UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Argument Detection and Rebuttal in Dialog

Permalink
https://escholarship.org/uc/item/63j6j74\

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 21(0)

Authors
Restificar, Angelo
Ali, Syed S.
McRoy, Susan W.

Publication Date
1999

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/63j6j74v
https://escholarship.org
http://www.cdlib.org/

Argument Detection and Rebuttal in Dialog'

Angelo Restificar!
angelo@uwm.edu

Syed S. Ali?

syaliauwm.edu

Susan W. McRoy!
mcroy@uwm.edu

'Electrical Engincering and Computer Science
“Mathematical Sciences
University of Wisconsin-Milwaukee

Abstract

A method is proposed for argumentation on the ba-
sis of information that characterizes the structure
of arguments, The proposed method can be used
both to detect arguments and to generate candidate
arguments for rebuttal. No assumption of a pri-
ori knowledge about attack and support relations
between propositions, advanced by the agents par-
ticipating in a dialog, is made. More importantly,
by using the method, the relations are dynamically
established while the dialog is taking place. This
allows incremental processing since the agent need
only consider the current utterance advanced by the
dialog participant, not necessarily the entire argu-
ment, to be able to continue processing.

Introduction and Motivation

Argument detection is an important task in build-
ing an intelligent system that can understand and
engage in an argument. In an intelligent dialog sys-
tem (IDS)[6], an interactive system that tailors its re-
sponse according to the user’s needs and intentions,
it is necessary to detect whether an utterance given
by the user is an argument against an utterance ad-
vanced by the system. Two agents, e.g. the system
and the user, may engage in a conversation and may
not always agree. Each of them may attempt to re-
solve issues either by attacking an agent’s claim or
by defending its position. Thus, an IDS must be able
to determine whether a proposition advanced by an
agent in a dialog attacks a claim currently held by
the other agent, supports it, or does neither.

The method we propose here, used by our system
ARGUER, finds an argument schema which matches
the deep meaning representation of a proposition.
The schemata characterize general patterns of ar-
gument, similar to those studied by [16, 3]. These
types of arguments are reasonable but defeasible—
they incorporate plausible assumptions in the ab-
sence of complete information. ARGUER uses a
truth-maintenance system to revise its beliefs. These
schemata are used to establish support or attack re-
lations among the propositions expressed by agents
over the course of a dialog. The schemata allow AR-
GUER to recognize attack or support relations be-

!This work was supported by the National Science
Foundation, under grants IRI-9701617 and IRI-9523666.

601

tween an utterance and any prior utterance, not just
an immediately preceding one. Separate models of
the agent’s beliefs are maintained, both for the sys-
tem and the user. Hence, a proposition believed by
the system may not be necessarily believed by the
user. The system generates a response by taking into
consideration the beliefs held by the user.

The work that we describe here focuses on the
problem of relating a proposition to an existing
knowledge base for argument detection and rebut-
tal. By using argument schemas, we will show how
a system can detect and rebut arguments, automati-
cally. The relation of the input proposition to exist-
ing knowledge is established while the dialog is ongo-
ing. This allows a dialog participant to consider only
the current utterance advanced by the other partici-
pant, not necessarily the entire argument, to continue
processing.

Background
Argument and Argument Relations

During a dialog, whenever a participant challenges an
utterance of another participant, we say that an argu-
ment has started. The propositions that are usually
advanced by the participants during the exchange are
either an attack to a proposition (i.e., by attacking
the merits of the opponent’s claim), or a support to
a previously held claim. An argument relation is ei-
ther an attack or a support. We use rules, called ar-
gument schema rules, that characterize the structure
of arguments and are used to determine whether an
input proposition attacks or supports existing knowl-
edge (or does neither). Thus during the exchange, it
is possible to keep track of the relationships between
utterances by maintaining a labeled directed acyclic
graph whose nodes are the propositions correspond-
ing to the utterances and whose arcs are labeled as
either attack or support. This labeled directed graph
is called an argument graph [4]. In this paper, we
refer to an argument as any node in the argument
graph.

