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C O R O N A V I R U S

Excess of COVID-19 cases and deaths due to fine 
particulate matter exposure during the  
2020 wildfires in the United States
Xiaodan Zhou1†, Kevin Josey2†, Leila Kamareddine2, Miah C. Caine3, Tianjia Liu4,  
Loretta J. Mickley3, Matthew Cooper5, Francesca Dominici2,6*

The year 2020 brought unimaginable challenges in public health, with the confluence of the COVID-19 pandemic 
and wildfires across the western United States. Wildfires produce high levels of fine particulate matter (PM2.5). 
Recent studies reported that short-term exposure to PM2.5 is associated with increased risk of COVID-19 cases and 
deaths. We acquired and linked publicly available daily data on PM2.5, the number of COVID-19 cases and deaths, and 
other confounders for 92 western U.S. counties that were affected by the 2020 wildfires. We estimated the associa-
tion between short-term exposure to PM2.5 during the wildfires and the epidemiological dynamics of COVID-19 
cases and deaths. We adjusted for several time-varying confounding factors (e.g., weather, seasonality, long-term 
trends, mobility, and population size). We found strong evidence that wildfires amplified the effect of short-term 
exposure to PM2.5 on COVID-19 cases and deaths, although with substantial heterogeneity across counties.

INTRODUCTION
According to the National Interagency Fire Center, approximately 
7 million acres of land burn every year in the United States (1). As 
of December 2020, more than 10 million acres were burnt in the 
western United States alone. In 2020, California and Washington 
both recorded their largest wildfires in state history (1, 2). The 
warming climate is expected to increase wildfire risk and, conse-
quently, exposure to smoke (3, 4). In the last 4 years, the United 
States has experienced record-breaking wildfires, leading to an 
increase of more than 470,000 daily exposures per year and 1.85 bil-
lion more person-days of exposure to high wildfire risk compared 
to 2001–2004 (5). Wildfire smoke contains high levels of fine partic-
ulate matter (PM2.5) (4), the pollutant in smoke that poses the greatest 
risk to health (2, 6). Short-term exposure to PM2.5 is associated with 
adverse health outcomes (6–9). According to recent research by 
Burke et al. (2), wildfires contribute to up to 25% of the PM2.5 
concentration in the atmosphere in the United States and up to half 
of PM2.5 in some regions of the western United States.

Exposure to PM2.5, specifically from wildfires, has been associated 
with negative health outcomes (3,  4,  10–16), including all-cause 
mortality and respiratory morbidity, as well as asthma, chronic 
obstructive pulmonary diseases, and others (11, 12, 17, 18). In par-
ticular, studies have shown that short-term wildfire-specific PM2.5 
exposure is linked to increases in asthma symptoms, emergency 
department visits for respiratory symptoms, and respiratory hospi-
tal admissions, as well as increases in risk and severity of respiratory 
viral infections (4, 19–21). Certain populations are at higher risk 
from exposure to PM2.5 from wildfires, including people with heart 
or lung disease, the elderly, children, and fetuses (11, 18, 19, 22).

Between March and December 2020, the western United States 
was afflicted by two natural disasters: wildfires burning through 
millions of acres and the coronavirus disease 2019 (COVID-19) 
pandemic. Recent studies have provided preliminary evidence of an 
association between short- and long-term exposure to PM2.5 and 
COVID-19 health outcomes [see, for example, (23–25)]. A study by 
Pozzer et al. (25) estimated that 17% of COVID-19 mortality in 
North America could be attributed to exposure to particulate air 
pollution. Another study by Wu et al. (23) found that only an increase 
of 1 g/m3 in the long-term average PM2.5 concentration is associated 
with an 11% increase in COVID-19 mortality. The U.S. Centers for 
Disease Control and Prevention (CDC) (26) states that “wildfire smoke 
can irritate your lungs, cause inflammation, affect your immune 
system, and make you more prone to lung infections, including 
COVID-19.” Henderson (27) urged greater recognition of the poten-
tial for a dangerous interaction between SARS-CoV-2 (severe acute 
respiratory syndrome coronavirus 2; the virus that causes COVID-19) 
and smoke pollution. Regardless of the clear threat, no study to date 
has quantified the degree to which the increases in PM2.5 during 
the 2020 wildfires exacerbated the severity of the COVID-19 pan-
demic in the United States in terms of excess cases and deaths.

