
UC Berkeley
UC Berkeley Previously Published Works

Title
Design, implementation and practice of JBEI-ICE: an open source biological part registry 
platform and tools

Permalink
https://escholarship.org/uc/item/63j6n6m5

Journal
Nucleic Acids Research, 40(18)

ISSN
0305-1048

Authors
Ham, Timothy S
Dmytriv, Zinovii
Plahar, Hector
et al.

Publication Date
2012-10-01

DOI
10.1093/nar/gks531
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/63j6n6m5
https://escholarship.org/uc/item/63j6n6m5#author
https://escholarship.org
http://www.cdlib.org/


Design, implementation and practice of JBEI-ICE:
an open source biological part registry platform
and tools
Timothy S. Ham1,2, Zinovii Dmytriv1,3, Hector Plahar1,3, Joanna Chen1,3,

Nathan J. Hillson1,3 and Jay D. Keasling1,3,4,5,*

1Fuels Synthesis Division, Joint BioEnergy Institute, 5885 Hollis Street Fourth Floor, Emeryville, CA 94608, USA,
2Division 8634, Sandia National Labs, 7011 East Avenue, Livermore, CA Livermore, CA 94550, 3Physical
Biosciences Division, Lawrence Berkley National Labs, Berkeley, CA 94720, 4Department of Bioengineering
and 5Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA 94720, USA

Received February 7, 2012; Revised April 28, 2012; Accepted May 11, 2012

ABSTRACT

The Joint BioEnergy Institute Inventory of
Composable Elements (JBEI-ICEs) is an open
source registry platform for managing information
about biological parts. It is capable of recording
information about ‘legacy’ parts, such as plasmids,
microbial host strains and Arabidopsis seeds, as
well as DNA parts in various assembly standards.
ICE is built on the idea of a web of registries and
thus provides strong support for distributed
interconnected use. The information deposited in
an ICE installation instance is accessible both via
a web browser and through the web application
programming interfaces, which allows automated
access to parts via third-party programs. JBEI-ICE
includes several useful web browser-based graph-
ical applications for sequence annotation, manipu-
lation and analysis that are also open source. As
with open source software, users are encouraged
to install, use and customize JBEI-ICE and its com-
ponents for their particular purposes. As a web
application programming interface, ICE provides
well-developed parts storage functionality for
other synthetic biology software projects. A public
instance is available at public-registry.jbei.org,
where users can try out features, upload parts or
simply use it for their projects. The ICE software
suite is available via Google Code, a hosting site
for community-driven open source projects.

INTRODUCTION

Driven by advances in DNA synthesis and assembly
technologies (1–3), the ability of researchers to create

and manipulate DNA has grown dramatically. As the
drivers and consumers of this new capability, the synthetic
biology community has experienced a surge in the number
of complex engineered biological systems. Starting with
basic genetic devices, such as a toggle switch (4), synthetic
biologists have created more advanced and complex
systems, such as cells that form patterns (5), produce
biofuels (6) and fight cancer (7). Other researchers have
focused on part and device characterizations (8) and inter-
operability (9), beginning the process of creating a body
of well-characterized reusable biological components.
Information exchange and interoperability remain as

some of the more persistent challenges for synthetic
biology. Even today, when sequencing DNA constructs
is simple and inexpensive, many prominent and well-cited
synthetic biology articles typically do not include the
complete DNA sequences, annotations and characteristics
of all the constructs used in the publication (10). This lack
of sequence information not only hampers verification of
results, but also hinders the reuse of parts and inhibits
better, faster and cheaper biological engineering. There
are two main causes of this problem: the first is
historic—traditional molecular biology journals simply
could not accommodate all of the sequence information,
given the limited page space. Even now with electronic
publishing, complete sequence information is often
missing in publications. In the past, a plasmid map with
some restriction sites was sufficient. Today, however, this
level of information is not adequate to engineer complex
biological systems. Second, there is a noticeable lack of
a coherent suite of synthetic biology software tools that
work together, which means that a biological engineer has
sequence information and other information scattered in
different documents and software packages. Thus, when
the biological constructs are about to be published, one
has to laboriously reassemble all the information, which
usually results in incomplete information in the published

*To whom correspondence should be addressed. Tel: +1 510 642 4862; Fax: +1 510 495 2620; Email: jdkeasling@lbl.gov

