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ABSTRACT
Epigenetic programming and reprogramming are at the

heart of cellular differentiation and represent develop-

mental and evolutionary mechanisms in both germline

and somatic cell lines. Only about 2% of our genome is

composed of protein-coding genes, while the remaining

98%, once considered “junk” DNA, codes for regula-

tory/epigenetic elements that control how genes are

expressed in different tissues and across time from

conception to death. While we already know that epige-

netic mechanisms are at play in cancer development

and in regulating metabolism (cellular and whole body),

the role of epigenetics in the developing prenatal and

postnatal brain, and in maintaining a proper brain activ-

ity throughout the various stages of life, in addition to

having played a critical role in human evolution, is a rel-

atively new domain of knowledge. Here we present the

current state-of-the-art techniques and results of these

studies within the domain of emotions, and then specu-

late on how genomic and epigenetic mechanisms can

modify and potentially alter our emotional (limbic) brain

and affect our social interactions. J. Comp. Neurol.

524:2944–2954, 2016.

VC 2016 Wiley Periodicals, Inc.
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The completion of the human genome sequencing

represents the beginning of a genetic and genomic rev-

olution in health care. The pace of genomic medicine

has moved at a surprisingly fast rate. Within 70 years,

we have progressed from the foundational studies of

Friedrich Miescher, Phoebus Levene, and Erwin Char-

gaff, and then Watson and Crick’s seminal discovery of

the double helix, to reading the whole genetic material

in a human being with the possibility of using the

genomic information for medical and health-related

applications. However, even though we have obtained

the complete sequence of our genome, we still need

substantial new research to really understand the func-

tional significance of the genome architecture, particu-

larly within the context of neuroscience. While we have

been developing a better knowledge of the most funda-

mental molecular mechanisms that regulate neuronal

functions, we have recently, in parallel, been acquiring

a better understanding of brain circuits and functions;

the issue at stake is how to integrate these disparate

pieces of information into a coherent framework.

Our understanding of the structural and functional

composition of the genome, as well as the plasticity of

gene regulatory pathways, has increased exponentially,

through both technical developments and the resultant

progressive understanding of common and complex dis-

eases. Unexpectedly, however, the completion of the

mapping and characterization of the human genome

has revealed that the true complexity of the genome

has little to do with the simple number, and even
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variability, of its coding genes. Only 2% of the human

genome codes for proteins; the remaining 98% is repre-

sented by non–protein-coding sequences. For decades

the noncoding genome was considered “junk” DNA with-

out any functional significance, but deep sequencing

analyses in recent years suggest that the whole human

genome is transcribed into RNAs (Dunham et al., 2012;

Harrow et al., 2012; Kundaje et al., 2015). The emerging

pattern is that the vast majority of our genome is func-

tional and regulates the gene-coding machinery by pro-

ducing noncoding RNAs in a myriad of ways. Another

level of complexity is related to the epigenetic interplay

between genome activity and environmental influences:

current research into functional genomics and individual

deep sequencing is opening up new perspectives for our

understanding of how genome and environment interact

in complex diseases (Coop et al., 2010).

Here we present a short review of our current knowl-

edge of the epigenetic mechanisms that functionally

tune that part of our genome mostly involved in regula-

tion of the central nervous system and that contribute

to the proper, context-dependent functions of brain cir-

cuits involved in positive (or negative) emotions also via

external (i.e., nongenomic) stimuli. For example, it is

well known that social adversities, physical abuse, lone-

liness, and even grief are associated with increased

susceptibility to disease. When such stressful events

occur, they stimulate an adapted behavioral response

where the environmental challenges can be viewed

within the framework of the evolutionarily based adapt-

ive match/mismatch hypothesis (Schmidt, 2011; Das-

kalakis et al., 2012, 2013). Under this scenario, the

outcome of a stressful condition leading to either a

physiological resilience or a psychopathological condi-

tion depends on the coping strategies that any individ-

ual has developed when faced with early life events.

Coping strategies emerge as the result of the interac-

tion between the “programmed” genomic-based adapta-

tions and the constraints due to early, adverse events,

especially in the perinatal and postnatal periods.

MOLECULAR ARCHITECTURE OF THE
EMOTIONAL BRAIN: WHAT DO WE
REALLY KNOW?

