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Abstract 
 

The belief in the hot hand was suggested to be a “cognitive 
illusion” since no significant evidence was found in the 
basketball-shooting data to reject the simple binomial model 
(Gilovich, Vallone & Tversky, 1985). The present study 
argues that in order to evaluate the validity of human 
perception and cognition such as the hot hand belief, a data-
driven approach is needed to compare multiple alternative 
models. A hot hand model with nonstationary shooting 
accuracy was tested and showed significantly better 
approximation to the data than the binomial model, indicating 
that the simple binomial model may not be accurate enough to 
serve as a normative model. This finding suggests that the hot 
hand might indeed have existed, and weakens the argument 
that the hot hand belief might be “seeing patterns out of 
randomness.” 
 

The Hot Hand and the Perception of 
Randomness 

The “hot hand” in the game of basketball has received much 
attention in cognitive psychology because it touches an 
interesting topic about human perception and cognition of 
random and non-random events outside the psychological 
laboratory. A long-lasting debate about whether the hot 
hand exists, hence, whether the hot hand belief is a valid 
cognitive activity, was triggered by three articles by 
Gilovich, Vallone and Tversky (1985), and Tversky and 
Gilovich (1989a, 1989b) (later “GVT” refers to these three 
articles as a group, unless specified otherwise). The 
researchers interpreted the hot hand belief as a manifestation 
about statistically significant deviations from what is 
expected by the simple binomial model, namely, 
nonstationary shooting accuracy or positive dependence in 
basketball shooting sequences. However, no statistical 
evidence was found to support such belief. After a number 
of statistical analyses on a large set of data, the researchers 
found that actual basketball shooting sequences were 
“indistinguishable from that produced by a simple binomial 
model” (Gilovich et al., 1985, p. 297). They concluded, 
“perhaps, then, the belief in the hot hand is merely [italics 
added] one manifestation of this fundamental misconception 
of the laws of chance” (Tversky & Gilovich, 1989a, p. 16). 

Since GVT, many studies have been carried out to 
investigate the hot hand in basketball or other sports such as 
baseball. These studies roughly fell into four categories: a) 

studies that conducted null hypothesis tests but failed to 
reject the binomial model (e.g., Adams, 1992; Albright, 
1993; Chatterjee, Yilmaz, Habibullah, & Laudato, 2000), (b) 
studies that raised concerns about the power of significance 
tests conducted by Gilovich et al. (1985) and Albright (1993) 
(e.g., Miyoshi, 2000; Stern & Morris, 1993; Sun, 2001, 
2003; Wardrop, 1999), (c) studies that proposed alternative 
models that may support the hot hand belief (e.g., Albert, 
1993; Albert & Bennett, 2001; Larkey, Smith, & Kadane, 
1989), (d) a study that addressed the adaptive value of the 
hot hand belief, assuming the accuracy of the binomial 
model (Burns, 2001).  

The present paper takes a step further and examines the 
accuracy of the simple binomial model in a side-by-side 
comparison with an alternative model that assumes the 
existence of the hot hand. The importance of such a 
comparison is obvious since which model is more accurate 
would inevitably affect researchers’ opinion about the 
validity of the hot hand belief. As Brunswik (1956) and 
Simon (1982) suggested, the environment in which human 
perception and cognition originate and operate must be 
carefully studied. On one hand, it is possible that the hot 
hand does not exist and the hot hand belief is another 
example of misperceptions of randomness outside the 
psychological laboratory, in addition to many previous 
findings when random events were clearly defined (e.g., 
Falk, 1981; Kahneman and Tversky, 1972; Tversky & 
Kahneman, 1971, 1974; Wagenaar, 1972). On the other 
hand, it is possible that the hot hand does exist, even with a 
substantial effect size (e.g., substantial changes in shooting 
accuracy), and traditional statistical tests are generally low 
in power thus not capable of detecting the effect. The fact is 
that a truly random process can produce seemingly non-
random “patterns,” but a truly non-random process can 
produce seemingly random events as well. Lopes and Oden 
(1987) demonstrated that although human subjects 
sometimes misidentified random events as nonrandom (i.e., 
false alarms), they could also correctly detect truly 
nonrandom signals (i.e., correct hits). Thus, it is important 
to find out whether the simple binomial model is accurate 
enough to serve as a normative model. Then, researchers 
might be able to answer the question whether the hot hand 
belief is more about signal detections, or, just “seeing 
something out of randomness.” 
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Model-driven vs. Data-driven 
GVT concluded that actual basketball-shooting records 
“may be adequately [italics added] described by a simple 
binomial model” (Gilovich et al., 1985, p. 313). However, 
such a conclusion was solely based on the non-significant p 
values in null hypothesis tests under the binomial model. 
Sun (2003) and Wardrop (1999) pointed out that GVT’s 
statistical tests were largely redundant and generally low in 
power, and in many cases, GVT failed to report large 
deviations from the binomial process or misinterpreted the 
test results. In the present paper, I only address the 
importance of comparing multiple models and why non-
significant p values do not necessarily suggest the accuracy 
of the simple binomial model. 