Supported by biological plausibility (28, 29), we hypothesize that 
short-term exposure to PM2.5 might increase the likelihood of (i) 
more severe infection so that an asymptomatic infection becomes 
symptomatic and is detected as a case and (ii) more severe infection 
that leads to death. To gather evidence for these hypotheses, we 
acquired, harmonized, linked, and analyzed publicly available daily 
time series data for 92 counties in the states of California, Washington, 
and Oregon, where most of the wildfires between 15 March and 
16 December 2020 occurred. Our goal was to quantify the potential 
association between short-term exposure to PM2.5 during the wild-
fires and the epidemiological dynamics of COVID-19 cases and deaths. 
More specifically, we estimated the percentage increase in COVID-19 
cases and deaths associated with a daily increase of 10 g/m3 in 
PM2.5 for 28 days for each county and pooled across all counties. 
We also conducted sensitivity analyses using 14 and 21 lag days. 
We also estimated the percentage of COVID-19 cases and deaths 
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attributable to exposure to high levels of PM2.5 during the 2020 wildfires 
for each county. In addition to analyzing the distributed lag effects 
using 14 and 21 lag days, we also evaluated several sensitivity analyses 
with respect to confounding adjustment for seasonality, long-term 
trends, weather, and mobility. All data and software are publicly avail-
able at https://github.com/xiaodan-zhou/covid_wildfire. In addi-
tion, infographics with detailed results for each county are available 
at https://analysis-1.maps.arcgis.com/apps/dashboards/c0df43781aeb-
4085954676f4e9ca9bf9.

RESULTS
We assembled a multisite time series study of 133 counties in three 
states (California, Washington, and Oregon) for the period from 
15 March to 16 December 2020 (a total of 277 days). We excluded 
from the analysis 41 counties that had missing PM2.5 daily values 
during wildfire days in the study period, as it would not be appro-
priate to impute these missing values using historical data. The 
remaining 92 counties cover 95.1% of population of the three states 
(48.8 million), with a total of 25,484 daily records at the county level.

Definition of a wildfire day
In National Oceanic and Atmospheric Administration’s Hazard 
Mapping System (HMS), human analysts use the Geostationary 
Operational Environmental Satellite (GOES) images to delineate 
smoke-affected areas and to qualitatively categorize each polygon as 
light, medium, or heavy smoke based on visual inspection of the 
apparent opacity (30–32). The smoke categories roughly correspond 
to PM2.5 ranges based on the now discontinued GOES Aerosol 
Smoke Product: light (0 to 10 g/m3), medium (10 to 21 g/m3), 
and heavy (21 to 32 g/m3). Because light and medium smoke often 
reflect smoke aloft rather than at the surface (section S1.3), we used 
only the heavy smoke category to differentiate wildfire from non-
wildfire days for a given location. Any day that did not satisfy this 
definition was defined as a non-wildfire day. Figure 1 shows the 
92 counties that were included in the analysis for each of the three 
states. The color code denotes the percentage of wildfire days during 
the study period, which ranged from 3 to 29%.

Table  1 summarizes the daily PM2.5 level and the number of 
COVID-19 cases and deaths on wildfire and non-wildfire days 
during 15 August and 15 October 2020, when 88% of the wildfires 

occurred. The daily levels of PM2.5 during wildfire days was higher 
than those on non-wildfire days, with a median of 31.2 versus 
6.4 g/m3. In some counties, the levels of PM2.5 on wildfire days 
reached extremely high levels. For example, from 14 to 17 September 
2020, Mono County, CA, experienced four sequential days with 
PM2.5 levels higher than 500 g/m3 as a result of the Creek Fire. The 
daily COVID-19 case rate and the daily COVID-19 death rate are 
higher on wildfire days compared to non-wildfire days.

Daily increase in PM2.5 attributable to a wildfire day
For each wildfire day, in each county, we estimated the increase in 
the daily level of PM2.5 attributable to wildfires by implementing a 
counterfactual analysis (33). More specifically, we assumed that the 
factual time series data are the observed county-specific daily levels 
of PM2.5. For wildfire day and for each county, we estimated the 
counterfactual value, that is, the level of PM2.5 that would have 
occurred for the same day and the same county under the hypothetical 
scenario in which a wildfire did not occur. We estimated these 
counterfactual values by taking the median of the daily levels of 
PM2.5 on the same day of the year and on the same county for the 
previous years of 2016–2019. For each county, we calculated the 
daily increase in PM2.5 attributable to wildfires as the difference 
between the daily observed value and the daily counterfactual 
value. Figure S1 shows an example of this calculation for a single 
time series for Los Angeles County, CA.

Figure 2 shows the daily time series data for the daily levels of 
PM2.5 (blue), daily number of COVID-19 cases (red), and daily 
number of COVID-19 deaths (black) for the six most populated 
counties. The orange vertical bars in the PM2.5 time series denote 
daily increases in PM2.5 attributable to wildfire days. Figure S2 
shows boxplots of the distribution of weekly PM2.5 levels (g/m3) 
across counties, separately for each state during the study period. 
We also show the distribution of PM2.5 for the same weeks and the 
same counties but averaged across previous years (2016–2019). The 
distribution of the weekly PM2.5 averages for the year 2020 and for the 
years 2016–2019 were similar, except for the period from 17 August 
to 5 October 2020, in California, and from 1 to 21 September 2020, 
in Oregon and Washington. These are the periods when wildfires 
mostly occurred in these states.