Published online 19 June 2012 Nucleic Acids Research, 2012, Vol. 40, No. 18 e141
doi:10.1093/nar/gks531

Published by Oxford University Press 2012.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



article. Tools that interoperate well would enable better
coherence and organization of this information.
Slowly, software applications are being developed to
address various needs of synthetic biologists, many of
them community driven and open source (11–14).
However, the sequence information is generally exchanged
in GenBank format, limiting sharing of other relevant in-
formation such as experimental data or construction
details. A proposed standard for synthetic biology,
Synthetic Biology Open Language (SBOL) (15), is a
promising solution that will address many of these
issues. However, it is still in formative stages.
Currently, the best-known information exchange

mechanism for synthetic biology parts is The Registry,
previously known as the MIT (Massachusetts Institute
of Technology) Parts Registry (www.partsregistry.org,
we will here after refer to it as the ‘MIT Registry’ to dis-
ambiguate from the Joint BioEnergy Institute Inventory
of Composable Parts [JBEI-ICE]). It contains sequences
and characterization data for thousands of parts, mostly
created by the participants of the annual International
Genetically Engineered Machine competitions. Derived
from the popular MediaWiki software (the same
software used by Wikipedia), each part is recorded as
individual Wiki pages that may be edited by users. This
system allows users to add text, graphics and charts about
a part, creating a shared information repository. In
addition to the Wiki system, the MIT Parts Registry has
made customizations to the MediaWiki software that
allows users to designate part categories, as well as
annotated sequence information.
Although the MIT Parts Registry has served the com-

munity well, there are several reasons why it cannot
become the standard information-sharing platform for
synthetic biologists. Most significantly, it is not possible
to obtain the software itself. As of this writing, the
creators have not made the website engine available to
others, either in source code or in binary form. Contrary
to the contents of the site, which is available under an
open license, the software itself is not available.
Therefore, it is not possible for a laboratory or an insti-
tution to run a private instance of the MIT Parts Registry
on their own servers. All data must be hosted on the
MIT Parts Registry servers, which may not be suitable
for everyone (e.g. for confidentiality of data reasons).
Second, there are few mechanisms to access the MIT
Parts Registry via automated means. There exists a very
minimal application programming interface (API, http://
partsregistry.org/Registry_API) that can be used to
obtain xml files, but the xml files do not include the rich
user-generated characterization data that would be useful
for automated processing. Lastly, as neither the software
nor a full API is available, it is impossible to create
a plug-in or additional functionality for the MIT Parts
Registry, an important requirement for automated
synthetic biology design software.
We believe the synthetic biology community would

benefit from an open source registry engine that can be
modified, extended and used privately. As the synthetic
biology community grows, multiple parts registries—
public registries maintained by single Principal

Investigator laboratories or institutes that share their
parts, specialized registries for a particular purpose or
subfield or private registries in research laboratories and
companies—will be needed. In addition, a parts registry
should be machine accessible via a web API to allow auto-
mated manipulation. For example, a third-party biological
design program should be able to use the API to download
the basic parts from a registry instance, manipulate it and
upload the completed device. If this program needs to find
a part with a particular feature, characteristic or sequence,
it could reach out and query several registries known to it.
The expansion of the idea of a registry from a single
website to a distributed machine-accessible repository
opens up many possibilities and creates a way to bridge
the collaborative data sharing and data exchange
problems faced by synthetic biologists today.

In this article, we report the creation of a new registry
software, JBEI-ICE, to manage the biological constructs.
It is an information repository of plasmids, strains, part
libraries and Arabidopsis seeds with the following features:

(1) ICE is licensed using the Berkeley Software
Distribution (BSD) license, which allows anyone to
use the software, set up their own registry or create
derivative works without any onerous conditions;

(2) ICE handles legacy parts that do not conform to
a particular standard;

(3) ICE is installation independent. Multiple ICE
installations can exchange parts, and duplicate
names or part numbers are handled properly;

(4) ICE interoperates well with other software. We
provide a software stack and API on which other
synthetic biology software can be built, independent
of the web interface;

(5) example applications and software code are provided
so that users and developers can quickly learn how
to build software that works with ICE;

(6) a public installation of ICE exists for users to try out
our software, explore our toolss and use it in their
research;

(7) development tools and third-party libraries used by
ICE are carefully chosen for their open source
licenses and permissive redistribution terms; and

(8) the development process is open to participation by
the community.