Criticisms of null hypothesis significance testing (NHST) 
have been leveled for decades. Many researchers warned 
that when alternative hypotheses abound, misinterpretations 
of statistical significance could easily arise (e.g., Cohen, 
1994; Lykken, 1991; Oakes, 1986). Nevertheless, many 
researchers tend to ignore the fact that NHST only estimates 
p(D | H0), the probability that data D could have arisen if the 
null hypothesis H0 were true, not p(H0 | D), the probability 
that H0 is true, given D. In modeling basketball shooting, the 
fact that no significant deviation was found to reject the 
binomial model, namely, p(D | HBinomial) > .05, only 
indicates that the binomial model may not be terribly 
erroneous. However, not being terribly erroneous is not the 
same thing as being accurate or being unique. A p value 
greater than .05 only prompts researchers to retain the null, 
not to accept the null as if it were true or even likely to be 
true. 

Let HBinomial denote the event that the binomial model is 
true, HHot Hand denote the event that the hot hand theory is 
true, and D denote the event that a certain statistic from the 
shooting data reaches a certain level. In order to 
demonstrate the adequacy of binomial model or the 
invalidity of the hot hand theory, given the available data, 
one needs to find out which hypothesis the data are in favor 
of, namely, to compare p(HBinomial | D) and p(HHot Hand | D). 
In Bayes’ theorem,  
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If one is not biased toward either one of the two hypotheses 
before examining the data, it is reasonable to assign equal 
prior probabilities to both models, p(HBinomial) = p(HHot Hand) 
= .50. Then, the comparison between p(HBinomial | D) and 
p(HHot Hand | D) comes down to the comparison between 
p(D | HBinomial) and p(D | HHot Hand). GVT’s statistical 
analyses showed that in a number of statistical tests, 1 
p(D | HBinomial) was not significantly small. Nevertheless, 
such information alone cannot invalidate the hot hand 

________ 
1 Note that most of GVT’s tests were mathematically redundant 
(see Wardrop, 1999). 

theory, another piece of information, p(D | HHot Hand) is still 
missing. 

The argument here actually calls for a data-driven 
approach that compares at least two rival models, rather 
than a model-driven approach that conducts null hypothesis 
tests only on one model. The distinction between these two 
approaches is not a clear cut but rather a difference in 
emphasis. The data-driven approach eventually has to come 
down to evaluations of a limited number of models one by 
one. If a certain model superior to others arises, it will be 
tested against further data for a need to abandon or modify 
the model. In this sense, the distinction between two rival 
models often is not an absolute dichotomy. It is true that in 
hypothesis testing, such as in Equation 1, two hypotheses 
have to be exclusive to each other. Nevertheless, in data 
modeling, two models might only differ in the degrees they 
approximate the actual process. Which model is selected 
would be based on which model provides a better 
approximation of the data, rather than some “mechanical 
dichotomous decisions around a sacred .05 criterion” 
(Cohen, 1994, p. 997). 