The statistical analysis of the multisite time series data must 
account for several challenges apparent in the data: (i) Many counties 

Washington

0 10 20
% of wildfire days

Oregon
California

Fig. 1. Maps of the 92 counties included in the analysis. The color code denotes the percentage of wildfire days during the study period (15 March to 16 December 
2020). Counties in gray were excluded from the analysis. The percentage of wildfire days ranges from 3 to 29%.

https://github.com/xiaodan-zhou/covid_wildfire
https://analysis-1.maps.arcgis.com/apps/dashboards/c0df43781aeb4085954676f4e9ca9bf9
https://analysis-1.maps.arcgis.com/apps/dashboards/c0df43781aeb4085954676f4e9ca9bf9
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have several days with a zero count of COVID-19 cases (or deaths) 
(zero inflation) (see Table 1); (ii) because of the SARS-CoV-2 incu-
bation period, it is expected that a change in COVID-19 cases and 
deaths might occur up to at most 4 weeks after exposure to PM2.5 
(delayed effects); (iii) the relationship between daily exposure to 
PM2.5 and COVID-19 cases (or deaths) is expected to be heterogeneous 
across counties due to differences in the stage of the pandemic, 
testing practices, and vulnerability of the population (heterogene-
ity); and (iv) we must control for potential nonlinear confounding 
effects of both measured confounders (e.g., weather and mobility) 
and unmeasured confounders (e.g., seasonality and trend). To overcome 
these challenges, we developed and implemented a Bayesian hierarchical 
zero-inflated negative binomial distributed lag (BH-ZINB-DL) model 
to estimate the association between daily changes in PM2.5 and the 
percentage increase in the risk of COVID-19 cases and deaths up to 
28 days after exposure. A distributed lag model is a popular approach 
for the analysis of time series data and has been implemented previ-
ously to estimate the association between an increase in exposure to 
air pollution on a given day and the percentage increase in the risk 
of a health outcome on the same day (lag 0), the day after (lag 1), 
and up to several days after exposure (34, 35).

For each county, we estimated the following parameters: (i) 
lag-specific effects, defined as the percentage increase in COVID-19 
cases (or deaths) associated with a daily increase of 10 g/m3 in 
PM2.5 separately for each lag, and (ii) cumulative effects across all 
lags, the percentage increase in COVID-19 cases (or deaths) associ-
ated with a daily increase of 10 g/m3 in PM2.5 for 28 subsequent 
days, cumulatively at 4 weeks. We also estimated the percentage of 
the total number of COVID-19 cases (or deaths) attributable to the 
daily increases in PM2.5 levels on wildfire days. Table S1 summarizes 
the parameters of interest and their mathematical formulations. 
We fit the same model for COVID-19 cases and COVID-19 deaths. 
The statistical model is described in greater detail in Materials 
and Methods.

Figure 3 shows the posterior distributions of the county-specific 
cumulative effects at 4 weeks, representing the percentage increase 
in COVID-19 cases and deaths associated with a daily increase of 
10 g/m3 in PM2.5 for 28 subsequent days. The posterior distribu-
tion of the same cumulative effect, but pooled across all the coun-
ties, is shown in the red boxplot. We highlight an association when 
the 95% credible intervals (CIs) do not include 0. For COVID-19 
cases, we found that 52 of 92 counties had strong evidence of a posi-
tive association between exposure to PM2.5 and increased risk of 
COVID-19 cases 4 weeks later. Pooled across counties, we found 
that a daily increase of 10 g/m3 in PM2.5 for 28 subsequent days 
was associated with a 11.7% (95% CI, 8.2 to 16.0) increase in 
COVID-19 cases. The counties of Sonoma, CA, and Whitman, WA, 
had the largest effect: We found that a daily increase of 10 g/m3 in 
PM2.5 for 28 subsequent days was associated with a 65.3% (95% CI, 
41.9 to 88.2) and 71.6% (95% CI, 47.5 to 94.8) increase in COVID-19 
cases, respectively. For COVID-19 deaths, we found that 17 of 92 
counties had strong evidence of a positive association between 
exposure to PM2.5 and increased risk of COVID-19 death 4 weeks 
later. While pooling the distributed lag effects across counties, we 
found that a daily increase of 10 g/m3 in PM2.5 for 28 subsequent 
days was associated with a 8.4% (95% CI, 2.1 to 15.3) increase in 
COVID-19 deaths. Calaveras, CA, and San Bernardino, CA, had the 
largest effect: We found that a daily increase of 10 g/m3 in PM2.5 
for 28 subsequent days was associated with a 52.8% (95% CI, 18.4 to 
87.0) and 65.9% (95% CI, 22.8 to 105.3) increase in COVID-19 
deaths, respectively. The orange triangles represent the percentage 
of wildfire days in that county. Results for the cumulative effects at 
3 and 2 weeks are shown in figs. S6 and S9. Note that we also found 
strong evidence of heterogeneity in these associations. We identify 
a negative association for six and three counties for COVID-19 
cases and deaths, respectively.

