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Abstract
Model Predictive Control (MPC) has shown significant potential for
improving energy efficiency, indoor air quality and occupant com-
fort of buildings. MPC-based control algorithms have also shown
the ability to shift loads and optimize for multiple objectives, in-
cluding but not limited to reducing the green-house gas emissions,
energy costs and peak demand. However, one of themain implemen-
tation challenges of these control algorithms is the integration and
configuration effort needed to deploy a supervisory MPC controller
in a building. By assigning standardized references to information
sources and control points in buildings, existing studies have shown
that semantic ontologies and corresponding queries have the po-
tential to ease the deployment of such controllers. Yet, the use of
semantic information to ease the deployment processes of MPC
controllers is still limited. In this paper, we review three MPC ex-
periments and synthesize the information requirements of these
optimization problems. We then turn to existing and upcoming
semantic ontologies such as Brick, SAREF and ASHRAE Standard
223 to represent these requirements, evaluating their potential to
support the implementation of an MPC controller. This investi-
gation concludes with a discussion of existing opportunities and
open questions that the community should explore to support more
streamlined MPC implementations.
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CCS Concepts
• Information systems → Information systems applications;
Graph-based database models; • Software and its engineering
→ Abstraction, modeling and modularity.
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1 Introduction
In order to curb the impacts of the ever-increasing climate crisis
around the globe, nations and organizations are setting ambitious
targets to achieve reduced or zero carbon emissions from diverse
sectors, including buildings. As one example, the United States has
set a target for 2030 to reduce energy consumption in all federal
buildings by 30% and completely decarbonize them by 2045 [11].
One approach to meet these targets is by incorporating intelligence
in buildings and supporting communication with the utility grid
through "Grid-Integrated Energy Efficient Buildings" (GEBs) [14].
Transitioning to GEBs will enable buildings to reduce their energy
use and shift their power demand to periods when the utility energy
mix is cleaner and less reliant on fossil fuel-based sources, with
minimum disruption to the service they are providing. This also
makes them a valuable resource to the utility grid by providing a
clean option of “flexibility”.

One of the promising techniques to provide demand flexibility is
Model Predictive Control (MPC). MPC is a control technique that
generates control actions over a finite horizon, optimizing system
performance into the future. Multiple studies have demonstrated
MPC applied to GEBs, resulting in improvements in energy effi-
ciency up to 40% and reduction in peak demand by 30% [9, 18, 20, 21].
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However, integrating an MPC controller into a building, still re-
quires significant time and expertise, due to the lack of interoper-
ability between building systems. For example, [3] allocated 29%
and [6] spent 20% of the total implementation time on system inte-
gration. This time is spent in identifying and connecting inputs and
outputs of the MPC controller to the right data sources and control
points in a building. Therefore, it is imperative that we identify
alternative workflows to enable the plug-and-play development
and deployment of MPC controllers.

Recent advances in semantic ontologies for building applica-
tions can help alleviate some of these challenges. The work of [2]
published in 2015 emphasized the potential of a semantic stan-
dard to address the challenge of interpreting unclear and ad-hoc
point names in building automation systems. It highlighted how
semantic ontologies could facilitate the discovery, mapping, and
integration of data sources and control points, enabling scalable and
portable applications. Since then, multiple ontologies have been
proposed, leading to the development of an ecosystem of tools and
applications built around them [16]. Software frameworks such as
Mortar [10], SeeQ [13] and OpenBOS [7, 15] have leveraged seman-
tic ontologies to develop scalable fault detection and diagnostics
algorithms and rule-based demand flexibility control sequences.
However, they have not investigated the use of semantic informa-
tion to ease the deployment of MPC controllers. A recent study [5]
proposes an information model that uses a combination of seman-
tic ontologies, to aid the design of an MPC controller. However,
from the proposed approach, it is not evident how the individual
ontologies fare in representing all the information requirements of
an MPC controller and how much overlap is present across these
different ontologies. Additionally, this study did not consider the
emerging industry-driven ASHRAE Standard 223P [17]. In this
paper, we build on existing literature to evaluate three semantic
ontologies aimed at streamlining the development of an MPC con-
troller. We then present the gaps and research questions that need
to be addressed to enable MPC deployments at scale.