mailto:angelo@uwin.odu
mailto:mcroy@uwm.edu

Relation to Prior Work

Argumentation has attracted the interest ol re-
searchers in philosophy [16], law [10] and artificial
intelligence. Inside the field of artificial intelligence,
investigations ranged from understanding arguments
(1, 4, 11], building interactive systems [15, 17] and
to the use of argumentation to deal with issues in
default logic and nonmonotonic reasoning (8, 5.

Our current work deals with issues closely related
to understanding arguments in an interactive en-
vironment, more specifically, in a dialog. Recent
work in interactive argumentation systems include
IACAS [15] and NAG [17]. TACAS allows the users
to start a dispute and find arguments. However, it
does not address the issue of maintaining separate
belief models for each participant in a dialog. NAG,
on the other hand, uses tagged words from the in-
put and uses Bayesian networks to find the best set
of nodes that can be formed as an argument for a
proposition. Neither system, however, addresses ar-
gument detection; they deal with issues different from
the ones that concern us. [7] focus on a different, but
related, problem within dialog, the collaborative con-
struction of a plan. This work considers the problem
of deciding whether the system should accept or re-
ject a user’s proposal, on the basis of its consistency
with the system’s beliefs and the evidence offered by
the user. Unlike ARGUER’s approach to deciding
whether some evidence supports a belief, which re-
lies on domain-independent schemata, their system's
approach relies on domain-specific patterns of evi-
dence. Other systems like ABDUL/ILANA [4] and
HERMES [9] do not address the issue of how attack
and support relations between propositions may be
established computationally. Alvarado’s OpEd (1] al-
though designed to understand arguments is limited
to processing editorial text and does not address the
issues we are concerned in dialog processing.

In ARGUER, the relations between propositions
are dynamically established while the dialog is taking
place. The use of argument schemas allows incremen-
tal processing of arguments. Since relations between
propositions can be established dynamically, the sys-
tem may not always have to wait until the complete
argument is presented. Moreover, the method is sym-
metrical because it can be used for interpretation or
generation of arguments. This is important because
the system can have the role of observer or partic-
ipant. Currently, ARGUER does not address the
problem of choosing among a set of possible argu-
ments when generating an utterance; this has been
the topic of work by [17], for example. We are cur-
rently working on a model of preference that will ad-
dress this concern.

Argument Detection and Rebuttal

The underlying principle for detecting arguments in
ARGUER is to find a general case of an argument
schema into which the meaning representation of an
utterance can be matched. In ARGUER, argument
detection and rebuttal are established via argument
schema rules, An argument schema rule character-
izes the structure of an argument. The method finds
all the schemata into which the deep meaning repre-
sentation of a proposition fits. If a match is found,
the corresponding variables in the argument schema
rules are instantiated, thereby establishing attack or
support relation. For example, given a proposition
« corresponding to Tweety is a bird, the schema,
NOT a, corresponding to Tweety is not a bird,
characterizes an argument against a. A simple argu-
ment schema rule that allows ARGUER to establish
an attack relation between the two propositions is: a
attacks NOT a.

The sample dialog of Figure 1 will be used through-
out the discussion in this paper. The domain
knowledge used in the dialog is extracted from
the American Heart Association Screener Technician
Manual[2|, a manual for teaching people how to mea-
sure blood pressure and what to say to patients. Two
participating agents in the dialog, the system and the
user, argue about the need for a blood pressure check.
S1, S2 and S3 are the system’s utterances while Ul
and U2 are those of the user.

S1 Have your blood pressure checked.

Ul There is no need.

S2 Uncontrolled high blood pressure can lead
to heart attack, heart failure, stroke or
kidney failure.

U2 But I feel healthy.