 
Extracting Relevant Statistics from the Data 
To compare multiple models by a data-driven approach, it is 
essential to extract relevant statistics from the available data. 
Sun (2003) pointed out that the statistical tests conducted by 
GVT, such as the test of serial correlation (compared to zero) 
and runs test were largely focused on the first moment 
estimate of the time series, namely, the hit rate (i.e., 
observed hitting percentage in a sequence of a certain length) 
as an estimate of shooting accuracy (i.e., the probability for 
any given shot to be a hit). However, by the law of large 
numbers, hit rate only provides a good approximation of 
shooting accuracy when shooting accuracy remains constant 
and the sample size is considerably large. Thus, assuming 
the hot hand is about the nonstationarity of the shooting 
accuracy, fluctuations of shooting accuracy would not be 
easily detected by fluctuations of hit rate, when a player 
only took a limited number of shots in each game. For 
instance, given a result of 5 hits in a sequence of 10 shots, a 
null hypothesis test alone cannot distinguish whether the hit 
rate of 50% is a result of a shooting accuracy of 40% or a 
shooting accuracy of 60%. 

By focusing on higher moments of the shooting sequences, 
Sun (2003) found significant fluctuations of serial 
correlations in the field goal data that were originally 
reported by Gilovich et al. (1985). That is, a player 
sometimes shot in streaks (i.e., successive hits or misses), 
such as in {1, 1, 1, 1, 0, 0, 0, 0}, yielding a positive serial 
correlation, and sometimes shot alternatively (hits and 
misses alternated very often), such as in {1, 0, 1, 0, 1, 0, 1, 
0}, yielding a negative serial correlation. The observed 
changes in serial correlations were unlikely to be accounted 
for by the simple binomial model, namely, p(D | HBinomial) 
< .05, where D represents the event that the serial 
correlations changed significantly. Only when the data were 
aggregated across all periods, the overall averaged serial 
correlation was close to zero (e.g., comparing the overall 
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serial correlation with zero, p > .05). This finding has at 
least two indications. First, the actual basketball shooting 
might not be a stationary process since hits and misses are 
not evenly distributed in the observed shooting sequence. 
Second, fluctuations of hit rates and the overall serial 
correlation are not sensitive enough to capture such 
nonstationarity. In the following, I will present an 
alternative model that can be distinguished from the simple 
binomial model by examining the fluctuations of serial 
correlations. Furthermore, this model may provide a better 
approximation to the observed data. 

 
A Model of the Hot Hand 

Model and Parameter Settings 
In real basketball games, it is very possible that potentially 
high or low shooting accuracy (“hot hand” or “cold hand”) 
might exist but were interrupted by other activities such as 
shot selection and defensive pressure. For example, after 
making one or two shots, a player may become confident 
and try more difficult shots, or the opposing team may 
intensify their defensive pressure on that player. Less 
frequent interruptions tend to produce shooting sequences 
with positive serial correlations, since the player’s shooting 
accuracy, either high or low, remains comparatively 
unchanged, for example, an extreme case would be 
something like {1, 1, 1, 1, 1, 0, 0, 0, 0, 0}. And vice versa, 
more frequent interruptions tend to produce shooting 
sequences with negative serial correlations, for example, a 
resulting sequence like {1, 0, 1, 0, 1, 0, 1, 0, 1, 0}. 

Figure 1 represents a Markov switching model (hence 
referred to as “the hot hand model”). Similar models have 
been used by Lopes and Oden (1987) in studying human 
subjects’ ability of distinguishing between random and 
nonrandom events, and by Albert and Bennett (2001) in 
modeling the “streakiness” in baseball. 
 