Figure S3 shows the posterior distributions of the lag-specific 
effects pooled across all counties, representing the percentage 
increase in COVID-19 cases and deaths associated with a daily 
increase of 10 g/m3 in PM2.5 separately for each lag. Results for 
the cumulative effects at 3 and 2 weeks are shown in figs. S8 and 
S11, respectively.

Figures S4 and S5 show the percentage of total COVID-19 cases 
and death, respectively, attributable to observed high levels of PM2.5 
on wildfire days in the states of Washington, Oregon, and California. 
Figure 4 shows the posterior distributions of the percentage of total 
COVID-19 cases and deaths attributable to the higher than expected 
levels of PM2.5 on wildfire days for each county. These posterior 
distributions take into account of the strength of the evidence re-
garding the association between short-term exposure to PM2.5 and 
COVID-19 cases and deaths for each county (see Fig. 3) and in-
creases in PM2.5 attributable to wildfires (see fig. S1). The counties 
of Butte, CA, and Whitman, WA, showed the largest effect on 
COVID-19 cases: We found that the percentage of total COVID-19 
cases attributable to high levels of PM2.5 on wildfire days was 17.3 
(95% CI, 13.9 to 20.7) and 18.2 (95% CI, 14.6 to 21.2), respectively. 
The counties of Butte, CA, and Calaveras, CA, showed the largest 
effect on COVID-19 deaths: The percentage of total COVID-19 
deaths attributable to high levels of PM2.5 on wildfire days was 41.0 
(95% CI, 24.6 to 56.7) and 137.4 (95% CI, 62.2 to 212.9), respectively. 
The overall number of COVID-19 cases and deaths attributable to 
daily increase in PM2.5 from wildfires is 19,742 (95% CI, 7062 to 
31,310) and 748 (95% CI, 398 to 1102), respectively. Results for 

Table 1. Summary of COVID-19 cases, deaths, and PM2.5 for 92 
counties in the western United States during the wildfire season from 
15 August to 15 October 2020 (61 days). We report the median, minimum, 
and maximum among the 92 counties. A day is defined as a wildfire day if 
the daily levels of smoke density on that day are higher than 21 g/m3. 

Total Wildfire days Non-wildfire 
days

Number of days 61 28 (7, 56) 33 (5, 54)

Daily PM2.5 (g/m3)
11.7  

(0.0, 696.7)
31.2  

(1.5, 696.7)
6.4  

(0.0, 322.6)

Days with zero 
COVID-19 
cases (%)

24  
(2, 97)

24  
(0, 100)

22  
(0, 97)

Days with zero 
COVID-19 
deaths (%)

84  
(5, 100)

85  
(9, 100)

83  
(0, 100)

Daily COVID-19 
case rate (per 
100,000)

7.5  
(0.4, 47.9)

8.0  
(0.0, 44.3)

6.9  
(0.5, 49.3)

Daily COVID-19 
death rate  
(per 1,000,000)

1.12  
(0.00, 12.01)

1.23  
(0.00, 11.09)

1.00  
(0.00, 16.63)
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cumulative effects up to 3 and 2 weeks after PM2.5 exposure are 
reported in figs. S7 and S10, respectively.

Figure 5 summarizes the results of our comprehensive sensitivity 
analysis. We analyzed the posterior distribution of the cumulative 

effects and pooled across the counties in our original analysis (A) 
compared to the following scenarios: B, decreasing the number of 
lag days under consideration from 4 to 3 weeks along with a de-
crease in number of spline bases for approximating the distributed 
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lag function from six to five; C, decreasing the number of lag days in 
consideration to 2 weeks along with a decrease in the number of 
natural spline basis functions to four; D, adjusting for mobility data, 
which consequently omits six counties; E, increasing the number of 
spline basis functions for the distributed lag function from six to 
eight; F, more aggressively adjusting for temperature, humidity, 
and seasonality trends; G, omitting Calaveras, CA, and Mono, CA, 

counties; and H, dropping adjustments for the day of week. Results 
were consistent across the scenarios. However, we found smaller 
effects when we reduced the analysis to 21 lags (3 weeks, scenario B) 
and was further reduced when we used 14 lags (2 weeks, scenario C). 
We found slightly attenuated effects when we adjust for mobility data 
(scenario D). The posterior probabilities that the cumulative effect 
is positive are always larger than 0.8 across every sensitivity scenario. 
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Fig. 3. Cumulative effects of PM2.5 exposure up to 4 weeks for each county, and pooled across the counties for COVID-19 cases and COVID-19 deaths. The 
percentage increase in COVID-19 cases (A) and COVID-19 deaths (B) associated with a daily increase of 10 g/m3 in PM2.5 for 28 subsequent days, cumulatively at 4 weeks. 
Orange triangles represent the percentage of wildfire days (out of 277 days in the study period) for each county.
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This suggests that, overall, there is strong evidence of an association 
between short-term exposure to PM2.5 and the dynamic of COVID-19 
cases and deaths (see table S3).