Various commercial and noncommercial software and
repositories, such as Addgene, DNASU Plasmid
Repository, VectorNTI, ApE, LabLife, etc., provide
some of the features present in JBEI-ICE. However,
JBEI-ICE is the only open source software that brings
together a variety of tools in a sharable platform.
Additionally, the open source nature of JBEI-ICE
prevents ‘data captivity’, where users are locked into a
single vendor for their data.

MATERIALS AND METHODS

JBEI-ICE is designed along the Model-View-Controller
design architecture, which separates the information,
business logic and user interfaces into separate

e141 Nucleic Acids Research, 2012, Vol. 40, No. 18 PAGE 2 OF 8

www.partsregistry.org
http://partsregistry.org/Registry_API
http://partsregistry.org/Registry_API


components and is written in the Java programming
language. JBEI-ICE uses Hibernate object relational
mapping software to communicate with a data store,
Apache Wicket as the presentation framework and
Lucene as the text search engine. It uses NCBI-BLAST
for sequence search and comparison, Adobe Flex for rich
Internet application framework and Maven for the build
and dependency management system. The link to the full
list of third-party software applications used in JBEI-ICE
can be found in the ‘Software Availability’ section
immediately below.

Software availability

The entire source code for ICE and companion Flex
applications are available under the BSD license through
Google Code. Source revisions, bug tracking and
documentations are available through these websites:

(1) JBEI-ICE software: http://code.google.com/p/gd-ice/;
(2) the current manual, including instructions on getting

started: https://public-registry.jbei.org/site/docbkx/
html/manual/manual.html;

(3) JavaDoc API documentation: https://public-registry.
jbei.org/site/apidocs/;

(4) license texts for third-party libraries: http://code.
google.com/p/gd-ice/source/browse/trunk/ice/
LIBRARY_LICENSES.txt;

(5) VectorEditor (includes Sequence Checker): http://
code.google.com/p/vectoreditor/;

(6) stand-alone runnable version of VectorEditor:
https://public-registry.jbei.org/static/vesa/
VectorEditor.html;

(7) BioFlex libraries: http://code.google.com/p/bioflex/;
and

(8) a public installation of JBEI-ICE is available at
https://public-registry.jbei.org

RESULTS

We have created an open source registry platform that is
feature rich, extensible and free. It can store biological
parts, as well as plasmids, microbial strains and
Arabidopsis seeds. The advanced search capability
provides full-text search, relevance scoring and BLAST;
the instant preview feature allows users to rapidly sort
through large numbers of parts. The VectorEditor com-
ponent allows the viewing, annotating and in silico cloning
of sequences; the SequenceChecker component allows
users to quickly check sequence traces against an
existing record. And the GenBank and SBOL import/
export filters allow users to keep using their favorite
off-line tools.

In a typical use case scenario, the user would search for
a part using the search bar, entering keywords, plasmid
names or other text that may be found within the descrip-
tion of the result. The search engine recognizes root
words—that is, searching for ‘binding’ would also search
for ‘bindings’, ‘bind’ and ‘bound’. The results are
displayed in order of relevance, by matches in the most
important fields such as part number or name, as well as

frequency. In the result display, the user is able to quickly
scan the short description field, which gives a better indi-
cation of the entry besides the entry name and number.
Also, by hovering the mouse over the part number link,
the user can see a preview of the entry, which aids in
narrowing down the particular entry desired among the
search results (Figure 1). The user can also search for
sequence matches using the BLAST query page or filter
individual fields using the advanced search page.
When the user clicks on the part number, he or she is

shown the detailed information about the part, including
an interactive graphical map of the annotated sequence,
if such information had been provided. The user can select
‘Open in VectorEditor’, which will open a vector editing
program with features comparable with other similar
programs (Figure 2). From the detail page, the user
can select ‘Seq. Analysis’, which allows him or her to
upload sequence trace files (.abi files) and launch
SequenceChecker (Figure 3), which displays a visual, as
well as a textual, alignment of the trace files to the
reference.
Also, from the detail page, with the proper permissions,

the user is able to make changes, add attachments, change
read and write permissions for other users, associate
physical samples and download the sequence in
GenBank, FASTA or SBOL formats.
At JBEI, the variety of tools available encourages users