A vast body of literature in the last decade attests to

the renewed and increased interest in the study of the

neural bases of affections or emotions. New analytical

strategies that combine refined brain imaging and

genomic methods, together with psychometric and clini-

cal quantitative traits, are allowing for the current

research in neuroscience to clarify how our brain and

our behavior are shaped both phylogenetically and evo-

lutionarily. As thoroughly reviewed by Panskepp and

Biven (2012), the “emotional” (primarily composed of

the limbic system) and the “social” brain (primarily

composed of the prefrontal and anteromedial temporal

systems) are privileged targets for these studies, but

they represent more difficult objectives than, say, the

more accessible and long-studied cognitive and execu-

tive functions of the dorsal and lateral neocortical sys-

tems. To explore the world of human emotions, we

need both theoretical and operational improvements.

Theoretically, we have already made substantial

improvements, shifting from a purely psychological to a

more integrated neurobiological/cognitive framework

that can help evince a clearer understanding of experi-

mental findings. Operationally, sophisticated investiga-

tions are required to understand how genomic and

epigenomic mechanisms that regulate brain circuits

controlling for emotions and social behaviors work day

to day and over the full lifetime in living humans. Other

reports in a special issue of this journal have presented

in detail the current hypotheses of brain circuits and

neurotransmitter pathways that control for positive

emotions, but here we are interested in speculating on

a model that integrates the functional and the molecu-

lar architecture of the emotional brain.

In short, we know that both subcortical and cortical

structures are relevant in controlling for affects and

emotions in humans, including the orbitofrontal cortex,

the amygdala, the hippocampus, the limbic system and

its associated cortico-subcortical loops in the basal

ganglia, the limbic thalamus, and the brainstem monoa-

minergic nuclei. Our knowledge of the functional anat-

omy of these brain regions has steadily progressed in

the last 30 years, but other brain regions also consid-

ered relevant, like the periaqueductal gray, the septum,

and a few non-monoaminergic brainstem nuclei are still

poorly understood. Moreover, little is known about the

developmental mechanisms that control for the proper

circuital organization of these structures and of their

neuronal connections. We have known for quite a long

time the essential role played by dopamine in the

“reward” system (Schultz, 2011; Russo and Nestler,

2013) and the key role played by other neurotrans-

mitters like the opioid peptides and endocannabinoids.

Experimental support for the relevance of these sys-

tems is increasing: for example, a frequent DNA variant

in the fatty acid amide hydrolase (FAAH) gene that

reduces the amount of deactivation of anandamide, a

naturally occurring human cannabinoid, correlates with

lower levels of anxiety and fear. The reduced FAAH

expression associated with the variant allele also

“selectively enhances prefronto-amygdala connectivity

and fear extinction learning . . . suggest[ing] a gain of
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function in fear regulation” (Dincheva et al., 2015). This

mechanism may represent an adaptive function for a

primary process of positive emotion that humans share

with other mammals, in this case mice.

It is possible, however, that different mutational

mechanisms other than nucleotide substitutions must

be invoked to explain how gene networks have been

(re)wired during human evolution to deal with environ-

mental, primarily intraspecies, control of emotions and

hence have shaped our emotional and social brain.

Widespread epigenetic changes have been proposed to

underlie alterations in gene expression associated with

gene networks and brain circuits that control for posi-

tive emotions. Modular gene networks that are coex-

pressed in anatomically different, but functionally

related, brain regions can represent the backbone of a

circuital organization that modulates our ability to deal

with emotions. Under this scenario, genes that belong

to the same network or genes that follow a hierarchical

time-dependent expression developmental pattern must

be activated in a coordinated way across different and

somewhat distant brain regions. This coordinated

molecular/functional activity across brain regions is

similar to the mechanisms that are putatively at work in

complex neuropsychiatric disorders, including schizo-

phrenia and affective disorders, i.e., in all cases in

which scores of genes must be jointly implicated epis-

tatically. However, how both normal and pathological

neuronal circuitry depends on the specificity and extent

of epigenetic programs has not yet been fully

elucidated.