DISCUSSION
We estimated the association between daily changes in levels of 
PM2.5 and the percentage increase in COVID-19 cases and deaths 
for the counties in the western United States that were affected by 

the 2020 wildfires. In addition, we estimated the percentage of the 
total number of COVID-19 cases and deaths that were attributable 
to exposure to high levels of PM2.5 during the wildfires for each of 
the counties.

While pooling across all counties, we found strong evidence of a 
positive associations between daily increases in PM2.5 and increased 
risks of COVID-19 cases and deaths, cumulatively up to 4 weeks. 
We found that, in some of the counties, the percentage of the total 
number of COVID-19 cases and deaths attributable to the high 
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Fig. 4. Point estimate and 95% CI of the percentage of total COVID-19 cases and deaths attributable to high levels of PM2.5 on wildfire days during the period 
from 15 March to 26 November 2020. Error bars represent 95% CIs.
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levels of PM2.5 was substantial. However, we also found evidence of 
large heterogeneity across counties, including evidence of protec-
tive effects in a small number of counties. These results provide 
strong evidence that, in many counties, the high levels of PM2.5 that 
occurred during the 2020 wildfires substantially exacerbated the 
health burden of COVID-19.

Our results have biological plausibility. A recent review by 
Navarro et al. (28) described that the co-occurrence of SARS-CoV-2 
infection and wildfire smoke inhalation may present an increased 
risk for COVID-19 illness. Woodby et al. (29) suggested that expo-
sure to air pollution skews the adaptive immune response toward 
bacterial/allergic immune responses, as opposed to an antiviral 
response, which may affect COVID-19 severity and outcomes. Expo-
sure to air pollutants could also predispose exposed populations 
toward developing COVID-19–associated immunopathology, en-
hancing virus-induced tissue inflammation and damage (28, 29).

Many recent studies have illustrated the biological plausibility 
between short-term exposure to air pollution and COVID-19 cases 
and deaths [see, for example, (36)]. As reported in (37, 38), COVID-19 
could have an air transmission and PM2.5 could create a suitable 
environment for transporting the virus at greater distances than 
those considered for close contact. Moreover, PM2.5 induces in-
flammation in lung cells, and exposure to PM2.5 could increase the 
susceptibility and severity of the COVID-19 patient symptoms.

It is important to interpret our results in the context of the time 
course of COVID-19 infection and deaths. The CDC website (39) 
reports that the incubation period for COVID-19 is thought to 
extend to 14 days, with a median time of 4 to 5 days from exposure to 
symptom onset. Recently, the World Health Organization reported 
that the time between symptom onset and death ranged from about 

2 to 8 weeks (40). This is consistent with our results of findings 
delayed effects between daily increases in PM2.5 and COVID-19 cases 
and deaths up to 4 weeks later.

The key strengths of this study are the following: (i) the repre-
sentativeness of the study population; (ii) the multisite time series 
study design; (iii) the use of satellite data to identify wildfire days 
and their validation with airport data; (iv) statistical modeling that 
accounts for delayed effects, heterogeneity across counties, and 
days with zero events; (v) the use of counterfactual analysis to 
estimate the levels of PM2.5 on wildfire days compared to the levels 
that would have occurred in the absence of wildfires; and (vi) the 
numerous sensitivity analyses conducted to increase confidence in 
the results.

To our knowledge, ours is the first study to use data from multi-
ple states and counties affected by the 2020 wildfire season in the 
United States, covering 95% of the population of Washington, 
Oregon, and California. Meo et al. (41) conducted a similar study in 
10 counties in California. They reported that, after the wildfires, 
PM2.5 concentrations increased by 220.71% and the numbers of 
COVID-19 cases and deaths increased by 56.9 and 148.2%, re-
spectively (41). However, a key limitation of that study was that 
the statistical modeling did not account for the many challenges 
inherent in these data, such as confounding factors, delayed ef-
fects, overdispersion, and heterogeneity across counties. The study 
also did not attempt to distinguish wildfire PM2.5 from other types 
of particles. Leifer et al. (42) also conducted a similar study focusing 
on three wildfire events in Orange County, CA, and have the same 
limitations.