 
 
 
 
 
 
 

Figure 1. A Markov Model of the Hot Hand 
 

 
To accommodate the hot hand theory, the major 

characteristic of this model is that it has two states, “hot 
hand” and “cold hand,” representing two different levels of 
shooting accuracies, pH and pC, respectively. If a player’s 
overall shooting percentage in the entire season was pOverall, 
pH and pC were shifted higher or lower in the same amount 
of d from pOverall. Then, this player’s simulated shooting 
sequence will be generated as the player switches between 
the “hot hand” and the “cold hand.” How often the player 
makes the switch depends on the switching probability, 
pswitch. A high pswitch value (e.g., pswitch > .50) means the 

player switches between two states very often. In an actual 
basketball game, this would represent the situation in which 
a hot hand or a cold hand is detected and a real-time 
adjustment is immediately deployed by either the player or 
the opposing team. And vice versa, a low pswitch value (e.g., 
pswitch < .50) means that the player rarely switches between 
two states. This would represent the situation in which a hot 
hand or a cold hand remained uninterrupted or real-time 
adjustments rarely occurred. 

Actually, when pH = pC = pOverall (d = 0) and pswitch = .50, 
the hot hand model is in effect equivalent to the binomial 
model. If the binomial model were truly adequate and 
unique, one would expect that a model with dramatically 
different parameter settings would be less capable of 
describing the observed data. For this reason, I chose a set 
of extreme values to represent the hot hand model, in which 
d = .30 (i.e., pH – pC = .60) and pswitch was randomly selected 
from (.95 and .05) with a 50-50 percent chance for every 10 
shots, whereas the binomial model only took a constant 
shooting accuracy pOverall. Figure 2 illustrates the difference 
between two models in terms of the shooting accuracy along 
the time line. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Two Possible Models of Basketball Shooting 
 

Simulation Procedure 
Gilovich has kindly provided the field goal data that were 
reported in Gilovich et al. (1985). There were 18 players in 
the data set, and 16 of them were included in the simulation 
(2 players were excluded because their shooting sequences 
were too short). 

For each player in the simulation, I computed a statistic 
called “MMAC” (Max-Min Moving Autocorrelation) from 
his actual shooting sequence, whereas MMAC was defined 
as the absolute difference between the largest and smallest 
moving serial correlations, where the moving serial 
correlations were calculated as the serial correlations within 
a window of 100 shots, starting from the first shot then each 
time moving 1 shot further until the end of the sequence. 
The purpose for choosing such specific statistic is to capture 
the fluctuations of the serial correlations. In the meantime, 
to reduce chance errors, a large sample size is needed so that 
the window width of 100 shots was chosen. 

For each of the 16 players, I ran 10,000 simulations with 
the binomial model and another 10,000 simulations with the 
hot hand model, each simulation generating one shooting 

Hot Hand: pH = pOverall + d 
pswitch pswitch 

Cold Hand: pC = pOverall – d 
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sequence in the same length of the player’s actual shooting 
sequence and with the same overall shooting accuracy. The 
statistic MMAC was calculated from each simulated 
sequence, then compared to the observed MMAC from the 
player’s actual shooting record. The probabilities for each 
model’s simulated MMAC to include the observed MMAC 
were computed as p(D | HBinomial) and p(D | HHot Hand). Then, 
given equal prior probabilities p(HBinomial) = p(HHot Hand) 
= .50, posterior probabilities p(HBinomial | D) and 
p(HHot Hand | D) were calculated by Equation 1. Since there 
were only two hypotheses considered, p(HBinomial | D) + 
p(HHot Hand | D) = 1. 

 
Simulation Results 
The simulation results are listed in Table 1. Columns 2 to 5 
list the probabilities p(D | HBinomial), p(D | HHot Hand), 
p(HBinomial | D), and p(HHot Hand | D), respectively. Column 6 
lists the probabilities of detecting significance (α = .05, two-
tailed) by runs test (Siegel, 1956) on the sequences 
generated by the hot hand model. The table is ordered in the 
ascending order of p(D | HBinomial). 

Considered separately, the probabilities p(D | HBinomial) 
and p(D | HHot  Hand) (Columns 2 and 3) in effect provided p 
values for null hypothesis significance testing, assuming 
either of the two models as the ture hypothesis (α = .05, 
two-tailed). For players 24, 10, and 3, the simulation results 
p(D | HBinomial) < .05 actually provided significant p values 
to reject the binomial model. For players 18 and 50, 
p(D | HBinomial) were only slightly greater than .05. 
(Considering the fact that there were 16 players tested, the 
probability of family-wise Type I errors needs to be 
calculated, which was found to be less than .05. see Sun, 
2003)  On the other hand, none of the p values in 
p(D | HHot Hand) reached the significance level of .05. 