S3 Unfortunately, there are no signs or
symptoms that tell whether your blood
pressure is elevated.

Figure 1: Sample blood pressure dialog

We refer to an argument as any proposition cor-
responding to a node in the argument graph (see
Section), e.g. in Figure 1, S1, Ul, S2, U2 and S3
are possible arguments. S1 tells the user that he/she
must have a blood pressure check. The user responds
by telling the system that there is no need (Ul).
The system then tells the user of the possible con-
sequences if the user does not have a blood pressure
check, i.e., uncontrolled high blood pressure can lead
to heart attack, heart failure, stroke or kidney fail-
ure (S2). Then the user responds that there is noth-
ing wrong with himself/herself: 'But I feel healthy’
(U2). The system then responds using 33 that, unfor-
tunately, a person might have a high blood pressure

602

even if no symptoms are felt.

The Types of Knowledge

ARGUER's knowledge base contains at least three
types of information: domain knowledge, conmon
sense knowledge and argumentation knowledpe. This
information is needed to detect arguments and gen-
erate possible responses to them. ARGUER needs
domain knowledge to reason about information spe-
cific to the topic being talked about. For example, the
knowledge associating signs or symptoms with an ill-
ness is domain knowledge essential in understanding
and responding during dialogs about health. General
facts are considered as common-sense knowledge, e.g.
requiring x from A may imply a need of x by A. In
addition, information about the structure of argu-
ments and their various forms is used to detect ar-
guments advanced by agents during a dialog. The
argumentation knowledge consists of the argument
schema rules.

The Knowledge Representation

ARGUER represents all its knowledge in a uniform
framework known as a propositional semantic net-
work. A propositional semantic network is a frame-
work for representing the concepts of a cognitive
agent who is capable of using language (hence the
term semantic). The particular knowledge represen-
tation system that is used by ARGUER is SNePS [14]
which provide facilities for building and finding nodes
as well as for (first- and second-order) reasoning,
truth-maintenance, and knowledge partitioning (for
user- and system-models). Reasoning in ARGUER is
computationally tractable because of the knowledge
partitioning; only relevant portions of the knowledge
base(s) are used for argumentation.

For brevity and clarity, in this paper, we shall use
equivalent logic form representations in our sample
interactions.

Models of Belief

ARGUER uses a separate model of belief for each
participant in the dialog. In Figure 1, the system
plays the role of the medical expert and the user is
the patient. The propositions that the system be-
lieves may not be necessarily believed by the user.
The system, in responding to propositions advanced
by the user, takes into account the beliefs currently
held in the (system’s) user model (as well as its own
beliefs). We define a belief model M of an agent A as
follows:

Definition 1 (Belief Model)
Let T = {oi | 0; is a proposition believed by an agent

603

Aji=1...n} and T' = {0y |o; can be logically de-
rived from T, iteratively}. The belief model of agent
A, denoted M4, 1s TUT'. Furthermore, if a proposi-
tion o ¢ M4 then we say that agent A is ignorant
about oy

According to Definition 1, the belief model of
an agent is the set containing all the propositions
believed by the agent together with all its logical
consequences®. If a proposition does not belong to
an agent’s model, it is not necessarily false. It may

just be the case that the agent is ignorant about it.

During the dialog, as the utterance’s meaning rep-
resentation becomes available, general cases (corre-
sponding to argument schema rules) are used to es-
tablish the argument relations. In our method, this
process is dynamic and no a priori knowledge of argu-
ment relations between propositions is assumed. For
brevity, we consider only two argument schemas in
this paper that are necessary for the examples that
we discuss. However, our model is extensible and
does support other argument schemas.