The multisite time series study design allowed us to estimate, 
separately for each county, the association between daily changes in 
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Fig. 5. Cumulative effect of PM2.5 exposure in six sensitivity analysis with respect to confounding adjustment for seasonality, long-term trends, weather, and 
mobility. These are posterior distribution of the percentage increase in COVID-19 cases (A) and COVID-19 deaths (B) associated with a daily increase of 10 g/m3 in PM2.5 
for 28 subsequent days, cumulatively for 4 weeks, and pooled across counties. A, original analysis; B, decreasing the number of lag days under consideration from 4 to 
3 weeks along with a decrease in number of spline bases for approximating the distributed lag function from six to five; C, decreasing the number of lag days in consid-
eration to 2 weeks along with a decrease in the number of natural spline basis functions to four; D, adjusting for mobility data, which consequently omits six counties; E, 
increasing the number of spline basis functions for the distributed lag function from six to eight; F, more aggressively adjusting for temperature, humidity, and seasonal-
ity trends; G, omitting Calaveras, CA, and Mono, CA, counties; H, dropping adjustments for the day of week.
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PM2.5 and the percentage increases in COVID-19 cases and deaths 
for every single lag and up to 4 weeks (2 or 3 weeks) later. In our 
model, we adjusted for temperature, humidity, and mobility and 
used satellite data to identify wildfire days. We also attempted to 
account for other unmeasured confounders by including a smooth 
function of time to control for seasonality and temporal trends. By 
modeling the temporal dynamic between exposure to PM2.5 and the 
delayed effects on COVID-19 cases and deaths separately within 
each county, our approach takes advantage of differences in the 
timing of wildfires across counties. Moreover, the time series nature 
of the study is such that the only potential confounders of the asso-
ciation between PM2.5 and COVID-19 are factors that vary tempo-
rally in a similar manner as PM2.5. Thus, because of the sudden 
spikes in the level of PM2.5 on wildfire days (see Fig. 2 for Los Angeles 
County), it is hard to hypothesize a factor that would be correlated 
with these PM2.5 increases and, at the same time, affect COVID-19 
cases and deaths. Nevertheless, as mentioned below, potential 
unmeasured confounding cannot be fully ruled out.

New COVID-19 cases and deaths can fluctuate for other reasons 
beyond short-term exposure to PM2.5, including changes in tem-
perature, humidity, societal patterns of social distancing and mass 
gatherings, or adherence to wearing masks. We adjusted for both 
measured and unmeasured confounding factors using nonlinear 
modeling of temperature variables and smooth functions of time to 
control for seasonality and trends. Furthermore, we purposely esti-
mated the dynamic relationship between exposure to PM2.5 and 
COVID-19 cases and deaths separately within each county in an 
attempt to account for heterogeneity across counties in many po-
tential confounding factors that were unmeasured and can vary 
temporally, such as social distancing, mass gatherings, and testing 
practices. Still, residual unmeasured confounding could lead to bias. 
It is possible that the protective effects that we observed in a small 
number of counties could be the result of unmeasured confounding 
bias and/or a very small number of events.

Beyond simply providing evidence of a short-term association 
between daily changes in ambient levels of PM2.5 and COVID-19 
cases and deaths, we used historical median levels of PM2.5 to esti-
mate the increases in the levels of PM2.5 attributable to wildfires in 
the 2020 season and, by extension, the excess COVID-19 burden. 
On the wildfire days, we found greater PM2.5 levels in 2020 com-
pared to the same days in previous years, and this led to extra 
COVID-19 cases and deaths in many of the counties included in the 
study. This illustrates the systemic and contingent nature of crises and 
how the effects of one global crisis (climate change) can have cas-
cading effects on concurrent global crises (the COVID-19 pandemic) 
that play out in location-specific ways (increased COVID-19 cases 
and deaths due to wildfire).

We conducted numerous sensitivity analyses to check the robust-
ness of our findings. For example, we varied the degrees of freedom 
of the smooth functions to adjust more or less aggressively for 
seasonality and temporal trends. We also conducted analyses that 
allow for delayed effects under various distributed lag time frames 
and assessed the sensitivity of the results to the adjustment for mo-
bility data. In addition, we ran simulations of the data-generating 
process assumed by our model. Our data and results are fully repro-
ducible. As shown in Fig. 4, in Calaveras, CA, we found a very large 
estimate of the percentage of total COVID-19 deaths attributable to 
PM2.5 levels on the wildfire days (77.6%; 95% CI, 32.6 to 128.1), 
even after having accounted for many potential confounders. This 

is due to the fact that 77% (17 of 22) of the total number of 
COVID-19 deaths occurred during or near wildfire days with very 
high levels of PM2.5.