NEW INSIGHTS FROM GENOMIC STUDIES

One of the surprises of the genomic era is the rela-

tively small number of protein-coding genes in the

human genome. Before completion of the Human

Genome Project, indirect estimates for the number of

protein-coding genes were ranging from 35,000 to

100,000 (Ohno, 1972; Lander et al., 2001). To date,

the number of protein-coding genes has been experi-

mentally reduced to 20,000–25,000, and we expect it

to be further revised (International Human Genome

Sequencing Consortium, 2004). Current evidence shows

that many regulatory complexes are needed for the

development and function of the vertebrate brain (Yoo

and Crabtree, 2009; Yoo et al., 2009): recent progress

from the ENCODE project has begun to reveal the com-

plexities of the noncoding human genome, beginning

with the functional characterization of an unprece-

dented number of elements previously considered non-

functional (Kundaje et al., 2015). These efforts have

lead to the generation of an extensive catalog of more

than four million noncoding elements that regulate the

dynamics of gene expression, frequently, but not exclu-

sively, via chromatin (re)modeling (Harrow et al., 2012;

Maurano et al., 2012). Noncoding regulatory elements

include several families of noncoding RNA molecules

such as long intergenic noncoding RNAs (lncRNA), and

short RNA molecules, including microRNA (miRNA), short

interfering RNA (siRNA), Piwi-interacting RNA (piRNA),

regulatory DNA sequences (i.e., transcription factors),

and other sequences with yet unknown functions. In

addition to this network of regulatory “switches,” the

genomic architecture is also characterized by low-

complexity regulatory elements (e.g., long interspersed

elements [LINEs], short interspersed elements [SINEs],

human endogenous retroviruses [HERVs], and SINE-R/

variable number tandem repeat [VNTR]/Alu-like [SVAs])

that compose �45–62% of our genome, and consist of

repeated transposable elements (TEs; DNA elements that

have the ability to move, i.e., transpose, within the

genome) that make humans unique in having the largest

ratio of noncoding to coding DNA, specifically in central

nervous system–related genes (Taft et al., 2007; de Kon-

ing et al., 2011) (Fig. 1).

TRANSPOSABLE ELEMENTS
INTRODUCE GENETIC VARIABILITY
IN THE HUMAN GENOME

The retrotransposition rate of still active TEs has

been estimated to range between 0.8 to 0.6 somatic

L1 insertions per neuron in the human brain (Coufal

et al., 2009; Evrony et al., 2012), while the transposi-

tion rate is higher in germline cells. Not surprisingly,

then, cells evolved self-defense machineries to regulate

the activity of TEs through epigenetic mechanisms,

such as DNA methylation (TEs account for one-third of

all CpG sites) and histone modification (Slotkin and

Martienssen, 2007), and also by post-transcriptional

mechanisms. Methylation of CpG sites results in effec-

tively repressing the transcription of nearby genes (cis

mechanism). Despite the machinery used by the cell to

regulate TE activity, some TEs escape repression and

generate new insertions in germline cells and during

early embryonic development, as well as in somatic tis-

sues later in life (Baillie et al., 2011; Kazazian, 2011;

Lee et al., 2012), affecting the genome in different

ways, as explained in the next paragraphs. The human

genome has accumulated �970,000–1.5 million LINE1s

(L1s), the majority of which are retrotranspositionally

inactive. The still active LINEs belong to the L1HS fam-

ily (Brouha et al., 2003) and are responsible for the

majority of the ongoing retrotransposition in the human

populations. These variations are called retrotransposon

Gaudi et al.
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insertion polymorphisms (RIPs) or mobile element inser-

tions (MEIs) (Ewing and Kazazian, 2010, 2011; Schmitz,

2012). At least four studies in different populations

have been conducted using next-generation (i.e., short

reads-based) sequencing to investigate the specific con-

tent of de novo retrotransposition (Beck et al., 2010;

Ewing and Kazazian, 2010; Huang et al., 2010; Iskow

et al., 2010). The main findings were that individual

genomes are highly variable in the specific locus posi-

tion of individual nonreference (i.e., polymorphic) L1

insertions and that de novo retrotransposition are much

more frequent than previously thought. However, TEs

do not transpose within the genome in an exclusive ran-

dom mode: LINEs tend to reinsert into GC-poor, and

SINE/Alus into GC-rich, regions (Pavlicek et al., 2001).

This evidence provides a highly dynamic portrait of the

genome, whereby individuals differ not only with

respect to the presence or absence of various L1 inser-

tions, but also with respect to the relative position of

the insertion (Lupski, 2010). (See Fig. 1 for a classifica-

tion and schematic representation of the molecular

structure of TEs.)