to enter parts into the system, as they are created at the
bench, instead of waiting until the end to enter them all
at once. This facilitates early data capture and preser-
vation. Also, the extensive search capability encourages
part discovery and reuse, as well as collaboration.
Furthermore, the ability for users to easily transfer their
information from the private instance to the public
instance (detailed later) gives them a simple mechanism
to publish information about their parts to the public.
Some of these parts can be seen in the public site’s
‘Collections’ page.
Underneath the visible functionality, the core libraries

are aggregated into a service layer that hides many of the
underlying architectures and technical complexities
(Figure 4). With this architecture, it is possible to build
third-party software that uses the service layer to interact
with the repository. We also created a web interface and
a suite of rich applications to take advantage of the
platform, thus providing a useful resource to the synthetic
biology community. As all of our software is open source,
they can be used in aggregate or as components in other
synthetic biology projects. JBEI-ICE has been designed
from its inception to provide distributed registry
software that anyone can use, customize or improve on.
The BSD license used for ICE does not require modifica-
tions to be shared or place other onerous restrictions, and
all third-party libraries used as part of JBEI-ICE are
available under open source licenses.
JBEI-ICE provides an open, flexible and fully featured

platform for synthetic biology information storage,
retrieval and manipulation. It brings together different
synthetic biology software by lowering the barrier of
entry and providing a working solution to the part
storage problem. With the current release of ICE, a

PAGE 3 OF 8 Nucleic Acids Research, 2012, Vol. 40, No. 18 e141

http://code.google.com/p/gd-ice/
http://code.google.com/p/gd-ice/
https://public-registry.jbei.org/site/docbkx/html/manual/manual.html
https://public-registry.jbei.org/site/docbkx/html/manual/manual.html
https://public-registry.jbei.org/site/apidocs/
https://public-registry.jbei.org/site/apidocs/
https://public-registry.jbei.org/site/apidocs/
http://code.google.com/p/gd-ice/source/browse/trunk/ice/LIBRARY_LICENSES.txt
http://code.google.com/p/gd-ice/source/browse/trunk/ice/LIBRARY_LICENSES.txt
http://code.google.com/p/gd-ice/source/browse/trunk/ice/LIBRARY_LICENSES.txt
http://code.google.com/p/vectoreditor/
http://code.google.com/p/vectoreditor/
http://code.google.com/p/vectoreditor/
https://public-registry.jbei.org/static/vesa/VectorEditor.html
https://public-registry.jbei.org/static/vesa/VectorEditor.html
http://code.google.com/p/bioflex/
http://code.google.com/p/bioflex/
https://public-registry.jbei.org


Figure 1. Screen shot of a typical search result, with pop-up preview shown.

Figure 2. Screen shot of VectorEditor, displaying restriction enzyme locations, open reading frames and feature annotations.

e141 Nucleic Acids Research, 2012, Vol. 40, No. 18 PAGE 4 OF 8



developer of a new software tool does not have to write a
registry-like system to store its parts—he/she can simply
use ICE as a software stack or connect to an ICE instance
as its data source. The ICE team is very much open to
community participation in ICE and would like to encour-
age questions or suggestions, as well as bug reports,
patches or new modules.

Design and implementation

Here, we explain in detail the principles and ideas we used
to design JBEI-ICE. For the particular implementation
details, we refer to the documentation and source code
available via our Google Code project site mentioned in
the ‘Software Availability’ section.

Overview
The core functionality of ICE is envisioned as a software
library stack that can act as a black box that stores syn-
thetic biology parts. The website is just one way to access
that black box. Much care has been taken to ensure that
the users of our library stack are freed from the
complexities of the underlying implementation. We have
also tried to ensure that the data model and the utility
functions are language neutral—that is, even though our
implementation is written in the Java programming
language, access and manipulation of information stored
in the library stack can be performed in any programming
language without great effort. We carefully avoided
language-specific design patterns and data types and
considered the possible consumer programs written in
different programming languages. By investing our time
into providing a generalized storage mechanism for syn-
thetic biology parts, it is now possible for others to simply
take our library stack and build custom applications on it
using their programming language of choice.
We also have developed a website interface on top of

the ICE library stack, to provide simple and user friendly
access to ICE, including browsing and search. Our website

Figure 3. Screen shot of SequenceChecker showing overlapping alignments. Green line indicates alignments of the reads, and red dots indicate
misalignments to the reference sequence.