Argument Schemas

Suppose someone makes a claim. A common way of
challenging that claim is by saying ‘No, it is not the
case that Let us refer to the first speaker as the
proponent and the second speaker, opponent. The
proponent then is obliged to prove or show evidence
that would support the claim, i.e. the burden of proof
lies with the proponent [16]. In Fragment 1, we intu-
itively know that U1l is a challenge to S1. By having
a general case of argument schema that captures this
situation, it is possible to establish computationally
that Ul is a challenge to a preceding claim made by
the other agent, i.e., S1. The same argument schema
could also be used for rebuttal.

Fragment 1

S1 Have your blood pressure checked.
Ul There is no need.

In Fragment 1, S1 tells the user that there is a
need for a blood pressure check. This first utterance
makes the claim (by implication). The user however
responds by challenging the claim and saying, Ul,
that there is no need. By using an argument schema
rule, in this case the rule R1b below, our system can
establish that Ul is an attack to S1.

2This is a simplifying assumption. We are working on
a resource-limited model of belief,

Argument Schema 1 (Negation)
Let o and [be propositions, then:
Rla: If o is an utterance then NOT «a is an attack
to a.
R1b: If v is an utterance mmplying 3, then NOT 3 is
an attack to a.

In Fragment 1, Ul attacks S1. The utterance ‘Have
your blood pressure checked’ implies that ‘There is a
need for a blood pressure check.” We assume that
there exists common-sense and domain knowledge
that allows us to derive this knowledge. Rules in
the common-sense and domain knowledge allow us
to derive that 'requiring x of A’ (which follows from
the imperative form of S1) implies 'the need of A for
x'. The rule R1b in Argument Schema 1 allows us
to establish that the utterance Ul: There is no need,
is a proposition that attacks the utterance S1: Have
your blood pressure checked. In this case a is S1 and
NOT 3 is Ul.

Conversely. suppose the user said S1 and the sys-
tem wants to generate an attack. Using either Rla
or R1b allows us to generate a response that attacks
the preceding claim. If « is S1, then there are two
possible attacks to a: (1) NOT a via Rla and (2)
NOT g via R1b. The best possible response could
then be selected using some preference criteria. The
method of selecting the best response is a part of our
ongoing work (see Section).

We consider a more complex case in the next frag-
ment of the dialog of Figure 1.

Fragment 2
Ul There is no need.
S2 Uncontrolled high blood pressure can lead

to heart attack, heart failure, stroke or

kidney failure.

In Fragment 2, one way to detect that S2 is an at-
tack to Ul is to consider the consequences of UlL.
Not having a blood pressure check can lead to uncon-
trolled high blood pressure which can lead to events
like heart attack or stroke. These events in turn can
lead to a fatal event, i.e., death, which is possibly
unacceptable to the user.

There are two different types of unacceptability
that we consider here. One type is subjective, i.e.,
an agent subjectively determines a proposition to
be unacceptable (such as the possibility of his/her
death). The other type is motivated by reason,
1.e., a proposition is unacceptable to the agent be-
cause the agent believes its negation is true. For
example, the statement It is unacceptable to
me that Tweety can fly because I believe that
Tweety can not fly is of the second type. We de-
fine the notion of unacceptability as follows:

Definition 2 (Unacceptable)

Let M4 be a belief model of agent A, § be a propo-
sition, and C,D be the sct of facts and rules of the
common-sense and domain knowledge, respectively.
Let the symbol, \-, denote logical derivation. Fur-
thermore let uc(5) be a proposition equivalent to
the statement "8 is not acceptable”. The proposi-
tion § is unacceptable with respect to M, if and
only if (1) (Mo U C U D) F NOTSG, or (2)
(Mg UC U D) F ue(s).

Definition 2 allows two types of unacceptability.
The condition in (1) means we do not accept the
proposition because we believe its negation. The con-
dition in (2) means we do not accept the proposition
because we simply believe it is subjectively unaccept-
able. In Fragment 2, a is Ul and 4, the state which
is unacceptable to the user, is implied by S2. Any
proposition leads to ¢ from a, attacks a. Our model
uses both types of unacceptability®.