Transposable elements induce
transcriptome diversity

TEs can affect genomic integrity in many ways

through de novo insertions and postinsertional rear-

rangements, resulting in deleterious mutations in the

open reading frames of a gene, leading to protein dis-

ruption and/or aberrant expression (Goodier and Kaza-

zian, 2008). Even if transposon-mediated mutagenesis

is extensive in the human genome (Cordaux et al.,

2006), this is not the only mechanism by which TEs

can influence cellular functions. Contrasting with the

hypothesis that retrotransposons are disruptive and

negatively affect genomic integrity (Goodier and Kaza-

zian, 2008) is the finding in many cases that they have

rather been exapted as transcriptional start sites (TSS)

or enhancers (Huda et al., 2010), and have significantly

and positively contributed to the evolution of the human

genome (Cordaux et al., 2006).

TE nonreference or de novo insertions may be benefi-

cial to gene expression in inducing transcript diversity

(Cowley and Oakey, 2013). TE insertions can generate

alternative splice sites, causing the splicing system to

include new sequences as exons or to elongate existing

ones (Schmitz and Brosius, 2011). They can also intro-

duce poly(A) signals, causing premature termination of

transcription of the host gene, and also generate new

transcription start sites (Faulkner et al., 2009). All these

mechanisms have a clear role in promoting transcript

diversity. Furthermore, recent genome-scale studies

have revealed the importance of TEs in dispersing tran-

scription factor binding sites (TFBS). The effects of the

dispersion of TE-derived TFBS are multiple. In normal

tissues, they contribute to the generation of tissue-

specific (e.g., brain-specific, and brain area-specific)

expression profiles (Faulkner et al., 2009), while the

inappropriate activation of these TE-derived transcrip-

tion factor binding sites seem to be responsible for

driving ectopic gene expression, which has been impli-

cated in human diseases (Faulkner et al., 2009). More-

over, TEs can coordinate the activation of gene

expression throughout the genome, co-orchestrating the

activity of functionally related genes, i.e., within the

same pathway, but not necessarily physically clustered

Figure 1. Transposable element (TE) classification and molecular

structure. In this schematic representation, different TEs are not

shown to scale. Long terminal repeat (LTR)-transposons or human

endogenous retroviruses (HERVs) include two LTR sequences flank-

ing the coding sequences of the functional polyproteins capsid

(gag), protease, polymerase and reverse transcriptase (pol), and

envelope (env). Non–LTR-retrotransposons include long inter-

spersed elements (LINEs), short interspersed elements (SINEs),

and SVAs (SINE-R/VNTR/Alu-like). L1 elements consist of an intact

50 untranslated region (UTR) that functions as an internal promoter

and full-length L1 mRNA of functional open reading frame (ORF1

and ORF2) proteins, encoding for a reverse transcriptase. Alus con-

sist of a tRNA-related region that represents the internal promoter

stretch, followed by a tRNA-unrelated region and a LINE-related

region, which is used by the SINE element to bind LINE-encoded

proteins to complete LINE-1–mediated retrotransposition. SVAs

consist of four domains including a CT-rich repeat at the 50 end,

commonly referred to as CT-hexamer, an Alu-like sequence, so-

called for homology with two antisense Alu-like fragments, a GC-

variable number tandem repeat (VNTR), whose length determines

variation of the full-length SVA elements, a sequence derived from

the envelope gene (env), and a SINE-R, an LTR of an extinct HERV-

K10. In the DNA transposons a protein called transposase is bound

by terminal inverted repeats (TIRs) that flank the TE, excise the TE

out of the donor position, and reintegrate it into the genome. The

schematic representation was inspired by images in Guffanti et al.

(2014).

Transposable elements and the emotional brain
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(Britten and Davidson, 1971; Lynch et al., 2015). For

this fundamental activity of coordinators of global pat-

terns of gene expression, TEs have been defined as the

“engineers” of transcriptional networks (Cowley and

Oakey, 2013).