Figure 4. Schematic of the ICE software stack. Third-party applica-
tions can interface with ICE over the Internet via Soap or BlazeDS
API or use ICE as a library through the Java ABI. The red shades
indicate underlying systems, the orange shades indicate the ABI layer
and the blue shades indicate applications using the ABI layer for
functionality. Third-party applications can use any of BlazeDS,
SOAP or the ABI for functionality.

PAGE 5 OF 8 Nucleic Acids Research, 2012, Vol. 40, No. 18 e141



allows full text, BLAST and field-based searches
and filters, and results are displayed with a preview
mode that allows one to quickly browse through them.
Administrator-created ‘collections’ provide another
mechanism to organize entries for easier access.
These mechanisms work well for searching through thou-
sands of parts. However, as the number of entries grows
into hundreds of thousands of parts, we plan to provide
more advanced search algorithms, including the usage of
content based ranking heuristics.
In addition to the web interface to access the registry

information, we also provide a rich set of graphical appli-
cations for sequence manipulation, annotation and
analysis. These tools help users integrate the registry
into their day-to-day work flow, which increases the
quality of information that is stored.

Organizations of the components
The JBEI-ICE software is organized into three distinct
layers (Figure 4). The bottom layer consists of the func-
tional components of the software, the heart of which is
the data model. We have taken care to design the data
model to be orthogonal and amenable for future exten-
sions. The model instances are stored in a relational
database via the Hibernate object relational mapping
and persistence system. Between the model layer and the
database, the ‘Manager’ layer abstracts out the database
calls for handling storage and retrieval. The functionality
layer also includes authentication, permissions, search
algorithms and other utility functions such as BioBrick
assembly, sequence comparison and GenBank file
parsing, etc.
Above this layer, the ‘Controllers’ layer aggregates the

functionality below it, presenting a uniform interface to
the diverse underlying components. By using the control-
lers, ICE can behave as a black box that stores and
retrieves the model objects, performs searches, executes
sequence manipulation routines and so on. Users of this
layer can safely ignore much of the underlying mechan-
isms of ICE. As such, the controllers act as the application
binary interface (ABI) for JBEI-ICE.
The third major layer of ICE consists of various ways to

access the ICE ABI. The website, the primary means of
accessing JBEI-ICE, is built entirely on top of the ABI,
thus creating a clean separation between rendering of web
pages and the underlying functionality. This design allows
improvements to the website without affecting the func-
tionality of other components. ICE uses the Apache
Wicket framework to render web pages and process user
input.
The two other mechanisms of ICE access, the BlazeDS

and Simple Object Accessible Protocol (SOAP) services,
provide automated and programmable access to the ICE
ABI. BlazeDS is used by Adobe Flex applications of the
website (discussed later), whereas SOAP, an International
Standard Organization standard that allows software
written in different languages to use methods (operations)
and data from a server over the Internet in a standard
way, provides a generalized third-party access to the
ICE ABI. In our source repository, we have provided
example code in various programming languages

(Python, Java, Perl, ActionScript) to facilitate the use of
ICE via SOAP. If other web API access standards such as
Remote Procedure Call (RPC) or Representational State
Transfer (REST) are desired, we can make them available.
ICE uses the Apache CXF to provide SOAP services.
BlazeDS, Apache CFX and Apache Wicket are all avail-
able under open source licenses.

Using the ICE ABI interface via Java or API interfaces
via SOAP or BlazeDS allows anyone interested in writing
synthetic biology software to treat ICE as a software com-
ponent that abstracts away all the details of the storage,
retrieval, search and part manipulation operations. By
using the interfaces, a developer only needs to know
about the core data models and what operations are
available through the controllers—other details can be
safely ignored.

Graphical applications
The various rich Internet applications written in Adobe
Flex comprise other major components of ICE. These
graphical applications work within the browser, independ-
ent of the computer operating system. They are useful
tools to help design, annotate and verify parts and also
serve as illustrations on application development using the
ICE APIs via the BlazeDS service.