Argument Schema 2

Let o, B3, v and é be propositions and let the sym-

bol, =, denote logical implication, then:

R2: Ifa= (B =) =>4, where § is unacceptable to
the agent uttering o then (B = %) is an attack
to the utterance a.

Argument Schema 2 means that any set of rules
or propositions that leads to a state that is unac-
ceptable to the speaker is an attack to what has just
been uttered. The flow of reasoning is the following:
Suppose that there is no need for a blood pressure
check. If blood pressure is not checked, blood pres-
sure may become high. High blood pressure can lead
to heart attack, heart failure, stroke or kidney failure.
Having a heart attack, heart failure, stroke or kidney
failure is unacceptable to the agent.

Using R2, the system detects that the proposition
‘Uncontrolled high blood pressure can lead to heart
attack, heart failure, stroke or kidney failure’ is an
attack to the utterance ‘There is no need’. Moreover,
R2 can be used to find possible responses to Ul. Pos-
sible propositions that attack Ul are (1) ‘If a blood
pressure is not checked, blood pressure may become
high’ and (2) ‘High blood pressure can lead to heart
attack, heart failure, stroke or kidney failure’. These
propositions enable the flow of reasoning to reach a
state that is unacceptable to the speaker.

A Sample Interaction
In this section, we describe an implementation of the

method, used in ARGUER, that detects arguments

3We are investigating argumentation issues when there
is an inconsistency between the user model and the do-
main and common sense knowledge.

and also finds possible ways to respond. The problem
that we are attempting to address here is a part of a
larger project to understand various issues involved in
robust human-machine communication [12]. We will
use a portion of Figure 1 to show how the proposed
method works.

ARGUER'’s knowledge base consists of common-
sense knowledge, domain knowledge and argumen-
tation knowledge. The knowledge base and the ut-
terance of the participating agents in the dialog are
represented uniformly. On the implementation level,
the uniform representation allows a common method
of accessing and processing information of different
types, which in this case include processing informa-
tion from domain knowledge, argumentation knowl-
edge and common-sense knowledge. Advantages of
using uniform representation are discussed in [12].

We are currently extending ARGUER to process
natural language (using the general-purpose gram-
mar of B2 and a template-based generation sys-
tem (12, 13]). For clarity, the example(s) below are
shown in English, ARGUER assumes the interpreted
logic-based representations shown for input (and out-
puts similar representations).

An Example In the following example, S1, Ul and
52 are utterances of the agents participating in the
dialog. S1 and S2 are utterances of the system while
Ul is an utterance of the user. We show how AR-
GUER detects correctly that Ul attacks S1, and S2
attacks Ul. Moreover, after each utterance (Ul and
S1) we show how ARGUER can use the same method
to generate possible rebuttals.

Fragment 3
S1 Have your blood pressure checked.
Ul There is no need.
S2 Uncontrolled high blood pressure can lead

to heart attack, heart failure, stroke or

kidney failure.

Utterance S1 is interpreted as: agent ‘system’ re-
quiring agent ‘user’ to have a blood pressure check.
(We assume that Ul has been modified to the form
‘There is no need for a blood pressure check’.) We
represent the utterance S1 as:

S1:

The variable *check-BP represents an unknown agent
performing a blood pressure check on the agent user.
The utterance Ul is true in the user’s model, i.e., as
far as the user is concerned, the user does not need a
blood pressure check. This is represented as:

Ul: -~ Need(user, *check-BP)

Since models for the user and the system are sepa-
rately maintained, this propaosition is not believed by
the system, but can be used to detect an argument.

Require(system, user, *check-BP)

Detecting an argument: Ul attacks S1 To de-
tect that Ul attacks S1, ARGUER asks the question

Attacks(Require(system, user, *check-BP),
~Need(user, *check-BP))

(i.e., is Ul an attack on S17) and uses two rules to
answer:

1. Rule R1b: If a is an utterance implying 3, then

NOT £ is an attack to a.

