of differential recoding events
(Supplementary Fig. S14 and Table S3). For example, the glutamine
to arginine recoding event in GRIA2 (Behm and Ohman, 2016)
(edited at ~100% in cerebellum) has ~10% lower editing in amyg-
dala, hypothalamus, putamen, caudate, hippocampus, and ~20%
lower editing in the substantia nigra (Supplementary Table S3).
Strikingly, the cerebellar regions had particularly disparate recoding
profiles relative to all other brain regions (Supplementary Fig. S14),
consistent with its substantial differences in cellular composition
and neurophysiology (Rakic, 2009). Overall, these observations sug-
gest that RNA recoding events may be associated with regional dif-
ferences of the human brain.

3.8 Computational speed of REDITs

We evaluated REDITs run-time using data from two previous stud-
ies (62 samples in the LLR analysis, and 33 samples in the regression
analysis) (Hwang et al., 2016; Tran et al., 2019). The REDIT-LLR
method processed 100000 editing sites in about 14 min (Fig. Sa).
REDIT-Regression ran 36 min for 100000 editing sites (Fig. Sb).
For the preponderance of RNA editing studies, this level of speed is
efficient and should obviate the need for parallelization, permitting
application of the methods given the most basic computational
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Fig. 5. Computational speed of REDITs. The points in the scatterplots show the run time (min) in analyzing various numbers of editing sites from real datasets. (a)
Computational run time of REDIT-LLR. (b) Computational run time of REDIT-Regression. Annotations specify the exact numbers of editing sites tested. The fitted lines were

derived by least-squares regression

resources. Nevertheless, we provide an example of how to include
parallelization in the REDITs codes (see code availability).

4 Discussion

In this work, we introduce REDITs which leverage beta-binomial
models to detect editing differences between groups or editing asso-
ciation with covariates. Compared to nominal methods used in pre-
vious studies, REDITs proffer the advantage of handling the
uncertainty in RNA-editing levels calculated from limited sequenc-
ing depth in RNA-seq data, while still maintaining biological vari-
ance modeling. Using both simulated and actual data, we
demonstrated that REDITs have superior performance than com-
monly utilized tests in RNA-editing studies. Consistently across sim-
ulations, REDITs proffered the highest gains in sensitivity in
relatively small sample sizes, particularly advantageous for cases
with high costs of sample attainment and RNA-seq. Since REDITs
consider biological replicates to model the variability across data
sets, they are particularly suitable for handling data with sparse and
limited counts. If the sequencing depth is very high, REDITs math-
ematically simplify to a likelihood ratio test of beta distributions for
case—control studies, or a beta regression for regression analyses.
Since most RNA-seq data have limited coverage at the single-
nucleotide level, REDITs serve a widespread utility. Additionally,
the underlying beta-binomial model can be applied to other ques-
tions, such as detecting allelic expression biases and expression of
somatic mutations in cancer.

In this study, we clarified the trajectory of editing changes associ-
ated with age in human tissues. Although most tissues had few edit-
ing sites associated with age, some exceptions were present,
including brain, testis and cervix, which had hundreds of age-
associated sites. Many of these tissues also exhibited homogenously

increasing or decreasing trajectories of editing over age. Our
analyses also clarified that, in brain, editing level increases during
early development, and then decreases from adulthood to old age.
Interestingly, most tissues also had hundreds of RNA-editing sites
with gender bias, which may contribute to sexual differences in
physiology and anatomy. Lastly, multiple brain regions, particularly
cerebellum, had distinct editing levels of protein-recoding sites,
including those with neuronal salience, which could contribute to re-
gional differences. The functional importance and mechanistic
underpinnings of these trends merit additional validation and fur-
ther examination. Overall, REDITs should serve prodigiously to

expand our understanding of how RNA editing undergirds molecu-
lar systems, biological phenotypes and disease.
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