VectorEditor is our largest and most complex applica-
tion, and it is made of several components and an
increasing number of features. It is a sequence display,
annotation and cloning software similar in functionality
to VectorNTI or ApE. Today, it is capable of real-time
DNA editing, with live vector map display, sophisticated
feature annotation, in silico cloning via intelligent cut and
paste, easy feature manipulation, restriction site visualiza-
tion, annealing temperature calculation and more. It can
also display protein translation information and open
reading frames. VectorEditor can import and export
GenBank files for data exchange with other vector ma-
nipulation programs. Like ICE, VectorEditor is also an
open source software, which means it is free to use and
free to modify. It can be trivially recompiled to run as
a stand-alone desktop application, and we encourage
anyone interested in building an open source and free
vector editing tool to add new features and capabilities
to VectorEditor. We know of no other open source
vector manipulation program with comparable features,
especially one that can run on Windows, Mac and Linux
operating systems.

SequenceChecker is a tool to align sequencing traces
(.ab1 or FASTA files) onto a sequence to make easier
the process of verifying DNA constructs. It overlays
multiple trace files onto a plasmid vector map, visually
highlighting any mismatches, making verification of a
construct simple.

We also provide two minor tools, the VectorViewer,
which is the VectorEditor without the DNA editing
capabilities, and BioFlex. BioFlex is a set of libraries
written in ActionScript that provides useful bioinformatic
functionalities for other Flex-based tools, such as restric-
tion enzyme mapper (via REBASE), ORF mapper, tem-
perature calculator and parsers for GenBank and FASTA
formats. Our Flex applications rely on it extensively.

e141 Nucleic Acids Research, 2012, Vol. 40, No. 18 PAGE 6 OF 8



Distributed web of registries
JBEI-ICE was designed with distributed use in mind. Any
individual or group can download and install an ICE
instance without centralized coordination. If a group
wishes to publicize the contents of their instance, they
may choose to allow others access via the website or the
SOAP interface. Even if they did not coordinate their part
numbering scheme with anyone else ahead of time, each
entry can be distinguished by their Universally Unique
Identifiers (UUIDs). Use of UUIDs overcomes the
problem of name collision that comes from distributed
repositories. ICE also facilitates interconnected use. If a
group wishes to export some of their entries into a differ-
ent publicly available ICE instance, they can export the
data via xml or connect with the publicly available
instance to allow access via SOAP. The private instance
can then use the SOAP interface to automatically export
entries into the public ICE instance.

By using a standard SOAP interface and UUIDs, it is
possible to have independent ICE instances, yet allow
easy sharing of information between them. If large
numbers of distributed ICE instances are realized, it
would not be too difficult to create a ‘web-crawler’ like
service that explores known available ICE instances and
indexes them, much like existing web search engines. Even
if such ICE search engines are not realized, peering (es-
tablishing an automated exchange agreement) with a
well-known public instance is a good way to distribute
information widely.

DISCUSSION

Even as the number of standard biological parts has
grown, the ways the parts are stored and managed have
not advanced at the same pace. Several automation tools
now exist, but they are hampered by lack of a registry that
can be used programmatically to access and store part
information. The current paradigm of a single parts
registry for the whole world has become inadequate for
the expanding field of synthetic biology, especially when
the central registry cannot be extended to facilitate new
subfields, new automation tools and new assembly para-
digms. More than being a database of parts, a parts
registry should be the mechanism by which the friction
between scientists, software tools and the community is
minimized. The only viable solution forward is a shift to
an open distributed web of registries that can be developed
by the community. As the first open source, distributed
registry software that works both as a website and as a
software library stack, JBEI-ICE could become the tool
that bridges the gap between users, applications and insti-
tutions by providing a common platform that can bring
together diverse set of resources into a shared framework.
Clearly, the current iteration of JBEI-ICE is not yet ready
for this monumental task. However, the open source
license of JBEI-ICE enables the community to build on
and expand its functionality, with or without JBEI.
Of course, we wish to participate in this process, and we
will provide any support as best as we can.

Furthermore, by supporting existing and emerging data
exchange standards such as GenBank format and SBOL
and by providing transparent conversion between differ-
ent data formats, JBEI-ICE will aid the community in
creating a viable information sharing medium beyond
static file formats. As more information sharing is
performed on the Internet by computers having APIs
rather than people exchanging files, a web of registries
platform like the JBEI-ICE could be an excellent
resource for synthetic biologists to share their research
with the larger community.