TEs might also impact gene expression indirectly,

when the retrotransposition machinery is used by non-TE

genes to retrotranspose protein-coding mRNAs, leading

to the creation of a copy of the original gene. While

these copies are mostly nonfunctional, sometimes they

can evolve into retrogenes with novel functions. Retro-

genes, when embedded in the introns of genes, have the

potential to induce premature termination of transcrip-

tion by causing upstream transcript polyadenylation. This

particular mechanism affects only one of the two paren-

tal alleles (Cowley and Oakey, 2013), and creates a poly-

morphic effect similar to that shown for intronic HERVs

(Ward et al., 2013). On the basis of an increasingly over-

whelming body of evidence, it is reasonable to believe

that the study of the “mobilome” may transform our

understanding of the mechanisms of coordination

responsible for gene expression throughout transcrip-

tional networks, leading to a better understanding of the

functional architecture of the normal brain, as well as

the etiopathogenesis of many neuropsychiatric diseases

(Erwin et al., 2014; Guffanti et al., 2014; Insel, 2014).

An impressive level of TE transcription is present in

both evolutionarily conserved and accelerated genome

regions. Many evolutionarily “old” L1s show an intense

expression even when severely truncated, while L1s

other than L1HS are also present in rapidly evolving

regions. For example, there are several almost intact

L1s (L1PA3, L1PA2, and L1PA4s) that show a high level

of expression in positively swept regions. Many TEs

seem to be unique to humans compared with other pri-

mates or vertebrates, suggesting a more recent than

expected evolutionary time, or representing relatively

“new” polymorphic insertions in the human genome.

Despite the current evidence for the relevance of

human accelerated regions (HARs) in shaping the

human genome (Gilad et al., 2006; Pollard et al., 2006;

Lindblad-Toh et al., 2011; Burbano et al., 2012), the

real modes of evolution are not yet definitively known

(Hernandez et al., 2011; McLean et al., 2011). It is pos-

sible that a polygenic combination of “soft” sweeps in

networks of genes (Cordaux and Batzer, 2009; Erwin

and Davidson, 2009; Pritchard et al., 2010) rather than

a positive selection at single loci may be one of the

major mechanisms regulating the evolution of expres-

sion (Khaitovich et al., 2006; Feschotte, 2008), espe-

cially for the developmentally relevant regulatory

elements (Matlik et al., 2006).

Frequently, L1s (or Alus or HERVs) that are consistently

expressed overlap with transcription signals detected by

the ENCODE Consortium (Kundaje et al., 2015), including

transcription factors (TFs) and TFBS. Frequently these

transcription signals also disperse within H3K4me1 and -

3 histone marks, suggesting promoter or regulatory func-

tions (as enhancers). The pervasive pattern of TE tran-

scription at a whole-genome level nonetheless is not

uniform: some genes have almost no TEs across their

entire open reading frame (ORF), whereas others show an

extremely dense pattern of TEs across the entire gene

structure, including introns (30 and 50 untranslated

regions [UTRs]).

Thus, it is becoming clear that the noncoding

genome has a critical epigenetic role in controlling for

the complex pattern of tissue and time-specific patterns

of gene expression; it is also becoming more and more

evident that genes do not work in isolation, but only as

part of gene networks.

We are just beginning to understand the complexity

of such a regulatory genome and its epigenetic mecha-

nisms. Epigenetics/regulatory mechanisms can work

either locally—through promoters, enhancers, insulators,

and other elements controlling for the expression of

nearby genes—or distantly—through a variety of other

mechanisms, like methylation-silencing gene promoters,

transcription factors, short and long noncoding RNAs,

TEs, and chromatin modifiers.

TRANSPOSON-MEDIATED EPIGENETIC
MODEL FOR POSITIVE EMOTIONS

A great deal of work has been performed on negative

emotions such as fearful behaviors, but information

about the neurobiological mechanisms underlying posi-

tive emotions is still relatively limited (Burgdorf and

Panksepp, 2006). As a consequence, much of what we

know about epigenetic mechanisms promoting the

transduction of environmental inputs into affective

states derives from the stress–fear–response model.

First we review a working example of the interaction

among stress, epigenetics, and emotions specifically involv-

ing TEs as “controlling elements.” Second, we review a

working example of the interaction among neuroimaging,

epigenetics, and emotions involving brain regions associ-

ated with emotion regulation. It is plausible to argue that

positive emotions might be mediated by the same biologi-

cal mechanisms reviewed in these two experimental frame-

works. Finally, we discuss how transposon-mediated

epigenetic control in a stress–response model may provide

us with an explanation for brain plasticity as the basis of

positive emotions.