2 Methodology
The evaluation of ontologies for meeting the information require-
ments of a MPC controller necessitates the extraction of these
requirements from existing MPC implementations. We used recent
publications from the Annex 81 and the Annex 82 subgroups of the
International Energy Agency’s Energy in Buildings and Communi-
ties Programme to construct three case studies and synthesize the
list of information required by these MPC implementations. Then,
we identify concepts and associate properties from the different
ontologies under evaluation to formally represent the requirements.
These requirements have also been categorized into different com-
ponents of an MPC problem formulation based on the framework
presented in [8].

2.1 Case Studies
In this section, we introduce the threeMPC case studies, fromwhich
we will extract the information requirements.

Case Study 1 (NEST) describes an MPC controller that was
developed to reduce the greenhouse gas emissions associated with

energy consumption in the NEST demonstrator at Empa in Switzer-
land [4]. This controller managed the operation of a heat pump for
space heating, another heat pump for domestic hot water heating,
an electric battery and a simulated electric vehicle. It minimized the
carbon emissions while maintaining the required space and water
temperatures.

Case Study 2 (B59) presents an MPC controller field tested in
Building 59 on the main campus of Lawrence Berkeley National
Laboratory in Berkeley, California [3]. The controller manages
an HVAC system that conditions two floors of office space in the
building, which includes four roof-top units (RTUs) with water-
cooled direct expansion (DX) coils. It also controls an underfloor
air distribution system with 50 fan-powered underfloor terminal
units (UFTs), each fitted with water heating coil to provide heating
and reheat. The MPC controller aims to minimize the total power
consumed by the HVAC system while maintaining the zone tem-
perature within acceptable bounds and ensuring a minimum air
flow rate in the space.

Case Study 3 (VLB) employs an MPC controller to optimally
utilize the thermal energy generated by a building integrated photo-
voltaic/thermal (BIPV/T) system [19]. The MPC controller and the
BIPV/T system in this case study were deployed in the Varennes
Library, a net-zero building in Varennes, Canada. Thermal energy
from the BIPV/T system can be recovered using a Energy Recovery
Ventilator and either supplement the heating/cooling supplied to
an air handling unit (AHU) or boost the performance of an air-to-
water heat pump (AWHP). The AHU supplies conditioned air to the
building and the AWHP is responsible for space heating through a
hydronic radiant slab.

2.2 Components of MPC Problem Formulation
For each case studies, we decompose the MPC problem formulation
into distinct components and describe the information required for
each one. Based on the general MPC framework presented in [8],
in this paper, we aim to capture and represent using the three
different semantic ontologies, the information needed to represent
the different “types” of objectives, constraints and models. For each
type, different information from the building systems are needed by
theMPC controllers. The “forms” of these components (such as hard
v/s soft constraints, linear v/s quadratic objectives) are also critical
factors in the MPC problem formulation. However, as our focus is
solely on the inputs and outputs of the controllers, the details of the
optimization function (such as prediction horizon, solvers etc.) are
beyond the scope of this paper. Similarly, the algorithms, tools and
problem classes are very specific to an MPC problem formulation
and, hence, go beyond the scope of building-specific ontologies.

Objectives: The objectives of anMPC controller are expressed as
a cost function that the optimization aims to minimize. These could
be, for instance, minimizing greenhouse gas emissions, or mini-
mizing energy cost for the building. Each objective often requires
information about the states of the system (e.g.: indoor tempera-
tures, energy consumption, peak demand) and specific additional
information such as utility tariffs or greenhouse gas forecasts.