Our study has several limitations: (i) We treated all sources of 
PM2.5 as having the same effect on health, when emerging evidence 
is beginning to show that PM2.5 from wildfire smoke may actually 
be more damaging to health than PM2.5 from other sources (20); (ii) 
we did not investigate whether PM2.5 from wildfire smoke is more 
toxic than PM2.5 from other sources (4, 43, 44); rather, we deter-
mined whether the higher levels of PM2.5 (regardless of the source) 
that occurred on wildfire days further exacerbated the burden of 
COVID-19; (iii) observations of PM2.5 on wildfire days were miss-
ing for 41 of the 133 counties, leading us to drop these counties 
from the analysis, as imputing these missing observations using 
historical values of PM2.5 would not have been appropriate; (iv) the 
HMS smoke product is based on an analyst’s qualitative interpreta-
tion of satellite images, which may not accurately reflect surface 
smoke conditions, especially when smoke plumes are aloft or cloud 
cover interferes with smoke detection. HMS also does not quantify 
the fraction of wildfire-specific PM2.5 and so may not necessarily 
reflect the human exposure to smoke alone; (v) our model assumes 
linear exposure response curve for each lag (we recognize that non-
linear extensions would have been desirable); (vi) the reported date 
of the COVID-19 cases or deaths used in the analysis might be 
delayed by a few days with respect to the date when the event 
occurred (we adjusted for day of the week and smoothed the 
lag-specific coefficients across lags to overcome for this issue); (vii) 
data on the testing rates are not available, and therefore, the results 
for the COVID-19 cases should be interpreted with caution, as they 
might be affected by unmeasured confounding bias; and (viii) our 
analysis did not account for exposure uncertainty, as we assume 
that daily exposure to PM2.5 is the same for all the subjects living in 
the same county.

The year 2020 has presented unimaginable challenges due to the 
COVID-19 pandemic and the wildfires in the western United States 
(45). As the states of Washington, Oregon, and California were 
trying to contain the pandemic, they were afflicted by wildfires of 
unprecedented intensity. In some counties, the levels of PM2.5 were 
higher than 500 g/m3 for several consecutive days. Climate change 
has been a key factor in increasing the risk and extent of wildfires in 
the western United States. Robust projections indicate that the risk 
of wildfires will continue to increase in most areas of the world as 
climate change worsens (16) and that the fires will increase excess 
mortality and morbidity from burns, wildfire smoke, and mental 
health effects (11, 16, 19, 46–51). For example, in a previous study, 
we estimated that, between 2046 and 2051, more than 82 million 
people will likely be affected by “smoke waves,” defined as two or 
more days with unhealthy levels of PM2.5 from fire, in northern 
California, western Oregon, and the Great Plains (4). Wildfire risk 
depends on a number of factors, including temperature, soil mois-
ture, and the presence of trees, shrubs, and other potential fuel. All 
of these factors have strong direct or indirect ties to climate variability 
and climate change (52). Wildfire smoke pollution is of growing 
importance due to climate change, with similarities in composition 
and health effects of anthropogenic and wildfire air pollution. Wildfire 
smoke pollution has the potential to increase COVID-19 transmis-
sion due to acute wildfire PM exposure (27). Notably, wildfires 
during a pandemic create a cascading disaster with disruption to 
directly affected communities that challenge infection mitigation 
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practices, such as social distancing in evacuation shelters, while 
local disaster responses (including healthcare) are multiply stressed. 
These synergies likely increased COVID-19 cases and negative 
outcomes (45).

The world has been in pandemic mode for more than a year. 
International divergence in vaccine distribution has slowed the 
pace of inoculations. Although their forecasts and timelines vary, 
modelers agree that COVID-19 is here to stay (53). In this study, we 
have identified high levels of PM2.5 during wildfire days in the western 
United States in 2020 as a key factor in exacerbating the severity of 
the COVID-19 pandemic in affected counties across three states.

MATERIALS AND METHODS
Table S2 summarizes the sources of the publicly available data used 
in this study. We conducted a multisite time series study by harmo-
nizing and linking daily data for the outcome, exposure, and 
confounders at the county level for 92 U.S. counties. We analyzed 
daily time series data for the period from 15 March to 16 December 
2020. We included 92 of 133 U.S. counties located in the three 
U.S. states that were affected by the 2020 wildfires (Washington, 
Oregon, and California). We excluded from the analysis 41 counties 
that had missing daily PM2.5 data during wildfire days, as it would 
have not been appropriate to impute these missing daily PM2.5 levels 
using historical data. These 92 counties cover 95.1% of the popula-
tion of three states (48.8 million).

Missing data
Missing data for the COVID-19 cases and deaths are both 0.65% of 
the total number of observations. We excluded these records from 
the analysis. Mobility data were missing for six counties, which cover 
0.1% of the study population. We excluded these six counties in sensi-
tivity analyses that adjusted for mobility. There were 250 missing PM2.5 
values on non-wildfire days. We imputed these missing data using 
the historical median value for the same day during 2016–2019. The 
replacement had a mean of 4.6 g/m3, close to the median on non-
wildfire days in 2020 (5.0 g/m3). We collected daily smoke density 
data up to 26 November 2020 from NOAA Hazard Mapping System 
(54); thus, our estimates of excess COVID-19 cases and deaths are 
based on the time period from 15 March to 26 November 2020.