Gaudi et al.
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Transposable elements, stress, and
emotions

Initial evidence that epigenetic regulation of TEs

mediates the effects of stress on neural plasticity came

from work by Hunter and colleagues (2013). In rats,

acute stress induces increased hippocampal levels of

the histone H3 lysine 9 trimethylation (H3K9me3),

whose function is mainly associated with repression of

gene expression (Hunter et al., 2009). Further research

illustrated that increased levels of this epigenetic

Figure 2.

Transposable elements and the emotional brain
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marker were specifically localized to active classes of

TEs, namely, LINEs, SINEs, and ERV/LTR, leading in

turn to their reduced transcriptional levels. Such a

response to stress initially revealed a high hippocampal

specificity, although more comprehensive investigations

are needed before ruling out similar effects in other

brain regions similarly known for their role in stress

sensitivity, such as the amygdala, septum, bed nucleus

of the stria terminalis, nucleus accumbens, and limbic

thalamus. In an effort to further explain the mechanism

by which stress induces epigenetic alterations in the

brain, the authors examined the expression of several

methyltransferases, the enzymes that allow methylation

(and therefore transcriptional repression) of their molec-

ular targets, in this case the aforementioned active

classes of TEs. Upregulation of one of these enzymes

(Suv39h2) was found to be associated with increased

binding of the glucocorticoid receptor (GR), consistent

with higher expression in the hippocampus (Hunter

et al., 2012, 2015). The GR is a known stress-related

hormone-dependent transcriptional regulator previously

implicated in epigenetic mediation of stress exposure,

with particular emphasis on the effects of maternal

care on an individual’s behavior (Meaney and Szyf,

2005).

Overall, these findings supported an active role for

TEs in the epigenetic mechanisms underlying the biolog-

ical response to environmental stress exposure. The

downstream effects of such epigenetic response in

shaping the programming and reprogramming of neural

circuitry of emotional regulation remain to be fully eluci-

dated. In other words, the direction in which repression

of transcriptional activity of large portions of the non-

coding genome is capable of influencing widespread

transcriptional activity in the brain has not yet been the

object of thorough investigation. Recently, work by

Fasching and colleagues (2015) illustrated a potential

mechanism that could explain the complex relationship

between stress-mediated epigenetic regulation of TEs

and transcriptional plasticity of neural circuitry. The

authors reported that deletion of the gene TRIM28, a

transcriptional regulator, in neural progenitor cells

determines loss of the H3K9me3 epigenetic marker

localized on HERVs, ultimately leading to their transcrip-

tional reactivation. Interestingly, reactivation of HERVs

revealed exaptation properties of this class of TEs by

influencing expression levels of nearby genes and the

production of long noncoding RNAs, which are also

known for cis- and trans-regulatory functions (Guttman

and Rinn, 2012). Upon loss of repressive epigenetic

markers, HERVs were capable of acting as promoters/

enhancers, inducing gene expression of other genes,

and potentially reconfiguring the whole transcriptional

network (Feschotte, 2008). Although far from conclu-

sive, these findings encourage further explorations of

TEs and their exaptation into cis-regulatory elements of

transcriptional activity.

Epigenetics, brain circuits, and emotions
Studies related to the genomic/epigenomic regula-

tion of positive emotions are just beginning to appear

in the literature (Puglia et al., 2015). These authors pro-

vide evidence of the association of higher levels of oxy-

tocin receptor gene methylation with higher activation

Figure 2. Functional circuits of positive emotions. A,C: A general model of the cortico-striato-pallido-SN-VTA downstream systems in the

human brain. B,D: The specific case of the cortico-striato-pallido-SN-VTA systems that regulate positive and negative emotions. In both

cases, the systems are made up of parallel, hierarchical, interacting cortico-subcortical modules that ultimately control behavior through

downstream control of skeletal, autonomic, and endocrine motor systems, but also involve recurring loops back to both neocortex and lim-

bic cortices, primarily through ascending thalamo-cortical and monoaminergic projections (not shown). In the general forebrain cortico-

striatal originating channels in A and C, the sensory cortices provide topographical inputs (S for sensory) to the matrix compartments of

the caudate-putamen, while premotor and motor cortices innervate adjacent matrix compartments (M for motor). Nontopographical inputs

from limbic cortices primarily innervate the “patch” striatal compartment. Interneurons, including tonically active neurons, interconnect