Constraints: Every setpoint or action generated by an MPC
controller must be or produce results within acceptable bounds.
These bounds could originate from the physical constraints of an
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Table 1: Using semantics to represent information needed
for objectives

Case Study Variable S223 Brick SAREF
NEST grid carbon intensity X X X

actuator, the comfort levels of a zone or the safety limits of the
equipment itself. Hence, to ensure the safe and comfortable opera-
tion of the building equipment, it is important to incorporate these
constraints in the MPC problem.

Models: Developing models to capture the system dynamics
of a building or a system is a critical part of developing an MPC
controller. These models are included as equality constraints and
they help estimate the states of the building in the future based
on actions generated by the controller. While there are different
methods to create these models, each with varying information
requirements, in this paper, we limit our analyses to support the
case studies under consideration.

3 Evaluation and Results
Incorporating references to the information required by MPC con-
trollers within semantic models enables control developers to use se-
mantic queries without the need for hard-coding data point names.
Semantic models of buildings also contain network addressing infor-
mation and hence using semantic queries to configure the controller
streamlines the process of linking the appropriate data sources to
the right component of an MPC controller.

In this paper, we will evaluate two published ontologies for
building applications: Brick [1] and Smart Applications REFerence
(SAREF) [12]. Additionally, we will include the upcoming ASHRAE
Standard 223P (S223), based on the publicly available information
as of September 2024 [17]1. Brick and SAREF have been gaining
significant traction in the US and European research communities,
respectively, and initial adoption in commercial applications. Brick
focuses on representing the physical, logical and virtual assets
in buildings, as well as the relationships between them. SAREF
facilitates the matching of existing assets (standards, protocols,
data models, etc.) in the smart appliances domain. The industry-led
effort under ASHRAE to develop Standard 223, with its goal of
providing more detailed information about equipment layout and
system composition, justifies its inclusion in this evaluation.

Tables 1, 2, 3 describe the different assets and variables that
the three case studies of MPC controllers require. The last three
columns in these tables indicate whether S223, Brick or SAREF
contain concepts that can be used to explicitly model the respective
asset, variable and their relationship, directly using concepts that
exist in the ontologies. When all three ontologies were able to repre-
sent certain information requirements, they were excluded from the
tables2. For example, all three ontologies were able to represent the
power consumption of the uncontrollable lighting and plug loads
for NEST and B59, as well as all the data points from the energy
recovery ventilator (recovered thermal energy, air flow rate and fan
power) in VLB. Correspondingly, those requirements have not been
1https://explore.open223.info/.
2Full tables have been uploaded here: https://gist.github.com/anandkp92/
6fc31bc58f5d541a67d9c77ab0fc4308

Table 2: Using semantics to represent information needed
for the inequality constraints

Asset Variable S223 Brick SAREF

N
E
S
T

HP for
space
heating

room
temperature
bounds

✓ ✓ X

max thermal
power ✓ ✓ X

HP for
domestic
hot water

DHW tank
temperature
bounds

✓ ✓ X

Electric
Battery

max charge/
discharge rate X X X

min SOC X X X

Electric
Vehicle

max charge/
discharge rate X X X

min SOC X X X
grid connection
status X X X

Building power export
status X X X

B
5
9

RTU

supply air
temperature
bounds

X ✓ ✓

supply air
flow rate
bounds

X ✓ ✓

V
L
B

Thermal
system

air flow rate
bounds X ✓ X

AWHP air flow rate
bounds ✓ ✓ X

included in Table 3. The results presented in the tables indicate that
each ontology exhibits varying levels of completeness, reflective of
its primary purposes, and all ontologies share overlapping concepts.
They further reveal that the Brick ontology is the most comprehen-
sive, meeting approximately 76% of the specified requirements. In
comparison, the S223 and SAREF ontologies support 52% and 47%
of the requirements, respectively