Statistical methods
We developed and implemented a BH-ZINB-DL model to estimate 
the association between daily changes in PM2.5 and the percentage 
increase in the risk of COVID-19 cases and deaths up to 28 days 
after exposure. A distributed lag model is a popular approach for 
the analysis of time series data and has been implemented to esti-
mate the association between an increase in exposure to air pollu-
tion on a given day and the percentage increase in the risk of a 
health outcome on the same day (lag 0), the day after (lag 1), and up 
to several days after exposure (34, 35). We fit the same model for 
COVID-19 cases and COVID-19 deaths. The model can be de-
scribed as a two-stage model for illustrative purposes, but in prac-
tice, the entire model is fit jointly. More specifically, in the first stage of 
the model, we specify a zero inflated negative binomial model for 
the daily time series data for each county. We assume county-specific 
random intercepts and county-specific random effects for the vector 
of the distributed lag coefficients denoted by ik, where i denotes the 
county and k denotes the lag. In the main analysis, we considered 

lags up to 28 days, whereas in sensitivity analyses, we considered 
lags up to 21 and 14 days. The daily event rates are adjusted for the 
day of the week, for nonlinear confounding effects of temperature 
and humidity, for trend and seasonality, and for county-specific 
population size. Note that we considered a constrained distributed 
lag model where we assumed that the lag-specific coefficients ik are 
a smooth function of the k lagged measurements. In the second 
stage of the model, we introduce random effects distributions to 
combine information across counties and estimate lag-specific 
coefficients (k), which are the pooled effect estimates estimated 
across counties.

For each county, we estimated the following parameters: (i) 
lag-specific effects, defined as the percentage increase in COVID-19 
cases (or deaths) associated with a daily increase of 10 g/m3 in 
PM2.5 separately for each lag, and (ii) cumulative effects across all 
lags, the percentage increase in COVID-19 cases (or deaths) associ-
ated with a daily increase of 10 g/m3 in PM2.5 for 28 subsequent 
days, cumulatively across all lags. Table S1 summarizes the param-
eters of interest and their mathematical formulations.

We fit the models via Markov chain Monte Carlo and obtained 
posterior samples of all the unknown parameters. The data and 
statistical models fit with R 4.0.4 and JAGS 4.3.0 have been made 
available with the paper. The technical details of the BH-ZINB-DL 
model are described in section S2. We tested the performance of the 
model to simulated data, and details are included in section S2.2.

Estimating the percentage of total COVID-19 cases 
and deaths attributable to the observed high levels of PM2.5 
on the wildfire days
To describe our approach, it is useful to consider the factual and the 
counterfactual scenarios. In the factual scenario, we observed levels 
of PM2.5 on wildfire days. We denote these values as PMij, where j 
indexes the days after 15 March 2020. We then considered the 
counterfactual scenario where wildfires did not occur. Under this 
counterfactual scenario, we estimated the daily levels of PM2.5 that 
we would have observed for the same days and for the same county 
using historical data. We denote these values as ​​​  PM​​ ij​​​. See above for 
details and also fig. S1.

The overall goal of this counterfactual analysis is to estimate the 
number of COVID-19 cases and deaths in 2020 had there been no 
wildfires. In other words, we are estimating counterfactual outcomes 
for COVID-19 cases/deaths had the PM2.5 measurements been the 
same as those observed in past years without wildfires. More specifi-
cally, we denote by ij, and ij, the expected number of COVID-19 
cases (deaths) on a day j in county i estimated in correspondence of 
the factual and counterfactual values of PM2.5. The posterior sam-
ples of ij represent predictions of ij while substituting the factual 
PM2.5 with the counterfactual PMij into eq. S6, which appears in 
section S1. The same parameter draws used to generate ij are also 
used to generate ij. First, we calculate the excess number of 
COVID-19 cases (or deaths) as

	​​ ​G​ i​​ = ​  ∑ 
j=1

​ 
277

​​ ​Y​ ij​​ × ​(​​1 − ​ 
​​ ij​​ ─ ​​ ij​​

 ​​)​​​​	 (1)

where Yij is the observed daily number of COVID-19 cases (or 
deaths) and 277 is the total number of days. Second, we estimate the 
percentage of the total number of cases (or deaths) as
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	​​ H​ i​​ =  100 % × ​  ​G​ i​​ ─ ​N​ i​​ − ​G​ i​​
 ​​	 (2)

where Ni is the number of COVID-19 cases or deaths observed in 
county i for the time period between 15 March and 16 December 
2020. Note that because the number of wildfire days, the levels of 
PM2.5, and the association between exposure to PM2.5 and COVID-19 
cases (or deaths) vary across counties, we decided not to pool this 
information across counties. The overall number of COVID-19 cases 
and deaths attributable to observed high levels of PM2.5 on the wild-
fire days is estimated as ​​∑ i=1​ 92 ​ ​G​ i​​​​.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/33/eabi8789/DC1
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