these compartments. These compartments then project to either the internal or external segment of the globus pallidus, and/or different

sectors of the substantia nigra–ventral tegmental area. Further downstream convergence occurs on thalamic, hypothalamic, brainstem,

and spinal cord cell columns and nuclei that control movement, the autonomics, pituitary, and preganglionics. In B and D, a similar set of

cortico-striatal systems originating in the main cortical-like nucleus of the amygdala, the basolateral amygdaloid nucleus (BLa), innervate

striatal-like targets in the central nucleus of the amygdala (CeM) for the control of negative emotions (in red) or the medial sector of the

nucleus accumbens (NAc) containing the hedonistic hot spot for the control of positive emotions (in green). These limbic striatal-like tar-

gets in turn project to their respective ventral pallidal and SN-VTA targets, and further to downstream targets that regulate motor outputs

related to emotionally dominated complex adaptive behaviors. As in the case of the general forebrain schema of cortico-striatal connectiv-

ity (A,C), the adjacent neurons at the cortical, striatal, and pallidal levels subserving different functionality in the emotional circuitry (B,D)

(e.g., positive vs. negative emotions) are linked by direct connections (e.g., between neighboring pyramidal neurons at the cortical levels),

as well as by indirect, interneuron-mediated connectivity. These close interneuronal interactions at each level also allow for epigenetic tun-

ing of the two different functional systems, in part mediated by plastic control of transposon-mediated regulation of promoters and

enhancers of coding genes characteristic of each neuron at each level of the system.
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of brain areas involved in emotional regulation, namely,

the amygdala, fusiform gyrus, and insula, and with

“decreased functional coupling of amygdala with the

rest of the regions involved in emotional regulation”

(Puglia et al., 2015), ultimately leading to increased

anxiety. Although preliminary, these findings support

the relevance of epigenetic regulation in shaping the

neural circuitry of emotional regulation.

The integration of epigenetics and brain circuitry of

emotional regulation extends efforts to include epige-

netics in the framework of genome-wide association

studies rather than simply inspecting candidate genes.

Although the era of “large-scale studies of human

disease-associated epigenetic variation, specifically vari-

ation in DNA methylation” (Rakyan et al., 2011) has

started to deliver the first wave of results, this neuroe-

pigenetics study offers an example of an alternative

and complementary approach to epigenome-wide asso-

ciation studies (EWAS) while providing an additional

level of functional characterization of candidate genes

findings.

In parallel, refinement of our understanding of pleas-

ure mechanisms in the brain via imaging studies (Ber-

ridge and Kringelbach, 2015) is building up a better

systematic knowledge of emotional mechanisms. These

investigations suggest the existence of a neural circuit

common to diverse pleasures, with specific “hot-spots”

in the limbic circuitry (e.g., the dorsomedial notch of

the nucleus accumbens) and other subcortical regions

mostly localized in the right (nondominant) hemisphere

for well-defined “hedonic” phenotypes. Two recent stud-

ies (Berridge and Kringelbach, 2015; Namburi et al.,

2015) are suggesting an interesting neural mechanism

possibly controlling for positive emotions. Neurons from

the basolateral amygdala complex (BLA) can control for

either positive or negative associations (pleasure com-

pared with fear, for example), projecting to either meso-

limbic or subcortical structures, based on the specific

stimuli that come from the environment. Figure 2 shows

a detailed vision of the functional circuits involved in

such control, with a speculative interpretation of the

role that TEs can play in driving the fate of otherwise

indistinguishable neurons toward responding to either

positive or negative emotions.

CONCLUSIONS

We argue that integration of the application of these

neurobiological approaches suggests a major epigenetic

role of regulatory mechanisms of the neural genome,

hence including TEs, in explaining the biological mecha-

nisms underlying emotions. The genome responds to

environmental inputs via dynamic regulation of the

expression of TEs in the brain, which in turn has an

impact on protein-coding mRNA transcription and/or

post-translational mechanisms. These would ultimately

modulate behavioral phenotypes such as positive emo-

tions. Because of the high level of interindividual varia-

tion in TE-derived regulatory elements in the human

genome, their ability to modulate both positive and neg-

ative exposure through epigenetic mechanisms, and

their emerging role as regulatory elements of transcrip-

tional activity, TEs can have a central role in co-

orchestrating the dynamic neural circuitry processes

underlying emotional regulation.
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