4 Discussion and Conclusion
The evaluation conducted in this paper suggests that no single
ontology can fully model the diverse data requirements of MPC
controllers, given the specific needs arising from the heterogeneity
of building systems. That being said, all the concepts required in the
case studies which could be modeled by S223 and SAREF, could also
be modeled by Brick. Nevertheless, while Brick has demonstrated
better comprehensiveness in this analysis, the S223 and SAREF
classes may be more suitable for other scenarios. For example,
modeling comprehensive topological information within building
HVAC systems would require S223 classes such as ‘Ducts’ and
‘Pipes’ which is abstracted in Brick through the ‘feeds’ predicate and
not modeled explicitly. This consideration presents an opportunity
for further exploration: what are the overlapping and the distinct
concepts across different building-specific ontologies and how and
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Table 3: Using semantics to represent information needed
for system modeling

Asset Variable S223 Brick SAREF

N
E
S
T

HP for
space
heating

room temperature ✓ ✓ X
thermal power
input ✓ ✓ X

HP for
domestic
hot water

tank temperature X ✓ X
water flow rate ✓ ✓ X
thermal power
input ✓ ✓ X

Electric
Battery

state of charge X X X
charge/discharge
rate X X X

Electric
Vehicle

state of charge X X X
charge/discharge
rate X X X

PV
System solar irradiance X ✓ X

Building
building to grid
power ✓ ✓ ✓

grid to building
power ✓ ✓ ✓

B
5
9

Zone zone setpoint ✓ ✓ X
solar irradiance X ✓ X

RTU

outside air flow
rate X ✓ ✓

supply air flow
rate X ✓ ✓

outside air
temperature X ✓ ✓

supply air
temperature X ✓ ✓

supply air
temperature
setpoint

X ✓ X

Supply
Fan

fan speed
setpoint ✓ ✓ X

Return
Fan

fan speed
setpoint ✓ ✓ X

DX Coil
coil valve
position
command

✓ ✓ X

UFT heating demand X ✓ X
air flow rate X ✓ X

V
L
B

PV
System

ambient
temperature ✓ ✓ X

PV temperatures X X X
insulation
temperature X X X

Thermal
system

inlet temperature X X X
outlet
temperature X X X

air flow rate X ✓ X
average air
temperature X ✓ X

AWHP electric heating
load ✓ ✓ X

when should an MPC controller leverage these distinctions to model
its requirements?.

Delving further into the non-represented assets and variables,
we noted that none of the three ontologies were able to completely
capture requirements pertaining to distributed energy systems (bat-
teries, electric vehicles and PV systems) and utility signals (tariffs,
emission rates). Addressing this gap, either through extension of
these schemas or inclusion of complementary ontologies, is es-
sential to comprehensively represent and support the information
requirements of MPC controllers that enable GEBs.

Formulating an MPC controller also requires information about
certain non-time varying parameters that are not captured by these
semantic ontologies (e.g.: prediction horizon, sampling time etc.).
These parameters also depend on the “forms” the different compo-
nents of an MPC controller take and finding a suitable solution to
model these parameters requires further examination of a broader
question: how can we model the non-building dependent components
(e.g.: algorithms and modeling approach) of an MPC controller in a
modular and reusable way and how can this be incorporated with
building-related and other complementary ontologies?. Advancing
this research prompts another compelling question: Can semantic
models be utilized to facilitate the development of systemmodels (such
as reduced-order resistance-capacitance model of a room) for an MPC
controller?

The literature clearly demonstrates that leveraging semantic
models can bootstrap the integration of building analytic and con-
trol applications. Despite the current limitation in modeling all data
requirements for MPC controllers, using existing ontologies such as
Brick can still significantly speed up the MPC integration process
in a variety of building types. By leveraging standard concepts,
these ontologies help reducing time and labor to manually connect
buildings’ data sources and actuation points to the MPC software
components. In a future where these ontologies comprehensively
satisfy all data requirements for MPC, scalable deployment of MPC
becomes closer to reality.
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