ACKNOWLEDGEMENTS

The authors thank Dylan Chivian for his close reading of
the manuscript and William Holtz for his extensive testing
and feedback of new features and insightful discussions.
We also thank Synthetic Biology Data Exchange group
for their helpful discussions.

FUNDING

Office of Science, Office of Biological and Environmental
Research of the U S Department of Energy [Contract No.
DE-AC02-05CH11231]. Funding for open access charge:
US Department of Energy.

Conflict of interest statement. None declared.

REFERENCES

1. Ellis,T., Adie,T. and Baldwin,G.S. (2011) DNA assembly for
synthetic biology: from parts to pathways and beyond. Integr.
Biol., 3, 109–118.

2. Liss,M. and Wagner,R. (2011) Gene Synthesis - Enabling
Technologies for Synthetic Biology. In: Koeppl,H., Densmore,D.,
Setti,G. and di Bernardo,M. (eds), Design and Analysis of
Biomolecular Circuits. Springer, New York, NY, pp. 317–335.

3. Hillson,N.J. (2011) DNA Assembly Method Standardization for
Synthetic Biomolecular Circuits and Systems. In: Koeppl,H.,
Densmore,D., Setti,G. and di Bernardo,M. (eds), Design and
Analysis of Biomolecular Circuits. Springer, New York, NY,
pp. 295–314.

4. Gardner,T.S., Cantor,C.R. and Collins,J.J. (2000) Construction of
a genetic toggle switch in Escherichia coli. Nature, 403, 339–342.

5. Basu,S., Gerchman,Y., Collins,C.H., Arnold,F.H. and Weiss,R.
(2005) A synthetic multicellular system for programmed pattern
formation. Nature, 434, 1130–1134.

6. Steen,E.J., Kang,Y., Bokinsky,G., Hu,Z., Schirmer,A.,
McClure,A., Del Cardayre,S.B. and Keasling,J.D. (2010)
Microbial production of fatty-acid-derived fuels and chemicals
from plant biomass. Nature, 463, 559–562.

7. Anderson,J.C., Clarke,E.J., Arkin,A.P. and Voigt,C.A. (2006)
Environmentally controlled invasion of cancer cells by engineered
bacteria. J. Mol. Biol., 355, 619–627.

8. Kelly,J.R., Rubin,A.J., Davis,J.H., Ajo-Franklin,C.M.,
Cumbers,J., Czar,M.J., de Mora,K., Glieberman,A.L.,
Monie,D.D. and Endy,D. (2009) Measuring the activity of
BioBrick promoters using an in vivo reference standard. J. Biol.
Eng., 3, 4.

9. Shetty,R.P., Endy,D. and Knight,T.F. Jr (2008) Engineering
BioBrick vectors from BioBrick parts. J. Biol. Eng., 2, 5.

10. Peccoud,J., Anderson,J.C., Chandran,D., Densmore,D.,
Galdzicki,M., Lux,M.W., Rodriguez,C.A., Stan,G.B. and
Sauro,H.M. (2011) Essential information for synthetic DNA
sequences. Nat. Biotechnol., 29, 22; discussion 22–23.

PAGE 7 OF 8 Nucleic Acids Research, 2012, Vol. 40, No. 18 e141



11. Chandran,D., Bergmann,F.T. and Sauro,H.M. (2009) TinkerCell:
modular CAD tool for synthetic biology. J. Biol. Eng., 3, 19.

12. Czar,M.J., Cai,Y. and Peccoud,J. (2009) Writing DNA with
GenoCAD. Nucleic Acids Res., 37, W40–W47.

13. Hillson,N.J., Rosengarten,R.D. and Keasling,J.D. (2012) j5
DNA assembly design automation software. ACS Synth. Biol., 1,
14–21.

14. Xia,B., Bhatia,S., Bubenheim,B., Dadgar,M., Densmore,D. and
Anderson,J.C. (2011) Developer’s and user’s guide to Clotho v2.0
A software platform for the creation of synthetic biological
systems. Methods Enzymol., 498, 97–135.

15. Galdzicki,M., Rodriguez,C., Chandran,D., Sauro,H.M. and
Gennari,J.H. (2011) Standard biological parts knowledgebase.
PLoS One, 6, e17005.

e141 Nucleic Acids Research, 2012, Vol. 40, No. 18 PAGE 8 OF 8