Assuming one is unbiased toward either of the two 
models prior to examining the data, so that p(HBinomial) = 
p(HHot Hand) = .50, the comparisons between p(HBinomial | D) 
and p(HHot Hand | D) (Columns 4 and 5) would reveal which 
model obtains more support from the observed data in terms 
of the MMAC statistic.  

 

 
 

Table 1. Comparisons between the binomial model and the hot hand model 

 
Player 

 
p (D | HBinomial) p (D | HHot Hand) p (HBinomial | D) p (HHot Hand | D) Power (runs test) 

24 .0178 .3380 .0500 .9500 .1911 

10 .0223 .3127 .0666 .9334 .1909 

3 .0232 .4116 .0534 .9466 .1891 

18 .0508 .1299 .2811 .7189 .1836 

50 .0690 .4709 .1278 .8722 .1824 

7 .1517 .5929 .2037 .7963 .1854 

25 .4084 .6539 .3844 .6156 .1836 

2 .5343 .9610 .3573 .6427 .1951 

11 .5446 .8983 .3774 .6226 .1795 

22 .6472 .9640 .4017 .5983 .1769 

53 .7094 .9766 .4208 .5792 .1936 

5 .7370 .9855 .4279 .5721 .1928 

4 .7625 .9953 .4338 .5662 .1918 

6 .8004 .9993 .4447 .5553 .1872 

1 .9393 .9993 .4845 .5155 .1871 

9 .9886 .9999 .4972 .5028 .1845 

Mean .4632 .7297 .3161 .6839 .1872 

 
Note: D represents the event that the simulated MMAC is greater than or equal to the observed 
MMAC calculated from each player’s shooting record. Column 6 is the estimated power of runs 
test based on detections of significance (α = .05, two-tailed) on the simulated sequences by the hot 
hand model. 
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For individual cases, MMAC appeared to be substantially 

in favor of the hot hand model rather than the binomial 
model for a certain number of players (e.g., players 24, 10, 3, 
18, 50, 7, 25, 2, and 11), as p(HBinomial | D) was much 
smaller than p(HHot Hand | D) (see Table 1, Columns 4 and 5). 
One may calculate a χ2 statistic for each player to test the 
null hypothesis that MMAC is indifferent to either of the 
binomial model or the hot hand model. However, χ2 
statistics tend to be over-sensitive when the expected 
frequency in a certain cell is too low (for example, the 
players 6, 1, and 9). The result that all χ2 were significant 
(df = 1, p < .01) for all of the 16 players might have 
overestimated the superiority of the hot hand model. 

Taking all 16 players together, the hot hand model 
appeared to be substantially superior to the binomial model 
in accounting for the observed MMAC. On the average, 
p(D | HBinomial) = .4632, and p(D | HHot Hand) = .7297. By the 
criterion of maximum likelihood, given equal priors 
p(HBinomial) = p(HHot Hand) = .50, the observed data seemed to 
support the hot hand model rather than the binomial model: 
on the average, the posterior probabilities are p(HBinomial | D) 
= .3161 and p(HHot Hand | D) = .6839. 

It may be possible that the hot hand model appeared to be 
superior to the binomial model only in terms of the statistics 
of MMAC. To see whether the hot hand model was 
“truthful” to other observed statistics such as the number of 
runs, I also conducted a runs test for each simulated 
sequence by the hot hand model, since out of those 16 
players, runs test only detected one significance at the .05 
level in the observed shooting sequence (player 53, see 
Gilovich et al., 1985). (Note that because of the symmetrical 
setting of the model, there is no need to check the hitting 
percentage.) The results of runs test suggested that the hot 
hand model was largely truthful to the observed shooting 
sequence in the statistic of number of runs, since on the 
average, only 18.72% of the simulated sequences were 
detected as significant deviations from what is expected by 
the binomial model (see Table 4, last column). A further 
check found that during 10,000 simulations for each player 
with the hot hand model, the overall serial correlations were 
symmetrically distributed around the mean of zero, with a 
standard deviation slightly larger than the expected value 

(1/ 3−N ) assuming binomial process (N is the number 
of shots in each sequence). Together, these observations 
provided confirmations to my previous claims. That is, a 
nonrandom process (such as the hot hand model) can 
produce seemingly random sequences and may not be easily 
detected by traditional statistical methods (such as the runs 
test, or, comparing the overall serial correlation with zero). 
 