Rlb: Va, 3 Derived(a, 3) — Attacks(a, =)

2. a common-sense rule, Cl, that states that if the

605

system requires some act of an user, then the user
needs the required act.

C1: Yu,a Require(system, u, a) — Need(u, a)

When rule C1 is instantiated and used (with S1),
ARGUER deduces the consequent

Need(user, *check-BP)

and a meta-level proposition that represents the rea-
soning path of a ground rule from the antecedent to
the consequent:

Derived(Require(system, user, *check-BP),
Need(user, *check-BP))

This meta-level proposition is then used in argument
schema R1b (with a = Require(system, user, *check-
BP) and 3 = Need(user, *check-BP)) to conclude
that the user is attacking the system’s utterance:

Attacks(Require(system, user, *check-BP),
—Need(user, *check-BP))

Generating an argument Ul that attacks S1
To generate an argument that attacks S1 (possibly
to preempt a user argument), ARGUER might ask
the question

Attacks(Require(system, user, *check-BP), xX)

(where *X is a free unbound variable) and deduces
possible attacking propositions to S1. As before, this
uses rules R1b and C1 to find possible values for *X.
In this example, it once again finds:

Attacks(Require(system, user, *check-BP),
—Need(user, *check-BP))

We note that this method can find all arguments that
attack S1 (i.e., not just Ul), dynamically and with
the currently available information and state of the
user model.

Generating a rebuttal: S2 attacks Ul To gen-
erate a rebuttal to Ul, ARGUER asks the question:

Attacks(~Need(user, *check-BP), *X)

namely, what attacks Ul. In this example, these rules
are used:

1. R2: ¥V a, 3,7,6 (Derived(a. B) A
Derived(B, v) A Derived(y, 6) A uc(d))
— Attacks(c, Derived(8, 7))

2. C2: Va,z ~Need(a,z) = —~Do(a, z)

3. D1: Va —~Do(a, *check-BP)

—+ Possible(attribute(a, BP, high))

4. D2: V a Possible(attribute(a, BP, high))
— Possible(event(a, {stroke, heart-failure, heart-
attack, kidney-failure}))

5. D3: wuc(Possible(event(a, {stroke,
heart-attack, kidney-failure})))

heart-failure,

Note that the simplest case of R2 is when a = @ and
v = & (the user’s utterance immediately leads to a
consequent that is unacceptable). C2 is a common
sense rule that states that if a agent does not need to
do an act, the agent will not do it. D1 is a domain
rule that states that if an agent does not have their
blood pressure checked then high blood pressure is
possible. D2 is a domain rule that states that an
agents having possible high blood pressure can lead
to a possible stroke, heart attack or failure, or kidney
failure. D3 is a domain fact that states that these
outcomes are unacceptable to the user.

To answer its query, ARGUER reasons as follows:

e Derived(—Need(user, *check-BP), =Do(a, *check-
BP)) From C2 and Ul.

e Derived(—Do(user, *check-BP),
Possible(attribute(user, BP, high))) From D1 and
C2.

o Derived(Possible(attribute(user, BP, high)), Possi-
ble(event(user, {stroke, heart-failure, heart-attack,
kidney-failure}))) From D2, D1 and C2.

Using R2 and D3 with this final derivation, ARGUER
can conclude:

Attacks(—Need(user, *check-BP),
Derived(Possible(attribute(user, BP, high)),
Possible(event(user,{stroke, heart-failure,

heart-attack, kidney-failure}))))

From this, ARGUER decides that S2 is an attack to
Ul:

606

S2: Derived(Possible(attribute(user, BP, high)),
Possible (event(user,{ stroke,heart-failure,
heart-attack, kidney-failure})))

Moreover, because the method is symmetrical, it
could be used to detect that S2 attacks U1, to predict
possible rebuttals to S2, or to answer the question
“What attacks what?”