Discussion 
One might argue that the “hot hand model” fitted the data 
better than the binomial model simply because the former 
has more parameters than the latter. I have three reasons to 

counter this argument. First, basketball shooting is a 
complex process. It is very reasonable to believe that a 
useful model needs more parameters than just a single 
constant shooting accuracy. Second, the extra parameters in 
the hot hand model may not be counted as “free parameters” 
because they feasibly represent actual situations in which a 
player’s shooting accuracy may change and real-time 
adjustments take place quickly (or slowly). Lastly and most 
importantly, as mentioned before, the hot hand model 
actually took parameter values that were substantially 
different from the simple binomial model. Yet, it provided 
more accurate descriptions of the observed data. This would 
have seriously challenged the accuracy of the simple 
binomial model. 

It should be pointed out that the primary purpose for 
building the hot hand model is not to argue about its 
uniqueness. Nevertheless, such model may prompt 
researchers to consider the possibility that non-random 
process may easily produce seemingly random sequences 
and the possibility that the hot hand belief is indeed a valid 
cognitive activity in detecting non-random events. It is 
important to notice that particular statistics such as number 
of runs, serial correlations, including the MMAC statistic I 
used in this study, may not be sensitive enough to tell the 
difference between two different processes. Nevertheless, 
researchers need to consider multiple models in evaluating 
the validity of human perceptions, since multiple models 
can co-exist and provide different levels of approximations 
to the actual underlying process. 

The simulation has shown that for a certain number of 
players, the hot hand model is substantially superior to the 
binomial model. For the other players, these two models are 
not easily distinguishable. By Bayes’ theorem in Equation 1, 
if both models account for the data with the same capability 
so that p(D | HBinomial) ≈ p(D | HHot Hand), which model is 
more likely to be “perceived” from the data, namely, 
p(HBinomial | D) and p(HHot Hand | D), then, is entirely 
determined by personal beliefs, p(HBinomial) and p(HHot Hand). 
There is no prior reason why basketball fans and players 
should agree with researchers on such personal belief. In 
other words, the hot hand belief may not be readily 
dismissed as merely a misperception of randomness simply 
because the researchers failed to reject the binomial model 
by null hypothesis significance testing. 

 
General Conclusion 

The primary purpose of the present paper is not to dispute 
whether ordinary people misperceive probabilistic events in 
basketball, but to prompt further investigations of the actual 
process of basketball shooting. Lacking normative 
knowledge such as probability theory and theories of 
stochastic processes, ordinary people are often prone to 
mistakes. However, it is also possible that the hot hand 
belief was describing a true anomaly that was not detected 
by traditional statistical methods. The present study 
presented a case when statistical methods are applied 
objectively rather than subjectively toward the plausible 
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models, how a different point of view, regarding the validity 
of human perceptions of the environment, could be obtained. 
That is, comparing to a model-driven approach that only 
conducts null hypothesis testing on a single model, a data-
driven approach can be more revealing by comparing 
multiple models. Then, it was suggested that the simple 
binomial model might not be accurate enough to serve as a 
normative model in evaluating the validity of the hot hand 
belief. From Brunswik’s (1956) point of view, an organism 
and the environment in which the organism was embedded 
should receive equal emphasis in psychological theory and 
research. In this sense, the primary purpose of the present 
study is to serve as “a propaedeutic to functional 
psychology” (Brunswik, 1956, p. 119), a necessary step 
before psychologists can fully understand the belief in the 
hot hand. 
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