Summary

We have shown the use of argument schema both
for detecting arguments and generating possible re-
buttals in dialogs. The method is implemented as
ARGUER and allows us to establish argument rela-
tions between propositions while the dialog is ongo-
ing. Moreover, the method we have proposed here is
incremental in that it allows processing of each piece
of the utterance and selects only a part of the argu-
ment to continue.

References

(1] S. Alvarado. Understanding Editorial Text: A
Computer Model of Argument Comprehension.
Kluwer Academic, 1990.

[2] American Heart Association, Milwaukee, WL
Blood Pressure Measurement FEducation Pro-
gram Screener Technician Manual, 1998.

[3] K. D. Ashley. Modeling Legal Argument: Rea-
soning with Cases and Hypotheticals. MIT Press,
Cambridge, MA, 1990.

[4] L. Birnbaum, M. Flowers, and R. McGuire. To-
wards an Al Model of Argumentation. In Pro-
ceedings of the AAAI-80, pages 313-315, Stan-
ford, CA, 1980.

[5] A. Bondarenko, P. M. Dung, R. A. Kowalski,
and F. Toni. An Abstract, Argumentation-
Theoretic Approach to Default Reasoning. Ar-
tificial Intelligence, 93:63-101, 1997.

(6] M. Bordegoni, G. Faconti, T. Y. Maybury,
T. Rist, S. Ruggieri, P. Trahanias, and M. Wil-
son. A Standard Reference Model for Intelli-
gent Multimedia Representation Systems. The
International Journal on the Development and
Applications of Standards for Computers, Data
Communications and Interfaces, 1997.

[7] Jennifer Chu-Caroll and Sandra Carberry. Gen-
erating Information-Sharing Subdialogues in
Expert-User Consultation. In Proceedings of the
14th IJCAI, pages 12431250, 1995.

(8] P. M. Dung. The Acceptability of Arguments
and its Fundamental Role in Non-Monotonic
Reasoning, Logic Programming and N-Person
Games. Artificial Intelligence, pages 321-357,
1995.

[9] N. Karacapilidis and D. Papadias. Hermes:
Supporting Argumentative Discourse in Multi-
Agent Decision Making. In Proceedings of the
AAAI-98, pages 827-832, Madison, WI 1998.

(10] R. P. Loui and J. Norman. Rationales and Ar-
gument Moves. Artificial Intelligence and Law,
1993.

(11] R. McGuire, L. Birnbaum, and M. Flowers. Op-
portunistic Processing in Arguments. In Pro-
ceedings of the 7th International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages
58-60, Vancouver, B.C., 1981.

(12] Susan McRoy, Syed S. Ali, and Susan Haller.
Uniform Knowledge Representation for NLP in
the B2 System. Journal of Natural Language
Engineering, 3(2):123-145, 1997.

[13] Susan W. McRoy, Syed S. Ali, and Susan M.
Haller. Mixed Depth Representations for Dia-
log Processing. In Proceedings of the 20th An-
nual Conference of the Cognitive Science Society
(CogSci '98), pages 687-692. Lawrence Erlbaum
Associates, 1998.

[14] Stuart C. Shapiro and William J. Rapaport. The
SNePS family. Computers & Mathematics with
Applications, 23(2-5), 1992.

(15] G. Vreeswijk. TACAS: An Implementation of
Chisholm’s Principles of Knowledge. In Pro-
ceedings of the 2nd Dutch/German Workshop on
Nonmonotonic Reasoning, pages 225-234, 1995.

(16] D. Walton. Argument Structure: A Pragmatic
Theory. University of Toronto Press, 1996.

[17] I. Zukerman, R. McConachy, and K. Korb.
Bayesian Reasoning in an Abductive Mechanism
for Argument Generation and Analysis. In Pro-
ceedings of the AAAI-98, pages 833-838, Madi-
son, Wisconsin, July 1998.

607

	cogsci_1999_601-607

